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Abstract

In this paper we consider the structure of dynamically emgivnetworks modelling in-
formation and activity moving across a large set of verticd&e adopt thecommunicability
concept that generalizes that of centrality which is defiimedtatic networks. We define the
primary network structure within the whole as comprisinghaf most influential vertices (both
as senders and receivers of dynamically sequenced aktiwey present a methodology based
on successive vertex knockouts, up to a very small fractioth@ whole primary network,
that can characterize the nature of the primary network awybeither relatively robust and
lattice-like (with redundancies built in) or relativelyefyile and tree-like (with sensitivities and
few redundancies). We apply these ideas to the analysisobfiey networks derived from
fMRI scans of resting human brains. We show that the estimaif performance parameters
via the structure tests of the corresponding primary neksvis subject to less variability than
that observed across a very large population of such scamscethe differences within the
population are significantK eywords. networks, communicability, brain science, fMRI data,

robustness, bimodality.

1 Introduction

There is an increasing interest in evolving graphs: netaovkere edges appear and disappear
over time [Grindrod and Higham, 2010; Crofts and Higham,I2@strada, 2011]. Such networks
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model a range of phenomena where information is commurnidaten vertex to vertex. The
time ordering of the graphs (changing with the discrete apgece and disappearance of edges)
induces an asymmetry; sinceAfcommunicates witlB, and then lateB communicates witlc,

the information fromA can reaclC but not vice versa. For this reason some generalizations of
Katz centrality [Katz, 1953] have been developed so as totifyethe role of individual vertices
within evolving networks as influential sources of informator efficient sinks for information
[Grindrod et al.| 2011; Estrada et al., 2012; Grindrod anghidim, 2012]. These ideas and meth-
ods have been applied to large scale networks form a rangsb€ations including social media,
and peer to peer telecommunications and emails.

When evolving networks are very large (in terms of the nundferertices) there is usually
some need to summarize those networks. Here we introdudedgaef dividing the network into
a primary network containing all of the influential verticssd a consequent secondary network
containing the less important vertices. We shall discussthis differs from existing coarse grain-
ing approaches [Mucha etlal., 2010; Gfeller and Rios, 200082 1tzkovitz et al., 2005], which
provide a different type of (mesoscopic) summary.

Having identified a large primary network we have a need toattarize and summarize its
structure: is it relatively lattice-like and robust to iftsy or is it relatively tree-like and fragile?
We introduce a methodology to test for this by making suageedsockouts of vertices within the
primary network and examining the losses in overall funwidy. By knocking-out very small
fractions (typically 1% of the whole) we can remain withiretlinear regime and avoid second
order, collaborative, loss-effects. Thus we can classéfiworks, from within a possibly large
population of similar examples, with respect to perfornmnteasur&representing the relative
size of the total functional loss due to a given number of koaots, and the variability of those
incremental losses.

To illustrate these ideas we consider their applicatioiMBIf scans of (resting) human brains
and compare the performance of the primary networks fronosit000 such brains. We will show
that the variation in the performance measures observeahfardividual brain (due to analysing
different random knockout sequences) is far less than thatian observed across a large popula-
tion of brains. This leads to the inevitable conclusion ghath individual brains are significantly
different, and in particular that they can be relativelyustor relatively fragile when subject to
successive knockouts of rather small scale components.

We present the framework to make this analysis tractablpriorary networks of 1®or more
vertices. The discussion of the application is relativedif-sontained so as to make the paper
accessible for analysts who can adapt and extend this matgydto any other types of data sets
whereinformation or activity of some kind is observed passing dynamically around a vegela
population of entities.

IHere, and elsewhere in the text, the phrpeséormance measure is used for descriptive purposes. Strictly speak-
ing, the performance measures defined in this paper do nsgfysdite usual measure and norm axioms.



2 Weighted evolving networ ks and communicability

An undirected weighted graph defined over a setwérticesV = {vi|i = 1,...,n}, is such that for
each possible edge, betwegrandvj say, we have a real non-negative weigijt The weighted
adjacency matrixd, with its (i, j)-th term given bya;j, is symmetric and non-negative, and is
equivalent to a pairwisgmilarity matrix that might be used in clustering objects (here represented
by the vertices). We shall always assume that the diagomakta A are all zero (so there are no
self-connections).

Now consider an evolving weighted network given oleconsecutive discrete time steps as a
sequence of such undirected weighted graphs represensecbiosesponding sequence of weighted
adjacency matricegAr, A, ..., A }. A dynamic path from v; to v; is a sequence of successive ad-
joining edges, specified from the sequence of the adjaceatyaes, linkingy; to vertexv; through
intermediate vertices, such that each edge occurs at treetsamstep or a later one than that of the
previous edge. The time ordering of the sequence allows defioe the communicability matrix,
Q ,[Grindrod et al., 2011] as the ordered product of resolent

K
Q=(I-nA) L1 —nA2) . (1 =nAK)” |‘||—nAk

where 0< n <1/ max{p(Ax)} is a constant discount factor ensuring convergence (foemetails
on the role of, and possible choices fgr,see|[Greetham et al., 2013] and the references therein).
Each element o provides a sum over all possible vertex to vertex dynamiogatf the products
of the edge weights, discounted for length.This is a geizatadn of Katz centrality (which applies
for a static network, effectively recovered here wikes: 1).

It is evident thatQ is generally not symmetric, because of the time orderindnefsequence.
Thei-th row sum ofQ represents all of the paths emanating frgpand is a measure of's power
as asource or initiator of dynamic pathways; aneth column sum of) represents all of the paths
coming intov;, and is a measure of thigs power as aink or destination for dynamic pathways.
Intuitively if many dynamic paths go through some vertgxthen the upstream and downstream
contributions of those paths are counted within the cooedmg column and row sums .
Hence those vertices lying on th&in highways of dynamic propagation (highly weighted paths)
will have relatively large corresponding row and column sum

We will write the n-vector of the row sums ds, and then-vector of the column sums as
given by

b= (b17 ) =Q1, r= (r17 ) QT

The particular case we have in mind here is wheierather large. In that case we might seek
to avoid calculating directly, but instead we are able to directly calculatendr by multiplying
Qby1=(1,1,..,1)7 from the left or the right, respectively. In practice we staut from the
estimates = 1 andb = 1, and update those via successive linear solves equivalemtltiplica-
tion by the respectively, forward and backward ordered)lvesnts. We might also wish to avoid
calculating or holding théys in memory. For example, if we can wrifg = XkaT whereXy is
n x mwith m << n, then we may work with ths rather than théys.



2.1 Nested primary networks

Consider the distribution of the values contained ia (by, ..., bn) T, and respectively = (ry,...,rn)T.
This may be bimodal or multimodal within some applicaticars] thus there may be natubakak-
points within these distributions. In any case let us suppose thadch distribution we may set a
suitable threshold valygé*, and respectivelp*, above which we consider vertex spechiiwalues
anr-values to be significant; and below which we consider thebetaegligible.

For any given pair of non-negative valug8*, p*), we shall define the associatpdmary
network as that consisting of all edges at all time steps connectihgpairs of vertices within the
setV*:

VH(B*,p") ={vilbi > B orri>p*} CV.

As either3* or p* increased/* becomes smaller, approaching 0 once k@th> maxb; and
p* > maxri. Thus we may generate nested primary networks defined agibathp* increase.

In practice in considering the primary network, the subgrapluced by the evolving network
in restrictingV to V*, we are excluding those edges which, even if they have avelatlarge
weight in some or other time steps, merely connect vertltatsare not significant as either sources
or sinks of the dynamic paths within the full evolving netwagystem.

For the reduced, primary network, defined on the vertic®s jrwe can calculate the associated
communicabilityQ*, and thus the associatbed andr*. These are the descriptors of that primary
network onV*. Only those edges connecting those vertice¥irare admissible. This is done
simplest by removing all rows and columns in #yes whenever the corresponding vertgxs in
V\V*,

Intuitively, for primary networks that are meaningful, wepect the resulting values withlot
andr* to be highly correlated with their precursors for the fultwerk, b andr. This is so because
the counts of pathways made withirandr will be dominated by paths within the primary network.
Cleary, the existence of a meaningful primary subnetwogedés on the structure of the whole
network, and also on the valuesf$f andp*. There certainly are instances of networks that do not
contain meaningful primary subnetworks. However, we doauoicern ourselves with this issue
here. Instead, the main purpose of this paper is to highfigbthnique for extracting subnetworks,
which are considerably smaller in size than the originalvoek, but whose contribution to the
overall communication is significant.

The identification of primary (sub)networks serves a vestidct purpose from the concept
of coarse graining [Mucha et al., 2010]. Here the aim is taiifg the main subnetwork(s) that
gives rise to the majority of pathways, as counted by the comaability (a dynamic form of
centrality). We will disregard individual edges for whichlaast one of the end points (nodes)
has both a relatively low source and sink communicabilitgrec This would mean that such
edges lead nowhere and merely play a role in relatively fethwpays, even if they possess a high
weighting. In contrast methods of coarse graining seek assaopic representation of the whole
network by replacing subcomponents of the network’s vestiwith single “meta" vertices; and
then inducing some aggregated weightings for connectiehsden those meta subcomponents.
Both are simplifications of complex networks, but they achimther different things.



2.2 Associated secondary networks

Consider a given primary network containing all edges, aehed the time steps, connecting pairs
of vertices withinV*(B*,p*). The associated secondary network consists of all of thesdyg
each time step, that are not included within the primary neétwSuch edges must connect at least
one vertex which has both sub-threshold row and column sumsvihe full communicability
matrix, and thus is not iN*(*, p*).

2.3 Probingthestructureof primary networks

Given a (large) evolving primary network with more than 100@ertices, we wish to investigate
the nature of its structure through sampling rather thamestive analysis. We propose to do so
by making a number of sequentiatockouts. In practice this means removing vertices, one at
a time, from the network and then recalculating a quantigt theasures the primary network’s
functionality at every successive iteration.

We proceed as follows. Communicability matrices, sucQ andQ*, summarise the function-
ality observed in an evolving network and are nonnegative.défine the norm of such matrices
as the sum of their elements

IQ=1"Q1=1"b=1Tr.

Now consider a generated sequence of communicability ceatfQ;|j = 0,...,M}, whereQp =

Q*, that for the original primary network, and then successleenents are generated by randomly
selecting a vertex that is “live” within the previous netwpand deleting it. At each iteration we
may recalculate the communicability. Hemeremains fixed. Thus as vertices, and hence edges,
and consequently some paths, are deleted, we obtain a sequ@y} such that the correspond-
ing sequence of norm§|Q;||} is monotonically decreasing. We shall only knockbuwertices,
which is ideally less than 1% of all vertices \fi'; so that there is a low probability of deleting
vertices that are highly connected together. We desiretlieatiegradation remains firmly within
the linear regime (with small numbers of independent knat®o We shall observe the step-by-
step degradation of the evolving network, as measured bynthreotonic reductions ig||Qj||}.
For some values of we will annihilate a vertex that plays little role in many patwith the result
that||Qj_1|| — ||Qj|| is relatively small. For other values we may annihilate aesewith a large
communicability score and hen¢®;_1|| — || Q;|| will be relatively large.

Suppose the evolving primary network is very lattice-lih a high Watts-Strogatz clustering
coefficient, say. Then there is a large amount of redundamcuch a primary network, and
since the lattice is relatively homogeneous almost evargaom knockout will produce a similar
reduction in functionalty, and the overall progress willddese to linear. For example, imagine a
network on a grid, like the roads of Manhattan. If we knockauatost any intersection, the traffic
can drive two further blocks around it and little functiolgas lost. On the other hand, suppose the
primary networks is very tree-like, with few cycles of anndgh. Then, when some vertices with
high centrality are knocked-out, we would expect to seegelaeduction in functionality. Think of
the UK railway network, for example. If we knockout Birmirgym New Street the network loses a
large amount of functionality, yet if we knockout Henley-®hames virtually nobody will notice.



The random degradation process is also suggestive of dadyg slecline or damage of an
ageing network. This analogy is particularly useful in ddesing human brains of course, where
early onset cognitive decline is a major issue of interestfatt it is clear that we ought to see
a range of different experiences of cognitive degradatispldyed within ageing populations.
Some older people lose cognitive functionality in occaalphut large, steps (presumably having
occasional critical, un-replaceable, catastrophic l©ssence being somewhaagile. Yet some
people’s loss is long term, and relatively smooth and sloregpmably exploiting some network
redundancies, and hence displaying a functional robustoegeing). Thus the proposed approach
is a useful way to (destructively) test the network, as welpeoviding an experimental analogue
to random degradation through ageing. It may form a basia fature clinical analysis of fMRI
scans.

The nature of the degradation arising from a random sequariaeockouts of these networks
may be characterized by two performance measures: theisiabgolute terms) and the nature
(variability) of the sequential reductions in functionglias measured by tHg{Q; || }.

Let M be the number of vertices removed. Then we calculate thetigyian

(112l

Qo

which is the fractional loss of functionality (as a resultfvoxel knockouts). If this is small then
M insults have had little impact on the primary network, whiohst consequently be relatively
large. If this is large then thkl insults have removed a more significant amount of functional

and the primary network must consequently be relativelylisma
Next consider the successive fractional losses,

il -l M}
{HQﬂ—ﬂQmHJ oMy

and suppose that they are sorted into descending order.\Widemay plot the cumulative fraction
of total loss against the cumulative fraction of the totab&kouts (ordered by descending size
of loss), see Fid.l1. This curve lies within the unit squamnecting(0,0) to (1,1), above the
diagonal with a negative second derivative. We shall catetthe area under this (ROC-like) curve.
It is equal to one half if and only if all of the fractional lessare equal (all knockouts produce the
same loss). It is equal to exactly one if and only if all of thectional losses are zero, except for
one which is unity (a single knockout accounts for all of tbgsl). Heuristically, we may say that
if this is area is small, and close to a half, then the evolynmary network appears to be lattice-
like, with many redundancies, and is thus robust; if the @&darger, then the evolving primary
network has less redundancy and robustness and is morgkeand hence is relatively fragile.
We shall consider this pair of performance measures, jpl@itea point in the plane, as a summary
of the primary network’s structure.

Now if we do this calculation many times we will obtain distimesults due to the random se-
lection of successive knockouts. Thus, by resampling tleekout sequence many times over, we
calculate an estimate for the means for both measureshergsith estimates for the correspond-
ing ranges sampled on either side, see [Hig. 2. Hence, we coghpare a collection of distinct
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Figure 1: The effect of sequential vertex knockouts fromphimary networksi|Q;|| /|| Qo|| versus
knockout | (left); and the cumulative distribution of loss versus thenalative distribution of
knockouts, sorted in descending order of size (right).

evolving primary networks via two performance measuresir ffestimated) expected point loca-
tion, together with their corresponding ranges (achievigd avgiven number of samples). It will
be clear when the variability across the collection of imdiinal primary networks is significantly
larger than the sampling error ranges on the point estimates

3 Primary networksfor fMRI brain scan data

We consider data from an fMRI scan of a human brain, whichaiostarounch = 2.5 x 10°
voxels (small three dimensional volumes within which atgican be measured), which we shall
treat as vertices. Hem®; represents a one-sided covariance of the measured adi(itansient
blood oxygen level which is related to energy usage) witlurelsv; andvj, over 10 successive
time frames (from the scan). We step the 10-frame windowudinaa full set of 110 time frames,
producing an evolving weighted network ower= 11 discrete time steps, as a sequence of such
undirected weighted adjacency matrices.

The calculation of tha by n communicability matrixQ represents an immediate challenge. We
get around this by noting that each weighted adjacency xaii can be represented by the (outer)
productX X", wherej-th row of the matrixX, contains the activities of voxglover all snapshots
contained in time stel plus a small correction that takes care of the diagonal @esn Therefore,
we do not need to store any massive adjacency matrix and wesealaylor expansion to compute
(I —nA)~Ix. In this way we control the precision of the approximatiomnl dine computational
cost. Finally, in order to estimate a suitable valuerjowe may compute the largest eigenvalue
of A¢ via the Power method (c.f._[Golub and Loan, 1996]), agaiteut holding those matrices.
Typically we set 0< n < 0.25/max{p(Ax)} in order to ensure the convergence of the resolvents.

Now we can visualize the roles played by the distinct voxethiw dynamic pathways (those
including edges from two or more timesteps). For examplegitake thesource-sink difference,

b —r, we can eliminate the counts of all vertex-to-vertex palta take place within any single
timestep (since such paths are reversible, and oppositeggaontribute to both counts). Then
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Figure 2: Three primary networks plotted as estimates aondstded ranges, with respect to both
performance measures.

we may see those regions of the brain, voxel by voxel, for tvhidominates : that is, they have
more downstream paths than upstream paths, coloured red inFigingilarly, those voxels for
whichr dominated: that is, they havenore upstream paths than downstream paths, which are
coloured green in Fid. 3.

Clearly these dynamics paths (representing successiveschiBevents carrying over at least
two time-steps) yield a highly structured field. Moreovéwe randomly permute all of the time-
steps (permute th&,’s) and then repeat the whole operation, the resulting rdiffeesp —r, be-
come much smaller. Such a permutation can be carried througjiow this field observed within
the unpermuted data is highly statistically significanttl@odynamical information extracted con-
fidently reflects some sorts of processes that are actudllyg@lace and is not simply an artifact
of the observations or the method. The structures in[Figettelves are interesting too. They
have relatively short wavelength and display clear stgghroughout the cortex.

Scientists working in the fMRI brain scan field may have nexgcountered striping like this
either because they are in the habit of defining static ndétsyavhere the communicability (cen-
trality) matrix is symmetric and hende=r, or else of analyzing the data at lower resolutions. A
common reaction is to declare that thigrierely noise, presumably because it shows evidence of
dynamic structure within regions that they typically wigh“parcellate”, and is amnconvenient
phenomenon. In fact these patterns are very far from beiagadmoise indeed, and they have
a very distinctive scale. Our permutation tests also shawtthe patterning is not the result of
temporal noise: these patterns represent dynamical flomms $mall scale volumes behaving as
relative sources and relative sinks for inter-brain comication.

The resulting distributions fds = (by, ..., b,)"T andr = (ry,...,ry)" are shown in Fig.14. From
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Figure 3: A 3D map of a brain obtained from the source minuk saoresp —r.

these we select threshold values@fandp* so as to retain the upper modes within the primary
network. This means that approximately half the verticeg% 10°) are retained withiv*.

Using this approach, we have analysed 967 separate fMREsednch are part of the data
available from the 1000 Connectome Prcﬁec’[he multimodal structure in these distributions is
similar in all cases: so it is straightforward to select aany network containing about half of the
voxels.

Next we recalculate the measures associated with the prinedwork’s communicability ma-
trix, Q*. In Fig.[3 we show the values obtainedhh versus those ib; and the values obtained
in r* versus those im. Since the primary network is dominant within the full commuability
matrix, by construction, these are very closely correlated

To visualize the resulting primary network on the reducdaéeerticesV*, consider the field

2For more information visihttp: //fcon_1000.projects.nitrc.org//orhttp://www.nitrc.org/.
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Figure 5: Scatter plot d* vs.b andr* vs.r.

given by the source communicability, the row sulis, This is shown in Fid.16. Notice that the left
and right hemispheres have now become mostly separatenhthth primary network and there

are some voids within the brain mass. The most extreme pebitivalues are towards the outside
layers of the cortex.

Next we apply the method given in section]2.3 to consider aemble of 967 fMRI brains
scans. These are all scans of resting brains, from a numHbabofatories, and each has been
downloaded from the connectime database and then norméiEgpped onto a standard voxelated
representation). We also restricted each normalized scdi@ time frames, and thus = 11
timesteps.

For each brain we procceeded independently as follows:

(a) we identified the primary network using suitable thrédlparameter$f*, p*);
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Figure 6: A 3D map of th&* measures for the primary network within the brain.

(b) we calculated Q*|| and its related measures (and tests);
(c) we degraded the primary network with= 1000 successive voxel knockouts;

(d) we repeated step (c) independently 100 times to estimagas and ranges for the two perfor-
mance measures.

This process involved making around 100000 separate comeahility calculations for origi-
nal and degraded primary networks; each of which, concéptaideast, was made based on over
11 (evolving) weighted graphs containing more than 100 @8€@ces. Such communicability cal-
culations were all made using the code given in [Stoyanol/,e2@13], executing across a hybrid
cloud (a local physical compute cluster, as well as in Virtdachines running in the Amazon
AWS Infrastructure-as-a-Service cloud).

11
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Figure 7: Scatter plot showing performance measures uretgadation for 967 brains, indexed
by investigating laboratory

In Fig.[7 we show a scatter plot of the results for all 967 sdhom a number of investigat-
ing laboratories (see key). The variation across that @jou is far greater than the variations
observed for individual brains when the degradations asam@led. To see this, consider Hig. 8,
where for each of the brains from five of the laboratories westine full range of variation in the
performance measures achieved over 100 independent rinskmmpled degradations. In all cases
differences between some of the individuals’ brains is tgrethan the corresponding individual
degradation sampling errors.
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Figure 8: Individual brain perfromance measures with exg@anges

4 Conclusions

For any vast evolving network the primary network represe¢hose vertices (and their connect-
ing evolving edges) which dominate the distribution of @pible dynamic pathways between all
pairs of vertices. Coarse graining approaches [Mucha,&@10; Tozzini, 2005; Gfeller and Rios,
2007, 2008; Itzkovitz et al., 2005] summarize vast (statidymamic) networks by introducing an
intermediate, mesoscopic level representing compondrteovhole network, as single meso-
scopic vertices connected appropriately so as to représembicroscope edges between vertices
within each component. In many applications this is entiegpropriate. Here we have introduced
the idea that if we wish to stay at the high resolution (micomsc scale), we might reduce the size
of the network by retaining only those vertices and edgesivmight carry the major components
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of any flow of information, or coherent behaviour. This isated to generalized Katz centrality
(extended to evolving networks) rather than time dependegitee or frequency of edges. In some
applications there may be a natural divide between primadys@condary networks, and we have
illustrated this construction with one such applicatiorheTimportance of this is that too often,
very high resolution data, such as fMRI blood oxygen levedges, available from modern pow-
erful scanners, are reduced to analysis interaction bet®&@@ or so parcels of vertices (defined in
some way) so as to make analysis tractable. The fine resoligtibius lost. In fact the dynamical
element of the scans is also often lost, with single stattvokks being extracted from the time
dependent behaviour. Thus the concept of some verticewmaasi sources and some as sinks for
communication is simply unavailable in many of the publghealyses.

The probing of the structure of primary networks via simeta¢sampled) degradation, opens
up a number of possibilities for future work and exploitation any application it is essential to
show that the variation of performance measures due to sagn@l knockouts is less than that
observed across large populations of similar networks,eabave shown in the application here.
Here we have suggested just two conceptually independeyd efameasuring the performance
and structure of primary networks (through simulated degtian): one measuring the size of
impact and the other measuring the fragility/robustnegb®mhetwork to insults. There may be
other, more illuminating measures to be defined, and thiissfar from complete. Nevertheless,
it cannot be argued that what we have seen is an artifact ofldkee or the analytics: it is lost
when one permutes the time-steps (breaking the dynamtuos)sdurce-sink structure observed
is far from random (and is in fact observable within all bsiget individuals are distinct - like
fingerprints).

The emergence of high resolution data in many fields demdradghe analytics respect that,
and we should not necessarily aggregate the activity ing@tasets of mesoscopic voxelgpriori.

To do so would lose and distort the structures presented B&ree we upscale (coarse grain) they
are lost. Similarly the time resolution of vast data setsfimany fields will become finer in the
future and the analysis presented here could scale withdexmtopments. It is fortunate indeed
that this data deluge coincides with the availability ofudebased, parallel, low cost, computing
facilities for all.
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