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ABSTRACT

An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated
axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly
with height. The model is linear with respect to the perturbations induced by the mountain, and solves the
Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation,
formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous
studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface
drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where
the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not
depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri 21, decreasing as
Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates
with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the
surface wind. When one of the wind components varies linearly with height and the other is constant, the surface
drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be
in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even
moderate values of Ri.

1. Introduction

One of the basic effects of subgrid-scale orography
that must be parameterized in large-scale atmospheric
models is orographic gravity wave drag. This force aris-
es in stratified flow over mountains due to the upwind–
leeward asymmetry of the pressure perturbation asso-
ciated with stationary internal gravity waves generated
by the mountains. With the same value and opposite
direction to the drag exerted on the mountains, there is
a reaction force acting on the atmosphere that tends to
decelerate the flow. When integrated over the main
mountain ranges, this force has an important impact on
the global atmospheric circulation (McFarlane 1987). In
order to develop physically sound drag parameteriza-
tions, it is necessary to know how the surface drag varies
with the characteristics of the flow: the shape of the
orography, its height and width, the stratification of the
incoming flow, its velocity, and the associated velocity
gradients.

As pointed out by Shutts (1995), surprisingly few
studies exist that treat the effect of shear on mountain
waves. Until now, most of these studies have either used
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numerical models or highly idealized analytical models,
where the equations of motion are linearized with re-
spect to the perturbations induced by the orography. A
notable exception to this linearization is the model de-
veloped by Long (1953) where the equation for the
streamline displacement is linear, while being valid for
waves of arbitrary amplitude. Unfortunately, the validity
of Long’s solution, which has been used by Huppert and
Miles (1969), Lilly and Klemp (1979), Smith (1985),
and Durran (1992), is limited to unperturbed flows with
constant velocity and 2D orography. Studies using nu-
merical models often focus on the nonlinear regimes
that cannot be simulated accurately using the linear ap-
proximation, such as resonance (Clark and Peltier 1984;
Bacmeister and Pierrehumbert 1988; Scinocca and Pel-
tier 1991; Miranda and Valente 1997) or lee vortices
(Smolarkiewicz and Rotunno 1989). In these cases, the
effect of shear cannot be easily separated from nonlinear
effects.

Despite being limited in their application to flows
over gentle orography, linear models are particularly
useful for studying the dependence of the drag force on
the parameters of the flow in an exhaustive way, because
they have analytical solutions. A linear model has been
used, for example, by Broad (1995), to derive a quite
general extension to 3D of the Eliassen–Palm (EP) the-
orem.
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However, linear models also have the important lim-
itation that closed formulas for the drag can only be
obtained for a small set of orography shapes and highly
simplified wind profiles. Analytical expressions for the
surface drag have been obtained, in the hydrostatic ap-
proximation, for flow over bell-shaped ridges or isolated
mountains, in the cases of a constant wind (Smith 1979,
1980; Phillips 1984), a wind that varies linearly with
height (Smith 1986; Keller 1994; Grubišić and Smo-
larkiewicz 1997), and a wind profile with directional
shear where one of the velocity components varies lin-
early and the other is constant (Shutts 1995; Shutts and
Gadian 1999). The analytical resolution of the equations
of motion is practically limited to these simple types of
flow, and consideration of more complicated velocity
profiles requires the use of approximate methods. One
such method is the Wentzel–Kramers–Brillouin (WKB)
approximation.

The WKB approximation is applicable to waves prop-
agating in slowly varying media, and has been used by
Grisogono (1994) to calculate the surface drag for uni-
directional flow with a hyperbolic-tangent profile over
a Gaussian ridge. The expression for the surface drag
derived by Grisogono does not depend on the first de-
rivative of the velocity, and this is clearly incorrect, as
the studies of Smith (1986) and Grubišić and Smolar-
kiewicz (1997) have shown, respectively, for flow over
a ridge and flow over an isolated mountain. In the studies
of Shutts (1995) and Shutts and Gadian (1999), the
WKB approximation has also been used to determine
the vertical momentum flux in an atmosphere with weak
shear. But the expression obtained by them for the sur-
face drag is equal to that valid for an atmosphere with
constant wind. An aim of this study is to overcome these
limitations and present a model based on the WKB ap-
proximation that is totally consistent and capable of re-
producing the correct asymptotic behavior of the surface
drag displayed by previous exact analyses.

The effect of shear on the drag is reflected essentially
through a dependence on the Richardson number of the
flow, Ri. This study was motivated in part by the nu-
merical results of Grubišić and Smolarkiewicz (1997)
and of Valente (2000), which show that the surface drag
displays totally different behaviors for a velocity profile
with a linear variation and for a wind that rotates with
height, decreasing as Ri decreases in the first case and
increasing as Ri decreases in the second. Another aim
of the present study is to present a framework from
which expressions for the drag can be obtained for more
general wind profiles, therefore clarifying these differ-
ences in behavior.

In this study, an improved linear solution for the sur-
face gravity wave drag on an isolated mountain is de-
veloped, assuming that the velocity profile, and hence
the vertical wavenumber of the waves varies slowly in
the vertical. Adopting a WKB approximation, the ver-
tical wavenumber of the internal gravity waves is ex-
panded as a power series of a small parameter « in-

versely proportional to the square root of the Richardson
number. Unlike in the WKB treatments of Grisogono
(1994) and Shutts (1995), this expansion is extended
here to second order in «, with the consequence that the
first derivative of the velocity profile is now correctly
predicted to have an impact on the drag, and the cor-
rection due to the curvature of the velocity profile is
smaller than predicted by the approach of Grisogono,
in better agreement with data. Although the WKB ap-
proximation is formally valid for high Richardson num-
bers, it will be seen that the model reproduces reason-
ably well the results of nonhydrostatic mesoscale nu-
merical models not only for high but also for Richardson
numbers of order one, for the three simple flows used
as test cases.

This paper is organized as follows. Section 2 presents
the theoretical model used in this study. The model is
derived for nonhydrostatic conditions but is then sim-
plified for hydrostatic flow. Section 3 presents the re-
sults, where the model is tested for three idealized flows.
Finally, section 4 contains the main conclusions of this
study.

2. A second-order WKB linear model

An analytical model is developed here to calculate
the surface drag force produced by orographic internal
gravity waves generated in a flow with constant Brunt–
Väisälä frequency N over an isolated mountain of height
h0 and half-width a. The model is linear, and hence valid
for ĥ 5 Nh0/ | U0 | K 1, where U0 5 (U0, V0) is the
surface wind, but the wind velocity may nevertheless
vary with height in a complicated way, provided that it
varies relatively slowly. This variation makes the equa-
tion that governs the vertical structure of the mountain
waves have variable coefficients, which in general
would prevent obtaining an analytical solution. Here,
this problem will be overcome using the WKB approx-
imation (Bender and Orszag 1999). As usual in linear
models, the flow is assumed to be steady and the equa-
tions of motion with the Boussinesq approximation are
linearized with respect to the perturbations induced by
the mountain, yielding

]u ]u dU 1 ]p
U 1 V 1 w 5 2 , (1)

]x ]y dz r ]x0

]y ]y dV 1 ]p
U 1 V 1 w 5 2 , (2)

]x ]y dz r ]y0

]w ]w 1 ]p u
U 1 V 5 2 1 g , (3)

]x ]y r ]z u0 0

]u ]u du0U 1 V 1 w 5 0, (4)
]x ]y dz

]u ]y ]w
1 1 5 0. (5)

]x ]y ]z

In this equation set it was assumed that the flow is
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inviscid and steady and that the earth’s rotation is not
important. The unperturbed wind velocity is U 5 [U(z),
V(z), 0] (which is horizontally uniform but varies with
height), u 5 (u, y, w) is the velocity perturbation in-
duced by the mountain, r0 and u0 are the unperturbed
density and potential temperature, g is the acceleration
of gravity, and p and u are the perturbations of pressure
and potential temperature.

By standard procedures, differentiating the equations
of this set several times and combining them in order
to eliminate the dependent variables, a single equation
for the vertical velocity perturbation w is obtained:

2 2 2] ] d U ] d V ] ]w ]w
2U 1 V ¹ w 2 1 U 1 V

2 21 2 1 21 2]x ]y dz ]x dz ]y ]x ]y

2 2] w ] w
21 N 1 5 0, (6)

2 21 2]x ]y

where N 5 [(g/u0)du0/dz]1/2 is the Brunt–Väisälä fre-
quency of the reference state. This is subject to the
boundary condition

]h ]h
w(z 5 0) 5 U(z 5 0) 1 V(z 5 0) , (7)

]x ]y

where h(x, y) is the surface elevation, and the additional
condition that the wave energy radiates upward.

Differentiating (1) with respect to x and (2) with re-
spect to y, adding them and using mass conservation
(5) yields an equation for the pressure perturbation:

2 2] p ] p
1

2 2]x ]y

] ]w ] ]w dU ]w dV ]w
5 r U 1 V 2 2 . (8)01 2]x ]z ]y ]z dz ]x dz ]y

In the linear approximation the pressure drag on orog-
raphy is given by

1` 1`

D 5 p(z 5 0)= h dx dy, (9)E E H

2` 2`

where =H 5 (]/]x, ]/]y, 0) is the horizontal gradient
operator. To determine the gravity wave drag in the
present model, one must first solve (6), then use the
solution for w in (8) to determine the pressure pertur-
bation, and finally, knowing p and the shape of the
surface elevation h, use (9) to determine the drag force.

This calculation is facilitated if all perturbed variables
(w, p, and h) are expressed as Fourier integrals along
x and y:

1` 1`

i(k x1k y)1 2w(x, y, z) 5 ŵ(k , k , z)e dk dk , (10)E E 1 2 1 2

2` 2`

1` 1`

i(k x1k y)1 2p(x, y, z) 5 p̂(k , k , z)e dk dk , (11)E E 1 2 1 2

2` 2`

1` 1`

i(k x1k y)1 2h(x, y) 5 ĥ(k , k )e dk dk . (12)E E 1 2 1 2

2` 2`

Here, the Fourier transforms are denoted by a hat, and
k1 and k2 are, respectively, the components of the wave-
number along x and y.

Using (10), the equation for the vertical velocity per-
turbation (6) takes the form

2 2N k U0k 1 V 0k12 1 22ŵ0 1 2 k 2 ŵ 5 0, (13)122[ ](Uk 1 Vk ) Uk 1 Vk1 2 1 2

where k12 5 ( 1 )1/2 and the prime denotes differ-2 2k k1 2

entiation with respect to z. This is sometimes called the
Taylor–Goldstein equation, and is subject to the bound-
ary condition

ŵ(z 5 0) 5 iĥ[U(z 5 0)k 1 V(z 5 0)k ], (14)1 2

which results from (7) and (10)–(12), and also to the
radiation boundary condition at z → 1`. Similarly, using
(10)–(11), the equation for the pressure (8) becomes

r 0p̂ 5 i [(U9k 1 V9k )ŵ 2 (Uk 1 Vk )ŵ9]. (15)1 2 1 22k12

Finally, the equation for the drag (9) can be expressed
as

1` 1`

2D 5 4p i k p̂*(z 5 0)ĥ dk dk , (16)E E 1 2

2` 2`

where k 5 (k1, k2, 0) is the horizontal wavenumber
vector and the asterisk denotes complex conjugate.

Equation (13), although being linear with respect to
ŵ, has a variable coefficient (between square brackets),
and in general can only be solved by numerical or ap-
proximate analytical methods. Here, it will be solved
using the WKB approximation, where it is assumed that
the vertical structure of the solutions (and the back-
ground flow that determines them) varies slowly in the
vertical. In order to use this approximation consistently,
it is necessary first to introduce a scaled vertical co-
ordinate Z 5 «z, where « is a small parameter. The
purpose of this change of variable is to bear out clearly
the difference in magnitude of the various terms in the
equation being treated. Whereas in the original equation
[in this case (13)], the terms with vertical derivatives
are presumably smaller than the others but are not clear-
ly identified, in the equation with scaled vertical co-
ordinate, to be presented next, the terms with vertical
derivatives are of the same order of magnitude as the
other terms, but multiplied by appropriate powers of «,
enabling a solution procedure in terms of power series.
For example, when z is replaced by Z/« in (13) and it
is noted that ]/]z 5 «]/]Z, (13) becomes

2 2 ¨ ¨N k Uk 1 Vk12 1 22 2 2« ¨̂w 1 2 k 2 « ŵ 5 0,122[ ](Uk 1 Vk ) Uk 1 Vk1 2 1 2

(17)
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where differentiation with respect to Z has been replaced
by a dot, to simplify the notation.

The WKB solution to (17) (see, e.g., Bender and Or-
szag 1999) is

Z

21 2ŵ(Z ) 5 ŵ(Z 5 0) exp i« [m (z) 1 «m (z) 1 « m (z) 1 · · ·] dz . (18)E 0 1 25 6
0

In this equation, the vertical wavenumber of the internal
gravity waves m(Z) has been expanded as a power series
of «, where the subscripts indicate the order of each
term. This series is extended here up to second order
because this is necessary for the vertical variation of
the unperturbed velocity to have any impact on the sur-
face drag, as will be shown.

When the solution (18) is introduced into (17), three
separate equations result, valid at zeroth, first, and sec-
ond order in «. These equations, which determine the
definitions of m0, m1, and m2 are

2 2N k122 22m 1 2 k 5 0, (19)0 122(Uk 1 Vk )1 2

iṁ 2 2m m 5 0, (20)0 0 1

¨ ¨Uk 1 Vk1 22iṁ 2 2m m 2 m 2 5 0. (21)1 0 2 1 Uk 1 Vk1 2

As is easily noticed, when solved in succession, these
three equations are algebraic for m0, m1, and m2, yield-
ing

1/2
2 2N k12 2m 5 2 k , (22)0 122[ ](Uk 1 Vk )1 2

21
2˙ ˙1 Uk 1 Vk (Uk 1 Vk)1 2 1m 5 2 i 1 2 , (23)1 2[ ]2 Uk 1 Vk N1 2

1 Uk 1 Vk1 2m 5 22 8 Nk12

2 2˙ ˙Uk 1 Vk (Uk 1 Vk)1 2 13 1 2 6
251 2 [ ]Uk 1 Vk N1 2

25/22(Uk 1 Vk )1 23 1 2
2[ ]N

2¨ ¨Uk 1 Vk (Uk 1 Vk )1 2 1 21 2 1 2 2
2[ ]Uk 1 Vk N1 2

23/22(Uk 1 Vk )1 23 1 2 . (24)
2 6[ ]N

It is worth noting at this point that m1 can easily be
expressed in terms of m0, through m1 5 (1/2)iṁ0/m0

[this results from (20)]. When introduced in the solution
(18) (ignoring for the moment m2), this yields

1/2 zm (z 5 0)0ŵ(z) 5 ŵ(z 5 0) exp i m (z) dz ,E 0[ ] [ ]m (z)0 0

(25)

which is equivalent to the WKB solution proposed by
Grisogono (1994)—his Eq. (2.4)—and also apparently
equal to the solution used by Shutts (1995) and Shutts
and Gadian (1999), although they do not present the
expression explicitly [an explicit solution, albeit for the
particular case of a linear wind profile, is given by Shutts
(1998)]. However, Grisogono (1994) defines m0 incon-
sistently, mistakenly equating it to the whole coefficient
between brackets multiplying the second term of (13).
In fact, when correctly scaled, the terms including the
second derivatives of (U, V) only appear at second order,
as shown by (17) and (24). This is the primary cause
why the drag expression of Grisogono (1994) contains
a correction due to the curvature of the wind profile,
when in fact that correction should not appear in a con-
sistent treatment using the first-order solution (25).

As seen in (22), the definition of m0 is exactly equal
to that valid for an atmosphere with a constant wind.
This simple definition enables one to estimate the con-
ditions of validity of the WKB approximation and to
define « more precisely. The WKB approximation is
valid when the vertical wavenumber of the internal grav-
ity waves varies over a distance that is much larger than
the inverse of its value. Mathematically, this is equiv-
alent to

m9(z)
K 1. (26)

2m (z)

In order for the WKB approach to be sound, it is also
necessary that the power series for the wavenumber in
the exponent of (18) be asymptotic, that is, « K 1. As
long as this condition is satisfied, m(z) ø m0(z), so a
reasonable definition for « is

m9 m9 U9k 1 V9k0 1 2« 5 ø ø . (27)
2 2m m Nk0 12

In the last equality of (27), the hydrostatic approxi-
mation has been used, which corresponds to neglecting
the term in the definition of m0 (22). It is fairly2k12

obvious that (U9k1 1 V9k2)/(Nk12) is of the same order
of magnitude as (U92 1 V92)1/2/N, which means that «
5 O(Ri21/2), where Ri 5 N 2/(U92 1 V92) is the Rich-
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ardson number of the flow. The small parameter of this
model « is therefore inversely proportional to the square
root of the Richardson number, and clearly the model
is only formally valid for high Ri. In fact, it will be
seen later that the model is reasonably accurate even
when Ri is of order one.

The WKB solution for ŵ is completely defined by
(18), together with (14) and (22)–(24). It is now nec-
essary to calculate the associated pressure perturbation
p̂. In terms of the new vertical coordinate Z, the equation
for the pressure (15) becomes

r 0 ˙ ˙p̂ 5 i« [(Uk 1 Vk )ŵ 2 (Uk 1 Vk ) ˙̂w]. (28)1 2 1 22k12

Now, differentiating (18) with respect to Z yields

21 2˙̂w 5 i« (m 1 «m 1 « m )ŵ,0 1 2 (29)

so, on introducing (29) into (28), the pressure pertur-
bation is given by

r 0 ˙ ˙p̂ 5 i [«(Uk 1 Vk )1 22k12

22 i(Uk 1 Vk )(m 1 «m 1 « m )]ŵ. (30)1 2 0 1 2

For the purpose of calculating the surface wave drag,
only the pressure at the surface is required. Using the
boundary condition at the surface (14) and (30), this
can be written

p̂(z 5 0)

r 0 ˙ ˙5 2 {«(U k 1 V k ) 2 i(U k 1 V k )0 1 0 2 0 1 0 22k12

3 [m (z 5 0) 1 «m (z 5 0)0 1

21 « m (z 5 0)]}(U k 1 V k )ĥ, (31)2 0 1 0 2

where the subscript 0 denotes values of the velocity or
its derivatives taken at z 5 0. From (31), some conclu-
sions can already be drawn about the surface drag. The
drag results from the asymmetry of the pressure per-
turbation relative to the mountain, therefore a pressure
perturbation that is proportional to the orography by a
real factor does not contribute to the drag because it is
in phase with the surface elevation. This implies that
the first term within the square brackets in (31) does
not contribute to the drag. Additionally, (23) reveals
that m1 is always pure imaginary, so the term involving
m1 is (31) does not contribute to the drag either. As a
consequence, the only term in (31) that makes the sur-
face drag for a flow with variable velocity differ from
that associated with flow with constant velocity is that
involving m2. This explains why first-order WKB treat-
ments, such as those of Shutts and Gadian (1999), fail
to find any difference between the surface drag in the
case of a slowly varying wind profile and a constant
wind profile [see their Eq. (20)].

It is clear from (31) that, like the vertical wavenumber,

the surface pressure is given by a power series of «,
namely,

2p̂(z 5 0) 5 p̂ 1 p̂ « 1 p̂ « 1 . . . ,0 1 2 (32)

where

r 0 2p̂ 5 i (U k 1 V k ) m (z 5 0)ĥ, (33)0 0 1 0 2 02k12

r 0 ˙ ˙p̂ 5 2 [(U k 1 V k ) 2 i(U k 1 V k )m (z 5 0)]1 0 1 0 2 0 1 0 2 12k12

3 (U k 1 V k )ĥ, (34)0 1 0 2

r 0 2p̂ 5 i (U k 1 V k ) m (z 5 0)ĥ. (35)2 0 1 0 2 22k12

When (22)–(24) are used to substitute the definitions
of m0, m1, and m2 evaluated at z 5 0, (33)–(35) take
the form

1/2
2r N (U k 1 V k )0 0 1 0 2p̂ 5 i (U k 1 V k ) 1 2 ĥ, (36)0 0 1 0 2 2[ ]k N12

r 0 ˙ ˙p̂ 5 2 (U k 1 V k )(U k 1 V k )1 0 1 0 2 0 1 0 22k12

2121 (U k 1 V k )0 1 0 23 1 2 1 2 ĥ, (37)
25 6[ ]2 N

31 r (U k 1 V k )0 0 1 0 2p̂ 5 2 i2 38 k N12

2 2˙ ˙U k 1 V k (U k 1 V k )0 1 0 2 0 1 0 23 1 2 6
251 2 [ ]U k 1 V k N0 1 0 2

25/22(U k 1 V k )0 1 0 23 1 2
2[ ]N

2¨ ¨U k 1 V k (U k 1 V k )0 1 0 2 0 1 0 21 2 1 2 2
2[ ]U k 1 V k N0 1 0 2

23/22(U k 1 V k )0 1 0 23 1 2 ĥ. (38)
2 6[ ]N

These expressions are somewhat lengthy, but simplify
considerably when the hydrostatic approximation is as-
sumed, as will be seen next.

Hydrostatic flow

The hydrostatic approximation is acceptable in a wide
range of situations of practical interest, and will be
adopted here to simplify the calculations, since only then
can an expression for the wave drag be derived ana-
lytically. Given the dimensionless width of the mountain
â 5 Na/ | U | (where a is the corresponding dimensional
half-width), the hydrostatic approximation is formally
valid when â k 1. Since, in the WKB approximation,
the unperturbed flow is assumed to vary slowly, this
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dimensionless quantity can be defined alternativley in
terms of the surface velocity â 5 Na/ | U0 | . When this
parameter tends to infinity, all second terms within the
square brackets in the expressions for p̂0, p̂1, and p̂2,
(36)–(38), vanish, because they are clearly proportional
to â22. Hence, the equations giving the pressure per-
turbations at the surface become

N
p̂ 5 ir (U k 1 V k )ĥ, (39)0 0 0 1 0 2k12

1 r 0 ˙ ˙p̂ 5 2 (U k 1 V k )(U k 1 V k )ĥ, (40)1 0 1 0 2 0 1 0 222 k12

1 r 0 2˙ ˙p̂ 5 2 i [(U k 1 V k )(U k 1 V k )2 0 1 0 2 0 1 0 238 Nk12

2¨ ¨1 2(U k 1 V k )(U k 1 V k ) ]ĥ.0 1 0 2 0 1 0 2

(41)

From (16) and (32), it follows that the drag force can
also be expressed as a power series of «:

2D 5 D 1 D « 1 D « 1 . . . ,0 1 2 (42)

where

1` 1`

2D 5 4p i k p̂*ĥ dk dkj E E j 1 2

2` 2`

( j 5 0, 1, 2, . . .). (43)

Before D0, D1, and D2 can be calculated, however, the
shape of the orography must be specified. In this study,
following Smith (1980), Grubišić and Smolarkiewicz
(1997), and Shutts and Gadian (1999), a circular bell-
shaped isolated mountain will be adopted. This type of
orography is defined by

h0h(x, y) 5 , (44)
2 2 3/2[1 1 (x/a) 1 (y/a) ]

and the corresponding Fourier transform, which is re-
quired in (43) and (39)–(41), is

1
2 2ak12ĥ(k , k ) 5 h a e . (45)1 2 02p

3. Results

If the expressions for the pressure presented in the
previous section, (39)–(41), are substituted in the cor-
responding equations for the drag, if (45) is used and
the integration over all wavenumbers is carried out an-
alytically (by adopting polar coordinates), one obtains

p
2D 5 r NU ah , (46)0 0 0 04

D 5 0, (47)1

p
2D 5 2 r NU ah2x 0 0 04

2 2˙ ˙ ˙ ˙1 U V V U V0 0 0 0 03 3 1 1 2
2 2 21 2[32 N N U N0

¨ ¨ ¨1 U U V U V V V0 0 0 0 0 0 01 3 1 1 2 , (48)
2 2 21 2]16 N U N N0

p
2D 5 2 r NV ah2y 0 0 04

2 2˙ ˙ ˙ ˙1 V U U U V0 0 0 0 03 3 1 1 2
2 2 21 2[32 N N V N0

¨ ¨ ¨1 V V U V U U U0 0 0 0 0 0 01 3 1 1 2 . (49)
2 2 21 2]16 N V N N0

From these expressions, it can immediately be con-
firmed that there is no contribution to the drag at first
order in «. This was to be expected from (40), because
p̂1 has no imaginary part. As expected, the zeroth-order
drag D0 5 (D0x, D0y) is equal to that derived by Smith
(1980) for a constant wind profile. The second-order
drag is nonzero and has a complicated form, depending
on the first and second derivatives of the unperturbed
velocity profile. A detailed interpretation of the contri-
butions of the zeroth-, first-, and second-order parts of
the pressure perturbation to the drag will be given later.

When using polar coordinates to integrate (43), it
becomes clear that p̂0, p̂1, and p̂2 do not depend ex-
plicitly on the value of the wavenumber k12, but only
on the azimuthal angle [see (39)–(41)], so the integration
over k12 is equal for D0, D1, and D2 (i.e., amounts to
multiplication by the same constant, determined by the
shape of the orography). This means that, although the
absolute values of D0, D1, and D2 depend on the shape
of the orography, their relative magnitude does not, as
long as the orography is axisymmetric. This property
adds much relevance to the present calculations, which
therefore are applicable to any axisymmetric mountain.
In nonhydrostatic conditions, this property does not
hold, because nonhydrostatic effects depend on the val-
ue of the wavenumber, as is evident by looking at the
second terms between square brackets in (36)–(38), and
this dependence is different for p̂0, p̂1, and p̂2. This
property does not hold either for nonaxisymmetric orog-
raphy, because in that case depends on the azimuthalĥ
angle and this modifies the integration over this variable
in (43).

Adding the three terms of (42) in the form given by
(46)–(49) and noting that (· · ·)9 5 «( ) yields·· · ·

2 21 U9 V9 V U9V90 0 0 0 0D 5 D 1 2 3 1 1 2x 0x 2 2 21 2[ 32 N N U N0

1 U0U V U0V V0V0 0 0 0 0 0 02 3 1 1 2 , (50)
2 2 21 2]16 N U N N0
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FIG. 1. Normalized drag as a function of the inverse Richardson
number for the flow given by (52). (solid line) Present model (53);
(dotted line) analytical model of Grubišić and Smolarkiewicz (1997);
(diamonds) numerical simulations by Grubišić and Smolarkiewicz
(1997; â 5 5, ĥ # 0.1); and (circles) numerical simulations using
the NH3D model (â 5 23, ĥ 5 0.01).

2 21 V9 U9 U U9V90 0 0 0 0D 5 D 1 2 3 1 1 2y 0y 2 2 21 2[ 32 N N V N0

1 V0V U V0U U0U0 0 0 0 0 0 02 3 1 1 2 (51)
2 2 21 2]16 N V N N0

for the x and y components of the drag. These expres-
sions, which are valid for any axisymmetric orography,
are the main result of this study.

The mathematical form of (50)–(51) remains too com-
plicated and general to be readily understood. For that
reason, three simplified flows will be considered next
to test the accuracy of these equations against numerical
simulation results. These results are taken from Grubišić
and Smolarkiewicz (1997) and also calculated using the
nonhydrostatic mesoscale model NH3D, developed by
Miranda (see Miranda and James 1992).

Since the comparisons will focus on the dependence
of the drag on the variation of the mean velocity profile,
and this is quantified by the Richardson number, flows
with a Richardson number that is constant in height will
be addressed for simplicity.

a. Unidirectional wind shear: Velocity with a linear
variation

Arguably the simplest flow with a constant Richard-
son number is that where the wind vector has only one
component and that component varies linearly with
height:

U 5 U 1 az, V 5 0,0 (52)

where a is a constant. This was the velocity profile

considered by Smith (1986) for flow over a ridge and
by Grubišić and Smolarkiewicz (1997) for flow over an
isolated mountain. In this case, the Richardson number
is given by Ri 5 N 2/ 5 N 2/a2. The expressions2U90

obtained with the present model for the surface drag
result directly from (50)–(51) when 5 V0 5 5U0 V90 0

5 0, and areV00

3
D 5 D 1 2 , D 5 0, (53)x 0x y1 232Ri

where D0x is the drag for a constant wind of magnitude
(U0, V0) (i.e., in the absence of shear). So, the drag has
the same direction as the unperturbed flow at the surface,
but its magnitude decreases as the shear increases (or
alternatively as the Richardson number decreases). This
type of qualitative behavior has been predicted by the
exact analytical treatment of Grubišić and Smolarkiew-
icz (1997), but the dependence on the Richardson num-
ber was not so simple as here, involving elliptic inte-
grals. It can, however, be shown that the analytical drag
expression Grubišić and Smolarkiewicz [1997, their Eq.
(28)] tends asymptotically to (53) for high Ri, when
only the term that depends linearly on Ri21 is retained
in the corresponding expansion. This is a clear indi-
cation that the present model is sound.

Figure 1 shows the drag force D 5 Dx normalized
by the drag in the absence of shear D0 5 D0x as a
function the inverse Richardson number Ri21. Since in
(53) the departure of the drag from the unsheared case
is inversely proportional to Ri, the corresponding curve
is a straight line. Numerical simulation data obtained in
approximately linear and hydrostatic conditions by Gru-
bišić and Smolarkiewicz (1997), and results from the
exact formula derived by the same authors, which rep-
resents finite shear rates exactly, are also displayed as
the diamonds and the dahsed curve, respectively. Nu-
merical simulation data from the NH3D numerical mod-
el are shown as the circles. It can be seen that the present
analytical model reproduces quite well the behavior of
the numerical data, even better than the exact theory for
relatively low Ri in the case of Grubišić and Smolar-
kiewicz’s data, which is surprising. This is fortuitous
and presumably due to factors that are not taken into
account by either analytical models. One possibility is
that â is too small in the numerical simulations of Gru-
bišić and Smolarkiewicz (1997). This is apparently con-
firmed by the fact that their exact formula is in better
agreement than (53) with data from the NH3D model,
where conditions are more nearly hydrostatic. However,
results are qualitatively similar and, due to its simplicity,
(53) seems more appropriate for guiding estimates of
the effect of shear on the drag.

Figure 2 displays horizontal cross sections of the pres-
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FIG. 2. Cross sections of the contributions to the normalized pressure perturbation at the surface
given by the present model for the flow (52). (thick solid line) Terrain elevation equal to 0.5h0;
(solid contours) positive values; (dashed contours) negative values. (a) Zeroth-order pressure,
contour spacing 0.05; (b) first-order pressure, contour spacing 0.025; and (c) second-order pressure,
contour spacing 0.005.

sure perturbation at the surface calculated with the pres-
ent model. The zeroth-, first-, and second-order contri-
butions to the pressure field are separated to emphasize
their different roles. This has been done using the ex-
pressions (39)–(41), which were inversely transformed
back to physical space using a fast Fourier transform
(FFT) algorithm (Press et al. 1992). Figure 2a shows
the zeroth-order pressure perturbation, which is anti-
symmetric relative to the mountain, having a positive
maximum on the upwind side and a negative minimum
on the downwind side (cf. Fig. 3 of Smith 1980). This
causes a positive drag on the mountain, as is well
known. The first-order pressure perturbation, on the oth-
er hand (Fig. 2b), is symmetric, having a negative min-
imum, elongated in the spanwise direction, exactly
above the mountain top and therefore producing no drag.
It is for this reason there is no term proportional to
Ri21/2 in the expression for the drag (53). The second-
order pressure perturbation (Fig. 2c) is antisymmetric

like p0, but has the opposite sign, with a negative min-
imum on the upwind side of the mountain and a positive
maximum on the downwind side. The effect of the p2

field (which is also somewhat elongated in the spanwise
direction), is therefore to oppose p0, making the drag
decrease. This is of course consistent with the negative
term proportional to Ri21 in (53).

Figure 3 compares the sum of these three pressure
contributions, for a flow given by (52) where a , 0
(negative shear) and Ri 5 0.5, with a similar flow com-
puted by Grubišić and Smolarkiewicz (1997) using their
nonlinear numerical model. The total pressure pertur-
bation shown in Fig. 3a is wedge shaped, with the pres-
sure maximum shifted toward the mountain top. Note
how these qualitative features are in close agreement
with those quoted by Grubišić and Smolarkiewicz
(1997) and visible in Fig. 3b. Figure 3a is also remark-
ably similar to Fig. 6b of Grubišić and Smolarkiewicz
(1997), where the same field is computed using their



1048 VOLUME 61J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 3. Normalized total pressure perturbation at the surface for the flow given by (52) when
Ri 5 0.5. Shading similar to that used in Figs. 6 and 10 of Grubišić and Smolarkiewicz (1997).
(a) Present model, (thick solid line) terrain elevation equal to 0.5h0; and (b) numerical simulations
of Grubišić and Smolarkiewicz (1997; reproduction of their Fig. 10b).

exact analytical model. This confirms what was already
suggested by Fig. 1: that the present model gives ac-
curate and useful results for Ri 5 O(1).

b. Directional wind shear: Velocity with a linear
variation

One of the simplest flows that changes direction with
height is that where one of the velocity components
varies linearly and the other is constant:

U 5 U 1 az, V 5 V .0 0 (54)

With U0 5 0, this was the type of wind profile used in
the studies of Shutts (1995) and Shutts and Gadian
(1999), because it also enables an analytical resolution
of the equations of motion for arbitrary shear rates. In
this section it will be assumed instead that V0 5 U0 ±
0. This velocity profile corresponds to a constant Rich-
ardson number, given, as in the previous case, by Ri 5
N 2/ 5 N 2/a2.2U90

There are, however, important differences in the way
the expressions for the drag, (50)–(51), simplify. Now,

5 5 5 0, and this yieldsU0 V9 V00 0 0

3 1
D 5 D 1 2 , D 5 D 1 2 . (55)x 0x y 0y1 2 1 232Ri 32Ri

Hence, the drag in the x direction (the direction along
which there is shear) decreases as rapidly with the Rich-
ardson number as in the previous case, but the drag in
the y direction (along which the wind velocity is con-
stant) decreases 1/3 more slowly as Ri decreases. This
leads to a phenomenon specific to the present type of
flow: a misalignment of the drag force with the unper-
turbed velocity vector at the surface. This misalignment
is greater for smaller Richardson numbers, as (55) im-

plies. It was impossible to find in the literature numerical
simulation data appropriate for comparing with (55). For
example the simulations of Shutts (1995) and Shutts
and Gadian (1999), which consider the same type of
flow, are for very high Richardson numbers (Ri ø 100).
Equation (55) suggests that the corrections to the drag
due to Ri are in that case insignificant. This result has
been corroborated by Shutts and Gadian (1999) when
they found good agreement between the numerical sim-
ulation data and their analytical expression for the drag
(which ignores the effect of the Richardson number).
So it was necessary to perform new numerical simu-
lations for Ri 5 O(1) using the NH3D model (Miranda
and James 1992). Again, approximately linear and hy-
drostatic conditions were considered in these simula-
tions.

Figure 4 shows the drag expressions in (55), respec-
tively, as the solid and dotted lines, against data from
the NH3D numerical model, respectively, represented
by the circles and the squares. It can be seen that, al-
though (55) tends to overestimate the values of the data
for Dx/D0x at low Ri, the agreement is quite good, es-
pecially for high Ri, consistent with the WKB approx-
imation. The relative dependence of the two components
of the drag on the Richardson number is particularly
well captured, indicating that the angle between the drag
force and the surface wind should be fairly well pre-
dicted.

Note that, in this situation, as well as in the situation
treated in the previous section, the value taken by the
drag does not depend, at second order in «, on the sign
of the shear (the Richardson number only depends on

squared). So, a backward shear produces, to thisU90
degree of approximation, the same modification to the
drag as forward shear (cf. Grubišić and Smolarkiwicz
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FIG. 4. Normalized drag as a function of the inverse Richardson
number for the flow given by (54). (solid and dotted lines) The Dx

and Dy from the present model (55); (circles and squares) Dx and Dy

from numerical simulations using the NH3D model (â 5 23, ĥ 5
0.01).

1997). Using the NH3D numerical model, it has been
verified that, in practice, this is not so, and the drag in
both directions decreases much more rapidly with Ri
for forward shear than for backward shear. This may be
a consequence of the fact that the hydrostatic approx-
imation (assumption that â is large) is not as well sat-
isfied by a flow with forward shear as by a flow with
backward shear. Whereas in a flow with backward shear,
the value of the velocity (U 2 1 V 2)1/2 first decreases
with height, rendering â progressively larger immedi-
ately above the surface (being even infinite at the critical
level of a unidirectional flow), in a flow with forward
shear the opposite occurs. It appears that, for Richardson
numbers as low as those considered in Figs. 1 and 4, â
immediately above the surface in the case of forward
shear is so small that (55) can no longer be used. For
this reason, in this and in the previous section, only
backward shear cases have been considered. However,
results not presented here, calculated with the NH3D
model, show that, qualitatively, the behavior of the drag
in the case of forward shear is the same, namely, the
drag decreases as Ri decreases in the x direction, and
decreases more slowly in the y direction.

Figure 5 shows the pressure perturbation for the pre-
sent flow situation (54). While the p0 field, presented
in Fig. 5a, is exactly identical to that in Fig. 2a rotated
by 458 (due to the rotation of the surface wind by that
angle), the p1 and p2 fields, presented in Figs. 5b and
5c, are qualitatively different from those of Figs. 2b and
2c. Over the mountain p1 still has a negative minimum,
therefore producing no drag, but is rotated relative to
Fig. 2b by an angle that is smaller than 458. Field p2 is
rotated by an even smaller angle. There are also some
differences in the magnitude of the first- and second-
order terms of the pressure perturbation, with p1 and p2

being somewhat smaller in Figs. 5b and 5c than in Figs.
2b and 2c. The important point in interpreting (55) is
that the relatively small rotation of p2 relative to Fig.
2c counteracts the p0 pressure field more effectively
along x than along y. For that reason, the coefficient
multiplying Ri21 is larger in Dx than in Dy. This is an
interesting effect, which deserves more detailed inves-
tigation.

Figure 6 compares the total pressure perturbation,
which is the sum of these three pressure contributions,
with results from the NH3D model, for Ri 5 0.5. Again,
the total pressure field shown in Fig. 6a is wedge shaped,
with the maximum slightly shifted toward the mountain
top, and it is rotated from the x direction due to the
oblique orientation of the surface wind, but this rotation
is by more than 458. The pressure pattern is more asym-
metric than in Fig. 3a, due to the different orientations
of p0, p1, and p2. This configuration compares very well
with the pressure field computed using the NH3D nu-
merical model, shown in Fig. 6b.

c. Directional wind shear: Velocity that turns with
height

Another type of flow, which has been used in ide-
alized studies of mountain waves, is that where the wind
rotates with height at a constant rate, while maintaining
its magnitude (Shutts and Gadian 1999; Valente 2000).
This flow can be represented as

U 5 U cos(bz), V 5 U sin(bz), (56)0 0

where b is a constant. By differentiating this expression,
it can be seen that the Richardson number, which in
general is defined by Ri 5 N 2/(U92 1 V92), is related
to b by Ri 5 N 2/(U0b)2. It is therefore constant, as in
the previous cases. For this particular type of flow, the
dimensionless mountain width â 5 Na/(U 2 1 V 2)1/2

takes the value â 5 Na/U0, which is also constant. This
flow is characterized at the surface by 5 V0 5U9 V00 0

5 0. Therefore, the Richardson number at the surface
(which is equal in value to Ri at any height) can also
be defined as Ri 5 N 2/ . Another aspect to be noted2V90

is that, unlike the previous flows, the present flow has
a velocity vector with nonzero second and all other high-
er derivatives. This proves to be the key in determining
the variation of the drag with Ri.

In order to obtain a simple expression for the drag in
this case, it is convenient to relate the terms involving
second derivatives of U and V in (50)–(51) to the Rich-
ardson number. This can be done by noting that, when
(56) is valid, U0U 5 2V92, and hence U0 5 2 .2U0 V90 0

Then it can be shown from (50)–(51) that the drag for
the present flow is given by

5
D 5 D 1 1 , D 5 0. (57)x 0x 0y1 232Ri

Two interesting features immediately stand out from
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FIG. 5. Cross sections of the contributions to the normalized pressure perturbation at the surface
given by the present model for the flow (54). (thick solid line) Terrain elevation equal to 0.5h0;
(solid contours) positive values; (dashed contours) negative values. (a) Zeroth-order pressure,
contour spacing 0.05; (b) first-order pressure, contour spacing 0.025; and (c) second-order pressure,
contour spacing 0.005.

FIG. 6. Normalized total pressure perturbation at the surface for the flow given by (54) when
Ri 5 0.5. (thick solid line) Terrain elevation equal to 0.5h0; (solid contours) positive values;
(dashed contours) negative values, contour spacing 0.05. (a) Present model; and (b) NH3D nu-
merical model.
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FIG. 7. Normalized drag as a function of the inverse Richardson
number for the flow given by (56). (solid line) Present model (57);
(dashed line) WKB model analogous to that of Grisogono (1994);
(dotted line) corresponding first-order asymptotic expansion (58);
(symbols) numerical simulations by Valente (2000; â 5 7.6,ĥ 5 0.08).

these expressions. First, there is no drag along the y
direction, although the flow rotates with height. In this
sense, the drag behavior is different (and simpler) from
that displayed in the previous section. Although a drag
component along y cannot be ruled out at higher order
in «, to second order the drag always takes the direction
of the surface wind, which is along x. This result is
supported by the nonlinear numerical simulations of Mi-
randa (1991) and Valente (2000). Second, the drag in-
creases as Ri decreases, which is a behavior opposite
that displayed in the previous cases. This latter differ-
ence is due to the effect of the second derivative of the
unperturbed velocity, that is, the curvature of the wind
profile. The term involving , when negative (as is theU00
case here), gives a positive contribution to Dx in (50).
Although this is counteracted by a small negative con-
tribution from the term involving , the dominant con-2V90

tribution at second order in «, that is, proportional to
Ri21, remains positive.

Figure 7 shows the variation of the normalized drag
D/D0 5 Dx/D0x with Ri21. The solid line corresponds
to (57) and the symbols to data from numerical simu-
lations carried out by Valente (2000) using the NH3D
numerical model (once more, in approximately linear
and hydrostatic conditions). The dashed line corre-
sponds to an expression for the drag derived using a
WKB approach akin to that of Grisogono (1994), more
precisely using the first-order solution (25) but including
in m0 the terms involving the curvature of the wind
velocity profile. The dotted line is the corresponding
first-order asymptotic expansion valid for high Ri,
which can be shown to have the form

3
D 5 D 1 1 . (58)x 0x1 28Ri

It can be noticed that (57) gives the best agreement with
the numerical simulation data, while the curves based
on Grisogono’s approach overestimate the drag values,
especially the asymptotic approximation (58). This fail-
ure is obviously due to the inconsistencies in the deri-
vation of these expressions. Note in particular that the
coefficient 3/8 predicted by (58) is approximately twice
the coefficient 5/32 predicted by the correct WKB for-
mula (57). If the flow was unidirectional (V0 5 5V90

5 0), the coefficient in (57) would be 3/16, so thisV00
factor of 2 would be exact instead of approximate.

Figure 8 shows cross sections of the zeroth-, first-,
and second-order contributions to the pressure pertur-
bation; p0 is identical in shape and intensity to that
presented in section 3a (because the flow is aligned in
the x direction at the surface), but p1 and p2 are different;
p1 is weak and has positive maxima and negative minima
placed, respectively, in the first and third quadrants, and
in the second and fourth quadrants of the plot. The
symmetry of these pressure patterns implies that there
is again no drag at first order in «, as (57) confirms.
The p2 field, on the other hand, is perfectly antisym-
metric in the x direction, justifying why there is no drag
component along y. The pressure field is elongated in
the y direction, and tends to reinforce p0, having a pos-
itive maximum on the upwind slope of the mountain
and a negative minimum on the downwind slope. Be-
sides having the opposite sign, the maximum and min-
imum in Fig. 8c are approximately 5/3 larger in mag-
nitude than those in Fig. 2c, reflecting the difference in
the coefficients in the corresponding drag formulas (re-
spectively, 3/32 and 5/32).

Figure 9a presents the total pressure perturbation, for
(56) with b . 0 and Ri 5 0.5. The pressure field is
asymmetric, due to the shape of the p1 field, and its
asymmetry bears some resemblance to that found in Fig.
6. This is presumably due to the fact that, in both cases,
the wind rotates anticlockwise as z increases. However,
the asymmetry does not cause here any misalignment
of the drag with the surface wind, because both the
maximum and the minimum of the pressure perturbation
are displaced to the right of the surface wind by a similar
amount. This configuration is caused by the p1 field,
which weakens the p0 field in the first and second quad-
rants of the plot but reinforces it in the third and fourth.
Figure 9b shows that, although most of these qualitative
features are confirmed by numerical simulations of the
NH3D model, the pressure pattern is slightly rotated,
suggesting a small drag component along y.

d. Discussion

The agreement of the present analytical model with
the numerical simulations in the three examples treated
above suggests that the pressure field at the surface is
primarily influenced by the flow field near the surface
and that, for example, critical levels play a relatively
unimportant role in determining the surface drag, at least
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FIG. 8. Cross sections of the contributions to the normalized pressure perturbation at the surface
given by the present model for the flow (56). (thick solid line) Terrain elevation equal to 0.5h0;
(solid contours) positive values; (dashed contours) negative values. (a) Zeroth-order pressure,
contour spacing 0.05; (b) first-order pressure, contour spacing 0.025; and (c) second-order pressure,
contour spacing 0.005.

FIG. 9. Normalized total pressure perturbation at the surface for the flow given by (56) when
Ri 5 0.5. (thick solid line) Terrain elevation equal to 0.5h0; (solid contours) positive values;
(dashed contours) negative values, contour spacing 0.05. (a) Present model; and (b) NH3D nu-
merical model.
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in the parameter regimes considered here. The pressure
perturbation that causes the drag is given in general by
a 3D Poisson equation that is obtained by taking the
divergence of the momentum equation, and using mass
conservation. This Poisson equation has a source term
depending directly on the unperturbed velocity profile.
Due to the properties of the Laplacian operator, the pres-
sure perturbation strictly depends on the velocity field
in the whole domain. The fact that, in the WKB ap-
proximation, the surface drag only depends on the char-
acteristics of the incoming flow at the surface means
that the pressure is determined locally when the wind
changes sufficiently slowly with height. This raises two
important questions. 1) How slow must this wind var-
iation be? 2) What should, in a real situation, be taken
as the ‘‘surface’’ velocity appropriate for using in an
inviscid model such as the one developed here?

The answer to question 1 appears to be, not very slow,
as is corroborated by the accuracy of the model pre-
dictions for Richardson numbers as small as 0.5. One
crude explanation for the good performance of the mod-
el at Ri 5 O(1) is that the coefficients multiplying Ri21

in the drag formulas are relatively small (e.g., 3/32,
1/32, 5/32), so the series expansion for the drag is
asymptotic even when Ri is relatively small. More gen-
erally, previous studies have shown that the WKB ap-
proximation can in fact be applied to situations where
it would not, in principle, be strictly valid (Grisogono
1995).

Regarding question 2, boundary layer theory suggests
that the inviscid pressure is transmitted almost unaltered
through the region where the surface velocity varies due
to the no-slip boundary condition. With this reasoning,
the velocity (and velocity derivatives) to use in the pre-
sent model should perhaps be those in the middle or
upper part of the atmospheric boundary layer. In their
study of the effects of form drag versus gravity wave
drag, Belcher and Wood (1996) suggest, more specifi-
cally, that the velocity to use in inviscid models should
be that at the top of their ‘‘middle layer,’’ which sep-
arates the region where shear (but not turbulence) is
important from the region where the unperturbed flow
is not only inviscid but also approximately irrotational.
While Belcher and Wood’s (1996) scaling analysis is
useful for having an idea of the order of magnitude of
this height, their treatment is limited, since they only
take into account shear in a logarithmic surface layer,
disregarding aspects such as the Ekman boundary layer.

The present study complements the study of Belcher
and Wood (1996) by showing that shear outside the
boundary layer has an important impact on the surface
gravity wave drag. Of course, before the present model
can be used in parameterizations of gravity wave drag
in large-scale models, the height at which to evaluate
the unperturbed velocity and its derivatives has to be
defined more objectively. That is a suitable topic for
future investigations.

4. Conclusions

An analytical linear model based on the WKB ap-
proximation has been developed to investigate the grav-
ity wave drag exerted on mountains by stratified flows
where the velocity changes relatively slowly with
height. By extending the WKB approximation up to
higher order than previously considered, general ana-
lytical formulas for the drag have been derived, in the
hydrostatic approximation, that show the impact on the
drag of the first and second derivatives of the wind
velocity at the surface.

To test the drag expressions derived in the present
study, three simplified situations were considered, all of
them characterized by a Richardson number constant in
height: 1) unidirectional shear flow consisting of wind
with a linear variation, 2) directional shear flow con-
sisting of wind where one of the velocity components
varies linearly and the other is constant, and 3) direc-
tional shear flow consisting of wind that turns with
height at a constant rate, maintaining its magnitude. In
these three cases, the variation of the surface drag with
the Richardson number was found to be proportional to
Ri21. For flow 1, the drag is aligned with the surface
wind and given by D0[1 2 3/(32Ri)], where D0 is the
corresponding value in the absence of shear. In case 2,
where the surface wind is at an angle of 458 to the x
and y axes, the drag is given by Dx 5 D0[1 2 3/(32Ri)]
and Dy 5 D0[1 2 1/(32Ri)]. It is, therefore, not aligned
with the surface wind, especially for relatively small Ri.
In these two cases the drag decreases as Ri decreases.
For flow 3, the drag increases as Ri decreases, being
given by D0[1 1 5/(32Ri)], and is aligned with the
surface wind. All these predictions are shown to be in
fairly good agreement with data from numerical simu-
lations of the nonlinear, nonhydrostatic equations of mo-
tion, especially for large values of Ri, but also even for
values of Ri of O(1).

Cross sections of the pressure perturbation at the sur-
face calculated using the linear model reveal the three
leading-order contributions to the pressure and their ef-
fects on the surface drag. The zeroth-order contribution
is equal to that valid for a wind profile with constant
velocity; the first-order contribution is symmetric with
respect to the mountain and therefore produces no drag.
It is only the second-order contribution (proportional to
Ri21) that modifies the drag, either weakening or re-
inforcing the zeroth-order contribution. This explains
why previous models based on the WKB approximation,
which consider terms only up to first-order, fail to detect
any differences between the drag for flow with shear
and flow with a constant velocity.

In the hydrostatic approximation, the absolute value
of the drag in the absence of shear depends on the shape
of the orography. But the coefficients of the relative
corrections due to the variation of the unperturbed flow
do not, as long as the orography is axisymmetric. This
happens because the expressions for the pressure at ze-
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roth-, first-, or second-order, are independent of the
wavenumber magnitude. Hence, the formulas presented
in this study for flows 1, 2, and 3 are valid for any
axisymmetric mountain. This property does not hold for
nonhydrostatic flows, because the terms associated with
nonhydrostatic effects depend on the horizontal wave-
number of the orography.

A natural next step in the line of research initiated
by this study is to consider nonhydrostatic effects, which
are certainly important for sufficiently narrow moun-
tains, and to extend the analysis to more complicated
orography geometries [e.g., elliptically shaped moun-
tains, following Phillips (1984)]. Such developments
would facilitate the formulation of parameterization
schemes, since in these schemes the anisotropy of the
orography must generally be taken into account.
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