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We develop practical schemes for the measurement of the covariance matrix for intrinsic angular-
momentum variables in quantum optics. We particularize this approach to two-beam polarimetry
and interferometry, as well as to ensembles of two-level atoms interacting with classical fields. We
show the practical advantages of noisy simultaneous measurements.

I. INTRODUCTION

Angular-momentum variables represent basic observ-
ables both in classical and quantum optics, specially
in three fundamental areas: polarization, interferome-
try and light-matter interaction [1–10]. For definiteness,
throughout we focus on intrinsic (not orbital) angular
momenta. This is for example the case of the Stokes pa-
rameters, which provide a complete account of second-
order (in complex amplitudes) statistical properties of
two-mode polarization and interference. Moreover, spin
operators are basic in atomic physics such as in the case
of ensembles of two-level atoms described individually as
spin 1/2 systems.

Second-order statistics of angular-momentum variables
are crucial in diverse areas. This is the case of quan-
tum metrology, where angular-momentum statistics de-
termine the ultimate limit to the resolution of interfer-
ometric and spectroscopic measurements [1–3]. More-
over, angular-momentum covariance matrices enter in the
analysis of many-body entanglement [4], in continuous-
variable polarization entanglement [5], and for light-
mediated detection of atomic-spin correlations [6].

Recently we have proposed an SU(2)-invariant char-
acterization of angular-momentum fluctuations via the
diagonalization of the covariance matrix [11]. Invariance
under SU(2) transformations is a desirable property since
two states connected by a deterministic SU(2) transfor-
mation should be statistically equivalent. Similar invari-
ance ideas are at the heart of current investigations about
coherence between classical vectorial waves [12].

In this work we develop simple practical schemes to
determine experimentally the angular-momentum covari-
ance matrix of a given system in an unknown state. We
particularize the method to diverse optical two-mode po-
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larimetric and interferometric configurations, as well as
to ensembles of two-level atoms. It is worth stressing that
this analysis applies equally well to quantum and classi-
cal optics. In the classical domain the situation is much
more simple since in principle one can always perform as
many simultaneous measurements as desired of any set of
observables in accurate copies of the original beam pro-
vided by beam splitting for instance. This idea can be
fruitfully translated to the quantum domain in the form
of noisy simultaneous measurements of noncommuting
angular-momentum components.

In Sec. II we recall basic definitions and results. In
Sec. III we present a basic scheme for the measure-
ment of angular-momentum covariance matrices which is
particularized to polarimetric, interferometric, and spec-
troscopic situations. In Sec. IV we present an inter-
ferometric noisy simultaneous measurement of angular-
momentum components providing a simple and exact
practical determination of the covariance matrix with a
single experimental configuration. In Sec. V we con-
sider the bight limit in which the angular-momentum co-
variance matrix becomes a quadrature (or position-linear
momentum) covariance matrix.

II. DEFINITIONS

A. Definition and two-mode realization

Let us consider arbitrary dimensionless angular mo-
mentum operators jt = (j1, j2, j3), where the superscript
t denotes matrix transposition. In quantum physics they
are defined by the fulfillment of the commutation rela-
tions

[jk, j`] = i

3∑
n=1

εk,`,njn, [j0, j] = 0, (2.1)

where εk,`,n is the fully antisymmetric tensor with ε1,2,3 =
1, and j0 is defined by the relation

j2 = j0 (j0 + 1) . (2.2)
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For the sake of completeness we take into account that
j0 may be an operator. This is the case of two-mode
realizations where j0 is proportional to the number of
photons. In classical optics the situation is similar by
replacing commutators by Poisson brackets and Eq. (2.2)
by j2 = j2

0 (with 〈j〉2 ≤ 〈j0〉2, where the brackets denote
ensemble average).

In quantum and classical optics two-mode realizations
of angular momentum play a relevant position in po-
larimetry and interferometry. In the quantum case, de-
noting by a1,2 the complex amplitudes operators of two
field modes, we get that

j0 =
1
2

(
a†1a1 + a†2a2

)
, j1 =

1
2

(
a†2a1 + a†1a2

)
,

(2.3)

j2 =
i

2

(
a†2a1 − a†1a2

)
, j3 =

1
2

(
a†1a1 − a†2a2

)
,

satisfy Eqs. (2.1) and (2.2) [13], where the superscript †
denotes Hermitian conjugation. In the classical domain
a1,2 are classical amplitudes so that Hermitian conjuga-
tion a†1,2 is replaced by complex conjugation a∗1,2.

In polarimetry these are essentially the Stokes vari-
ables. The normalized vector 〈j〉/〈j0〉 defines the
Poincaré sphere as a suitable representation of polariza-
tion states and transformations [5, 10]. These are also
basic variables in two-beam interferometry. For exam-
ple, the third component j3 is proportional to the differ-
ence of number of photons between two modes, while j1,2

express the coherence between the interfering beams.

B. Covariance matrix

The complete second-order statistics of j is contained
in the 3× 3 real symmetric covariance matrix M

Mk,` =
1
2

(〈jkj`〉+ 〈j`jk〉)− 〈jk〉 〈j`〉 , (2.4)

with M t = M and M∗ = M . The alternative definition
M ′

k,` = 〈jkj`〉− 〈jk〉 〈j`〉 is identical to M in the classical
case, while in the quantum domain provides a complex
Hermitian matrix that contains essentially the same in-
formation as M [11].

The covariance matrix M allows us to compute the
variance (∆ju)2 of an arbitrary angular-momentum com-
ponent ju = u · j, where u is any unit real vector,

(∆ju)2 = utMu, (2.5)

as well as the symmetric correlation of two arbitrary com-
ponents ju = u · j, jv = v · j, where u, v are unit real
vectors,

1
2

(〈jujv〉+ 〈jvju〉)− 〈ju〉〈jv〉 = vtMu = utMv. (2.6)

Since M is real and symmetric the transformation that
renders M diagonal is a rotation matrix Rd

M = Rt
d

( (∆J1)2 0 0
0 (∆J2)2 0
0 0 (∆J3)2

)
Rd. (2.7)

The eigenvalues of M , (∆Jk)2, k = 1, 2, 3, are the vari-
ances of the components Jk = uk · j, where uk are the
three real orthonormal eigenvectors of M

Muk = (∆Jk)2uk. (2.8)

Following standard nomenclature in statistics we refer to
J and ∆J as principal components and principal vari-
ances, respectively. We stress that both J and ∆J de-
pend on the system state. The principal variances pro-
vide an SU(2) invariant characterization of angular mo-
mentum fluctuations [11].

C. SU(2) invariance

Throughout, by SU(2) invariance we mean the statisti-
cal equivalence between states connected by unitary de-
terministic transformation generated by j

U = exp (iθu · j) , (2.9)

where θ is a real parameter and u is a unit three-
dimensional real vector. It can be seen (for example by
using the j0 = 1/2 representation) that the action of U
on j is a rotation R of angle θ and axis u [14]

U†jU = Rj, U†j0U = j0, (2.10)

where the 3× 3 real matrix R is

Rk,` =
1
2
tr

(
σ`U†σkU

)
, (2.11)

with

U = exp (iθV ) , V =
1
2

3∑

k=1

ukσk, (2.12)

where k, ` = 1, 2, 3, σ1,2,3 are the Pauli matrices, and it
holds that Rt = R−1, and U† = U−1.

The SU(2) invariance of principal variances holds be-
cause under any SU(2) transformation M transforms as
M → RMRt. Therefore, the covariance matrix RMRt

associated to the transformed state has the same prin-
cipal variances than the covariance matrix M associated
to the original state.

In other words, the SU(2) invariance is just the math-
ematical statement corresponding to the fact that the
conclusions which one could draw from an angular mo-
mentum measurement must be independent of which set
of three orthogonal angular momentum components one
chooses.
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In the case of the two-mode bosonic realizations (2.3)
we have

b = U†aU = Ua, U = exp
(
iθa†V a

)
, (2.13)

where U and V are in Eq. (2.12), and at = (a1, a2),
bt = (b1, b2) are the original and transformed complex
amplitudes, respectively. In this case SU(2) transforma-
tions describe basic lossless polarization and interference
elements, such as beam splitters, phase plates, two-beam
interferometers, Faraday rotators, etc. [1–3, 5, 7, 9].

III. PRACTICAL DETERMINATION OF THE
COVARIANCE MATRIX

The complete determination of the covariance matrix
in a given basis of components jt = (j1, j2, j3) can be
achieved by the measurement of the variances of the six
operators

j1±2 = 1√
2

(j1 ± j2) ,

j1±3 = 1√
2

(j1 ± j3) ,

j2±3 = 1√
2

(j2 ± j3) . (3.1)

More specifically, since (respecting the quantum lack of
commutation)

j2
k±` =

1
2

(
j2
k + j2

` ± jkj` ± j`jk

)
(3.2)

we get that the nondiagonal matrix elements Mk,`, k 6= `
are given by

Mk,` =
1
2

[
(∆jk+`)

2 − (∆jk−`)
2
]
. (3.3)

For the diagonal elements we have

M3,3 = (∆j3)
2 = 1

2

[
(∆j1+3)

2 + (∆j1−3)
2 + (∆j2+3)

2

+ (∆j2−3)
2 − (∆j1+2)

2 − (∆j1−2)
2
]
, (3.4)

and similarly for ∆j1 and ∆j2 by cyclic permutations of
the indices.

Note that M has just six independent components be-
cause of reality and symmetry, which agrees with the
above number of independent measured variances. The
six operators (3.1) are not strictly speaking independent
since we have, for example,

j2+3 = j1+2 − j1−3, j2−3 = j1+2 − j1+3. (3.5)

Nevertheless, the measurement of the components j2±3

is necessary to derive all jkj` correlations exclusively in
terms of variances.

When one of the components of j, say j3, is a princi-
pal component the process is much more simple since we
know in advance that all the correlations between j3 and

FIG. 1: Poincaré sphere illustrating polarization states (cir-
cular at the poles and linear at the equator) and the action
of the transformations (3.8).

j1, j2 vanish. Then, only four variances are necessary,
namely ∆j1, ∆j2, ∆j3, and ∆j1+2 for example.

The measured components jp±q can be related with
the original ones j` by simple SU(2) transformations of
the form

Uk,±m = exp (iθ±mjk) , (3.6)

with θ±m = ±π/m and m = 2, 4, that produce rotations
of angles π/2 and π/4 around the axis jk. This is useful
because Uk,±4 transform the measurement of the compo-
nents j` in the transformed state into the measurement
of the operators jp±q in the original state, while Uk,±2

transform the components j` among themselves. The
proper use of these transformations is illustrated by the
following particular cases.

A. Polarimetry

Polarization states and transformations can be prop-
erly represented in the Poincaré sphere, as illustrated in
Fig. 1. For definiteness we consider a1,2 in Eq. (2.3) as
the amplitudes of circularly polarized modes,

a1 =
1√
2

(ax + iay) , a2 =
1√
2

(ax − iay) , (3.7)

where ax,y are the complex amplitudes of modes linearly
polarized along the Cartesian axes x, y. As customary,
the south and north poles in axis j3 of the Poincaré
sphere represent circularly polarized light, while linear
polarizations of different azimuths are distributed along
the equator, with linear polarization along the Cartesian
axes x, y located at the antipodal points of the axis j1
(i.e., j1 = ±j0).

The most simple polarization measurement is the mea-
surement of j1 = (a†xax − a†yay)/2 as the difference be-
tween field the intensities after a polarizing beam splitter,
as illustrated in Fig. 2. In this case the transformations
(3.6) correspond to phase plates and Faraday rotations
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FIG. 2: Illustration of the scheme for the polarimetric mea-
surement of the covariance matrix.

placed before the polarizing beam splitter that transform
the measurement of j1 in the output fields into the mea-
surement of jk±` in the input fields. More specifically:

j1±2 = U†
3,±4j1U3,±4,

j1±3 = U†
2,∓4j1U2,∓4,

j2±3 = U†
2,∓2U

†
3,4j1U3,4U2,∓2. (3.8)

The transformations U3,±4 are Faraday rotations produc-
ing a phase different shift of ±π/4 between dextro and
levo circularly polarized modes. This produces a rotation
of angle ±π/8 of the azimuth of linearly polarized light,
which is a rotation of the Poincaré sphere of angle ±π/4
along the north-south axis. On the other hand, the trans-
formations U2,±2, U2,±4 can be implemented by phase
plates introducing phase-difference shifts of ±π/2 and
±π/4, respectively, the phase-plate axes forming ±π/4
with the Cartesian axes x, y.

B. Two-beam interferometry

Two-beam interferometry can be embedded in this
same framework by considering that the complex ampli-
tudes a1,2 represent two interfering modes with the same
polarization state and propagating along different direc-
tions. In this case, the simplest measurement is j3, since
it represents the difference of intensities between the two
waves a1,2. Otherwise, the same relations (3.8) hold sim-
ply by the cyclic permutation (1, 2, 3) → (3, 1, 2) for the
indices k, ` in jk±`, jk, and Uk,±m.

The transformations (3.6) represent in general lossless
beam splitters and phase shifts. In terms of input-output
relations (2.13) we get for U2,±m the following unitary
matrices relating input and output complex amplitudes

U2,±m =
(

cos(θ±/2) sin(θ±/2)
− sin(θ±/2) cos(θ±/2)

)
, (3.9)

while for U1,±m

U1,±m =
(

cos(θ±/2) i sin(θ±/2)
i sin(θ±/2) cos(θ±/2)

)
. (3.10)

FIG. 3: Illustration of the interferometric realization of the
transformations (3.9) and (3.10) using symmetric beam split-
ters (SBS) and phase-difference shifts (PDS) exclusively.

In Fig. 3 we illustrate how these transformations may
be implemented with very simple elements such as sym-
metric beam splitters (SBS) and phase-difference shifts
(PDS), described by the unitary matrices

SBS =
1√
2

(
1 i
i 1

)
, PDS =

(
exp (iφ) 0

0 exp (−iφ)

)
.

(3.11)
For U2,±m we have the parameters ϕ = π/2, φ = θ±m/2−
π/2, and δ = 0, while for U1,±m the parameters are ϕ =
δ = π/4 and the same φ = θ±m/2− π/2.

C. Two-level atoms

In this case the physical situation corresponds to a col-
lection of N two-level atoms (with ground |g〉 and ex-
cited |e〉 levels) interacting with a classical field E =
E0 cos(ωt). By assuming that the coupling between
atoms can be neglected the total Hamiltonian is given
by sum of individual Hamiltonians (in units h̄ = 1 for
simplicity)

H =
N∑

k=1

hk, (3.12)

being

hk =
ω0

2
σ

(k)
3 − Ω

[
σ

(k)
− + σ

(k)
+

]
cos(ωt), (3.13)

where, for each atom k

σ3 = |e〉〈e| − |g〉〈g|, σ− = σ†+ = |g〉〈e|, (3.14)

are the corresponding Pauli and ladder matrices with
σ± = (σx ± iσy)/2. The first term in Eq. (3.13) is the
free evolution Hamiltonian for each atom and the second
one is the coupling with the classical field at dipolar ap-
proximation. The Rabi frequency Ω = 〈g|d̂|e〉 · E0 has
been assumed to be real. On the regimen ω ' ω0 À Ω
is usual to consider the rotating wave approximation by
neglecting the counter-rotating terms, σ+ exp(iωt) and
σ− exp(−iωt), in the above Hamiltonians [8]

hk ' ω0
2 σ

(k)
3 − Ω

2

[
σ

(k)
− exp(iωt) + σ

(k)
+ exp(−iωt)

]

= ω0
2 σ

(k)
3 − Ω

2

[
σ

(k)
1 cos(ωt) + σ

(k)
2 sin(ωt)

]
.(3.15)
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From Eqs. (3.12) and (3.15) the total Hamiltonian can
be written in terms of the total angular momentum j =∑

k σ(k)/2 as

H = ω0j3−Ω [j1 cos(ωt) + j2 sin(ωt)] = U†
3 [ω0j3 − Ωj1]U3,

(3.16)
where U3 = exp(iωtj3) is a rotation around the j3 axis.

It is customary to change the picture by the unitary
transform U3 = exp(iωtj3) in order to remove the time
dependence of the Hamiltonian

|ψ(t)〉 → |ψ̃(t)〉 = U3|ψ(t)〉, (3.17)

with |ψ̃(0)〉 = |ψ(0)〉. The time-evolution equation in
this picture is

i
d

dt
|ψ̃(t)〉 = [(ω0 − ω)j3 − Ωj1] |ψ̃(t)〉, (3.18)

so the operator U(t2, t1) performing the time evolution
between t1 = 0 and t2 = t in the Schrödinger picture is:

U(t, 0) = exp(−iωtj3) exp{−i [(ω0 − ω)j3 − Ωj1] t}.
(3.19)

This operator reduces to a very simple product of SU(2)
transformations when the radiation field is in resonance
ω = ω0:

Ures(t, 0) = exp(−iω0tj3) exp(iΩtj1). (3.20)

On the other hand, if the external field is switched off
(Ω = 0) the free evolution is given by

Ufree(t) = exp(−iω0tj3). (3.21)

Therefore, in this case the transformations Uk±m are ob-
tained by combining time intervals of resonance pulses
and free evolution, as it is used in Ramsey spectroscopy
[15].

As in the interferometric case above, the simplest mea-
surement is j3 again, this is the difference of populations
between the two levels of the atoms (nevertheless, see
Ref. [6] for other light-mediated atomic-spin measuring
schemes). More explicitly U2,±m can be achieved as

U2,±m = Ufree(tπ/2 − t±m)Ures(t±m, 0)Ufree(t−π/2),
(3.22)

with ω0t±π/2 = ±π/2 mod(2π) and, in order to deal
always with positive time intervals, Ωtm = π/m, Ωt−m =
(2m− 1)π/m. Similarly U1,±m can be achieved as

U1,±m = Ufree(t2π − t±m)Ures(t±m, 0), (3.23)

with ω0t2π = 2π mod(2π), and the same t±m above. We
stress that the mod(2π) freedom should be used to obtain
always positive time intervals.

In these equations the following relation is useful

exp(iϕj2) = exp
(
−i

π

2
j3

)
exp(iϕj1) exp

(
i
π

2
j3

)
,

(3.24)

FIG. 4: Illustration of the twelve-port scheme.

that can be derived from the relations in Sec. IIC for
θ = π/2 and V = σ3/2, so that the rotation matrix in
Eqs. (2.10) and (2.11) becomes

R =

( 0 1 0
−1 0 0
0 0 1

)
. (3.25)

IV. SIMULTANEOUS MEASUREMENTS

In this section we show that an interferometric noisy
simultaneous measurement of the three components of
j provides a simple and exact determination of the co-
variance matrix with a single apparatus (similar schemes
may be developed for the other contexts). To this end
we consider the twelve-port scheme illustrated in Fig. 4
[16, 17]. The two input signal modes are a1, a2, while
the input modes a10, a20, a′10, a′20 are auxiliary modes
always in the vacuum state.

For definiteness and to simplify formulas let us con-
sider that beam splitters BS1, BS2, BS3, BS4 are 50 %
with real transmission and refection coefficients and a π
phase change in the upper side reflections. BS5 and BS6
are identical with real transmission t and refection r coef-
ficients, with t 6= r, and a π phase shift in the upper side
reflections. Finally PS is a π/2 phase shift. The relation
between the input and output complex amplitudes is [16]

a3 =
1
2

(ta1 − ta2 + a10 − a20 + ra′10 + ra′20) ,

a4 =
1
2

(ta1 + ta2 + a10 + a20 + ra′10 − ra′20) ,

a5 =
1
2

(−ita1 + ta2 + ia10 − a20 − ira′10 − ra′20) ,

a6 =
1
2

(−ita1 − ta2 + ia10 + a20 − ira′10 + ra′20) ,

a7 = ra2 + ta′20,
a8 = −ra1 + ta′10. (4.1)

In the classical domain the vacuum state implies that
a10 = a20 = a′10 = a′20 = 0 so we have the noiseless
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simultaneous measurement of all the components (2.3)
via the detection of the six output intensities Ij = a∗jaj ,
j = 3, . . . , 8, in the form:

j0 =
1
2

8∑

j=3

Ij , j1 =
1
t2

(I4 − I3)

j2 =
1
t2

(I6 − I5) , j3 =
1

2r2
(I8 − I7) . (4.2)

With this we can compute the whole covariance matrix
M by determining the variances and correlations between
the output intensities Ij .

In the quantum case the amplitudes of the auxiliary
modes a10, a20, a′10, a′20, cannot be taken as zero since
the complex amplitude of the vacuum fluctuates. In other
words, simultaneous exact measurements of noncommut-
ing operators are forbidden by commutation relations.
Nevertheless, it is still possible to extract useful and reli-
able information from simultaneous noisy measurements.
To this end let us define the commuting measured observ-
ables

j̃1 = 1
t2

(
a†4a4 − a†3a3

)
,

j̃2 = 1
t2

(
a†6a6 − a†5a5

)
,

j̃3 = 1
2r2

(
a†8a8 − a†7a7

)
, (4.3)

as providing a noisy joint measurement of the operators
(2.3). We do not include j0 because this measurement
is actually exact and noiseless because of conservation of
total photon number between the input and the output
(the auxiliary modes are in an eigenstate of the number
operator).

In Ref. [16] it was shown that for the mean values and
variances we have

〈j̃〉 = 〈j〉, (4.4)

and

(
∆j̃1

)2
= (∆j1)

2 +
1 + r2

2t2
〈j0〉,

(
∆j̃2

)2
= (∆j2)

2 +
1 + r2

2t2
〈j0〉,

(
∆j̃3

)2
= (∆j3)

2 +
t2

2r2
〈j0〉, (4.5)

so that the diagonal terms of the covariance matrix
∆j1,2,3 can be determined simply and exactly from
∆j̃1,2,3 and 〈j0〉. Concerning the nondiagonal terms, it
can be seen that the following exact relations hold for all
k 6= `

〈j̃`j̃k〉 = 〈j̃k j̃`〉 = 〈: j`jk :〉 =
1
2
〈(jkj` + j`jk)〉, (4.6)

where : : denotes normal ordering. To derive this last
relation it can be taken into account that a†kaka†`a` =

a†ka†`aka` for k 6= ` in order to express j̃`j̃k in normal
order. This is useful since this automatically removes
the operators of the auxiliary modes in the vacuum state,
leading to 〈j̃`j̃k〉 = 〈: j`jk :〉. Then, the last equality in
Eq. (4.6) can be proved by direct computation.

Therefore we get that the statistics of j̃ allow to deter-
mine the exact mean values and the covariance matrix
for j. The variances of j̃ present an excess of fluctua-
tions caused by the vacuum in the auxiliary modes that
can be easily subtracted or compensated. This is partic-
ularly simple for t =

√
2/3, r =

√
1/3, since in such a

case

M = M̃ − 〈j0〉I, (4.7)

where M , M̃ are the correlation matrices for the j and j̃
operators, respectively, and I is the 3×3 identity matrix.

It is worth stressing the simplicity of this method since
it provides complete information via the measurement of
just four observables (j̃, j0) instead of the six observables
of the general method in Eq. (3.1). Moreover, the four
observables (j̃, j0) are measured in a single experimental
arrangement.

The above relations (4.6) can be regarded as a cor-
respondence between classical variables (the outputs of
measuring j̃) and quantum mechanical operators j. In
particular Eq. (4.6) is actually an angular momentum
version of the Wigner [18] and Terlesky-Margenau-Hill
[19] correspondences between products of classical vari-
ables and symmetric operator orderings.

Similar schemes may be developed for the polarimetric
context. The same interferometric scheme above is valid
if the signal modes a1,2 are the polarization components
ax,y. A more polarimetric scheme allowing the noisy si-
multaneous measurement of j1, j2, and j3 is outlined in
Fig. 5. The two beam splitters BS provide three copies of
the original beam by mixing with the vacuum, which are
directed to three detectors D that are essentially of the
form of the j1 measuring scheme in Fig. 2. The transfor-
mations U2,2 and U3,2 placed in front of them transform
the measurement of j1 into measurements of j3 and j2.

V. BRIGHT LIMIT

Focusing in the bosonic realization, when the state of
one of the modes is known the above measuring schemes
provide information about the statistical properties of the
other mode. Let us examine this issue by considering for
definiteness that the system state factorizes ρ = ρ1 ⊗ ρ2,
being ρ1 = |α〉〈α| where |α〉 is a coherent state a1|α〉 =
α|α〉 with real α for simplicity. In such a case we have

〈j1〉 = α〈X〉, 〈j2〉 = α〈Y 〉, 〈j3〉 =
1
2

(
α2 − 〈n〉) ,

(5.1)
where X, Y are the quadrature operators of mode a2

X =
1
2

(
a†2 + a2

)
, Y =

i

2

(
a†2 − a2

)
, (5.2)
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FIG. 5: Illustration of a practical scheme for the noisy si-
multaneous measurement of j1, j2, and j3 in a polarimetric
context.

and n = a†2a2 is the number operator. Concerning the
covariance matrix we have the following exact series in
powers of α, valid for any α,

M = α2M2 + αM1 + M0, (5.3)

with

M2 =
(

(∆X)2 1
2 〈(XY + Y X)〉 − 〈X〉〈Y 〉 0

1
2 〈(XY + Y X)〉 − 〈X〉〈Y 〉 (∆Y )2 0

0 0 1
4

)
,

(5.4)

M1 =
1
4

( 0 0 f(X)
0 0 f(Y )

f(X) f(Y ) 0

)
, (5.5)

with f(A) = 〈A〉+ 2〈n〉〈A〉 − 〈(An + nA)〉, and

M0 =
1
4



〈n〉 0 0
0 〈n〉 0
0 0 (∆n)2


 . (5.6)

In the bright limit α → ∞ the α-leading term in
Eq. (5.3) is M2 so that the angular-momentum covari-
ance matrix becomes essentially the quadrature covari-
ance matrix of mode a2. This is because in such a limit
X, Y become the Cartesian coordinates of the plane tan-
gent to the Poincaré sphere at point 〈j〉/〈j0〉 ' (0, 0, 1)
[20]. In the same conditions we can consider the bright
limit of the twelve-port detection scheme in Sec. IV,
where mode a1 plays the role of the local oscillator. When
the local oscillator is in a coherent state |α〉 with α →∞
we have

(
∆j̃1

)2 ' α2
[
(∆X)2 + 1+r2

4t2

]
,

(
∆j̃2

)2 ' α2
[
(∆Y )2 + 1+r2

4t2

]
,

〈j̃1j̃2〉 = 〈j̃2j̃1〉 = 1
2 〈(XY + Y X)〉. (5.7)

This agrees well with Eq. (5.4), as well as with previous
analyses of the bright limit of multi-port homodyne de-
tection [21]. Analyses of homodyne detection with finite
local oscillator are also available [22].

Finally we point out that these results are valid in the
general case beyond two-mode bosonic realizations. This
holds via the idea of group contraction that applies when
the state of the system remains in small enough region
of the Poincaré sphere that can be well approximated by
the tangent plane [14].

VI. CONCLUSIONS

We have provided some general schemes for the prac-
tical determination of angular-momentum covariance
matrices in different contexts. They allow to deter-
mine a global and SU(2)-invariant characterization of
angular-momentum fluctuations via principal compo-
nents. This can be of interest for example for unam-
biguous, reference-free characterization of SU(2) squeez-
ing with applications in quantum metrology, detection of
many-body and continuous-variable entanglement, and
for light-mediated detection of atomic-spin correlations.

In particular we have shown that this task can be ac-
complished in an exact and simple way by noisy simulta-
neous measurement of angular-momentum components.
This provides complete information via the measurement
of just four observables, instead of the six observables re-
quired by the general method. Moreover, they are mea-
sured in a single experimental arrangement.

It is worth stressing the simplicity of this scheme.
The minimum number of measured observables required
to determine the principal variances is three provided
we know in advance the principal components. Just
by adding a fourth measurement we no longer need to
know the principal components, since we can gather
enough information to determine the whole covariance
matrix. This includes at once all about principal compo-
nents, principal variances, and the variances of angular-
momentum components along arbitrary directions.
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