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Abstract

In this paper a support vector machine (SVM) approach for charac-
terizing the feasible parameter set (FPS) in non-linear set-membership
estimation problems is presented. It iteratively solves a regression prob-
lem from which an approximation of the boundary of the FPS can be
determined. To guarantee convergence to the boundary the procedure in-
cludes a no-derivative line search and for an appropriate coverage of points
on the FPS boundary it is suggested to start with a sequential box pave-
ment procedure. The SVM approach is illustrated on a simple sine and
exponential model with two parameters and an agro-forestry simulation
model.

1 Introduction

Traditionally, given a set of input/output data the parameter estimation prob-
lem is solved by minimizing an objective function, typically the 2-norm of an
error vector and sometimes augmented with a penalty term, under given con-
straints, i.e. the static or dynamic model structure. In this formulation the
parameter vector (x ∈ Rm) which minimizes the objective function is consid-
ered to be the optimal parameter estimate.

Unlike this classical estimation approach, set-membership estimation is not
concerned with minimizing an objective function. Instead of finding a single
optimal parameter vector, a set of feasible parameters vectors, consistent with
the model structure, measurements and bounded uncertainty characterization,
will usually be found (see [1-3] for overviews).
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The motivation for considering a set-membership approach is that in the
traditional estimation problem formulation the characterization of the param-
eter uncertainty requires assumptions on mean, variances and/or probability
density function of the errors. Especially in those cases where the model struc-
ture does not reflect the “real” system dynamics or when the available data
set is limited the stochastic nature of the error sequence is questionable. The
set-membership approach does not require a statistical description of the er-
rors, instead it is assumed that the errors are unknown-but-bounded. For models
linear in the parameters the resulting feasible parameter set (FPS) is a poly-
tope. However, in e.g. ecological or economical applications the models are
mostly nonlinear in their parameters. Then, the FPS is usually non-convex or
even non-connected. Nevertheless, most non-linear set-membership approaches
are able to give guaranteed inner or outer approximations for certain types of
models.

Hence, the key issue in non-linear set-membership estimation is to find a suit-
able characterization of the FPS, which is easy to interpret and which tightly
inner or outer bounds the FPS without being too computationally demanding.
Typical approaches to the non-linear set-membership estimation problem are
given by [4] using a discrete approximation method, by [5] using signomial pro-
gramming and by [6-7] using interval analysis. See for further details the recent
overview in [8].

The signomial programming approach, providing a tight outer-bounding box
of the FPS, is most appropriate when dealing with exponential models. However,
for a wide class of models of limited complexity the interval analysis approach
is superior, because it gives guaranteed inner and outer bounds, in terms of a
pavement of boxes, denoted as [x]i where i = 1, · · · ,M with M the number
of boxes, of the FPS at a prescribed accuracy. However, when the complexity
of the model structure F(x) increases, the finding of a box enclosing function,
denoted as [F]([x]), becomes problematic (see also remarks in [6]). First of all,
results of interval computations depend on the way expressions are evaluated.
E.g., using the standard computational arithmetic rules, [x][x] with [x]

4
= [−1, 1]

leads to the interval [−1, 1], while evaluating [x2] gives [0, 1]. Hence, especially
for complex functions, it can be a quite laborious task to find an enclosing box.
Moreover, the problem of finding the minimal enclosing box for complex models
has not been solved, as yet. Secondly, and again for complex models, interval
computation tends to a rather conservative way of error propagation due to
the box-bounding error characterization and thus to a slow convergence of the
algorithm.

Hence, when dealing with complex simulation models for which the internal
structure is too complicated to be analyzed analytically via e.g. linearization
or interval analysis, we have to rely on the input-output behavior of the model.
A discrete approximation method using an appropriate sampling scheme may
then be applied to gain insight into the set of feasible parameter vectors (see [4]).
In this approach each sampled feasible parameter vector is consistent with the
model, the measurements and the bounded error characterization and can thus
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be seen as an unfalsified parameter vector. Note, furthermore, that in this case
without knowledge of the internal structure of the model it is no longer possible
to give guaranteed inner/outer bounds or to present the approximation error in
the parameter space.

In this paper we aim at giving an approximation of the FPS boundary, where
the approximation error is expressed in terms of a prediction error bound. This
FPS boundary approximation can be subsequently used to improve the sample
set from which new estimates in the neighborhood of the boundary are obtained.
Hence, using prediction error bounds, the estimation accuracy of the algorithm
is defined in the model output space instead of the parameter space and thus the
identification objective is on model prediction quality and not so much on the
identification of the exact FPS. However, usually it is not very appropriate when
a large number of the feasible parameter vectors are situated in a small region
in the neighborhood of the boundary. To avoid this situation a sequential box
pavement approach will be used as an initial step to solve the set-membership
estimation problem for complex model structures.

In section 2 we define the set-membership estimation problem. In section 3
the theory of support vector classification is explained. In section 4 the support
vector regression problem is presented. In section 5 a method (i) to improve the
estimate of the boundary of the FPS and (ii) to guarantee appropriate coverage
in the parameter space is given. Three examples to illustrate the theory are
presented in section 6. Finally, some concluding remarks are given.

2 Problem formulation

Consider the following nonlinear static (regression) model

y = F(x) + e (2.1)

where y ∈ RN contains the observed output data, F(x) is a nonlinear vector
function mapping the unknown parameter vector x ∈ Rm into a noise-free model
output ŷ. Here we will assume that the weighted error vector Ve ∈ RN is
bounded in the `∞ norm

||e||V∞ = ‖Ve‖∞ ≤ 1 (2.2)

where V is a diagonal weighting matrix.
The measurement uncertainty set (MUS), containing all possible output

measurement vectors consistent with the observed output data and uncertainty
characterizations is given by

Ωy
4
= {ỹ ∈ RN : ||y − ỹ||V∞ ≤ 1} (2.3)

Let the feasible parameter set (FPS) be defined as

Ωx
4
= {x ∈ Rm : ‖y − F(x)‖V∞ ≤ 1} (2.4)
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Then, the set-membership estimation problem is to characterize the feasible
parameter set, which is consistent with the model (2.1), the data y and the
uncertainty characterization (2.2).

Alternatively, and in line with [6], we can define the error set

Ωe
4
= {e ∈ RN : ||e||V∞ ≤ 1} (2.5)

Clearly, using (2.1) and (2.5), the FPS can also be defined as

Ωx
4
= F−1(y − Ωe) (2.6)

where F−1 is the reciprocal function, in set-theoretic sense, of F. Hence, the
problem can be seen as a set inversion problem.

The set-membership estimation approach presented in this paper starts from
support vector classification (SVC), but finally uses support vector regression
(SVR) to approximately characterize the boundary of the commonly non-convex
or even non-connected FPS. In the next two sections a summary of these two
statistical learning theories, within a set-membership context, is presented.

3 Classification using support vector machines

3.1 Linear separable case

Suppose we have dynamic simulation data {xi, ŷi}`, where the vector xi ∈ Rm

is an element of the parameter space and the vector ŷi ∈ RN for i = 1, . . . , ` is
the corresponding noise free model output.

For linear separable parameter vectors the support vector classifier selects
the separating hyperplane

f(x) = wT x + b (3.7)

such that
{

wT xi + b ≥ +1, if ŷi ∈ Ωy

wT xi + b ≤ −1, if ŷi /∈ Ωy

(3.8)

and such that the margin between the feasible and non-feasible parameter vec-
tors is maximized (see Fig. 1 for an example with (•) feasible and (◦) non-
feasible points).

Assign labels zi = +1 if ŷi ∈ Ωy and zi = −1 if ŷi /∈ Ωy. Then we can write
the constraints (3.8) as

zi[wT xi + b]− 1 ≥ 0 ∀i (3.9)

The margin between the two hyperplanes wT x + b = 1 and wT x + b = −1
is equal to 2/||w|| [9]. Therefore maximizing the margin is equal to minimizing

J (w) =
1
2
wT w. (3.10)
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x
1

x 2

Figure 1: Optimal linear separating hyperplane for x ∈ R2

Hence, to find the optimal hyperplane one has to solve the following quadratic
optimization problem: minimize the quadratic form (3.10) subject to the linear
constraints (3.9). In order to solve this quadratic optimization problem one has
to find the saddle point of the Lagrange function.

L(w, b, α) =
1
2
wT w −

∑̀

i=1

αi(zi

[
wT xi + b

]− 1) (3.11)

where αi ≥ 0 are the Lagrange multipliers. To find the saddle point one has to
minimize this function over w and b and to maximize it over the nonnegative
Lagrange multipliers αi ≥ 0 [10].

Setting the derivatives with respect to w and b to zero gives

w =
∑̀

i=1

αizixi (3.12)

∑̀

i=1

αizi = 0 (3.13)

Substitution of (3.12) into (3.11) and taking into account (3.13) gives

W (α) =
∑̀

i=1

αi − 1
2

∑̀

i,j=1

αiαjzizj(xi · xj) (3.14)
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where · defines the dot product. Maximizing (3.14) is equivalent to minimizing
(3.10).

To every parameter vector xi there belongs a Lagrange multiplier αi. The
parameter vectors xi for which αi > 0 and which uniquely determine the sep-
arating hyperplane (i.e. the points for which zi[wT xi + b] − 1 = 0) and whose
removal would change the solution are called support vectors (SV) and are in-
dicating in Figure 1 with an extra circle. Parameter vectors for which αi = 0
indicate non-support vectors. Hence, parameter vectors close to the FPS bound-
ary, and thus interesting for further analysis, can be easily detected on the basis
of the associated values of αi.

The separating hyperplane (3.7) can now be written as

f(x) =
∑

i∈SV

αizixi · x + b (3.15)

In set-membership estimation problems there will, in general, be no single linear
separating hyperplane which satisfies the constraints (3.8). In the next section
we will extent the ideas presented in this section to the nonlinear case.

3.2 Non-linear separable case

The quadratic problem in the previous section can be summarized as maximizing
(3.14) subject to the constraint (3.13) and αi ≥ 0, with the solution given by
(3.15). Note that in this formulation the parameter vectors only appear as dot
products. The idea is now to apply a nonlinear transformation ϕ(x) on the
parameter vectors and construct a linear separating hyperplane in the so-called
feature space (possibly infinite dimensional). The classification is given by the
sign of

f(x) = wT ϕ(x) + b (3.16)

Using equation (3.15), we can rewrite (3.16) as

f(x) =
∑

i∈SV

αiziK(xi,x) + b (3.17)

where K(xi,x) = ϕ(xi) · ϕ(x). Hence, f(x) = 0 describes the separat-
ing boundary in the parameter space. Typical choices for the kernel K are
K(xi,x) = xi · x (linear SVM), K(xi,x) = (xi · x + 1)d (polynomial SVM of
degree d), K(xi,x) = exp(−||xi − x||22/σ2) (Radial Basis Function SVM) and
K(xi,x) = tanh(κxi · x + θ). So instead of specifying the mapping x → ϕ(x)
we use the kernel to find the solution (see [10] for details).

The idea of mapping the parameters to a higher dimensional feature space
can also be used for regression and will be briefly discussed in the next section.
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4 Support vector regression

Suppose we have simulation data {xi, εi}` where the vector xi ∈ Rm is an
element of the parameter space and the corresponding error bound is defined as

εi
4
= ‖ei‖V∞ (4.18)

where εi ∈ R is the weighted ∞-norm of the errors for simulation i. In feature
space the support vector regression, to allow a more informative and smoother
description compared to the classification surface, is given by

ε(x) = wT ϕ(x) + b (4.19)

In support vector regression again the objective function (3.10) is minimized
but now subject to the equality constraints

εi = wT ϕ(xi) + b + ξi, i = 1, . . . , ` (4.20)

Using the Lagrangian and the so-called kernel trick it can be shown [11] that
the final regression is given by

ε(x) =
∑̀

i=1

αiK(xi,x) + b (4.21)

where αi are Lagrange multipliers and K is a kernel function. Note that the αi’s
for the regression surface in (4.21) are not equal to the αi’s for the classification
surface in (3.17). Summarizing, starting with the linear classification problem
we have arrived via nonlinear classification and support vector regression at
Eqn. (4.21), which describes the weighted maximum error εi as a function of
the parameter vector x and which is starting point for further analysis in the
next section.

5 Improving the bound

5.1 Sampling towards the boundary

Suppose we have found the optimal separating hyperplane for a training set
{xi, εi}`. The approximation of the FPS boundary using the regression surface
ε(x) is given by the set

BFPS = {x|ε(x) = 1} (5.22)

(see Eqns. 2.2 and 4.18). In general, it is not possible to find an explicit solution
x for ε(x) = 1.

We can approximate the regression surface in the neighborhood of xi using
a first-order Taylor expansion

ε(xi + δ) ≈ li(δ) = εi + gT
i δ ∀i (5.23)
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where εi = ε(xi), gi is the gradient vector and δ = x−xi, so that li is the linear
approximation in the neighborhood of xi. Instead of solving ε(x) = 1, solving
the linear rank deficient equation li(δ) = 1 for δ gives the minimal 2-norm
solution

δi
LS = gT †

i (1− εi) (5.24)

where gT †
i = gi(gT

i gi)−1 is the pseudo inverse of gT
i . Note that if z ∈ null(gT

i )

then δ
4
= δi

LS + z also solves li(δ) = 1. The new parameter sample can now be
obtained from xnew

i = xi + δi
LS. Taking the minimal 2-norm solution for δ cor-

responds to projecting the SV over the shortest distance on the approximation
of the FPS boundary. Clearly, so far it is not guaranteed that this algorithm
will converge to a point on the boundary of the FPS. Therefore, in addition to
this gradient method using the approximate regression surface ε(x), which may
change when new points become available, a no-derivative line search method
using solely the calculated error bounds εi related to points in the neighborhood
of the FPS boundary is applied.

Let ε(x) and ε′(x) be continuous functions in x and let us start with the
kernel K(j), where j is an update index. The basic structure of the algorithm
for finding the point x∗i on the FPS boundary, given the initial point x(k)

i and
the required convergence rate η1, is as follows:

Algorithm 1 Boundary point detection

step 1: set k := k+1 and obtain the new parameter sample x(k)
i = x(k−1)

i +δi
LS

using the gradient method, Eqns. (5.23) and (5.24)

step 2: goto 1 and fix K(j) as long as |1 − ε(x(k−1)
i )| − |1 − ε(x(k)

i )| > η1

else goto 3

step 3: perform a no-derivative line search using the two closest, in terms of
the error bound εi, points to the boundary.

Notice that step 3 leads to the boundary point x∗i for which holds ε(x∗i ) = 1,
where the index i refers to a specific initial parameter vector in the parameter
space. Conditions and rates of convergence for each of the steps 1 and 3 can be
found in many textbooks on optimization (e.g. [12]). Hence, technical details
are omitted here. In summary, under the mild condition that both ε(x) and
ε′(x) are continuous functions in (x), which holds for a large class of models, a
boundary point x∗ can be found. Note that in practice the line search will be
aborted as soon as the error bound associated with the new estimate is close
to 1, i.e. |1 − ε(x(k)

i )| < η2 with η2 a small number indicating the boundary
approximation error.

Hence, it is possible to find an ensemble of approximate boundary points of
the FPS with weighted error bounds in the range [1−η2, 1+η2]. However, these
are only local approximations of the FPS boundary.
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5.2 Sampling for increased coverage

To obtain a better coverage of points on the boundary surface we propose to
initialize the algorithm with a sequential box pavement approach. Define hereto
the box [x] of Rm, which is the cartesian product of m scalar intervals [x] =
[x−, x+] = {x|x− ≤ x ≤ x+}. The width w([x]) of the box [x] is given by
w([x]) = maxj=1,...,m{x+

j − x−j }. Pre-specify, furthermore, the critical error
bound ε∗ or the critical width w∗ and the required number of approximate
boundary points I∗. Then, the algorithm proceeds as follows:

Algorithm 2 Boundary point coverage
step 1: set k = 0

step 2: define a regular rectangular grid in the parameter set Ω(k)
x

step 3: evaluate simulation model for each node xi ∈ Ω(k)
x and determine εi

(Eqn. 4.18)

step 4: set k := k + 1 and select those boxes [xn] for n = 1, 2, . . . which
have at least one feasible vertex with associated error εi for i = 1, 2, . . .. These
selected boxes form the new set Ω(k)

x

step 5: if maxw([xn]) ≤ w∗ for n = 1, 2, . . . or if |1 − εi| ≤ ε∗ for i =
1, 2, . . . , I∗ then stop else goto 2.

If appropriate boxes have been found the vertices of these boxes can be fur-
ther subject to the procedure of section 5.1, so that finally an ensemble of points
in the pre-specified neighborhood of the FPS boundary with appropriate user-
defined coverage can be found. Clearly, the SVM approach is more successful
when the FPS boundary is smooth, as will be illustrated by the first example
in the next section.

6 Examples

6.1 Sine function

In the first example we would like to show a one step procedure with a fine-
meshed grid, thus without sequential box pavement and sequential sampling.

Consider, therefore, the regression model

yi = sin(x1ti) + x2 + ei (6.25)

where x1 and x2 are elements of the parameter vector. Suppose two measure-
ments are given: for t1 = 1; y1 ∈ [2.5, 3.5] and for t2 = 3; y2 ∈ [0, 1]. From the
error bounds we derive the weighting matrix V = diag(

[
2 2

]
). Furthermore,

assume that prior knowledge is available which bounds the feasible parameters
by the intervals: x1 ∈ [0, 2π] and x2 ∈ [−0.5, 3].



36 K.J. Keesman and R. Stappers

In Figure 2 the exact and estimated (using Eqns. 5.22 and 4.21) boundary of
the non-convex and non-connected FPS are given. The approximate boundary
is directly determined from 225 parameter vector samples regular spaced on a
15 × 15 grid and subsequently processed by SVR providing αi’s and b for a
specific RBF kernel with σ2 = 0.12. Notice the good approximation in this first
step, except for x1 ∈ [2.7, 3.1], where the FPS boundary surfaces run almost
parallel to each other. Clearly, in this region a finer grid is needed to properly
describe the boundary.

Figure 2: Estimated FPS boundary based on a 15× 15-grid.

6.2 Exponential function

Let us now illustrate the effects of the procedures described in section 5. Con-
sider the non-linear regression model

yi = x2 exp(−x1ti) + ei (6.26)

where x1 and x2 are the model parameters. Suppose two measurements are
given: for t1 = 1: y1 ∈ [0.05, 0.25] and for t2 = 5: y2 ∈ [0.02, 0.04]. From
the error bounds we derive the weighting matrix V = diag(

[
10 100

]
). The

minimum volume outer box using the signomial programming approach of [5] is
given by the intervals: 0.0555 < x1 < 0.6315 and 0.0526 < x2 < 0.4701, which
is taken here as an initial box for sampling.

In Figure 3 the exact and estimated boundary of the feasible parameter set
are given. The approximate boundary is determined from 25 parameter vector
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samples regularly spaced on a 5×5 grid (~), which have been moved towards the
boundary of the FPS using step 1 in Algorithm 1 (∗) and where lines indicate
the translation of the parameter vectors. Let us give some more details on this
specific translation.

0.05 0.63

0.05

0.47

x
1

x 2

Figure 3: Estimated boundary based on RBF-SVM regression (σ2 = 0.022).

Recall that the linear approximation of the regression surface in the neigh-
borhood of xi is given by

li(δ) = εi + gT
i δ (6.27)

For regressions based on the RBF-kernel the gradient vector gi is given by

gi = 2
25∑

i=1

αi

σ2
(x− xi)e−‖x−xi‖22/σ2

(6.28)

The minimum norm update, as described in section 5, for the 25 sample param-
eter vectors is thus determined from (6.27) and (6.28).

The four thick lines define the exact boundary of the FPS. For the three
approximate boundaries it holds that: ε(x) = 1.1 (outer-bound), 1.0 and 0.9
(inner-bound), respectively. Notice the effect that most points are moved in the
direction of the boundary, except those which are already contained in the FPS.
The reason for this is that the gradient of ε(x) for x ∈ Ωx (FPS) is, in general,
small, so that large errors in the calculation of δi

LS (Eqn. 5.24) may occur.
To obtain a better coverage near the vertices we propose to initialize the

algorithm with a sequential box pavement approach, see Figure 4. Notice that
starting with the coarse grid (5 × 5) in a larger prior parameter set [0, 0.72] ×
[0, 0.56] only two feasible parameter vectors are found (indicated by light-green



38 K.J. Keesman and R. Stappers

dots). In a second step, the grid of the boxes with these feasible points as
vertices is refined, which gives another seven feasible points (dark-green dots).
Consequently, in this first box pavement analysis nine feasible points have been
found. The yellow shaded boxes indicate those boxes which may need further
investigation for finding the boundary of the FPS, either using Algorithm 1 or
using a further refinement of the shaded area.

0

0

0.56

0.72
x1

x2

Figure 4: Box pavement approach.

6.3 Agro-forestry model

In the last example we focus on parameter estimation in a dynamic simulation
model from limited data. Consider the following simplified agro-forestry model,
which describes the growth of trees and crops, in terms of biomass and Leaf-
Area-Index (LAI), under light competing conditions.

t ∈ [tbb, tlf ] :
dLAt

dt
=

1
τt

(LAmax
sb nBuds − LAt) (6.29)

dBt

dt
= −KmainBt +

εtfit

ρt
I (6.30)

t ∈ [tpl, thv] :
dLAIc

dt
= plεcfic(1− fit)Isc (6.31)

dBc

dt
= εcfic(1− fit)I (6.32)



Nonlinear Set-membership Estimation: A Support Vector Machine Approach39

pl =
τ

τ + T
pl0 (6.33)

with fit

4
= 1 − e−ktLAtρt and fic

4
= 1 − e−kcLAIc . Furthermore, tbb is the

time of bud-burst, tlf of leaf fall, tpl of crop planting and thv of crop harvest-
ing. Notice that this is a very simple agro-forestry model (of nonlinear, hybrid,
parameter-distributed system) with only four states, two inputs (radiation and
temperature) and 10 parameters, i.e. τt, LAmax

sb , Kmain, εt, εc, sc, kt, kc, pl0

and τ .
Let there be only one measurement of the crop yield, i.e at harvest time

t = thv: Bc ∈ [1400, 1600] gm−2, which is a very realistic situation in agro-
forestry practice.

A preliminary sensitivity analysis revealed that among some other parame-
ters LAmax

sb , the maximum potential leaf area of a single bud in m−2, and εc,
the potential crop growth rate in gMJ−1m−2day−1, are parameters that are
dominating the output behavior. Clearly, these two parameters can never be
identified uniquely from the single measurement. Hence, an unbounded FPS is
expected. The set-membership estimation result using SVM is shown in Figs.
5 and 6.

Figure 5: RBF-SVM regression with x1 = LAmax
sb , x2 = εc, y = εi and σ2 = 0.5

From the figures it appeared, however, that the SVM approach using a RBF
kernel leads to a bounded set approximation of the FPS. Consequently, further
evaluation of parameter vectors in the neighborhood of the boundary will reveal
this incorrectness.
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Figure 6: FPS boundary approximation with ε(x) = 1.1 (red line), ε(x) = 1
(green line) and ε(x) = 0.9 (blue line)

7 Concluding remarks

In this paper nonlinear set-membership estimation using support vector ma-
chines (SVM) has been introduced. Set-membership estimation is most appro-
priate in case of small data sets. Using support vector regression (SVR) no
initial feasible point is needed, so that the prior parameter set information can
be limited. SVM together with bound improving algorithms is a valuable tool
to effectively approximate FPS boundary point-wise.

The proposed method for solving the estimation problem for complex sim-
ulation models (of e.g. non-linear, hybrid systems) with bounded-noise data
iteratively updates the estimate of the boundary by projecting a set of param-
eter vectors over the shortest distance towards the local approximation of the
boundary followed by a no-derivative line search. Furthermore, additional ap-
plication of a box pavement approach will avoid clustering of boundary points.

Because of the expected complex topology of the FPS for cases with more
than 5-7 parameters, say, the method is most likely applicable to simulation
models with a limited number of parameters. Hence, there is always a need to
start with a sensitivity analysis to detect the dominant parameters!
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