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Abstract 

Root nodule symbiosis (RNS) is one of the most efficient biological systems for nitrogen fixation 

and it occurs in 90% of genera in the Papilionoideae, the largest subfamily of legumes. Most 

papilionoid species show evidence of a polyploidy event occurred approximately 58 million years 

ago. Although polyploidy is considered to be an important evolutionary force in plants, the role of 

this papilionoid polyploidy event, especially its association with RNS, is not understood. In this 

study, we explored this role using an integrated comparative genomic approach and conducted 

gene expression comparisons and gene ontology enrichment analyses. The results show the 

following: (1) approximately a quarter of the papilionoid-polyploidy-derived duplicate genes are 

retained; (2) there is a striking divergence in the level of expression of gene duplicate pairs derived 

from the polyploidy event; and (3) the retained duplicates are frequently involved in the processes 

crucial for RNS establishment, such as symbiotic signalling, nodule organogenesis, rhizobial 

infection and nutrient exchange and transport. Thus, we conclude that the papilionoid polyploidy 

event might have further refined RNS and induced a more robust and enhanced symbiotic system. 

This conclusion partly explains the widespread occurrence of the Papilionoideae. 

Keywords: legume, nitrogen fixation, papilionoid, polyploidy, root nodule symbiosis. 
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Introduction 

Root nodule symbiosis (RNS) or nodulation is one of the most productive systems for biological 

nitrogen fixation. Such RNS is confined to a single large clade termed the N2-fixing clade (NFC) 

(Soltis et al. 1995). Although the legume family, the third largest family of flowering plants, is 

dominated by nodulators, non-legume families in which nodulation is universal or widespread are 

mostly small (Swensen and Benson 2008). Within the legume family, the Papilionoideae is the 

largest and most widely distributed subfamily. It includes most of the cultivated plants and model 

legume species (Gepts et al. 2005; Pawlowski and Sprent 2008), and 90% of genera belonging to 

this subfamily exhibit nodulation, whereas only approximately 5% of Caesalpinioideae genera 

show nodulation. By contrast, nodulation is nearly ubiquitous in the relatively small Mimosoideae 

subfamily (Sprent 2001). These different distribution patterns suggest that RNS established in the 

Papilionoideae may be more stable than in other lineages in NFC. 

 

A whole-genome duplication (WGD) or polyploidy event is shared by most of the papilionoid 

lineages, except some early-splitting papilionoid lineages, and occurred approximately 58 million 

years ago (MYA), shortly after the origin of legumes at approximately 60 MYA. This WGD event 

was identified and confirmed by genomic analyses of four legume species: Glycine max (Schmutz 

et al. 2010), Medicago truncatula (Young et al. 2011), Lotus japonicus (Sato et al. 2008) and 

Cajanus cajan (Varshney et al. 2011). Although polyploidy has long been recognised as an 

important evolutionary force, for example in species radiation, organ innovation and complex 

innovations in cellular networks (Ohno 1970; Lynch 2007; Edger and Pires 2009; Huminiecki and 

Conant 2012; Li et al. 2012), the roles of the papilionoid polyploidy event have not been 

extensively studied, especially in the context of the ubiquitous distribution of RNS in the 

Papilionoideae. 

 

In an investigation of the papilionoid polyploidy event, Singer et al. (2009) showed that it could be 

associated with major species radiations of legumes (particularly the papilionoid subfamily), 

although this study suggested a series of alternative hypotheses. Op den Camp et al. (2011) 
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applied a phylogenetic strategy to scan the genes in the cytokinin phosphorelay pathway and 

found that two papilionoid-WGD-derived type-A cytokinin response regulators, MtRR9 and 

MtRR11, in M. truncatula are recruited during nodulation. In addition, Young et al. (2011) 

indicated that the papilionoid polyploidy event might have facilitated the emergence of critical 

components of Nod factor signalling and contributed to the complexity of rhizobial nodulation 

found in the Papilionoideae. Although these previous studies have suggested the important roles of 

this polyploidy event, most of them are based on studies of single genes, pathways or genomes, 

and very little insight has been gained from genome-wide and cross-species comparative studies. 

Recently, the increasing number of completely sequenced legume and non-legume genomes has 

provided a rich opportunity for a comparative genomics study. 

 

The first step for a comparative genomics analysis of the papilionoid WGD event is to identify 

gene duplicates derived from this event. Currently, there are two widely used approaches for 

comparative genomics studies: a synteny-based method and a phylogenetic approach (Dehal and 

Boore 2005; Thomas et al. 2006; Vilella et al. 2009; Young et al. 2011; Wang et al. 2012; Li and 

Zhang 2013). Of these two methods, the synteny method can give a view of genome structure 

variation, and the phylogenetic approach provides not only a group of homologies but also their 

phylogenetic relationships. However, the identification of interesting lineages in the phylogenetic 

approach can be affected by incorrect topologies in the structure of gene trees. Therefore, it would 

be beneficial to integrate the two aforementioned approaches. 

 

In this study, we utilized an integrated comparative genomics approach using the completely 

sequenced genomes of four papilionoid species and two non-legume species to identify the 

papilionoid WGD-derived gene lineages. We also investigated the retention patterns of these 

lineages. Gene expression comparison and GO enrichment analysis were conducted to identify the 

papilionoid WGD-enhanced biological processes and/or pathways likely associated with the 

evolution of RNS in Papilionoideae. Based on these results, we were able to infer the potential 

roles of the papilionoid polyploidy event in the evolution of RNS. 

Results and Discussion 
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Differential gene loss and retention 

After clustering, multiple alignment and phylogenetic reconstruction, 11,485 phylogenetic trees 

were constructed. An analysis of these trees predicted that 16,114 interior nodes are ancestral to 

papilionoid genes (fig. 1). In two branches or lineages doubled by a papilionoid WGD node, one 

of duplicate branches is said to be lost if all genes in that lineage are absent; otherwise, both 

duplicate branches are said to be retained. As a result, 25.5% of papilionoid WGD nodes retained 

both duplicate branches (fig. 1 and supplementary dataset 1 online), and 74.5% of ancestral nodes 

lost one of duplicate branches (fig. 1). Similarly, in a particular papilionoid species, G. max for 

example, if both duplicate branches with genes in G. max are observed, we concluded that this 

species retained both gene duplicates derived from the papilionoid WGD. The retention 

percentages calculated for G. max, C. cajan, M. truncatula and L. japonicus are 21%, 19.4%, 

10.3% and 8.1%, respectively (fig. 1 and supplementary dataset 1 online), which suggests that the 

rates of gene retention differ across legume lineages. This is borne out by the similarities between 

the closely related G. max and C. cajan, where numbers are different from those of L. japonicus 

and M. truncatula. Another explanation is that the varying conditions of the genome assemblies 

may affect conclusions about gene retention in this study. 

 

To utilize the gene synteny results efficiently, we used the findings as evidence for the predicted 

papilionoid WGD nodes. If a pair of duplicate genes predicted in this study locates in a syntenic 

block, we say that the predicted papilionoid WGD node is supported by gene synteny. As a result, 

66.2% of the aforementioned 4,113 predicted papilionoid WGD nodes are supported by gene 

collinearity; in individual species, 78.5% of the predicted papilionoid WGD nodes shared in G. 

max are supported, and the corresponding fraction is 68.7% in M. truncatula, 76% in C. cajan and 

67.7% in L. Japonicus (fig. 1 and supplementary dataset 1 online). Because this polyploidy event 

occurred approximately 58 MYA and the gene order would have been destroyed over time, some 

of the true papilionoid WGD nodes are not supported by gene synteny. Thus, we manually 

checked the non-supported papilionoid WGD nodes and found that many of them have reasonable 

topological structures compared with the species tree. As a result, the noise caused by incorrect 

gene topology should be minor. 
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In this study, we mainly investigated papilionoid-specific and -shared characteristics. Thus, we 

focused on retained duplicates that co-exist throughout the entire papilionoid subfamily. Note that 

1,160 papilionoid WGD nodes were shared by three species (G. max, M. truncatula and C. cajan) 

and that 395 papilionoid WGD nodes were shared by the four studied species. Owing to the fact 

that the L. japonicus genome contains a large number of gaps and that its gene annotation is 

incomplete, the 1,160 nodes were used as the representative papilionoid WGD nodes. 

Expression divergence between duplicate genes 

In each of the two lineages derived from the papilionoid polyploidy event, the gene with the 

highest expression value was selected as the representative duplicate gene. Two genes, one from 

each duplicate lineage, form a pair of duplicate genes. As a result, 1,160 gene pairs were 

individually obtained from G. max and M. truncatula. If one gene of a pair is expressed in a 

particular tissue and another is not, the gene pair is said to have diverged expression in that tissue 

(Makova and Li 2003). As a result, 27.0% and 32.2% gene pairs in G. max and M. truncatula, 

respectively, have diverged in expression in at least two tissues studied, and the two percentages 

increase to 45.0% and 44.0%, respectively, in at least one tissue. The expression divergence of 

gene duplicates implies an increase in regulatory gene complexity and robustness fuelled by the 

polyploidy event (Gu et al. 2003; He and Zhang 2005; Wagner 2008; Van de Peer et al. 2009). 

Functionally preferential retention of duplicates 

The genes of interest were obtained from the lineages after the 1,160 papilionoid WGD nodes 

were identified, which resulted in the identification of 5,239 and 3,722 genes in G. max and M. 

truncatula, respectively. Through a GO enrichment analysis of the G. max genome, we identified 

726 GO terms for biological processes, molecular functions and cellular components significantly 

over-represented in the genes of interest compared with all the annotated genes of genome. 

Similarly, 694 GO terms were identified in M. truncatula. In addition, 440 of these GO terms were 

found in both G. max and M. truncatula (see supplementary dataset 2 online); and these shared GO 

terms included 17 GO slim terms (Table 1). Like observations made in bacteria (Kondrashov et al. 

2002), teleost fishes (Brunet et al. 2006) and Arabidopsis (Blanc and Wolfe 2004; Thomas et al. 
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2006), transcription factors, signal proteins, and membrane proteins are preferentially retained 

after duplication (Table 1). Because genes associated with transcriptional regulation and signal 

transduction are frequently dosage sensitive, the differential retention of duplicates after the 

papilionoid polyploidy event may also follow the gene-dosage balance hypothesis (Birchler and 

Veitia 2007, 2012). 

 

We further used the gene expression data to investigate whether a significantly higher number of 

duplicates with a particular function are recruited in nodules. Among the aforementioned 440 

shared GO terms, 362 and 372 GO terms show nodule significance ( 0.01P < ) in M. truncatula 

and G. max, respectively. Of these GO terms, 334 are shared between the two species 

(supplementary dataset 2 online). These findings suggest that many nodulation-related functions 

were enhanced by the polyploidy event. More importantly, we investigated the possible roles of 

this polyploidy event for RNS establishment, according to the molecular mechanisms of RNS 

described by Oldroyd et al. (2011) and Bapaume and Reinhardt (2012). Fig. 2 shows selected GO 

terms likely associated with RNS and gene expression in nodules. 

Symbiotic signalling 

Flavonoids are essential signal molecules that play multiple roles in legume-rhizobium symbiosis, 

e.g., the induction of the biosynthesis of the Nod factor (NF) and the regulation of auxin transport 

(Subramanian et al. 2007). Enriched terms, such as GO:0019748 (secondary metabolic process) 

and GO:0009812 (flavonoid metabolic process), have a significantly higher number of gene 

duplicates expressed in nodules (fig. 2 and supplementary dataset 2 online). Through an analysis 

of the enzymes involved in the flavonoid biosynthesis, we found that at least eight types of 

putative enzymes (indicated by bold arrows in fig. 3) were duplicated and retained after the 

polyploidy event; these enzymes include CHS (supplementary fig. S1), CHR (supplementary fig. 

S2), F3H (supplementary fig. S3), FLS (supplementary fig. S4), F3’H (supplementary fig. S5), 

HIDH (supplementary fig. S6), I2’H (supplementary fig. S7) and IOMT (supplementary fig. S8). 

These results suggest that more abundant and diverse flavonoids would be synthesised as a result 

of the polyploidy event and that the enrichment of flavonoids might be adaptive for the complex 

signalling required for legume-rhizobium symbiosis. 
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NF receptors (NFRs) have an extracellular domain, which contains two to three lysine motif 

(LysM) repeats, and an intracellular kinase domain. As shown in fig. 4, the papilionoid LysM 

receptors closely homologous to AT3G21630 (chitin elicitor receptor kinase 1, AtCERK1), which 

recognises chitin elicitor and activates immune responses (Miya et al. 2007; Wan et al. 2008; Liu 

et al. 2012), were duplicated as a result of the papilionoid polyploidy event. In addition, one of the 

WGD duplicates induces a tandem duplication shared by the four papilionoid species studied. 

These two gene duplications significantly amplify the gene family of LysM receptors in the 

Papilionoideae. NFR1 (Radutoiu et al. 2003) and LYK3 (Limpens et al. 2003) have been shown to 

be NFRs. The phylogenetic tree in fig. 4 also indicates that these NFRs might have been evolved 

from an original chitin elicitor receptor kinase involved in plant defence, in a similar way to 

AtCERK1. Therefore, the evolution of RNS is an interesting example of the transition from 

resistance to cooperation observed in plants. Furthermore, the enriched GO terms associated with 

plant immunity, such as GO:0006955 (immune response) and GO:0010200 (response to chitin), 

have a significant excess of gene duplicates expressed in nodules (fig. 2 and supplementary dataset 

2 online). These findings suggest that RNS is highly associated with plant immunity and that an 

increased number of immune gene duplicates were recruited for nodulation. Other genes involved 

in symbiotic signalling, such as NFR5, SINA4, ERN2, NSP2 and MtHMGR1, also have papilionoid 

polyploidy paralogues (Table 2). These increased symbiotic signalling genes suggest that the 

papilionoid polyploidy event might have induced the emergence of critical symbiotic genes and 

increased the complexity of the symbiotic signalling pathway. 

Nodule organogenesis 

NF recognition at the root surface activates nodule organogenesis, which requires the regulation of 

plant hormones, particularly cytokinin and auxin (Crespi and Frugier 2008). Nodule development 

is regulated by cytokinin signalling and polar auxin transport (Oldroyd et al. 2011). Enriched GO 

terms, such as GO:0009755 (hormone-mediated signalling pathway) and GO:0009736 

(cytokinin-mediated signalling pathway), were consistently identified as significant (fig. 2 and 

supplementary dataset 2 online). The function gain or loss of the cytokinin receptor LHK1 would 

trigger spontaneous nodule organogenesis (Tirichine et al. 2007) or block its formation (Murray et 
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al. 2007). With the exception of M. truncatula, the other three legume species under study retained 

the papilionoid-WGD-derived duplicates paralogous to LHK1 (Table 2). Another example in the 

cytokinin signalling pathway is a pair of type-A cytokinin response regulators (MtRR9 and 

MtRR11) in M. truncatula (Table 2); Op den Camp et al. (2011) suggested that MtRR9 is 

involved in nodulation. In addition, GO:0034050 (host-programmed cell death induced by the 

symbiont) has a significant excess of gene duplicates expressed in nodules (fig. 2 and 

supplementary dataset 2 online), which suggests that an increased number of duplicates in the 

control of cell death were recruited for nodulation. 

Rhizobial infection 

The perception of NF by root hairs activates the formation of infection threads (ITs), which induce 

the movement of rhizobial bacteria into the nodule cell for N2 fixation. The initiation of ITs 

requires the loosening and reconfiguration of the localized root hair cell wall, and the formation of 

ITs is a type of polar growth. Enriched GO terms, such as GO:0009827 (plant-type cell wall 

modification) and GO:0033037 (polysaccharide localisation), were identified (fig. 2 and 

supplementary dataset 2 online), which suggests that an increased number of duplicates were 

recruited for the formation of ITs. For example, polygalacturonase (PG) is an enzyme associated 

with plant cell wall degradation. Duplicates closely homologous to MsPG3 (Muñoz et al. 1998) of 

M. sativa were retained (Table 2). ROP6, which is a Rho-like small GTPase from L. japonicus, 

controls the growth of ITs (Ke et al. 2012), and has WGD paralogues (Table 2). Additional genes 

involved in the formation of ITs, such as nsRING, PUB1, sickle and NIP, also have 

papilionoid-WGD-derived paralogues (Table 2). 

Nutrient exchange and transport 

Inside legume nodules, rhizobial bacteroids reduce N2 to ammonium, which is then secreted to the 

host in exchange for carbon and energy sources and then exchanged for the transport of needed 

active materials. Consistently, enriched terms, such as GO:0006576 (cellular biogenic amine 

metabolic process), GO:0043090 (amino acid import) and GO:0006865 (amino acid transport), 

were identified (fig. 2 and supplementary dataset 2 online). Plant glutamine synthetase (GS) is a 
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key enzyme that assimilates the ammonium produced by bacteroids, and MtGS1b has 

WGD-derived paralogues (Table 2, Carvalho et al. 1997). Other protein families associated with 

nutrient transport, such as the putative glutamine dumper family (supplementary fig. S22), the 

putative oligopeptide transporter family (supplementary fig. S23) and the putative amino acid 

permease family (supplementary fig. S24), were also amplified by this polyploidy event. 

 

In addition, 84% of these 1,160 nodes are supported by gene synteny (supplementary dataset 1 

online). As a supplement and comparison, we also conducted GO enrichment analysis and nodule 

recruitment expression analysis on this set of data in the same manner, and obtained 463 GO terms 

(supplementary dataset 2 online). 209 of these terms coincided with the 440 GO terms mentioned 

above (supplementary dataset 2 online). With the exception of GO:0019748 (secondary metabolic 

process) and GO:0009812 (flavonoid metabolic process), the other selected GO terms (fig. 2) are 

included in both results. Thus, the two results are consistent. Since a high proportion (84%) of 

these 1,160 nodes are supported by gene synteny, and some of the true WGD nodes are also not 

supported as their gene syntenic blocks were destroyed over time, we consider that the results of 

these 1,160 papilionoid WGD nodes provide a more comprehensive assessment of the role of the 

papilionoid polyploidy event. 

Roles of papilionoid polyploidy event in the evolution of nodulation 

Cannon et al. (2010) suggested that the polyploidy event did not predate the evolution of 

nodulation in all legumes, and thus a logical consequence, as suggested by Doyle (2011), is that 

the papilionoid WGD could have provided genes for modifying and refining the symbiosis, if 

legume nodulation is homologous. Consistently, we observed a large number of retained 

duplicates, and gene expression divergence, suggesting that the polyploidy event is able to 

facilitate the formation of a more complex and diversified papilionoid RNS. More importantly, we 

found that many gene duplicates or functions crucial for RNS were preferentially co-retained in 

the three papilionoid species; this suggests that this polyploidy event could have provided genes 

for further enhancing the symbiosis. Whether caused by multiple origins or independent loss of the 

RNS in the NFC (Doyle 2011), the distribution pattern, and the fact that RNS is ubiquitous and 

numerous in Papilionoideae, whilst being mostly rare elsewhere in NFC, could suggest that the 
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initial or ancestral RNS may be unstable; if this were not so, then RNS should be widespread in 

the entire NFC. Note that this polyploidy event increased genetic complexity and robustness (Gu 

et al. 2003; He and Zhang 2005; Wagner 2008; Van de Peer et al. 2009) and enhanced the 

papilionoid RNS, so that most of the papilionoid species are able to establish a more stable 

symbiotic relationship with rhizobial bacteria, and that the benefits from the symbiosis further 

facilitate the papilionoid species to adapt to various environments (Zahran 1999; Santi et al. 2013), 

eventually leading to the wide distribution of the Papilionoideae. 

 

In addition, it is interesting to note that RNS is also ubiquitous in the Mimosoideae, suggesting 

that there has been a different way to generate an effective RNS, without the benefit of the WGD. 

However, we also need to note that the Mimosoideae is a relatively small subfamily with 80 

genera and 3,200 species compared with the Papilionoideae with 470 genera and 14,000 species, 

and that the Papilionoideae is more widely distributed. WGD, as an important evolutionary force, 

can quickly provide abundant raw materials for organ innovation or adaptation to diverse 

environments, however, the corresponding evolution events driven by single gene mutation or 

duplication could cost more time and are even less likely. Thus, granted that the Mimosoideae 

could have an effective RNS, the papilionoid RNS is widely distributed and dominant in 

nodulating species within the NFC. 

 

In this study, we identified the potential functional groups of the papilionoid WGD duplicates 

important for the establishment of the papilionoid characteristics, such as RNS. Experimentally, 

some of the genes have been proven to be involved in nodulation. Therefore, our study provides 

rich and systemic clues to the unravelling of the shared or unique molecular mechanisms of 

papilionoid RNS. In addition, this genome-wide comparative study generated phylogenetic trees 

of legume genes which could also provide clues for the evolution of other legume traits, such as 

secondary metabolites. 

Materials and Methods 

 at U
niversity of R

eading on Septem
ber 5, 2013

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/


 

 12

Genomic data and annotation 

The genomic data of four papilionoid species (Glycine max, Medicago truncatula, Lotus japonicus 

and Cajanus cajan) and two non-legumes (Arabidopsis thaliana and Prunus persica) were 

downloaded. The detailed gene annotations for the six species are shown in Supplementary table 

S1. The longest complete coding sequence (CDS) of each gene was chosen, and repeat sequences 

of all of the selected CDSs were masked using RepeatMasker (http://repeatmasker.org). 

Gene synteny 

We used BLASTP version 2.2.26+ (Altschul et al. 1997) and MCScanX programs (Wang et al. 

2012) to perform the gene synteny analysis. BLASTP provided the inputs for MCScanX. To 

generate more reasonable results with MCScanX, the BLASTP hits were restricted to the top 5 and 

to E-values less than 1e-10. In this study, two sets of BLASTP results were generated for two 

different purposes. For gene clustering, each protein was queried using BLASTP against a 

database that includes all of the proteins from the six species. For the evaluation of the papilionoid 

WGD nodes, each papilionoid protein was queried against its self-database. 

Phylogenetic reconstruction 

The phylogenetic reconstruction approach was derived from the method developed by Vilella et al. 

(2009). However, we modified this method by integrating collinear relationships between genes 

into the gene clustering step. Briefly, in the graph construction, the edges between the nodes 

(proteins) were retained if they satisfied any of the following three conditions: a best reciprocal 

(BRH), a BLAST score ratio (BSR) of at least 0.33 and a collinear gene pair (the difference). The 

connected components were then extracted from the graph using single-linkage clustering. Each 

connected component represents a cluster or a gene family. Using the MUSCLE version 3.7 

program (Edgar 2004), a protein alignment was conducted for each cluster. TreeBeST version 1.92 

was used to build the gene trees and classify the nodes as either specialisation or duplication. For 

example, a node tagged as “papilionoid” and “duplication” by TreeBeST means that the specified 

duplication event was shared by all papilionoids in the study. The definition of BSR and other 

details of the above steps can be found in the report published by Vilella et al. (2009). 
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Identification and evaluation of papilionoid-specific WGD nodes 

For each gene tree, the identification of papilionoid-specific WGD nodes began with the last 

common ancestor node of all papilionoid genes, and passed down until the first papilionoid nodes 

were found. The first non-tandem-duplication papilionoid nodes are considered to be 

papilionoid-specific WGD nodes, and the other first papilionoid nodes are considered to be 

WGD-loss nodes in which one of the WGD-derived branches was lost. We used both the gene 

rank and the genomic coordinate to discriminate a WGD node from a tandem-duplication node. 

All of the gene pairs split by the duplication node were analyzed to determine whether at least one 

gene pair met one of the following two restrictions: a gene rank distance between the two paired 

genes of less than 50 or a genomic distance of less than 200 kb. If any gene pair met one of these 

two restrictions, the node was considered to be a tandem duplication node; however, if any gene 

pair did not meet either of the two restrictions, it was classified as a WGD node. 

 

The results of the gene collinearity analysis were also used to evaluate the accuracy of the 

identified papilionoid WGD nodes. We first calculated the pairwise Ks (synonymous substitutions) 

values between the gene pairs with collinear relationships using the codeml program from the 

PAML package (Yang 2007) and the median Ks values for each paralogous collinear block in the 

four legumes. For a given papilionoid WGD node, if at least one gene pair of all of the gene pairs 

split by the node is located in a collinear paralogous block from any of the four papilionoid species 

with median Ks values between 0.2 and 1.2 (these blocks were considered to be 

papilionoid-WGD-derived paralogous blocks), then “the papilionoid WGD node is directly 

supported by gene synteny”. 

GO annotation and GO enrichment analysis 

The GO annotations of the M. truncatula genes, including molecular function, molecular location 

and biological process, were conducted using the online tool Goanna (McCarthy et al. 2006; 

http://agbase.msstate.edu/cgi-bin/tools/GOanna.cgi). The GO enrichment analysis was performed 

using GOstats with a threshold P value of less than 0.01 (Falcon and Gentleman 2007). The GO 

slims, which are a subset of GO terms for a broad overview of the ontology content, were 
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downloaded from http://www.geneontology.org/GO_slims/goslim_plant.obo. The metabolic 

pathways of G. max were downloaded from the PlantCyc database (http://www.plantcyc. org). 

Gene expression data and nodule enrichment analysis 

The transcriptome data of M. truncatula (Young et al. 2011) were downloaded from the SRA 

database (http://www.ncbi.nlm.nih.gov/sra). These data included six tissues: root (SRS265483), 

flower (SRS265482), bud (SRS265481), blade (SRS265480), seed (SRS265479) and nodule 

(SRS265478). The accession numbers for the corresponding six tissues of G. max are SRS024744, 

SRS024739, SRS024738, SRS024741, SRS024740 and SRS024742, respectively (Libault et al. 

2010). The numbers of all duplicate and all non-duplicate genes expressed in a nodule are m and n, 

respectively; in addition, the numbers of duplicate and non-duplicate genes expressed in a nodule 

and have a GO term of interest are q and k, respectively. We then used a hypergeometric 

distribution to compute the probability that the number of duplicates expressed in a nodule is not 

less than q. 

 

The complete computational pipeline was coded in either Perl using the BioPerl version 1.60 

software (Stajich et al. 2002) or the R programming language in the Bioconductor version 2.15 

platform (Gentleman et al. 2004). The flow-diagram of the pipeline is shown in supplementary fig. 

S25. 

Supplementary Material 

Supplementary figures S1-S25, supplementary datasets 1 and 2 and supplementary table S1 are 

available at Molecular Biology and Evolution online. 
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Table 1. Overrepresented GO slim terms after the papilionoid polyploidy event compared 

with the individual genome background 

GO ID Term 
P -value 

M. truncatula G. max 

Biological Process 

GO:0008219 cell death 1.49E-24 4.67E-21 

GO:0016265 death 1.49E-24 4.67E-21 

GO:0019748 secondary metabolic process 1.36E-24 1.86E-19 

GO:0007165 signal transduction 2.48E-17 9.45E-17 

GO:0009856 pollination 2.66E-06 3.18E-13 

GO:0007154 cell communication 7.91E-11 4.39E-12 

GO:0009719 response to endogenous stimulus 6.91E-16 2.11E-10 

GO:0040007 growth 6.49E-09 2.66E-09 

GO:0016049 cell growth 6.70E-05 1.04E-06 

GO:0007610 behavior 1.62E-03 7.96E-06 

GO:0009607 response to biotic stimulus 3.27E-03 3.75E-04 

GO:0006810 transport 2.31E-12 5.84E-04 

Molecular Function 

GO:0016740 transferase activity 1.57E-03 2.87E-04 

GO:0004871 signal transducer activity 2.27E-07 5.04E-04 

GO:0003700 transcription factor activity 8.65E-11 3.08E-03 

Cellular Component 

GO:0005886 plasma membrane 8.80E-37 3.37E-21 

GO:0016020 membrane 2.22E-15 5.60E-04 

P-value: indicate the significance of overrepresented GO terms conducted by GOstat software 
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Table 2. Symbiosis-related genes that retained their papilionoid WGD paralogues 

Gene Accesion Genome ID Gene tree Reference 

Symbiotic signaling 

NFR1 CAE02591.1 chr2.CM0545.250.r2.m_lj fig. 4 Radutoiu et al. 2003 

LYK3 AAQ73159.1 Medtr5g086130_mt fig. 4 Limpens et al. 2003 

NFR5 CAE02597.1 chr2.CM0323.400.r2.d_lj Supplementary fig. S9 Madsen et al. 2003 

SINA4 ABW70162.1 Medtr3g091510_mt Supplementary fig. S10 Herder et al. 2008 

ERN2 ABW06103.2 Medtr6g029180_mt Supplementary fig. S11 Andriankaja et al. 2007 

NSP2 Q5NE24.1 Medtr3g072710_mt Supplementary fig. S12 Oldroyd and Long 2003; Kaló et al. 2005 

MtHMGR1 ABY20972.1 Medtr5g026500_mt Supplementary fig. S13 Kevei et al. 2007 

Nodule organogenesis 

LHK1 CAL18382.1 chr4.CM0042.1600.r2.m_lj Supplementary fig. S14 Tirichine et al. 2007; Murray et al. 2007 

MtRR9 AET86869.1 Medtr3g015490_mt Supplementary fig. S15 Op den Camp et al. 2011 

Rhizobial infection 

MsPG3 CAA72003.1 (Medicago sativa) Supplementary fig. S16 Muñoz et al. 1998 

ROP6 ADY16660.1 chr2.CM0272.860.r2.m_lj Supplementary fig. S17 Ke et al. 2012 

nsRING BAF38781.1 chr4.CM0042.810.r2.m_lj Supplementary fig. S18 Shimomura et al. 2006 

PUB1 DAA33939.1 Medtr5g083030_mt Supplementary fig. S19 Mbengue et al. 2010 

sickle ACD84889.1 Medtr7g101410_mt Supplementary fig. S20 Penmetsa et al. 2008 

Nutrient Exchange and transport 

MtGS1b CAA71317.1 Medtr3g065250_mt Supplementary fig. S21 Carvalho et al. 1997 
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FIG. 1. Cladogram of species tree and numbers of gene retentions of papilionoid WGD-derived duplicates. 

The topology of the species tree is from APG III (Bremer et al. 2009), and branch lengths of this tree show no 

means. The bold branch indicates the papilionoid polyploidy event. The number 16,114 indicates the total number 

of predicted ancestral papilionoid nodes. In two branches or lineages doubled by a papilionoid WGD node, both 

duplicate branches are considered to be retained if both branches are observed with papilionoid genes. Thus, the 

three numbers on the bold branch indicate that 4113 papilionoid WGD nodes retained both duplicate branches, 

which represent 25.5% of 16,114 papilionoid nodes, and 66.2% of these are supported by gene collinearity. Other 

sets of three successive numbers represent similar meanings in individual legume species. G. max for example, 

3379 duplicate branches are retained, which represent 21.0% of the total 16,114 papilionoid nodes, and 78.5% of 

the 3379 nodes are supported by gene collinearity. 
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FIG. 2. Selected GO terms with excess gene duplicates expressed in nodules. The horizontal axis represents the 

proportion of duplicate genes expressed in nodules. For all these selected biological process, the gene duplicates 

expressed in nodules are in excess compared with the individual genome background which represents the 

proportion of gene duplicates in all genes annotated in biological process and expressed in nodules.
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FIG. 3. Simplified schematic of flavonoid biosynthesis. This scheme was derived from SoyCyc, which was 

downloaded from the Plant Metabolic Network database (http://www.plantcyc.org). The pathway includes 

chalcone biosynthesis (yellow), flavone biosynthesis (red), flavonol biosynthesis (green), leucoanthocyanidin 

(flavan-3,4-diol) biosynthesis (orange) and isoflavonoid biosynthesis (cyan). The bold edges indicate those 

reactions that are catalysed by enzymes duplicated as a result of papilionoid polyploidy event: CHS (chalcone 

synthase), CHR (chalcone reductase), F3H (flavanone 3-hydroxylase), FLS (flavonol synthase), F3’H (flavonoid 

3'-hydroxylase), HIDH (2-hydroxyisoflavanone dehydratase), I2’H (isoflavone-2'-hydroxylase) and IOMT 

(isoflavone 7-O-methyltransferase or isoflavone 4’-O-methyltransferase). 
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FIG. 4. Phylogenetic tree of the NF receptor LYK/NFR1 (a) and an example of gene syntenic blocks (b). (a) The 

phylogenetic tree was estimated with TreeBeST software, in which the numbers on the branches of the phylogenetic tree 

represent the bootstrap supports. The bold branch represents the papilionoid polyploidy event that is also supported by the 

gene synteny analysis conducted by MCScanX software. (b) This figure provides such an example from Medicago truncatula 

including a collinear gene pair of Medtr5g086030 and Medtr3g080050 with a bold line. 
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