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Abstract

This thesis considers estimation of discrete choice stationary dynamic games. Chap-
ter 1 shows that when payoffs are linear in the parameters value functions are linear
in the parameters and the equation system characterizing the Markovian equilibrium
is linear in the parameters. This formulation allows us to estimate the model using
Least Squares. We derive an optimal weight matrix for the Least Squares estimator
and show that the efficient estimator is a Generalized Least Squares estimator. Chapter
2 shows that when time invariant unobservables are present the efficient estimator is a
Generalized Fixed Effects estimator. Time invariant unobservables can be correlated
with observed states. We do not need to impose any distributional assumption on time
invariant unobservables. Our estimators have a closed form solution. In Chapter 3
we apply the framework developed in Chapters 1 and 2 to analyze the effects of the
privatization of public banks on financial development. We build a dynamic entry game
to analyze the Brazilian banking market. We show that profits of private banks are
positively affected by the number of public branches operating in Brazilian isolated
markets. The spill-over generated by public banks is quantified based on a dynamic
oligopoly model. A counterfactual in which public banks are privatized is examined. It
shows that the number of active branches operating in the long-run in a small market
drops significantly.
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Preface

This thesis considers estimation of discrete choice stationary dynamic games. Chapter 1
shows that when payoffs are linear in the parameters Least Squares estimators are consistent
estimators for payoff parameters. We derive an optimal weight matrix for the Least Squares
estimator and show that the efficient estimator is a Generalized Least Squares estimator. The
advantage of our formulation is that Least Square estimators have a closed form solution
and do not depend on the numerical methods used in other popular estimation procedures
(e.g. Hotz and Miller (1993), Aguirregabiria and Mira (2002), Bajari, Benkard and Levin
(2007) and Pesendorfer and Schmidt-Dengler (2008), among others). Our estimation strategy
provides globably optimal estimates that do not depend on initial guesses of parameters.

Pesendorfer and Schmidt-Dengler (2008) show that other popular estimators in the litera-
ture, including Hotz and Miller (1993), Aguirregabiria and Mira (2002) and Bajari, Benkard
and Levin (2007), are Asymptotic Least Squares (ALS) estimators. We show that when
payoffs are linear in the parameters ALS estimators for dynamic games are Least Squares
estimators. It follows that, under the linearity of payoffs, the estimators proposed by Hotz
and Miller (1993), Aguirregabiria and Mira (2002), Bajari, Benkard and Levin (2007) and
Pesendorfer and Schmidt-Dengler (2008), are Least Squares estimators. The class of Least
Squares estimators developed in this paper provides, therefore, a unified framework for a
number of popular estimators for dynamic games.

Chapter 2 shows that when time invariant unobservables are present the efficient estima-
tor is a Generalized Fixed Effects estimator. Time invariant unobservables can be correlated
with observed states. We do not need to impose any distributional assumption on time
invariant unobservables. Our estimators have a closed form solution.

The Generalized Fixed Effects estimator present advantages on other popular estimators
for models with time invariant unobservables. Aguirregabiria and Mira (2002) also consider
a model time invariant unobservables. The unobservables, however, by assumption, are
uncorrelated with observed states and the estimates depend on the choice for the distribution
of unobservables. GFE estimators relax these two assumptions.

GFE is less general than Arcidiacono and Miller (2011). Arcidiacono and Miller (2011)
allow for time variant unobservables and propose a four step estimation procedure for payoff
parameters. When time variant unobservables are not present our estimation procedure is
clearly more straightforward. We do not have to estimate the distribution of unobservables
and to use the four step numerical method to recover payoff parameters.



Chapter 3 applies the framework developed in Chapters 1 and 2 to analyze the effects
of the privatization of public banks on financial development. We build a dynamic entry
game to analyze the Brazilian banking market. We show that profits of private banks are
positively affected by the number of public branches operating in Brazilian isolated markets.
The spill-over generated by public banks is quantified based on a dynamic oligopoly model.
A counterfactual in which public banks are privatized is examined. It shows that the number
of active branches operating in the long-run in a small market drops significantly.

7



Contents

I Generalized Least Squares Estimators for Dynamic Games 4

1 Introduction 5

2 Theoretical Framework 6
2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Equilibrium characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Estimation 9

4 Monte Carlo Experiment 12

5 Conclusion 14

II Generalized Fixed Effects Estimators for Dynamic Games 20

1 Introduction 21

2 Theoretical Framework 22
2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Equilibrium characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Estimation 25

4 Conclusion 28

III Public Banks Improve Private Banks Performance: Evidence
from a Dynamic Structural Model 33

1 Introduction 34

2 Data and Institutional Background 37

3 Reduced Form Analysis 41
3.1 Private players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



3.2 Public players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Theoretical Model 45
4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Equilibrium characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Econometric Model 49
5.1 Identification and estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 CCPs and state space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Reduced form estimation of beliefs . . . . . . . . . . . . . . . . . . . 51
5.2.2 State space and transitions for exogenous states . . . . . . . . . . . . 51

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Model Fit and Counterfactuals 57
6.1 Model fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Counterfactual: Privatization of public banks . . . . . . . . . . . . . . . . . 59

7 Conclusions 61

2



List of Figures

1 Number of Branches (left) and Market Share (right) - “Big” Four . . . . . . . 39
2 Number of Private Banks 100 Periods Ahead - Model I . . . . . . . . . . . . 59
3 Counterfactual: Privatization of Public Players . . . . . . . . . . . . . . . . . 60

List of Tables

1 Monte Carlo Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Basic Sample Statistics 1988-2010 . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Average Monthly Payroll and Number of Public/Private Players . . . . . . . 39
4 Marginal Effects of npubmt−1 and nprimt−1 on the Entry Probabilities of Private

Players, Bradesco and Itau . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5 Marginal Effects of npubmt−1 and nprimt−1 on the Entry Probabilities of Public

Players, BB and CEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 Structural Parameters for Private Players . . . . . . . . . . . . . . . . . . . . 54
7 Structural Parameters as Percentage of the Entry Costs . . . . . . . . . . . . 55
8 Average Period Profits and Return to Fixed Costs in Private Monopoly Markets 56
9 Fitted vs Sample (Logit) Probabilities . . . . . . . . . . . . . . . . . . . . . 58
10 Marginal Effects of npubmt−1 and nprimt−1 on the Entry Probabilities of Private

Players (Bradesco and Itau) - Subsample npub ≥ 1 . . . . . . . . . . . . . . . 71
11 Marginal Effects of npubmt−1 and nprimt−1 on the Entry Probabilities of Private

Players (Bradesco and Itau) - Subsample 1 ≤ npub ≤ 3 . . . . . . . . . . . . . 71
12 CCP Logit for Public Players (BB and CEF) . . . . . . . . . . . . . . . . . . 72
13 CCP Logit for Private Players (Bradesco and Itau) . . . . . . . . . . . . . . 73

3



Part I

Generalized Least Squares Estimators
for Dynamic Games

Abstract

This paper develops Least Squares estimators for discrete choice stationary dynamic
games. We show that when payoffs are linear in the parameters Least Squares estima-
tors can consistently estimate the parameters of the model. We derive the efficient
weight matrix that characterizes these estimators and the asymptotic distribution of
the estimators. We show that the efficient estimator is a Generalized Least Squares
estimator. The estimators have a closed form solution. We illustrate the small sam-
ple performance of our estimators using a Monte Carlo Experiment. Least Squares
are much easier to implement than other popular estimators for dynamic games. This
procedure simplifies the estimation of dynamic games.
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1 Introduction

This paper considers the estimation of discrete choice stationary dynamic games when pay-
offs are linear in the parameters. Estimation of discrete choice stationary dynamic games
have been studied in Hotz and Miller (1993), Hotz, Miller, Sander and Smith (1994), Aguir-
regabiria and Mira (2002), Bajari, Benkard and Levin (2007) and Pesendorfer and Schmidt-
Dengler (2008), among others. Static models with strategic interactions (e.g. Seim (2006)),
single-agent static and dynamic models (e.g. Rust (1987)) are special cases of our framework.

Pesendorfer and Schmidt-Dengler (2008) show that in dynamic games payoffs cannot
be identified without restrictions. This result generalizes the identification arguments of
dynamic single agent models in Magnac and Thesmar (2002). Following this evidence, most
of the literature has assumed a linear, parametric structure for players’ payoffs (Pesendorfer
and Schmidt-Dengler (2003), Pesendorfer and Schmidt-Dengler (2008), Aguirregabiria and
Mira (2007), Ryan (2012) and Collard-Wexler (2013), among many others).

We show that when payoffs are linear in the parameters value functions are linear in the
parameters and the equation system characterizing the Markovian equilibrium is linear in
the parameters. This formulation allows us to estimate the model using Least Squares. We
derive an optimal weight matrix for the Least Squares estimator and show that the efficient
estimator is a Generalized Least Squares estimator.

The advantage of our approach is that Least Squares estimators have a closed form
solution and do not depend on the numerical methods used in other popular estimation
procedures (e.g. Hotz and Miller (1993), Aguirregabiria and Mira (2007), Bajari, Benkard
and Levin (2007) and Pesendorfer and Schmidt-Dengler (2008), among others). These meth-
ods can be computationally burdensome and can produce inconsistent estimates of the pa-
rameters of interest (Pesendorfer and Schmidt-Dengler (2010) and Srisuma (2010)). Our
estimation strategy produces globaly consistent estimates of the parameters and reduces sig-
nificantly the computational burden when state spaces and/or the number of parameters in
the model is large.

Pesendorfer and Schmidt-Dengler (2008) show that other popular estimators in the litera-
ture, including Hotz and Miller (1993), Aguirregabiria and Mira (2002) and Bajari, Benkard
and Levin (2007), are Asymptotic Least Squares (ALS) estimators. We show that when
payoffs are linear in the parameters ALS estimators for dynamic games are Least Squares
estimators. It follows that, under the linearity of payoffs, the estimators proposed by Hotz
and Miller (1993), Aguirregabiria and Mira (2002), Bajari, Benkard and Levin (2007) and
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Pesendorfer and Schmidt-Dengler (2008), are Least Squares estimators. The class of Least
Squares estimators developed in this paper provides, therefore, a unified framework for a
number of popular estimators for dynamic games.

We illustrate the small sample performance of our estimators using a Monte experiment.
The experiment shows that Least Squares is much faster than other popular estimators.

This paper is organized as follows. Section 2 describes and solves the theoretical model.
Section 3 proposes a class of Least Squares estimators for the parameters in the model.
Section 4 analizes the small sample performance of our estimators based on a Monte Carlo
experiment. Section 5 concludes the paper.

2 Theoretical Framework

This section describes the main elements of the model. We set up the model in a sta-
tionary discrete choice framework. Markets are treated isolately. We firstly describe the
main assumptions behind the model. Subsequently we solve the model and characterize the
equilibrium restrictions that are used to identify and to estimate the parameters of interest.

2.1 Assumptions

� Time and markets. Time is discrete, t = 1, 2, ...,∞. There is one market denoted by m.
� Players. The set of players in market m is N = {1, 2, .., N}. We denote each player in
market m by i ∈ N.
� Actions. A player’s action in market m, period t is denoted by ati ∈ {0, 1, ..., K}. The
1×N vector at ∈ A = ×

i∈N
ati denotes the action profile in market m, period t. We sometimes

use at
−i ∈ A−i = ×

j 6=i,j∈N
atj to denote the actions of all players but player i. The cardinality

of the action space in market m is Na = (K + 1)N .
� State space. The state space is discrete and finite. The state variables for player i ∈ N

is composed by a vector st
i ∈ Si = {1,2, ...,L} of exogenous variables. The state variables

are publicly known to the players and to the econometrician. The vector of all players’ state
variables is st = (st

1, s
t
2, ..., s

t
N) such that st ∈ S = ×

i∈N
Si. The cardinality of the state space

S is Ns = LN .
� Shocks. In each period players draw a vector of profitability shocks. We use ξt

i to denote
the (K + 1) × 1 vector (ξti0, ξ

t
i1, ..., ξ

t
iK) of profitability shocks. The profitability shock is iid
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across individuals, time and actions. This is the only source of asymmetric information in
the model. We denote the cumulative distribution function of ξt

i by G (·).
� Payoffs. Player i’s period payoff in market m is given by Πi(a

t, st, ξt
i ) = πi(a

t, st) +∑K
k=0 ξ

t
ik · I (ati = k), where πi(at, st) denotes player’s deterministic profits and I (.) is an

indicator function that assumes 1 if the condition (.) is satisfied and 0 otherwise.
� Transitions. The vector st+1 evolves according to the conditional cumulative density
function p(st+1|at, st), described by next period distribution of possible values for the vector
st+1 conditional on each (at, st). We sometimes use p to denote the Na ·Ns ·Ns×1 vector of
transitions, p(st+1|at, st), for every possible future state st+1 ∈ S given all (at ∈ A, st ∈ S).
� Sequence of decisions. The sequence of events in this game is the following:

1. States are observed by all the players.

2. Each player draws the private profitability shock ξt
i .

3. Actions are simultaneously chosen. Players maximize their payoffs given beliefs on
competitor’s actions. The total payoff of a player is given by the discounted sum of
player’s period payoffs. The discount rate is given by β < 1 and is the same for all
players.

4. After actions are chosen the law of motion for st+1 determines the distribution of states
in the next period; the problem restarts.

Next the equilibrium for this game is characterized.

2.2 Equilibrium characterization

We restrict our attention to pure Markovian strategies. This means that players’ actions
are fully determined by the current vector of state variables. Intuitively, whenever a player
observes the same vector of states it will take the same actions and the history of the game
until period t does not influence player’s decisions.

Player i’s best response function solves the following Bellman equation:

Max
at
i
∈{0,1,...,K}


∑

at−i

σi(a
t
−i|st)Πi(a

t
i=k, a

t
−i, s

t, ξt
i )+

βzk (st+1|st;σi,p) EξVi (σi,p)

 . (1)
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Here Πi(·) is player’s period payoff; the function σi(a
t
−i|st) accounts for i’s beliefs on

other players’ actions given current states; σi is a Na · Ns × 1 vector of beliefs, σi(at|st),
for all and at ∈ A and st ∈ S; zk (st+1|st;σi,p) is a 1 × Ns vector containing the transi-
tions σi(at

−i|st)p(st+1|ati = k, at
−i, s

t) and EξVi (σi,p) is a Ns × 1 vector with the expected
continuation value for the player, EξVi(st+1;σi,p, π), for all st+1 ∈ S.

The value function conditional on ati = k ∈ {0, 1, ..., K} being played in period t is then
defined as:

V k
i (st;σi,p) =∑

at−i

σi(a
t
−i|st)πi(a

t
i=k, a

t
−i, s

t) + βzk

(
st+1|st;σi,p

)
EξVi (σi,p) + ξtik, (2)

and V k
i (st;σi,p) = Ṽ k

i (st;σi,p)+ξtik, where Ṽ k
i (st;σi,p) comprises all the terms in (2) except

the profitability shock.
We define EξVi (σi,p) as the ex-ante value function, EξVi (σi,p) = ∆i

(
π̃i + Ẽξi

)
,

where ∆i = [INs − βZi]
−1; π̃i is a Ns × 1 vector stacking current payoff expected values,∑

at+1
σi(a

t|st)πi(a
t, st), for every state; Ẽξi is a Ns × 1 vector stacking Ẽξ (st;σi,p) =

K∑
k=0

σi(a
t
i = k|st;σi,p)E [ξtik|ati = k, st] for every state; INs is a Ns ×Ns identity matrix; and

Zi is a Ns×Ns matrix stacking the 1×Ns vector z (st+1|st;σi,p) containing the transitions
σi(a

t|st)p(st+1|at, st) for every state.
The solution to problem (1) implies that player i’s probability of playing action k when

states are st satisfies the following equilibrium restrictions1:

Pi(a
t
i = k|st;σi,p) = Prob

(
Ṽi
k
(st;σi,p)− Ṽi

k′

(st;σi,p) ≥ ξtik′ − ξtik,∀k′ 6= k
)

=

ˆ
1
{
Ṽi
k
(st;σi,p)− Ṽi

k′

(st;σi,p) ≥ ξtik′ − ξtik,∀k′ 6= k
}
dG
(
εt

i

)
,

(3)

that holds for all k, k′ ∈ {0, 1, ..., K}, all st ∈ S all i ∈ N.
The solution to this problem is a vector of player i’s optimal actions when he faces each

possible configuration for the state vector st and has consistent beliefs about other players
1See Train (2009).
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actions in the same states of the world.
By stacking up the equilibrium restrictions derived in equation (3) for every action except

action k = 0 of every player and every possible state one can form a system of N ·K ·Ns× 1

equations. This system is used to find the N ·K ·Ns × 1 vector of players’ beliefs.
A formal proof of the existence of this vector can be found in Pesendorfer and Schmidt-

Dengler (2008). Uniqueness of this equilibrium is not, however, guaranteed. This is a
common feature of games.

3 Estimation

This section develops Generalized Least Square Estimators for dynamic games. The estima-
tion procedure is based on two standard assumptions in the literature. These assumptions
are stated below.

Assumption E1: ξtik is drawn from a Type I Extreme Value distribution.

Assumption E2: Π(at, st, ξt
i ) = ϕ(at, st)Θ

′
+
∑K

k=0 ξ
t
ik · I (ati = k), where Θ

is 1 × Np vector of parameters and ϕ(at, st
i ) is a 1 × Np vector that depends

on (at, st).

Assumption E1 restricts the distribution of the iid profitability shock to the class of Type I
Extreme Value distributions. It conveniently implies that the equilibrium restriction (3) can
be written as:

P (ati = k|st;σi,p) =
exp

(
Ṽ k(st;σi,p)

)
K∑
k′=0

exp
(
Ṽ k′(st;σi,p)

) .
This holds for any k ∈ {0, 1, ..., K}. Dividing both sides by P (ati = k|st;σi,p) and taking
logs, for any k ∈ {1, ..., K} the equilibrium restriction becomes:

qk0
(
st;σi,p

)
= Ṽ k(st;σi,p)− Ṽ 0(st;σi,p), (4)

where qk0 (st;σi,p) = ln {P (ati = k|st;σi,p)} − ln {P (ati = 0|st;σi,p)}.
This assumption also implies that E [ξtik|ati = k, st;σi,p] = γ − ln {P (ati = k|st;σi,p)},

where γ is the Euler constant - see Hotz and Miller (1993).
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Assumption 2 restricts the payoff function to be linear in the parameters. The linearity
of the equilibrium restrictions is shown in the next lemma.

Lemma 1. Under assumptions E1-E2, player i’s probability of playing action k ∈ {1, ..., K}
when states are st satisfies the restriction yk(st;σi,p)−Dk(st;σi,p)Θ

′
= 0, where:

1. yk(st;σi,p) = qk0 (st;σi,p)− β [zk (st+1|st;σi,p)− z0 (st+1|st;σi,p)] ∆iẼξi;

2. Dk(st;σi,p) = ϕ̃k0(s
t;σi,p) +β [zk (st+1|st;σi,p)− z0 (st+1|st;σi,p)] ∆iϕ̃i is a 1×Np

vector; ϕ̃k0(st;σi,p) =
∑

at
−i
σi(a

t
−i|st)

[
ϕ(ati = k, at

−i, s
t)− ϕ(ati = 0, at

−i, s
t)
]
is a 1 ×

Np vector, and ϕ̃i is a Ns×Np matrix stacking
∑

at+1
σi(a

t+1|st+1)ϕ(at+1, st+1) for all
possible states.

Proof. See appendix.

We introduce a sequence of H auxiliary parameters containg estimates for transitions, p,
and beliefs, σi, for all i ∈ N . Call it as

(
σ̂(T), p̂(T)

)
. We assume that:

Assumption E3: The sequence
(
σ̂(T), p̂(T)

)
exists, converges in probability

to (σ,p) and is asymptotically normally distributed, that is,
(
σ̂(T), p̂(T)

) p→
T↑∞

(σ,p) and
√
T
((
σ̂(T), p̂(T)

)
− (σ,p)

) d→
T↑∞

N (0,Ω), where Ω is a positive def-

inite H ×H matrix.

This assumption follows Pesendorfer and Schmidt-Dengler (2008). Pesendorfer and Schmidt-
Dengler (2008) discuss estimators for (σ,p) that satisfy E3.

To keep the exposition neater we abuse notation and drop the T subscript from the hat
variables. From now on keep in mind that all the hat variables are indexed on T . We define
ŷikt = yk(s

t; σ̂i, p̂) and D̂ikt = Dk(st; σ̂i, p̂).
By summing and subtracting the term ŷikt − D̂iktΘ

′ from the equilibrium restriction
derived in Lemma 1 we write ŷikt − D̂iktΘ

′ − ûikt = 0 or, equivalently:

ŷikt = D̂iktΘ
′
+ ûikt, (5)

where uikt =
(
ŷikt − D̂iktΘ

′
)
−
(
yikt −DiktΘ

′), yikt = yk(s
t;σi,p) and Dikt = Dk(st;σi,p).

In matrix form, stacking (5) for all players, states and actions except action k = 0 we
write:

ŷ = D̂Θ
′
+ û, (6)
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where the variable ŷ is a N ·K ·Ns × 1 vector stacking ŷikt for all individuals, actions and
states, D̂ is a N · K · Ns × Np matrix stacking D̂ikt for all individuals, actions and states
and û is a N · K · Ns × 1 vector stacking ûikt for all individuals, actions and states. The
asymptotic properties of û are derived below.

Lemma 2.
√
T û

d→
T↑∞

N (0,Λ), where:

1. Λ = ∇ (σ,p) Ω∇′ (σ,p); and,

2. ∇ (σ,p) is a N ·K · Ns ×H matrix of the derivatives of ŷikt − D̂iktΘ
′ for all i ∈ N,

k ∈ {1, ..., K} and st ∈ S with respect to the auxiliary parameters, (σ̂, p̂), evaluated
at (σ,p).

Proof. See appendix.

Equation (5) is a linear estimating equation with a well defined variance-covariance structure
for the error term. Now, an additional assumption is introduced:

Assumption E4: rank
{

D̂′Λ−1D̂
}

= Np.

Assumption E4 guarantees the identification of Θ. Under E1-E4, it readily follows that the
Generalized Least Squares Estimator for Θ is consistent and asymptotically normal. This
result is formally stated in the next proposition.

Proposition 1. Under assumptions E1-E4 the Generalized Least Squares Estimator,

Θ̂′GLS =
(
D̂′Λ−1D̂

)−1 (
D̂′Λ−1ŷ

)
,

is a consistent and asymptotically normal estimator for Θ,
√
T
(
Θ̂GLS −Θ

)
d→

T↑∞
N (0,ΞΘ),

where ΞΘ = (D′Λ−1D)
−1 is the asymptotic variance of Θ̂GLS. Futhermore Θ̂GLS is unique

and exists.

Proof. See appendix.

Alternatively, OLS directly on (5) is a consistent but inefficient estimator for Θ. In
the appendix we derive the large sample properties of the OLS estimator. Because the
OLS estimator does not require the computation of the weight matrix Λ, it is considerably
simpler than the Generalized Least Squares Estimator. When the number of states is large,
this approach can be computationally attractive.
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In the appendix we show that under E1 and E2 GLS estimators are equivalent to the
Asymptotic Least Squares Estimators (ALS) for dynamic games developed in Pesendorfer
and Schmidt-Dengler (2008). Pesendorfer and Schmidt-Dengler (2008) show that other pop-
ular estimators in the literature, including Hotz and Miller (1993), Aguirregabiria and Mira
(2007) and Bajari, Benkard and Levin (2007), are ALS estimators. It follows that, under
the linearity of payoffs, the estimators proposed by Hotz and Miller (1993), Aguirregabiria
and Mira (2007), Bajari, Benkard and Levin (2007) and Pesendorfer and Schmidt-Dengler
(2008), are Least Squares estimators. The class of Least Squares Estimators developed in
this paper provides, therefore, a unified framework for a number of popular estimators for
dynamic games.

4 Monte Carlo Experiment

We illustrate the small sample performance of our OLS estimator using the Monte Carlo
experiment proposed in Pesendorfer and Schmidt-Dengler (2008). We compare the per-
formance of the OLS estimator with the ALSE-I estimator proposed in Pesendorfer and
Schmidt-Dengler (2008).

Consider the two-firm, two actions dynamic entry game analyzed in Pesendorfer and
Schmidt-Dengler (2008). Time is discrete and the model has infinite horizon. Each firm i

has two possible choices: Be active or not active, ati ∈ Ai = {0, 1}, where 0 corresponds to
“not active” and 1 to “active”. Firm i’s state space in period t has four elements, denoting
the actions made by both firms in period t − 1, st = at−1 ∈ {(0, 0) ; (0, 1) ; (1, 0) ; (1, 1)}.
State variables are common knowledge. The vector of states evolves over time according to
the transition st+1 = at. Firm i’s period payoffs are described as follows:

Π(at, st, ξt
i ) =

I(ati = 1) ·
[
π0i + π1ia

t
−i + ξti

]
+ I(ati = 1) · I(at−1i = 0) · Fi + I(ati = 0) · I(at−1i = 1) ·Wi,

where the vector of parameters, (π0i, π1i, Fi,Wi), describes respectively firm i’s monopoly
profits, duopoly profits, entry costs and the scrap value that the firm obtains when it leaves
the market; I(·) is an indicator function and ξti denotes firm i’s iid profitability with dis-
tribution N (0, 1). We denote its cdf by Φ (·). The profitability shock is firm i’s private
information. The distribution of ξti is common knowledge.

Choices are made simultaneously to maximize the discounted sum of firm’s payoffs. With-
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out loss of generality we focus on firm i’s decisions. The solution to firm i’s problem when
state is st implies that the probability of choosing ati = 0 satisfies the following equilibrium
restriction:

Pi(a
t
i = 0|st;σi,p) = Φ

(
Ṽ 0
i (st;σi,p)− Ṽ 1

i (st;σi,p)
)
,

where Ṽ k
i (st

i ;σi,pi) denotes the value function, net of the profitability shock, conditional on
action k ∈ {0, 1}.

We assume that the values of the parameters are (π0i, π1i, Fi,Wi) = (1.2,−1.2,−0.2, 0.1).
As in Pesendorfer and Schmidt-Dengler (2008) we assumed that Wi is known and we do not
estimate it.

Using the parameter values and the best response system we solved the model for the
vector of beliefs. We focused only on the symmetric equilibrium2. We used the vector of
beliefs to simulate time series of actions. The initial state is assumed to be (0, 0) and the
first 250 observations are excluded from the sample. We draw time series with 100, 1000,
10000 and 100000 observations. For each configuration we repeat the exercise 1000 times.
For the ALSE estimates we used 0.5 for all the three parameters as the initial guess for the
non linear minimization. To use GLS and ALSE-E we firstly estimate (π0, π1, F ) using OLS
and ALSE-I respectively. Then the OLS and ALSE-I estimates are used to construct the
GLS and ALSE-E optimal weight matrices. We calculate the average of the estimates across
each simulation and the mean square error (MSE) of the estimates. We report the sum of
the MSE for the three estimated parameters. We also report the CPU times in seconds to
perform 1000 estimations.

2The results are quite similar for the other 2 equilibria found in Pesendorfer and Schmidt-Dengler (2008).
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Table 1: Monte Carlo Results
Sample Size (T) Estimator F π0 π1 MSE Time (s)

ALSE-I -0.246 1.113 -1.048 0.995 834

100
OLS -0.319 0.977 -0.886 0.840 2
ALSE-E -0.429 1.183 -1.015 6.734 1650
GLS -0.433 1.003 -0.888 0.658 20
ALSE-I -0.201 1.196 -1.187 0.102 828

1000
OLS -0.213 1.172 -1.158 0.097 2
ALSE-E -0.213 1.190 -1.180 0.105 1582
GLS -0.230 1.178 -1.161 0.092 20
ALSE-I -0.203 1.198 -1.196 0.010 846

10000
OLS -0.204 1.195 -1.193 0.009 2
ALSE-E -0.203 1.197 -1.196 0.009 1513
GLS -0.205 1.196 -1.194 0.009 20
ALSE-I -0.200 1.201 -1.200 0.001 815

100000
OLS -0.200 1.200 -1.199 0.001 2
ALSE-E -0.201 1.200 -1.198 0.001 1470
GLS -0.201 1.200 -1.198 0.001 20

The results show that OLS/GLS performs better than ALSE-I/ALSE-E in all samples. In
the smallest sample, OLS/GLS have much lower MSEs. The higher MSE for ALSE-E when
T = 100 is due to outliers. These outliers increase the variance of the ALSE-E estimates.
OLS/GLS delivers reasonable estimates in terms of sign and magnitude in all samples. The
time to estimate the model using OLS is negligible. The time to estimate the model using
ALSE-I is around 800 seconds. The difference in estimation times is explained by the time
for the convergence of the non linear search algorithm used to compute ALSE-I.

The time to estimate the model using GLS/ALSE-E is larger than the time to estimate
the model using OLS/ALSE-I. To use GLS/ALSE-E we need to compute the optimal weight
matrices.

5 Conclusion

We show that when payoffs are linear in the parameters the equation system characterizing
the Markovian equilibrium of a dynamic game is linear in the parameters. This formulation
allows us to estimate the model using Least Squares. We derive an optimal weight matrix
for the Least Squares estimator and show that the efficient estimator is a Generalized Least
Squares estimator.
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Linearity of payoffs have been used by most of the papers in the literature (Pesendorfer
and Schmidt-Dengler (2003), Pesendorfer and Schmidt-Dengler (2008), Aguirregabiria and
Mira (2007), Ryan (2012) and Collard-Wexler (2013), among many others).

An advantage of our approach is that Least Squares estimators have a closed form solution
and do not depend on the numerical methods used in other popular estimation procedures
(e.g. Hotz and Miller (1993), Aguirregabiria and Mira (2007), Bajari, Benkard and Levin
(2007) and Pesendorfer and Schmidt-Dengler (2008), among others).

A Monte Carlo experiment illustrates the advantages of our estimators.
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Appendix

This appendix contains proofs.
� Lemma 1.

Proof. Assumption E2 and equations (2) and (4) imply that:

qk0
(
st;σi,p

)
=

ϕ̃k0(s
t;σi,p)Θ

′
+ β

[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
EξVi (σi,p) , (7)

where, ϕ̃k0(st;σi,p) =
∑

at
−i
σi(a

t
−i|st)

[
ϕ(ati = k, at

−i, s
t)− ϕ(ati = 0, at

−i, s
t)
]
is a 1×Np vec-

tor.
Substituting the ex ante value function into (7) we get:
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qk0
(
st;σi,p

)
=

ϕ̃k0(s
t;σi,p)Θ

′
+ β

[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
∆i

(
π̃ + Ẽξi

)
Use E2 again to write π̃i = ϕ̃iΘ

′ , where ϕ̃i is a Ns × Np matrix stacking the vector∑
at+1

σi(a
t+1|st+1)ϕ(at+1, st+1) for all possible vector of states. Using these definitions and

rearranging, the equilibrium restrictions (3) can be written as yk(st;σi,p)−Dk(st;σi,p)Θ
′
=

0, where:

yk(s
t;σi,p) =

qk0
(
st;σi,p

)
− β

[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
∆iẼξi

Dk(st
i ;σi,pi) =

ϕ̃k0(s
t;σi,p) + β

[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
∆iϕ̃i.

� Lemma 2.

Proof. Expanding û =
(
ŷ − D̂Θ

′
)
−
(
y −DΘ

′) around (σ,p):

û = ∇ (σ, p) [(σ̂, p̂)− (σ,p)] + o (‖ (σ̂, p̂)− (σ,p) ‖) ,

where ∇ (σ, p) is a N ·K ·Ns ×H matrix of the derivatives of ŷikt − D̂iktΘ
′ for all i ∈ N,

k ∈ {1, ..., K} and st ∈ S with respect to the auxiliary parameters, (σ̂, p̂), evaluated at
(σ,p). Therefore:

û = ∇ (σ, p) [(σ̂, p̂)− (σ,p)] + o

(
Op

(
1√
T

))
= ∇ (σ, p) [(σ̂, p̂)− (σ,p)] + op

(
1√
T

)
.

Multiplying both sides by
√
T :

√
T û = ∇ (σ, p)

√
T [(σ̂, p̂)− (σ,p)] + op (1) .
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Assumption E3 directly implies that:

∇ (σ, p)
√
T [(σ̂, p̂)− (σ,p)]

d→
T↑∞

N (0,∇ (σ,p) Ω∇′ (σ,p)).

Therefore
√
T û

d→
T↑∞

N (0,∇ (σ,p) Ω∇′ (σ,p)).

� Proposition 1.

Proof. Firstly we show that Θ̂GLS is consistent. Substitute ŷ = D̂Θ
′
+ û into the formula

for Θ̂GLS:

Θ̂′GLS =
(
D̂′Λ−1D̂

)−1
D̂′Λ−1

(
D̂Θ

′
+ û

)
= Θ

′
+
(
D̂′Λ−1D̂

)−1
D̂′Λ−1û.

Notice now that continuity of ŷ and D̂ in (σ̂, p̂) and E3 implies that û
p→

T↑∞
0N·K·Ns ,

where 0N·K·Ns is a N ·K ·Ns × 1 vector of zeros and D̂
p→

T↑∞
D. Therefore: Θ̂′GLS

p→
T↑∞

Θ
′ .

To determine the asymptotic distribution of Θ̂GLS write the expression above as:

√
T
(
Θ̂′GLS −Θ

′
)

=
(
D̂′Λ−1D̂

)−1
D̂′Λ−1

√
T û.

Using Lemma 2 and the fact that D̂
p→

T↑∞
D we have:

(
D̂′Λ−1D̂

)−1
D̂′Λ−1

√
T û

d→
T↑∞

N
(
0,
(
D′Λ−1D

)−1
)
.

E4 guarantees the existence and unicity of Θ̂′GLS.

� Asymptotic properties of the OLS estimator.

Proof. Under assumptions E1 and E2 and assuming that rank
{

D̂′D̂
}

= Np, the OLS

estimator for Θ is given by Θ̂′OLS =
(
D̂′D̂

)−1 (
D̂′ŷ

)
.

To show the consistency of Θ̂OLS substitute ŷ = D̂Θ
′
+ û into the formula for Θ̂OLS:
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Θ̂′OLS =
(
D̂′D̂

)−1
D̂′
(
D̂Θ

′
+ û

)
=Θ

′
+
(
D̂′D̂

)−1
D̂′û.

By the same reason used to determine the consistency of Θ̂GLS we have that û
p→

T↑∞

0N·K·Ns , where 0N·K·Ns is a N · K · Ns × 1 vector of zeros and D̂
p→

T↑∞
D. Therefore:

Θ̂′OLS

p→
T↑∞

Θ
′ .

For the asymptotic distribution of Θ̂OLS write:

√
T
(
Θ̂′OLS −Θ

′
)

=
(
D̂′D̂

)−1
D̂′
√
T û.

Using Lemma 2 and the fact that D̂
p→

T↑∞
D we have:

(
D̂′D̂

)−1
D̂′
√
T û

d→
T↑∞

N
(
0, (D′D)

−1
D′ΛD (D′D)

−1
)
.

� Equivalence between Least Squares and Asymptotic Least Squares.

Proof. Lemma 1 implies that player i’s probability of playing action k ∈ {1, ..., K} when
states are st satisfies the restriction yk(s

t;σi,p) − Dk(st;σi,p)Θ
′

= 0. Asymptotic Least
Squares estimators solve (Pesendorfer and Schmidt-Dengler (2008)):

min
Θ

[
ŷ − D̂Θ

′
]′

W
[
ŷ − D̂Θ

′
]
,

where ŷ is a N ·K ·Ns× 1 vector stacking ŷikt = yk(s
t; σ̂i, p̂) for all individuals, actions and

states, D̂ is a N ·K · Ns × Np matrix stacking and D̂ikt = Dk(st; σ̂i, p̂) for all individuals,
actions and states and W is a N ·K ·Ns ×N ·K ·Ns weight matrix.

Under some regularity conditions (Gourieroux and Monfort (1995)), the solution of the

problem above implies that Θ̂
′
ALS =

(
D̂′W−1D̂

)−1 (
D̂′W−1ŷ

)
and that the W that mini-

mizes the variance of Θ̂
′
ALS is equal to Λ. Using W = Λ the efficient ALS estimator is given

by Θ̂
′
ALSE =

(
D̂′Λ−1D̂

)−1 (
D̂′Λ−1ŷ

)
which is equal to Θ̂

′
GLS.
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Part II

Generalized Fixed Effects Estimators for
Dynamic Games

Abstract

This paper develops Fixed Effects estimators for discrete choice stationary dynamic
games with time invariant unobservables. We show that when payoffs are linear in the
parameters and (time invariant) unobservables, Fixed Effects Estimators can consis-
tently estimate the parameters of the model. We derive the efficient weight matrix that
characterizes these estimators and the asymptotic distribution of the estimators. We
show that under the linearity of payoffs the efficient estimator is a Generalized Fixed
Effects estimator. This procedure simplifies the estimation of dynamic games.
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1 Introduction

This paper considers estimation of discrete choice stationary dynamic games when payoffs
are linear in the parameters and time invariant heterogeneity. Estimation of discrete choice
stationary dynamic games have been studied in Hotz and Miller (1993), Hotz, Miller, Sander
and Smith (1994), Aguirregabiria and Mira (2002), Bajari, Benkard and Levin (2007) and
Pesendorfer and Schmidt-Dengler (2008), among others. Static models with strategic in-
teractions (e.g. Seim (2006)), single-agent static and dynamic models (e.g. Rust (1987))
are special cases of our framework. Models with time invariant unobserved heterogeneity
have been analyzed in Aguirregabiria and Mira (2002), Arcidiacono and Miller (2011) and
Collard-Wexler (2013).

We show that when payoffs are linear in the parameters and (time invariant) unobserv-
ables, value functions are linear in the parameters and the equation system characterizing
the Markovian equilibrium is linear in the parameters and unobservables. This formulation
allows us to estimate the model using Fixed Effects estimators.

We derive an optimal weight matrix for the Fixed Effects estimator and show that the
efficient estimator is a Generalized Fixed Effects (GFE) estimator. GFE estimators have a
closed form solution and do not depend on the numerical methods used in other popular
estimation procedures (e.g. Hotz and Miller (1993), Aguirregabiria and Mira (2002), Bajari,
Benkard and Levin (2007) and Pesendorfer and Schmidt-Dengler (2008), among others).
Our estimation strategy provides globably optimal estimates that do not depend on initial
guesses of parameters.

The Generalized Fixed Effects estimator present advantages on other popular estimators
for models with time invariant unobservables. Aguirregabiria and Mira (2002) also consider
a model time invariant unobservables. The unobservables, however, by assumption, are
uncorrelated with observed states and the estimates depend on the choice for the distribution
of unobservables. GFE estimators relax these two assumptions.

GFE is less general than Arcidiacono and Miller (2011). Arcidiacono and Miller (2011)
allow for time variant unobservables and propose a four step estimation procedure for payoff
parameters. When time variant unobservables are not present our estimation procedure is
clearly more straightforward. We do not have to estimate the distribution of unobservables
and to use the four step numerical method to recover payoff parameters.

This paper is organized as follows. Section 2 describes and solves the theoretical model.
Section 3 proposes a class of Fixed Effects estimators for the parameters in the model.
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Section 4 concludes the paper.

2 Theoretical Framework

This section describes the main elements of the model. We set up the model in a sta-
tionary discrete choice framework. Markets are treated isolately. We firstly describe the
main assumptions behind the model. Subsequently we solve the model and characterize the
equilibrium restrictions that are used to identify and to estimate the parameters of interest.

2.1 Assumptions

� Time and markets. Time is discrete, t = 1, 2, ...,∞. There is one market denoted by m.
� Players. The set of players in market m is N = {1, 2, .., N}. We denote each player in
market m by i ∈ N.
� Actions. A player’s action in market m, period t is denoted by ati ∈ {0, 1, ..., K}. The
1×N vector at ∈ A = ×

i∈N
ati denotes the action profile in market m, period t. We sometimes

use at
−i ∈ A−i = ×

j 6=i,j∈N
atj to denote the actions of all players but player i. The cardinality

of the action space in market m is Na = (K + 1)N .
� State space. The state space is discrete and finite. The state variables for player i ∈ N

is composed by a vector st
i ∈ Si = {1,2, ...,L} of exogenous variables. The state variables

are publicly known to the players and to the econometrician. The vector of all players’ state
variables is st = (st

1, s
t
2, ..., s

t
N) such that st ∈ S = ×

i∈N
Si. The cardinality of the state space

S is Ns = LN .
� Shocks. In each period players draw a vector of profitability shocks. We use ξt

i to denote
the (K + 1) × 1 vector (ξti0, ξ

t
i1, ..., ξ

t
iK) of profitability shocks. The profitability shock is iid

across individuals, time and actions. This is the only source of asymmetric information in
the model. We denote the cumulative distribution function of ξt

i by G (·).
� Payoffs. Player i’s period payoff in market m is given by Πi(a

t, st, ξt
i ) = πi(a

t, st) +∑K
k=0 ξ

t
ik · I (ati = k), where πi(at, st) denotes player i′s deterministic profits and I (.) is an

indicator function that assumes 1 if the condition (.) is satisfied and 0 otherwise.
� Transitions. The vector st+1 evolves according to the conditional cumulative density
function p(st+1|at, st), described by next period distribution of possible values for the vector
st+1 conditional on each (at, st). We sometimes use p to denote the Na ·Ns ·Ns×1 vector of
transitions, p(st+1|at, st), for every possible future state st+1 ∈ S given all (at ∈ A, st ∈ S).
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� Sequence of decisions. The sequence of events in this game is the following:

1. States are observed by all the players.

2. Each player draws the private profitability shock ξt
i .

3. Actions are simultaneously chosen. Players maximize their payoffs given beliefs on
competitor’s actions. The total payoff of a player is given by the discounted sum of
player’s period payoffs. The discount rate is given by β < 1 and is the same for all
players.

4. After actions are chosen the law of motion for st+1 determines the distribution of states
in the next period; the problem restarts.

Next the equilibrium for this game is characterized.

2.2 Equilibrium characterization

We restrict our attention to pure Markovian strategies. This means that players’ actions
are fully determined by the current vector of state variables. Intuitively, whenever a player
observes the same vector of states it will take the same actions and the history of the game
until period t does not influence player’s decisions.

Player i’s best response function solves the following Bellman equation:

Max
at
i
∈{0,1,...,K}


∑

at−i

σi(a
t
−i|st)Πi(a

t
i=k, a

t
−i, s

t, ξt
i )+

βzk (st+1|st;σi,p) EξVi (σi,p)

 . (8)

Here Πi(·) is player’s period payoff; the function σi(a
t
−i|st) accounts for i’s beliefs on

other players’ actions given current states; σi is a Na · Ns × 1 vector of beliefs, σi(at|st),
for all and at ∈ A and st ∈ S; zk (st+1|st;σi,p) is a 1 × Ns vector containing the transi-
tions σi(at

−i|st)p(st+1|ati = k, at
−i, s

t) and EξVi (σi,p) is a Ns × 1 vector with the expected
continuation value for the player, EξVi(st+1;σi,p, π), for all st+1 ∈ S.

The value function conditional on ati = k ∈ {0, 1, ..., K} being played in period t is then
defined as:
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V k
i (st;σi,p) =∑

at−i

σi(a
t
−i|st)πi(a

t
i=k, a

t
−i, s

t) + βzk

(
st+1|st;σi,p

)
EξVi (σi,p) + ξtik, (9)

and V k
i (st;σi,p) = Ṽ k

i (st;σi,p)+ξtik, where Ṽ k
i (st;σi,p) comprises all the terms in (9) except

the profitability shock.
We define EξVi (σi,p) as the ex-ante value function, EξVi (σi,p) = ∆i

(
π̃i + Ẽξi

)
,

where ∆i = [INs − βZi]
−1; π̃i is a Ns × 1 vector stacking current payoff expected values,∑

at+1
σi(a

t|st)πi(a
t, st), for every state; Ẽξi is a Ns × 1 vector stacking Ẽξ (st;σi,p) =

K∑
k=0

σi(a
t
i = k|st;σi,p)E [ξtik|ati = k, st] for every state; INs is a Ns ×Ns identity matrix; and

Zi is a Ns×Ns matrix stacking the 1×Ns vector z (st+1|st;σi,p) containing the transitions
σi(a

t|st)p(st+1|at, st) for every state.
The solution to problem (8) implies that player i’s probability of playing action k when

states are st satisfies the following equilibrium restrictions3:

Pi(a
t
i = k|st;σi,p) = Prob

(
Ṽi
k
(st;σi,p)− Ṽi

k′

(st;σi,p) ≥ ξtik′ − ξtik,∀k′ 6= k
)

=

ˆ
1
{
Ṽi
k
(st;σi,p)− Ṽi

k′

(st;σi,p) ≥ ξtik′ − ξtik,∀k′ 6= k
}
dG
(
εt

i

)
,

(10)

that holds for all k, k′ ∈ {0, 1, ..., K}, all st ∈ S all i ∈ N.
The solution to this problem is a vector of player i’s optimal actions when he faces each

possible configuration for the state vector st and has consistent beliefs about other players
actions in the same states of the world.

By stacking up the equilibrium restrictions derived in equation (10) for every action
except action k = 0 of every player and every possible state one can form a system of
N ·K · Ns × 1 equations. This system is used to find the N ·K · Ns × 1 vector of players’
beliefs.

A formal proof of the existence of this vector can be found in Pesendorfer and Schmidt-
Dengler (2008). Uniqueness of this equilibrium is not, however, guaranteed. This is a

3See Train (2009).
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common feature of games.

3 Estimation

This section develops Generalized Fixed Effects Estimators for dynamic games with time
invariant unobserved heterogeneity. We focus on the case of time invariant unobservable
components at the individual level. The estimation procedure is based on two standard
assumptions in the literature. These assumptions are stated below.

Assumption E1: ξtik is drawn from a Type I Extreme Value distribution.

We incorporate unobserved heterogeneity in the model through assumption E2:

Assumption E2: Πi(a
t, st, ξt

i ) = ϕ(at, st)Θ
′

+ µik +
∑K

k=0 ξ
t
ik · I (ati = k),

where µik = µi for k ∈ {1, ..., K} and µik = 0 if k = 0. The variable µik is
assumed to be observed by the players but not by the econometrician.

Assumption E1 restricts the distribution of the iid profitability shock to the class of Type I
Extreme Value distributions. It conveniently implies that the equilibrium restriction (3) can
be written as:

Pi(a
t
i = k|st;σi,p) =

exp
(
Ṽ k
i (st;σi,p)

)
K∑
k′=0

exp
(
Ṽ k′
i (st;σi,p)

) .
This holds for any k ∈ {0, 1, ..., K}. Dividing both sides by Pi(ati = k|st;σi,p) and taking
logs, for any k ∈ {1, ..., K} the equilibrium restriction becomes:

qik0
(
st;σi,p

)
= Ṽ k

i (st;σi,p)− Ṽ 0
i (st;σi,p), (11)

where qik0 (st;σi,p) = ln {Pi(ati = k|st;σi,p)} − ln {Pi(ati = 0|st;σi,p)}.
This assumption also implies that E [ξtik|ati = k, st;σi,p] = γ − ln {Pi(ati = k|st;σi,p)},

where γ is the Euler constant - see Hotz and Miller (1993).
The linearity of the equilibrium restrictions is shown in the next lemma.
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Lemma 1. Under assumptions E1 and E5, player i’s probability of playing action k ∈
{1, ..., K} when states are st satisfies the restriction

yik(s
t;σi,p)−Dk(st;σi,p)Θ

′ −Bk(s
t;σi,p)µi = 0,

where:

1. yik(st;σi,p) = qik0 (st
i ;σi,pi)− β [zk (st+1|st;σi,p)− z0 (st+1|st;σi,p)] ∆iẼξ;

2. Dk(st;σi,p) = ϕ̃k0(s
t;σi,p) +β [zk (st+1|st;σi,p)− z0 (st+1|st;σi,p)] ∆iϕ̃i is a 1×Np

vector; ϕ̃k0(st;σi,p) =
∑

at
−i
σi(a

t
−i|st)

[
ϕ(ati = k, at

−i, s
t)− ϕ(ati = 0, at

−i, s
t)
]
is a 1 ×

Np vector, and ϕ̃i is a Ns×Np matrix stacking
∑

at+1
σi(a

t+1|st+1)ϕ(at+1, st+1) for all
possible states.

3. Bk(s
t;σi,p) = 1+β [zk (st+1|st;σi,p)− z0 (st+1|st;σi,p)] ∆iϕ̃iµ; ϕ̃iµ is a Ns×1 vector

stacking
∑

at+1
σi(a

t+1|st+1)I(at+1 : at+1
i = 1), where I(at+1 : at+1

i 6= 0) is an indicator
function that assumes 1 if at+1 is such that at+1

i 6= 0 and 0 otherwise.

Proof. See appendix.

We introduce a sequence of H auxiliary parameters containg estimates for transitions, p,
and beliefs σi for all i ∈ N . Call it as

(
σ̂(T), p̂(T)

)
. We assume that:

Assumption E3: The sequence
(
σ̂(T), p̂(T)

)
exists, converges in probability

to (σ,p) and is asymptotically normally distributed, that is,
(
σ̂(T), p̂(T)

) p→
T↑∞

(σ,p) and
√
T
((
σ̂(T), p̂(T)

)
− (σ,p)

) d→
T↑∞

N (0,Ω), where Ω is a positive def-

inite H ×H matrix.

Unobservables are allowed to be correlated with observed states. The transition of st+1

is now characterized by p(st+1|st, at,µ (at)), where µ (at) is a K × 1 vector containing the
constants µik for every i ∈ N.

Notice that to estimate the vector p, that depends on the unobservables µik, one can use
a Dynamic Fixed Effects Logit/Probit to parametrically estimate σ and to recover µik; then
µ̂ik can be used as covariates in the estimation of p. Carro (2007) provides Dynamic Fixed
Effects estimators for σ and µik. The properties of this estimator satisfy E3.

To keep the exposition neater we abuse notation and drop the T subscript from the hat
variables. From now on keep in mind that all the hat variables are indexed on T . We define
ŷikt = yik(s

t; σ̂i, p̂), D̂ikt = Dk(st; σ̂i, p̂) and B̂ikt = Bk(s
t; σ̂i, p̂).
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By summing and subtracting the term ŷikt − D̂iktΘ
′ − B̂iktµi from the equilibrium re-

striction derived in Lemma 1 we write ŷikt − D̂iktΘ
′ − B̂iktµi − ûikt = 0 or, equivalently:

ŷikt = D̂iktΘ
′
+ B̂iktµi + ûikt, (12)

where uikt =
(
ŷikt − D̂iktΘ

′ − B̂iktµi

)
−
(
yikt −DiktΘ

′ −Biktµi
)
, with yikt = yik(s

t;σi,p),
Dikt = Dk(st;σi,p) and Bikt = Bk(s

t;σi,p).
In matrix form, stacking (12) for all players, states and actions except action k = 0 we

write:

ŷ = D̂Θ
′
+ (IN ⊗ ιK·Ns) B̂µ+ û, (13)

where the variable ŷ is a N ·K ·Ns × 1 vector stacking ŷikt for all individuals, actions and
states, D̂ is a N · K · Ns × Np matrix stacking D̂ikt for all individuals, actions and states,
B̂ is a N · K · Ns × 1 matrix stacking B̂ikt for all individuals, actions and states, IN is a
N ×N identity matrix, ιK·Ns is a K ·Ns × 1 vector of ones, ⊗ is the Kronecker product, µ
is a N × 1 vector containing the constants µi for all individuals and û is a N · K · Ns × 1

vector stacking ûikt for all individuals, actions and states.

We call (IN ⊗ ιK·Ns) B̂ = B̂∗, define Q̂ = IN·K·Ns − B̂∗
(
B̂∗
′
B̂∗
)−1

B̂∗
′ , where IN·K·Ns is

a N ·K ·Ns ×N ·K ·Ns identity matrix, and pre-multiply equation (13) by Q̂:

ŷ∗ = D̂∗Θ
′
+ û∗, (14)

where the “star” variables are the variables in (13) pre-multiplied by Q̂. Notice that this is
exactly the fixed effects transformation used in panel data models. It allow us to get rid of
the unobservables µi.

The asymptotic properties of û∗ are derived in the next lemma.

Lemma 2. Suppose that E1-E3 holds. Then
√
T û∗

d→
T↑∞

N (0,Λ∗), where:

1. Λ∗ = ∇∗ (σ,p) Ω∇∗′ (σ,p); and,

2. ∇∗ (σ,p) = Q

[
∂
(
ŷ−D̂Θ

′−B̂∗µ
)

∂(σ̂,p̂)

]
(σ̂,p̂)=(σ,p)

is a N ·K ·Ns×H matrix and Q = IN·K·Ns −

B∗
(
B∗
′
B∗
)−1

B∗
′.

Proof. See appendix.
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Equation (14) is a linear estimating equation with a well defined variance-covariance structure
for the error term. Now, an additional assumption is introduced:

Assumption E4: rank
{

D̂∗
′
Λ∗−1D̂∗

}
= Np.

Assumption E4 guarantees the identification of Θ. Under E1-E4, it readily follows that the
Generalized Fixed Effects Estimator for Θ is consistent and asymptotically normal. This
result is formally stated in the next proposition.

Proposition 1. Under assumptions E1-E4 the Generalized Fixed Effects Estimator,

Θ̂
′

GFE =
(
D̂∗
′
Λ∗−1D̂∗

)−1 (
D̂∗
′
Λ∗−1ŷ∗

)
,

is a consistent and asymptotically normal estimator for Θ,
√
T
(
Θ̂GFE −Θ

)
d→

T↑∞
N (0,ΞΘ),

where ΞΘ =
(
D∗
′
Λ∗−1D∗

)−1 is the asymptotic variance of Θ̂GFE. Futhermore Θ̂GFE is
unique and exists.

Proof. See appendix.

The unobservables µi can be recovered using (13) and well known results in the panel
data literature.

The Generalized Fixed Effects estimator present advantages on other popular estimators
for models with time invariant unobservables. Aguirregabiria and Mira (2007) also consider
a model time invariant unobservables. The unobservables, however, by assumption, are
uncorrelated with observed states and the estimates depend on the choice for the distribution
of unobservables. GFE estimators relax these two assumptions.

GFE is less general than Arcidiacono and Miller (2011). Arcidiacono and Miller (2011)
allow for time variant unobservables and propose a four step estimation procedure for payoff
parameters. When time variant unobservables are not present our estimation procedure is
clearly more straightforward and the estimates do not depend on the initial choice for the
distribution of unobservables.

4 Conclusion

We show that when payoffs are linear in the parameters and (time invariant) unobservables,
value functions are linear in the parameters and unobservables and the equation system
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characterizing the Markovian equilibrium is linear in the parameters and unobservables.
This formulation allows us to estimate the model using Fixed Effects estimators. We derive
an optimal weight matrix for the Fixed Effects estimator and show that the efficient estimator
is a Generalized Fixed Effects (GFE) estimator. GFE estimators have a closed form solution
and do not depend on the numerical methods used in other popular estimation procedures
(e.g. Hotz and Miller (1993), Aguirregabiria and Mira (2002), Bajari, Benkard and Levin
(2007) and Pesendorfer and Schmidt-Dengler (2008), among others). Our estimation strategy
provides globably optimal estimates that do not depend on initial guesses of parameters.
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Appendix

This appendix contains proofs.
� Lemma 1.

Proof. Assumption E2 and equations (2) and (4) imply that:

qik0
(
st;σi,p

)
=

ϕ̃k0(s
t;σi,p)Θ

′
+ µi + β

[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
EξVi (σi,p), (15)

where, ϕ̃k0(st;σi,p) =
∑

at
−i
σi(a

t
−i|st)

[
ϕ(ati = k, at

−i, s
t)− ϕ(ati = 0, at

−i, s
t)
]
is a 1×Np vec-

tor.
Substituting the ex ante value function into (15) we get:

qik0
(
st;σi,p

)
=

ϕ̃k0(s
t;σi,p)Θ

′
+ µi + β

[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
∆i

(
π̃i + Ẽξi

)
Use E2 again to write π̃i = ϕ̃iΘ

′
+ ϕ̃iµµi, where ϕ̃i is a Ns×Np matrix stacking the vector∑

at+1
σi(a

t+1|st+1)ϕ(at+1, st+1) for all possible vector of states and ϕ̃iµ is a Ns × 1 vector
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stacking
∑

at+1
σi(a

t+1|st+1)I(at+1 : at+1
i 6= 0), where I(at+1 : at+1

i 6= 0) is an indicator
function that assumes 1 if at+1 is such that at+1

i 6= 0 and 0 otherwise.
Using these definitions the equilibrium restrictions (3) can be written as yik(st

i ;σi,pi)−
Dk(st

i ;σi,pi)Θ
′ −Bk(s

t
i ;σi,pi)µi = 0, where:

yik(s
t;σi,p) =

qik0
(
st;σi,p

)
− β

[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
∆iẼξ

Dk(st;σi,p) =

ϕ̃k0(s
t;σi,p) + β

[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
∆iϕ̃i.

Bk(s
t;σi,p) =

1 + β
[
zk

(
st+1|st;σi,p

)
− z0

(
st+1|st;σi,p

)]
∆iϕ̃iµ.

� Lemma 2.

Proof. Expanding û =
[(

ŷ − D̂Θ
′ − B̂∗µ

)
−
(
y −DΘ

′ −B∗µ
)]

around (σ,p):

û = ∇ (σ,p) [(σ̂, p̂)− (σ,p)] + o (‖ (σ̂, p̂)− (σ,p) ‖) ,

where∇ (σ,p) is a N ·K ·Ns×H matrix of the derivatives of
(
ŷ − D̂Θ

′ − B̂∗µ
)
with respect

to the auxiliary parameters, (σ̂, p̂) evaluated at (σ,p).
Therefore:

û = ∇(σ,p) [(σ̂, p̂)− (σ,p)] + o

(
Op

(
1√
T

))
= ∇(σ,p) [(σ̂, p̂)− (σ,p)] + op

(
1√
T

)
.

Multiplying both sides by
√
T :

√
T û = ∇(σ,p)

√
T [(σ̂, p̂)− (σ,p)] + op (1) .

Assumption E3 directly implies that:
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√
T û = ∇(σ,p)

√
T [(σ̂, p̂)− (σ,p)]

d→
T↑∞

N (0,∇ (σ,p) Ω∇′ (σ,p)).

Therefore,
√
T û

d→
T↑∞

N (0,∇ (σ,p) Ω∇′ (σ,p)). Using the fact that Q̂
p→

T↑∞
Q = IN·K·Ns−

B∗
(
B∗
′
B∗
)−1

B∗
′ then Q̂

√
Tû =

√
Tû∗

d→
T↑∞

N (0,Q∇ (σ,p) Ω∇′ (σ,p) Q′).

� Proposition 1.

Proof. Firstly we show that Θ̂GFE is consistent. Substitute ŷ∗ = D̂∗Θ
′
+ û∗ into the formula

for Θ̂GFE:

Θ̂′GFE =
(
D̂∗
′
Λ−1D̂∗

)−1
D̂∗
′
Λ−1

(
D̂∗Θ

′
+ û∗

)
= Θ

′
+
(
D̂∗
′
Λ−1D̂∗

)−1
D̂∗
′
Λ−1û∗.

Notice now that continuity of ŷ∗ and D̂∗ in (σ̂, p̂) and E3 implies that û∗
p→

T↑∞
0N·K·Ns ,

where 0N·K·Ns is a N ·K ·Ns × 1 vector of zeros and D̂∗
p→

T↑∞
D∗. Therefore: Θ̂′GFE

p→
T↑∞

Θ
′ .

To determine the asymptotic distribution of Θ̂GFE write the expression above as:

√
T
(
Θ̂′GFE −Θ

′
)

=
(
D̂∗
′
Λ−1D̂∗

)−1
D̂∗
′
Λ−1
√
T û∗.

Using Lemma 2 and the fact that D̂∗
p→

T↑∞
D∗ we have:

(
D̂∗
′
Λ−1D̂∗

)−1
D̂∗
′
Λ−1
√
T û∗

d→
T↑∞

N

(
0,
(
D∗
′
Λ−1D∗

)−1
)
.

E4 guarantees the existence and unicity of Θ̂′GFE.
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Part III

Public Banks Improve Private Banks
Performance: Evidence from a Dynamic
Structural Model

Abstract

This paper shows that profits of private banks are positively affected by the number
of public branches operating in Brazilian isolated markets. The spill-over generated
by public banks is quantified based on a dynamic oligopoly model. A counterfactual
in which public banks are privatized is examined. It shows that the number of active
branches operating in the long-run in a small market drops significantly.
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1 Introduction

The discussion about the existence of public, state owned banks has been prominent in the
banking literature since the 1960’s - see Barth, Caprio and Levine (2001) and La Porta,
López-de-Silanes and Shleifer (2002) and Levy Yeyati, Micco and Panizza (2007).

In favour of public banks the following has been argued: (i) Public banks finance un-
profitable but socially valuable investment projects; (ii) they foster financial development
and (iii) they provide financial access to populations living in areas that are unattractive
for private institutions. Critics of public banks argue that (i) they are used as political
instruments, providing employment, credit, subsidies or other benefits in return for political
assistance, and (ii) they crowd-out more efficient, more competitive private banks, slowing
down the development of the financial system.

This paper examines the effects of public banks on financial development. A dynamic
game between the major Brazilian public and private banks is estimated. A counterfactual
experiment is used to analyze how the privatization of public banks affects the supply of
banking services in small isolated markets.

Two main conclusions emerge. First, public banks generate positive profit spill-overs for
private banks; second, private banks crowd-out private competitors. Our estimates show
that the entry of a public bank in a given market increases the return of a private incumbent
by 1.2 percent and the entry of a private bank reduces the return of a private incumbent by
0.05 to 1 percent.

The counterfactual in which public banks are sold to private players shows that the total
number of active branches operating in the long-run in a typical small market drops from 3
to 0.5 on average. To guarantee that, after privatization, all small municipalities would have
at least one active branch the government should give a subsidy of approximately 8% on
the operational costs of private branches. We can infer that the present cost of this policy
would be of approximately US$175,0004 per market. This value is relatively small compared
to the market value of Brazilian public banks. Bank of Brazil, the largest public bank in
Brazil, had its market value estimated in approximately US$42 billions in 2012. This means
that the resources raised with the privatization of Bank of Brazil would be sufficient to cover
the subsidies for 240 thousand branches in the country or, approximately, 42 branches per
Brazilian municipality.

These findings have important policy implications in developing countries. In these coun-
4Approximately R$350,000.
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tries a large fraction of the population has no access to the banking market. Yet the access
to financial services generates positive effects in terms of poverty reduction and economic
growth in disadvantaged areas (Burgess and Pande (2005) and Pascali (2012)).

Our estimates do not allow us to disentangle the details of the spill-over channels. Broadly
speaking, our findings are consistent with public banks (i) having monopoly over a number
of important Federal funds and (ii) being driven by social, as opposed to strategic or market
reasons. The first element guarantees a large volume of credit for small markets - see Feler
(2012). The second induces product differentiation between public and private banks: Public
and private banks target different clients - see Coelho, Melo and Rezende (2012). In this
case, the amount of cheap credit and public transfers poured by the public banks in small
isolated municipalities shifts the demand for banking services, making these markets more
attractive for private players. This effect induces the entry of private players.

There is little prior empirical evidence of the effects of public banks on the economy.
The evidence is mixed. La Porta, López-de-Silanes and Shleifer (2002) study a cross section
of countries and show that the presence of public banks in the market is associated with
poorly developed financial markets. They conclude that the higher the public ownership in
the banking sector, the lower is the average growth of the ratio of private credit to GDP.
Similar findings were obtained in Barth, Caprio and Levine (2001) who find that greater state
ownership of banks with more poorly developed banks, nonbanks, and securities markets.

Levy Yeyati, Micco and Panizza (2007) extend the dataset used in La Porta, López-de-
Silanes and Shleifer (2002) by including more controls and a longer period of time. They
find that no robust conclusion can be drawn. The findings depend strongly on the definition
of financial development, the estimator and the sample definition. They conclude that there
is “(...) no significant correlation between state-ownership of banks and credit to the private
sector” 5. Detragiache, Tessel and Gupta (2008) confirm the findings in Levy Yeyati, Micco
and Panizza (2007).

The effects of public banks on development are analyzed in Cole (2007) and Feler (2012).
Cole (2007) finds that the nationalization of public banks in India increased the amount of
credit but had no effect on real outcomes. Feler (2012) analyses the privatization of state
banks in Brazil. His findings are close to the findings in Cole (2007): Privatization led to a
significant reduction of credit supply in local markets but it did not affect local GDP.

Coelho, Mello and Rezende (2012) analyze the effects of public banks on the performance
of private banks. They extend the traditional Bresnahan and Reiss (1991) framework and

5Levy Yeyati, Micco and Panizza (2007).
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estimate an empirical model using a cross-section of entry and exit movements in Brazilian
municipalities. This approach is related to ours, but in that paper the analysis is static and
relies purely on cross-sectional variation. Based on the negative and significant but small
coefficient related to the number of public banks in the profit function of private banks, they
conclude that public banks do not affect competition in the market.

This paper builds a dynamic entry game in which the major Brazilian public and private
banks are the players. The dynamic structure of the model is strongly supported by our
data and can be intuitively rationalized by the existence of substantial entry costs in the
market. At each period these players have information about the state variables and decide
simultaneously to be active or not active in a given market by maximizing an inter-temporal
profit function. Entrants pay a fixed cost. We assume that the profit function of the major
private players is asymmetrically affected by public and private competitors. This allows us
to understand how public banks influence the performance of private players.

We use data from 1002 isolated markets in Brazil during 1988-2010 to estimate the
decision rules for public and private banks. We infer the model primitives that rationalize
these decision rules in a dynamic oligopoly game. Importantly, we evaluate the market
equilibrium under different counterfactual scenarios. We report consistent ex ante estimates
of the effects of changes in the banking market structure on market outcomes. Our model
is valuable to predict policy changes. By relying on micro data from a single market, we
are able to reduce the market heterogeneity present in cross country regressions, which, as
reported by Levy Yeyati, Micco and Panizza (2007), causes important bias in the conclusions
obtained by the existing literature.

Methodologically our paper is related to the empirical industrial organization literature
that studies the estimation of dynamic games - see Aguirregabiria and Nevo (2010), Bajari,
Hong and Nekipelov (2010) and Pesendorfer (2010) for a rich discussion on the topic. Ap-
plications that are similar to ours are also found in Pesendorfer and Schmidt-Dengler (2003)
for small businesses in Austria, Dunne, Klimek, Roberts and Xu (2009) for dentists and
chiropractors in the US, Gowrisankaran, Lucarelli, Schmidt-Dengler and Town (2010) for
hospitals in the US, Collard-Wexler (2013) for the concrete industry in the US, Ryan (2012)
for the cement industry in the US and Kalouptsidi (2013) for the shipping industry. Other
applications include Maican and Orth (2012), Minamihashi (2012), Lin (2011), Fan and
Xiao (2012), Nishiwaki (2010), Arcidiacono, Bayer, Blevins, and Ellickson (2012), Jeziorski
(2012), Snider (2009), Suzuki (2012), Sweeting (2011) and Beresteanu, Ellickson and Misra
(2010).
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Based on the results of Chapters 1 and 2 Least Squares estimators are used to recover the
structural parameters. This approach allows us to avoid the use of numerical methods in the
estimation of the structural parameters. Doing so we reduce significantly the computational
burden.

This paper is organized as follows. The next section describes our dataset and the
Brazilian banking market. Section 3 shows reduced form evidence of competition between
public/private players. Sections 4 and 5 describe the theoretical model, the empirical model
and our main results. Section 6 discusses the fitting of the empirical model and our coun-
terfactual analysis. The last section concludes the paper.

2 Data and Institutional Background

The data come from the Brazilian Central Bank and from the Brazilian Ministry of Labour.
The Brazilian Central Bank database follows the activities of all Brazilian banks since 1900.
These data contain the opening and closing dates6 and the name of the chain that operates
each branch for all branches opened since 1900 in all Brazilian municipalities. A measure of
market size is constructed by using data from the Brazilian Ministry of Labour containing
the total payroll in the formal sector7 for all Brazilian cities since 1985. The payroll data is
deflated using the official inflation index, IPCA-IBGE. All the values are in R$ of 2011. The
information about banking and economic activity is annual.

Following Bresnahan and Reiss (1991) our analysis examines small isolated markets. We
select municipalities8 that are at least 20 km away from the nearest municipality. State
capitals and metropolitan areas are excluded. We also excluded municipalities that had
more than 10 bank branches since 1900. This selection leaves us with 1002 isolated small
markets, corresponding, roughly, to 20% of all Brazilian municipalites. The idea of isolated
markets enable us to obtain a clear measure of the potential demand for each branch.

The market size data starts in 1985. We exclude 1986 and 1987 from our sample because
a major macroeconomic shock caused by two heterodox stabilization plans9 disorganized
severely the Brazilian economy in those years. Our final sample consists of observations for
1002 isolated municipalities in the period 1988-2010. Because in most of our municipalities

6For the branches that were closed.
7Number and wage of employees in the formal sector of the economy.
8From now on we use municipality/market interchangeably.
9Cruzado Plan in 1986 and Bresser Plan in 1987.
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the chains have at most one branch we focus on entry and exit patterns.10

� Sample statistics. The next table illustrates the basic statistics of our sample.

Table 2: Basic Sample Statistics 1988-2010
Average Std

Active Branches (**) 1560.2 142.4
Entry (**) 50.5 49.1
Exit (**) 59.5 55.1
Sample Market Size (*) (**) 10,404.85
Municipalities 1002
Sample Municipalities/Total Number of Municipalities 18%
Municipalities × Periods 22041

Note: * R$ millions of 2011. ** Yearly averages.

Our sample is composed by 1002 isolated markets. This corresponds to approximately
18% of the total number of municipalities in Brazil. The number of branches in this sample is
1560 per year on average. Entry is observed 50 times per year and exit 59 times. The yearly
market size measured by the annual payroll of the formal workers of all the municipalities in
the sample is of R$ 10.4 billions of 2011. This value is relatively small because by excluding
state capitals and metropolitan regions the richiest cities in the country are left aside.

The Brazilian banking market is basically dominated by four big institutions: Two of
them, Bank of Brazil, BB, and Caixa Economica Federal, CEF, are public and controlled
by the federal government while the other two, Bradesco and Itau, are privately held. The
next figures show the number of branches that are controled by these institutions and the
market share, measured in terms of the number of active branches in the sample, of these
four players.

10In the municipalities that had more than one branch operated by the same chain, which correspond to
less than 4% of the total number of municipalities and around 0.2% of our sample, we aggregated the branch
level information for each player that had more than one branch in the same market. The exclusion of these
municipalities does not change our results. Therefore we kept this information in the dataset.
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Figure 1: Number of Branches (left) and Market Share (right) - “Big” Four
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Note: Number of active branches per year (left) and fraction (right) of these branches over the total number of
active branches in our sample.

These four players hold more than 80% of the active branches in our sample. The share of
Bradesco and Itau increased substantially over time. From 2000 to 2010 Bradesco’s market
share measured in terms of active branches increased from 13% to 20%. Itau’s share increased
from 1% to 10%. Part of the expansion is explainable by the acquisitions of privatized
smaller public institutions. Bank of Brazil, BB, also experienced an increase in the number
of branches. This expansion is mainly driven by the social policy of Lula’s government
(2003-2010), which tried to expand the presence of public banks in small markets.

Table 3: Average Monthly Payroll and Number of Public/Private Players
Number of Private Number of Public Mun Payroll Observations

0 0 0.227 4592
0 1 0.478 6496
0 2 0.680 2511
1 0 0.515 1555
1 1 1.333 1696
1 2 1.677 1107
2 0 1.034 149
2 1 2.419 552
2 2 2.202 380

Note: Average market size is the monthly average payroll of the municipal-
ity and is measured in R$ millions of jan/2011 according to the number of
players in the market. Sample period: 1988-2010. Each observation cor-
responds to a municipality in a given year. We showed in the table only
the most frequent market structures. This correposnds to around 90% of
the total number of observations.

Table 3 reports (i) the frequency distribution of each market configuration (number of ob-
servations corresponding to each market structure) and (ii) the average market size (monthly
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average payroll of the municipality in R$ millions of 2011) corresponding to each market
structure. These numbers illustrate that:

1. Public players are located more frequently in small markets (as measured by the mu-
nicipality average payroll) than private players; and,

2. Public players are frequently the only providers of financial services in these isolated
markets (the frequency of public monopolies - 6496 observations - is the highest in the
sample).

The Brazilian government has launched some programs that aim to “popularize” basic finan-
cial services in poorer areas, which includes the supply of basic services (current account, for
example) and of credit lines to small farmers and firms. This feature may explain the fact
that the frequency of markets where the public player is a monopolist (the only provider of
financial services) is quite high in our sample. In addition, the empirical evidence indicates
that public banks are much less productive than their private counterparts (Nakane and
Weintraub (2005)). This means that the presence of public banks in smaller markets is not
explained by cost advantages of public players.
� Institutional background. The Brazilian banking market is large. In 2012 Itau was
considered the 8th largest bank in the world in terms of market value (with a market value
of US$88 billions); Bradesco was the 17th largest (market value of US$64 billions) and Bank
of Brazil was the 31st largest (market value of US$42 billions)11.

As pointed out in Coelho, Melo and Rezende (2012) there are important differences in
the objectives of public and private banks. Private banks are essentially profit oriented. By
legal mandate public banks focus their operations on market segments that are not profitable
for private banks. This suggests the existence of product differentiation in the market. In
what follows we describe the “social” role of public banks in Brazil12.

Bank of Brazil (BB) has expanded enormously its operations in smaller and poorer areas
of the country based on central government policies aiming to “popularize” banking services
among poor workers and small businesses. BB plays an important role as the provider of
government funds to the Brazilian agriculture13. Also, to expand its capillarity in isolated

11http://www.relbanks.com/worlds-top-banks/market-cap. Access: November 12, 2012.
12also present a detailed discussion on the role of Brazilian public banks.
13The total amount of agricultural credit provided by this player in 2010 reached more than US$ 26

billions. Moreover, BB is the main bank in the Pronaf, a program created to supply credit for small
businesses (agriculture, fishing, turism, and handcraft) in rural areas at a very low interest rate. The total
credit availble for the program increased from US$ 1 billion in 1999 to US$ 7 billions in 2010. All banks
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areas, BB created a DSR (Regional Development Program). The DSR provides a set of tools
for small entrepreuners, including a business plan, technical support and credit14.

Caixa Economica Federal (CEF) has monopoly over a number of different government
funds and services, such as the FGTS, Bolsa Família, PIS15 and the Federal Lottery16. FGTS
is a Brazilian fund created in 1966 to provide assistance to unemployed people17 . These
resources are allocated in two main areas: Housing and sanitation. The government gives
the investments guidelines in order to finance strategic areas with lack of credit. CEF is also
responsible for the distribution of the benefits from Bolsa Família18, a program that gives to
poor families a monthly income. It was created to reduce the poverty in the most backward
areas of the country.

Summarizing, the descriptive analysis suggests that the major Brazilian public banks have
been used by the federal government to improve the financial access of isolated markets. The
financial access includes new branches in smaller and poorer markets and the injection of
cheap credit in these areas. These operations are not profitable for private banks. This
suggests the existence of product differentiation in the market.

3 Reduced Form Analysis

We estimate a series of reduced form logit models to explain entry/exit movements of the
biggest public and private players using the sample of isolated municipalities. We focus on
the behavior of the 4 largest players: Bank of Brazil (BB), Caixa Economica Federal (CEF),
Bradesco and Itau.

Two pooled logit models are estimated: One for the public players, BB and CEF; the

in Brazil are allowed to take part in the program, however, BB distributes around 65% of the total Pronaf
credit.

14In 2007 the program supported 2800 business plans and distributed US$ 1.7 billions in credit.
15PIS is a tax to cover unemployment benefits. Their assets were around US$14 billions in December 2010.
16The Federal Lottery provided a gross revenue of US$5.2 billions in 2010. It is used to fund sports.
17The main source of funding is the monthly compulsory deposit that every private employer must do

in the name of each employee. These values constitutes a fund and the worker have access to the money
deposited in his/her name only in some special conditions: Unemployment, chronic disease, and for buying
a house (if the worker does not own another house). CEF is responsible for the whole operation of the fund
- from the tax collection to the payments for the benefited workers. Since the FGTS universe includes all
formal workes (except public servants) the total size of the fund is considerably high - around US$90 billions
in December 2008.

18In 2006 the program served around 11 million families or approximately 44 thousand individuals. The
public expenditure with the program is around 0.5% of the Brazilian GDP and is growing steadily since its
creation.
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other for private players, Itau and Bradesco. Our logit specification is:

P (aimt = 1|aimt−1, npubmt−1, n
pri
mt−1,xmt; ρ, µ) =

Λ(ρ0 + ρ1aimt−1 + ρ2n
pub
mt−1 + ρ3n

pri
mt−1 + ρ4xmt + µt + µm + µmt + µi) (16)

The dependent variable, aimt, is the action of player i in municipality m, period t. It
assumes 1 if player i was active in that municipality/period and zero otherwise. aimt−1

indicates the action of the same player in that municipality in the prior period. npubmt−1 is the
number of public competitors in the previous period in market m19; nprimt−1 is the number of
private competitors in the previous period in market m20; xmt is a vector of municipality
characteristics; µt are time effects; µm are market specific effects; µmt captures market/time
specific effects and µi are player specific effects. Λ (·) is the logistic distribution. The greek
letters denote parameters to be estimated. The data include all muncipalities where player
i was active for at least one period21.

The estimation of dynamic binary response models with market fixed effects produces
biased coefficients - see Carro (2007), Wooldridge (2010). To avoid this bias in our analysis,
instead of including market dummies, 27 state dummies (one for each Brazilian state) were
included in the model. States dummies are used to capture time invariant heterogeneity
across municipalities of different states. Time effects are captured by year dummies. Time
varying market effects are captured by the interaction of state dummies and a trend variable.

The vector xmt includes municipality payroll, transfers of the Federal and State govern-
ments to the municipality, municipal government expenditure and agricutural production of
the municipality. Municipality payroll is a measure of market size. The inclusion of transfers
and municipal expenditure controls for the fact that entry of public banks can be correlated
with an increase of Federal/State investment in the municipality, which also can affect entry
of private banks. Agricultural production is included because a large fraction of the income
in our isolated municipalities comes from agricultural activities. This variable is a different

19Mathematically, npubmt−1 =
∑

j∈ipub,j 6=i

ajmt, where ipub is the set of public players.

20Mathematically, nprimt−1 =
∑

j∈ipri,j 6=i

ajmt, where ipri is the set of private players.

21Our estimation approach is based on the potential markets for each player. The potential market is
defined based on the super efficient estimator described in Pesendorfer and Schmidt-Dengler (2003). We
defined that market m is a potential market for player i if max

t
{aimt, t = 1900, 1901, .., 2010} = 1, or, in

other words, market m is a potential market for player i if she entered in that market at least for one period
since 1900.
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indicator of market size.

3.1 Private players

Table 4 reports the estimates of equation (16) for the private players, Bradesco and Itau.
Only the marginal effects of npubmt−1 and nprimt−1 evaluated at the sample means are reported.
The model fit is good, with Pseudo-R2 of 87%-91%. Strikingly, the number of public banks
increases the entry probabilities of the private players by 10%-14%. The effects are very sig-
nificant and robust across specifications. The inclusion of state dummies and the interaction
between state dummies and the time trend increases this effect.

Interestingly, the number of private competitors reduces the entry probabilities of private
players. This effect is around -6.4% in the specification with the full set of controls. It is
statistically significant at 5%.

Table 4: Marginal Effects of npubmt−1 and nprimt−1 on the Entry Probabilities of Private Players,
Bradesco and Itau

(I) (II) (III) (IV)
Nº Public 0.10544*** 0.12839*** 0.13829*** 0.13237***

[0.01] [0.02] [0.02] [0.02]
Nº Private -0.03532 -0.01930 -0.06206** -0.06409**

[0.02] [0.03] [0.03] [0.03]
Player Dummy Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes
State Dummies No Yes Yes Yes
Trend*State Dummies No No Yes Yes
Transfers, Expenditure, Agric. Prod. No No No Yes
Observations 15,919 15,229 15,229 15,217
Pseudo R2 0.87 0.87 0.91 0.91
Note: (***) Significant at 1%; (**) significant at 5%; (*) significant at 10%. Marginal effects calculated at the
sample means. Clustered standard errors in brackets. All the models have lagged activity, number of public
and private competitors and municipality payroll. Transfers correspond to the total transfers of Federal
and State governments to the municipality. Expenditure corresponds to municipal government expenditure.
Agricultural Production is the total agricultural production of each municipality.

As robustness check, the model was estimated in a subsample of municipalities that had
(i) at least one public player and (ii) at least one and at most three public players in any
time period. Tables 10 and 11 in the appendix report the results for each subsample.

The pattern of results remains unchanged when compared to the estimates in Table 4.
This strategy is used to control for unobservable characteristics of markets with and without
public players. In the subsample with at least one and at most three public players the
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market heterogeneity is reduced. Markets with roughly the same number of public players
have similar observable characteristics.

3.2 Public players

Table 5 reports the estimates of equation (16) for the public players, Bank of Brasil and Caixa
Economica Federal. The model fit is good, with Pseudo-R2 statistics around 85%. Strikingly,
entry probabilities of public players are barely affected by the number of public and the
number of private competitors in each market. Although significant in some specifications
the marginal effects of the number of public and the number of private competitors are very
small when contrasted with the estimates in Table 4. In all the specifications the marginal
effects of npubmt−1 and n

pri
mt−1 are small in magnitude, being below 1% and 0.5% respectively. In

specification (IV) in Table 4 these effects were respectively 13% and -6.4%. These estimates
imply that the marginal effects of npubmt−1 and nprimt−1 are around 13 times larger for private
banks than for public banks. This pattern is robust to the inclusion of state dummies,
the interaction of state dummies and the time trend variable, public transfers, municipal
expenditure and agricultural production.

Table 5: Marginal Effects of npubmt−1 and nprimt−1 on the Entry Probabilities of Public Players,
BB and CEF

(I) (II) (III) (IV)
Nº Public 0.00498*** 0.00871*** 0.00934*** 0.00936***

[0.00] [0.00] [0.00] [0.00]
Nº Private 0.00016 0.00105 0.00455** 0.00455**

[0.00] [0.00] [0.00] [0.00]
Player Dummy Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes
State Dummies No Yes Yes Yes
Trend*State Dummies No No Yes Yes
Transfers, Expenditure, Agric. Prod. No No No Yes
Observations 20,357 20,357 20,357 20,350
Pseudo R2 0.83 0.84 0.87 0.87
Note: (***) Significant at 1%; (**) significant at 5%; (*) significant at 10%. Marginal effects calculated
at the sample means. Clustered standard errors by municipality in brackets. All the models have lagged
activity, number of public and private competitors and municipality payroll. Transfers correspond to the
total transfers of Federal and State governments to the municipality. Expenditure corresponds to municipal
government expenditure. Agricultural Production is the total agricultural production of each municipality.
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4 Theoretical Model

This section sets up and solves a dynamic entry game between the major Brazilian banks.
Motivated by the data, the game considers entry and exit decisions. In the data a chain has
typically at most one branch in each municipality22. We focus on the behavior of two public
banks, Bank of Brazil and Caixa Economica Federal, and two private banks, Bradesco and
Itau. In 2010, these players had more than 80% of the total number of active branches in
our sample.

The model captures the features documented by the reduced forms. Dynamics can be
rationalized by high entry costs23. Importantly, the model allows for different behavior of
public and private players.

We estimate the primitives that rationalize the behavior of private banks using a dynamic
oligopoly game. We do not structurally model the behavior of public banks. Entry decisions
of public banks are assumed to do not depend on the number of public and the number
of private competitors in the market. There are two explanations behind this assumption.
First, the reduced form analysis suggests that entry probabilities of public banks are barely
affected by the number of public and the number of private competitors in the market.
Second, the literature recognizes that public banks are not necessarily profit maximizers.
The behavior of public banks can depend on political and social reasons - see Levy Yeyati
et al (2007), La Porta et al (2002) and Barth et al (2001).

At each period private players have information about the state variables and decide
simultaneously to be active or not active in a given market by maximizing an inter-temporal
profit function. Private players know that the entry of public banks do not depend on the
actions of public and private competitors. Private entrants pay a fixed cost. The profit
function of the major private players is assumed to be asymmetrically affected by public
and private competitors. This allows us to understand how public banks influence the
performance of private players.

Closed related models were applied in Pesendorfer and Schmidt-Dengler (2003), Dunne,
Klimek, Roberts and Xu (2009), Gorisankaran, Lucarelli, Schmidt-Dengler and Town (2010),
Collard-Wexler (2013), Ryan (2012) and Kalouptsidi (2013), among others. Aguirregabiria

22As described above only in 4% of these municipalities one chain had more than 1 branch during the
same period.

23Market analysts point out that the returns of branches in small markets is quite low. Lower returns in
these markets are explained by high fixed and operational costs and by reduced revenues - see Gonçalves
and Sawaya (2007), Gouvea (2007) and Andrade (2007). This explains why the number of bank branches is
small in the most backward areas of the country.
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and Nevo (2010), Bajari, Hong and Nekipelov (2010) and Pesendorfer (2010) present a rich
discussion on the estimation of dynamic games.

4.1 Assumptions

� Players. There are two private players, Bradesco and Itau. The set of private players
is ipri ∈ {Bradesco, Itau}. There are two public players, Bank of Brazil, BB, and Caixa
Economica Federal, CEF. The set of public players is ipub ∈ {BB,CEF}24.
� Time and markets. Time is discrete, t = 1, 2, ...,∞ and there arem ∈M =

{
1, 2, 3, ..,M

}
markets.
� Actions. A player’s action in market m, period t is denoted by atim ∈ {0, 1}, where 0
means that player is inactive; 1 means that player is active. The 1 × N vector at

m denotes
the action profile in market m, period t. We sometimes use at

−im to denote the actions of all
players but player i.
� State space. The state space is discrete and finite. The state variables consist of a
vector xt

m, of exogenous variables, and of the previous period actions. We call the vector
of states st

m = (xt
m, a

t−1
m ). The state variables are publicly known to the players and to the

econometrician.
� Transitions. The vector st

m evolves according to the transition matrix psm(st+1
m |st

m, a
t
m),

described by next period distribution of possible values for the vector st
m conditional on each

possible current state and actions in municipality m.
� Unobservables. In each period players draw a profitability shock εtim. The shock is
privately observed while the distribution is publicly known.
� Payoffs of private players. Private player’s period payoff is:

Π(at
m, s

t
m; Θim) =


πim(at

m,x
t
m)

+1(atim = 1) · εtim
+1(atim = 1) · 1(at−1im = 0) · Fi

(17)

Here πim(at
m,x

t
m) denotes player i′s deterministic profits in market m, Fi are fixed costs

24We also estimated a version of the model including a fringe of public/private players. The inclusion
of these players does not change our results but increases substantially the state space of our model. This
imposes computational difficulties to solve the model and to make conterfactual analysis. By this reason we
do not include these players in the model.
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and εtim is a profitability shock. Θ denotes the parameters in the model including Fi.
This specification captures the main aspects of our idea. In this formulation, an incum-

bent that decides to stay in the market have profits given by πim(atim = 1, at
−im,x

t
m) + εtim.

An entrant have the same profit as the incumbent plus a negative entry cost Fi. That is,
any player that was outside the market and decides to entry pays a fixed cost F 25.

The term πim(at
m,x

t
m) is a linear function of exogenous states and actions26:

πim(at
m,x

t
m) =π0i + πpub1i

∑
j∈ipub

atjm

+ πpri1i

 ∑
j 6=i,j∈ipri

atjm

+ π2ix
t
m

 · 1(atim = 1) (18)

Here πkji ∈ Rk are parameters and xtm is a demand shifter. This specification allows for
different “competition” effects of public and private players.

The profitability shock εtim is assumed to have three components:

εtim = µim + ηit + ξtim

Here µim is a term that varies only across markets and players but not over time, ηit is
a time varying player specific term and ξtim ∼ EV (0, 1) is an idiosyncratic shock iid across
individuals, time and markets. This is the only source of asymmetric information in the
model. The first and the second elements of εtim are known to the players and capture
respectively (i) the correlation of the profitability shocks in the same market across time
and (ii) correlation of the profitability shock across time in different markets. Both effects
are empirically justified by the significance of state and year dummies in the reduced forms
analyzed above.

The time varying shock is included to capture the fact that the decision structure of the
chains can be centralized: First, the “general” conditions of the economy are observed; second
the decision in which municipality(ies) to enter/exit is taken. The model captures the feature
that a better (worse) macroeconomic landscape can increase (decrease) the probability of
being active in all available markets.

25We assume that players leaving the market get a scrap value equal to zero. This hypothesis was also
used in Collard-Wexler (2013).

26Similar structures were used in Pesendorfer and Schmidt-Dengler (2003, 2008), Ryan (2012) and Collard-
Wexler (2009).
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We impose a structure in the time effect. We further assumed that ηit = ηix̄t, where
xt =

∑
m xmt, is the total payroll of the municipalities in our sample in a given year. The

process for the shock is:

εtim = µim + ηix̄t + ξtim

The parameters of interest are Θim =
{
Fi, π0i, π

pub
1i , π

pri
1i , π2i, µim, ηi

}
.

We do not structurally model the behavior of public banks. Entry decisions of public
banks are assumed to do not depend on the number of public and the number of private
competitors in the market. We do not specify the payoff structure of public players.
� Sequence of decisions. The sequence of events of the game is the following:

1. States are observed by all the players.

2. Each player draws a private profitability shock εtim.

3. Actions are simultaneously chosen. Private players maximize their payoffs given beliefs
on competitor’s actions. The total payoff of a private player is given by the discounted
sum of player’s period payoffs. The discount rate is given by β < 1 and is the same for
all players.

4. After actions are chosen the law of motion for st
m determines the distribution of states

in the next period; the problem restarts.

Next the equilibrium for this game is characterized.

4.2 Equilibrium characterization

We restrict our attention to pure Markovian strategies. This means that players’ actions
are fully determined by the current vector of state variables. Intuitively, whenever a player
observes the same vector of states it will take the same actions and the history of the game
until period t does not influence player’s decisions.
� Public players. Public players are assumed to be exogenous. Entry probabilities of
public players are known to the private players and do not depend on the actions of other
public/private players.
� Private players. Private player i’s best response solves the following Bellman equation:
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Max
at
im
∈{0,1}

∑
at−im

σim(at
−im|st

m)

{
Π(at

m, s
t
m; Θim)+

β ·
∑

st+1
m

psm(st+1
m |st

m, a
t
m) · V (st+1

m ;σim(·),Θim)

}
(19)

Here Π(at, st; Θ) is given by (17) and (18) and Vim(·) is the continuation value for the
player given current states and actions. In practice we use the ex-ante value function. Its
derivation is in the appendix. The function σim(·|st

m) accounts for i’s beliefs on -i’s actions
given current states.

Firstly, players’ best response functions are characterized. We define: Πim(at
m, s

t
m) =

π̃im(at
m, s

t
m) + 1(atim = 1) · ξtim, where π̃i(at, s

t
m) comprises all the terms in (17) but the iid

part of the profitability shock and, Π̃im(at
m, s

t
m) = π̃im(at

m, s
t
m) + β ·

∑
st+1
m

psm(st+1
m |st

m, a
t
m) ·

Vim(st+1
m ;σim(·)). Then the i’s best response is implicitly defined by27:

Him(ati = 1|st
m;σim(·)) =

1− exp

{
−exp

{ ∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 1, at
−im, s

t
m)−∑

at
−im

σim(at
−im|st

m) · Π̃im(atim = 0, at
−im, s

t
m)

}}
(20)

The solution to this problem is a vector of player i’s optimal actions when he faces each
possible configuration for the state vector st

m and has consistent beliefs about other players
actions in the same states of the world.

By stacking up best responses for every player and every state one can form a system of
1×Ns equations, where Ns expresses the number of different possible states in this market.
This system is used to find the 1×Ns vector of players’ beliefs. A formal proof of the existence
of this vector can be found in Pesendorfer and Schmidt-Dengler (2008). Uniqueness of this
equilibrium is not, however, guaranteed. This is a common feature of entry games. The
estimation procedure is designed to deal with the multiplicity of equilibria.

5 Econometric Model

This section describes identification and the estimation procedure. We use the OLS derived
in Chapter to the recover payoff parameters. Our representation of the problem avoids

27For a proof see the appendix.
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the use of numerical methods in the estimation procedure and reduces significantly the
computational burden.

5.1 Identification and estimation

Following the CCP approach (Hotz and Miller (1993)) we firstly identify the vector of entry
probabilities for public and private players and the transitions directly from the data. For
the identification of entry probabilities we need to introduce two assumptions:

Assumption (i): There are no unobserved common knowledge states.

Assumption (ii): The same equilibrium is played in all available markets.

These identifying assumptions follow Ryan (2012). Pesendorfer (2010), Aguirregabiria and
Nevo (2010) and Bajari, Hong and Nekipelov (2010) discuss the importance of the assump-
tions above.

Arcidiacono and Miller (2011) relaxes assumption (i). Our reduced form evidence suggests
that our results are robust to the inclusion of market, time and player level unobservables.
This mitigates our concern with unobservables. Regarding assumption (ii), we could deal
with the multiplicity problem by estimating the model for each market we observe in our
sample, as proposed by Pesendorfer and Schmidt-Dengler (2008). The main problem is that
because most of these markets are quite stable, i.e. we do not observe frequent entry and exit
movements, we could not accurately identify the reduced form parameters and, therefore, the
structural parameters associated to most of our markets. In our application it is necessary
to pool the data of different markets. The same is done in Collard-Wexler (2013) and Ryan
(2012).

Under these assumptions the identification of Θim follows from Pesendorfer and Schmidt-
Dengler (2008).

Using Lemma 1 of Chapter 1 we represent the equilibrium system (20) as a linear func-
tion of the parameters and estimate the model using OLS. The linear representation of the
equilibrium system (20) is derived in the appendix.

5.2 CCPs and state space

Following the CCP approach the empirical implementation of the model depends on (i) the
estimation of beliefs and actions for each player, respectively, Him(ati = 1|st

m;σim(·)) and
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σim(at
−im|st

m) and (ii) the estimation of a transition process for the exogenous states, psm(·).
Next our estimation procedure for these elements is discussed.

5.2.1 Reduced form estimation of beliefs

We estimated equation (16) pooling the two private players, Bradesco and Itau. The data
include the markets where Bradesco was active for at least one period and the markets where
Itau was active for at least one period28.

Instead of including year dummies we included xt =
∑

m xmt, the total payroll of the
municipalities in our sample in a given year, to control for the correlation in the decisions of
private players in the same period of time. Instead of including state dummies we constructed
4 categories of markets. This keeps the state space of the structural model reduced. The
market categories are defined according to the number of potential competitors in a given
market 29. More specificaly, if Nm is the number of potential competitors in municipality m
then M1m = 1 if Nm ≤ 2; M2m = 1 if 2 < Nm ≤ 4; M3m = 1 if 4 < Nm ≤ 6; and M4m = 1 if
Nm ≥ 7. With this definition we can substitute µm =

∑4
k=1 γkMkm. The same strategy was

used in Collard-Wexler (2013). The vector xmt includes only municipality payroll.
Entry decisions for public players were estimated using the same specification but ex-

cluding npubmt−1 and nprimt−1 from the set of covariates. We pooled the two public players, Bank
of Brazil and Caixa Economica Federal. The data include the markets where Bank of Brazil
was active for at least one period and the markets where Caixa Economica Federal was active
for at least one period.

We estimated the logits for the samples 1988-2010 and 1996-2010. The sample 1996-2010
excludes the hyperinflation period and allows us to focus on the more recent market trends.
The coefficients in the logits for public/private players are in the appendix.

5.2.2 State space and transitions for exogenous states

Two different identification strategies to estimate the structural model are exploited. The
first strategy excludes time and market effects as in Ryan (2012). The advantage of this
formulation is that it uses a reduced state space. The second formulation uses market
dummies and the sample payroll to control for market and time effects. Both strategies

28This follows the definition of potential markets defined in section 3.
29Our definition of potential competitor is based on the super efficient estimator in the section 3 - i.e. the

number of potential competitors in municipality m is equal to the maximum number of players that were
active for at least one period in municipality m since 1900.

51



are based on the empirical CCP estimates. Only the structural parameters for the private
players, Bradesco and Itau, are estimated.
� Strategy 1: Model without time and market effects. The state space for any private
player, i ∈ ipri, is composed by the following elements:

st
i ∈
{
at−1i ,

{
at−1

j

}
j 6=i , x

t, {I(i = k)}k∈ipri
}

Here {I(i = k)}k∈ipri is a set of private players dummies and xt is the municipality payroll.
The other elements are the actions of player i in period t− 1, at−1i , and the actions of player
i’s competitors in period t− 1,

{
at−1

j

}
j 6=i. The variable xt is discretized in 10 deciles.

The law of motion for xt is estimated by a simple auto-regressive ordered logit. This
formulation for the law of motion of xt ignores potential effects of banks, either public or
private, on municipality income.

The state space of this model is composed by 2 · 23 · 10 · 2 = 320 elements.
� Strategy 2: Model with time and market effects. The second model includes time
and market effects. Market effects are captured by 4 market dummies. Time effects are
captured by the sample payroll. Market dummies and the sample payroll variables were
defined above - see section 5.2.1. The state space in this model is:

st
im ∈

{
at−1im ,

{
at−1

jm

}
j 6=i , x

t
m, x̄

t, {I(i = k)}k∈ipri , {I(m = k)}4k=1

}
Here {I(m = k)}4k=1 is a set of market dummies for the 4 market types; x̄t =

∑4
m=1wmx

t
m

is the sample payroll, where, wm is the number of markets of type m and xtm is the average
payroll of type m markets in period t; at−1im is player i’s action in a market of type m in t−1,{
at−1

jm

}
j 6=i are the actions of player i’s competitors in the same market in period t − 1 and

{I(i = k)}k∈ipri is a set of dummies for each private player.
The law of motion for xtm is calculated using an auto-regressive ordered logit structure.

The variable xtm is discretized in four percentiles for each market type. A model for each
market type was estimated. Finally x̄t was calculated using x̄t =

∑4
m=1wmx

t
m under the

assumption that wm is fixed over time.
The estimation of the model with market dummies is time consuming because the in-

clusion of the sample payroll, which depends on the realization of the payroll variable in
every market, increases exponentially the dimension of the state space. The state space has
2 · 23 · 44 · 2 · 4 = 32768 elements.
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5.3 Results

We assumed that β, the discount factor, is equal to 0.90. To focus on the more recent trends
of the market we used the CCPs and transitions estimated with the 1996-2010 sample. The
CCPs of the non strategic public players correspond to models I and II in the second block
of Table 12 - those estimated using the sample 1996-2010. For the private players the CCPs
are given by models I and II in the second block of Table 13. We used the OLS estimator to
estimate the model.

Parameters are estimated in units of the scale factor in the EV distribution and do
not have a level interpretation. Only relative magnitudes matter. Standard errors of the
parameters were calculated by block bootstraping CCPs and transitions 100 times. The
structural model was estimated 100 times, one for each block bootstrap draw of beliefs and
transitions. The standard error across this set of parameters was calculated. A similar
procedure was applied in Ryan (2012) and Collard-Wexler (2013).

Table 6 reports the structural parameters. The first column corresponds to the model
without market unobservables. The second column shows the model with market dummies
and the sample payroll, estimated according to strategy 2.
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Table 6: Structural Parameters for Private Players
(I) (II)

Profit Components
N Public 0.0605 0.0726

[0.01] [0.00]
N Private -0.0487 -0.0256

[0.01] [0.00]
Market Payroll* -0.0001 0.0019

[0.00] [0.00]
Constant -0.3720 -0.5821

[0.01] [0.05]
Shock Components

Sample Payroll* 0.0004
[0.00]

Market 1 0.2377
[0.04]

Market 2 0.2104
[0.03]

Market 3 0.1176
[0.02]

Entry/Player Costs
Entry Costs -4.9272 -5.7442

[0.09] [0.02]
Dummy Bradesco -0.0270 -0.0245

[0.01] [0.02]
Observations 320 32768
Note: (*) Sample payroll measured in R$ bil-
lions of 2011; market payroll measured in R$
millions of 2011. Standard-errors in brackets.
Standard errors obtained from 100 block boot-
straps of beliefs and transitions. Parameters
are measured in units of standard deviations of
the iid profitability shock.

Qualitatively, both specifications produce similar results. The main difference is that
in model I, the market payroll coefficient is negative but small and not significant. All
models predict that the entry of a new private competitor reduces the profits of the private
incumbent. The entry of a new public player increases the profits of a private incumbent.
The constant term, which measures operational costs, is negative and relatively larger in the
second model. Entry costs are also negative and relatively larger in the second model. The
contribution of the components of the shock in the second model is relatively important.
The coefficient attached to the sample payroll is positive. This means that increases in the
sample income shifts to the right the distribution of the shock and increases entry rates.
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Market effects are positive.
To facilitate the interpretation of these results, the next table reports the estimates as

percentage of entry costs. This means that coefficients are divided by the absolute value of
the entry costs.

Table 7: Structural Parameters as Percentage of the Entry Costs
(I) (II)

Profit Components
N Public 1.228% 1.264%
N Private -0.988% -0.446%
Market Payroll* -0.002% 0.033%
Constant -7.550% -10.134%

Shock Components
Sample Payroll* 0.007%
Market 1 4.138%
Market 2 3.663%
Market 3 2.047%

Entry/Player Costs
Entry Costs 100.000% 100.000%
Dummy Bradesco -0.549% -0.427%
Note: (*) Sample payroll measured in R$ billions
of 2011; market payroll measured in R$ millions of
2011.

Again, the predictions of both models are quite close. In particular, entry of a new public
player increases profits of the private incumbent in around 1.3% of the entry costs. Entry
of a new private player reduces profits of the private incumbent in around 0.45-0.9% of the
entry costs.

The next table provides profit estimates for the private banks using the structural pa-
rameters. These parameters allow us to estimate a measure of return over entry costs. We
also simulate the number of years necessary to recover entry costs.
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Table 8: Average Period Profits and Return to Fixed Costs in Private Monopoly Markets
(I) (II)

Period Profits in Std Deviations 0.1936 0.2493
Period Profits as % of Entry Costs 3.930% 4.339%
Years to Recover Entry Costs 26.0 23.0
Note: Average profits of a private monopoly in a small market
(market in the lower market payroll decile). Period profits as %
of entry costs corresponds to the period profit in std deviations
divided by the entry cost. To calculate the number of years to
recover the entry costs we assumed a discount rate of 0.9, that
the market payroll is increasing steadily at 3% per period and
a monopoly structure every period.

The average period payoff of the private banks in monopoly markets is computed in the
the first line of the table. The results show that the second model predicts larger profits. The
second line shows that model I predicts returns to the entry investment of 4% in monopoly
markets. Model II predicts that returns over entry costs are slightly larger, around 4.4%30.

The third line shows the number of years necessary to recover entry costs. We assumed
β = 0.9 and that municipality and sample payroll are growing steadily at 3% per year. We
accumulated the discounted payoffs and computed the number of years that are necessary
to recover the estimated entry costs. Model I predicts that in monopoly markets it takes on
average 26 years to the private player recover the entry investment. Model II predicts that
a private player needs on average 23 years to cover the entry cost31.

5.4 Discussion

Two remarkable facts arise from our analysis:

1. Public players complement private players;

2. Private players crowd-out other private players.
30To calculate profits we fixed the sample payroll at its 2010 average value in smaller markets, that is in

markets of type 1. For model II we assumed that the market dummy for markets of type 1 is equal to one.
Thus the results are calculated for markets type 1. The sample payroll is used only to compute profits in
model II and is equal to the sample payroll of 2010.

31This means that entry barriers are quite high. A recent expansion plan of Bank of Brazil illustrates this
point. BB set down R$1 billion to construct 600 new branches in the Brazilian territory. This implies that
on average each new branch costs R$1.66 million.
Notice also that the potential demand of a small market is quite small: The average yearly payroll of a

market in our sample was R$9 million in 2010 and only a small fraction of the population demands banking
services. In 2011 the Institute of Applied Economic Research (IPEA, 2011), an institute of the Brazilian
federal government, estimated that around 40% of the Brazilian population has no access to any kind of
banking services. This percentual can be even large in the markets represented in our sample.
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The first result shows that profit of public banks are positively affected by the number of
public branches in the same market. Our estimates do not allow us to disentangle the details
of the spill-over channels. Broadly speaking, our findings are consistent with public banks (i)
having monopoly over a number of important Federal funds and (ii) being driven by social,
as opposed to strategic or market reasons. The first element guarantees a large volume
of credit for small markets - see Feler (2012). The second induces product differentiation
between public and private banks: Public and private banks target different clients - see
Coelho, Melo and Rezende (2012). In this case, the amount of cheap credit and public
transfers poured by the public banks in small isolated municipalities shifts the demand for
banking services, making these markets more attractive for private players. This effect
induces the entry of private players.

The crowd-out effect is consistent with Coelho et al (2012). They found that the compe-
tition between the Brazilian private banks is relatively tough. Our results reinforce the view
that private banks are competitive.

6 Model Fit and Counterfactuals

This section uses the structural model to construct a policy experiment. We are interested in
the following question: What happens with the supply of private financial services in small
isolated markets when public banks are privatized?

First we solve the model using the estimated parameters. The solution to the model is
a vector of Ns entry probabilities that solves the system of implicit best responses given by
equation (20).

For models with a large state space this exercise is not computationally feasible. The
state space of model II has dimension Ns = 32768. The solution for this model showed to be
beyond our computational possibilities. The time to solve the model increases exponentially
with the state space. From now on, we use only model I, that has a reduced state space
(Ns = 320), to compute the counterfactual experiments.

6.1 Model fit

We solved the system (20) for private banks entry probabilities. This system is non linear.
This means that its solution is not necessarily unique.

To check how the multiplicity affects our conclusions, we proceed in the following way:
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First, we solve model I for the entry probabilities using the logit probabilities as the initial
guess; second, we perturbed the logit probabilities; third we computed again the solution for
the model using the “perturbed” vector of logit probabilities as the initial guess; fourth, we
compared the “perturbed” solution with the original solution32. Doing so we find that the
solutions were identical for any initial guess.

We compare the solution obtained from the structural model with the logit probabilities
for all available states. The next table illustrates some statistics of our predictions.

Table 9: Fitted vs Sample (Logit) Probabilities
(I)

Correlation Fitted and Logit Probabilities 99.91%
Average Sum of Squared Errors 0.05%
Average Sum of Errors 0.82%
Note: Correlation between the probabilities obtained from the
solution of model I and the logit model (model I, Table 13 for
1996-2010) for each state (320 states). Average sum of squared
errors gives the sum of the squared difference between the logit
and the model probabilities for each state averaged across states.
The average sum of errors gives the sum of the differences be-
tween the logit and the model probabilities averaged across the
320 states.

In the first line the correlation between the logit probabilities and the solution of the
structural model for all states is calculated. The second shows the average squared difference
between the logit and the structural probabilities. The third line shows the average sum of
these differences. The fitting of the model is very good. The correlation between the logit
and structural probabilities is high. The average error of the structural probabilities is below
1%.

We performed an additional exercise. We took the smallest market in terms of sample
payroll and assumed that in the first period all the four banks are out of the market. We used
firstly the probabilities predicted by the logit models and simulated 1000 paths 100 periods
ahead of private banks actions and then we constructed an average path taking the mean
across the 1000 paths. We did the same using the probabilities predicted by the structural
models. The next figure compares the paths implied by the logit and by the structural
model.

32Firstly we multiplied the original guesses (calculated from the CCPs showed above) by several factors
between 0 and 1. We also started the model with a “fixed” guess, where the probabilities for all the states and
for all the players are equal to 0.25, 0.5 and 0.75. We used the same procedure to compute the counterfactuals.
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Figure 2: Number of Private Banks 100 Periods Ahead - Model I
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Note: Number of private banks in a small market starting from a state where all the
competitors are out of the market. Paths 100 periods ahead simulated 1000 times using
the structural and the logit probabilities for model I. The figure shows number of private
branches averaged over 1000 simulations.

The figure shows that the path obtained from the structural model is close to the path
obtained from the reduced form logit models in the first 30 periods. Subsequently the path
of the structural model is below the path produced by the logit model. The structural
model predicts that after 100 years this small market, without any public/private branch in
operation in the first period, will have on average 1.32 private branches. The logit predicts
that the same market will have 1.45 branches.

Next we use this model to construct counterfactuals.

6.2 Counterfactual: Privatization of public banks

This section analyzes the effects of the privatization of both public banks on the total supply
of financial services in small isolated markets. We assumed that each public bank is bought
by different players: BB is bought by one player and CEF by the other. We assumed that
the coefficient attached to the number of public competitors in the structural model is equal
to the coefficient attached to the number of private competitors. The entry probabilities of
public players, instead of being generated by an exogenous process, are calculated according
to the system of best responses showed in equation (20).

We calculated the equilibrium probabilities for 4 players. Now this depends on the
solution of a system of 640 equations and 640 unknown variables. To check how multiplicity
affects our conclusions we used the procedure described in Section 6.1. In all experiments
the resulting equilibrium did not change. These probabilities are used to simulate 1000 paths
100 periods ahead. The next figure shows the path for the total number of branches, public
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plus private, after and before the privatization. We computed this path for a small market
where the initial state is characterized by zero active players.

Figure 3: Counterfactual: Privatization of Public Players
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Note: Number of branches (public plus private) in a small market starting from a state
where all the competitors are out of the market (baseline and privatization counterfac-
tual). Paths 100 periods ahead simulated 1000 times using the structural probabilities
for model I. The figure shows number of private branches averaged over 1000 simula-
tions. Branches privatization shows the total number of branches if public branches are
privatized. Branches baseline is the total number of branches (public plus private) using
the structural model I for private players and the non strategic behavior assumption for
public players (calculated based on the logits in Table 12, model I, sample 1996-2010).

The exercise shows that in the long-run the total number of active branches in small
municipalities drops from 3 to 0.5 on average. This means that with the privatization
around 50% of the Brazilian small municipalities would not be attended by any bank branch.
To assure that all these small municipalities would have at least one bank branch in the
counterfactual world where public banks are bought by strategic players the government
should give a subsidy of 8% over the operational costs of all active branches in the market.
Using the fact that the structural model predicts that operational costs are around 7.55% of
entry costs and an estimate of R$1 million for the entry costs we calculated that the present
cost of this policy is around R$349,463.51 per municipality33. This value is relatively small
compared to the market value of Brazilian public banks. BB’s market value in 2012 was
approximately US$88 billions. This means that the resources raised with the privatization
of BB would be sufficient to cover the subsidies for 240 thousand branches in the country
or, approximately, 42 branches per municipality.

33Present values for a time horizon of 100 years and using a discount factor of 0.9 per year.
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7 Conclusions

This paper explores microdata of 1002 isolated markets in Brazil during 1988-2010 to esti-
mate a dynamic entry game for public and private banks. We compute the market equilib-
rium in different counterfactual scenarios. Our setup allow us to make consistent ex ante
analyses on the effects of changes in the banking market structure on variables of interest.

We obtained two main conclusions. First, public banks generate positive profit spill-overs
for private banks; second, private banks crowd-out private competitors. Our estimates show
that the entry of a public bank in a given market increases the return of a private incumbent
by 1.2 percent and the entry of a private bank reduces the return of a private incumbent by
0.05 to 1 percent.

The counterfactual in which public banks are sold to private players shows that the total
number of active branches operating in the long-run in a typical small market drops from 3
to 0.5 on average. To guarantee that, after the privatization, all small municipalities would
have at least one active branch the government should give a subsidy of approximately
US$175,000 for each small market. This value is relatively small compared to the market
value of Brazilian public banks. BB’s market value in 2012 was approximately US$88 billions.
This means that the resources raised with the privatization of BB would be sufficient to cover
the subsidies for 240 thousand branches in the country or, approximately, 42 branches per
municipality.

Our estimation procedure improves Pesendorfer and Schmidt-Dengler (2008). We show
that the OLS estimator gives us consistent estimates of the structural parameters. This
approach allows us to avoid the use of numerical methods in the estimation of the structural
parameters. Doing so we reduce significantly the computational burden.
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Appendix 1: Proofs

� Model solution. We omit the term Θ from the equations to simplify the notation
and write V (st+1

m ;σim(·),Θim) = Vim(st+1
m ;σim(·)) and Π(at

m, s
t
m; Θim) = Πim(at

m, s
t
m). We

futher simplify the notation as follows.

1. Isolate the iid shock from (1) writing Πim(at
m, s

t
m) = π̃im(at

m, s
t
m) + 1(atim = 1) · ξtim,

where π̃i(at, s
t
m) comprises all the terms in (17) but the iid part of the profitability

shock.
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2. With this we can write the deterministic part of the objective function simply as:

Π̃im(at
m, s

t
m) = π̃im(at

m, s
t
m) + β ·

∑
st+1
m

psm(st+1
m |st

m, a
t
m) · Vim(st+1

m ;σim(·)) (21)

3. Using these facts rewrite i’s problem in the following way:

Max
at
i
∈{0,1}

∑
at−im

σim(at
−i|st)

{
Π̃im(at

m, s
t
m) + 1(ati = 1) · ξtim

}
(22)

Now, we analyze i’s decision process. Given beliefs and states the expected payoff derived
from atim = 1 and atim = 0 is respectively:

EΠim(atim = 1|st
m;σim(·)) =

ξtim +
∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 1, at
−im, s

t
m)

and,

EΠim(atim = 0|st
m;σim(·)) =∑

at
−im

σim(at
−im|st

m) · Π̃im(atim = 0, at
−im, s

t
m)

Therefore, given states and beliefs, atim = 1 iff:

ξtim +
∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 1, at
−im, s

t
m)

≥∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 0, at
−im, s

t
m)

Now using ξtim v EV (0, 1) we can find a closed form solution for i’s best response function
given states and beliefs:
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Him(ati = 1|st
m;σim(·)) =

1− exp

{
−exp

{ ∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 1, at
−im, s

t
m)−∑

at
−im

σim(at
−im|st

m) · Π̃im(atim = 0, at
−im, s

t
m)

}}

� Value function. Following Pesendorfer and Schmidt-Dengler (2008) we define the value
function as the continuation value for profits before shocks are observed and actions are
taken. Mathematically:

Vim(st
m;σi(·)) = σim(atim = 1|st

m) · E
[
ξtim|atim = 1, st

m

]
+∑

at
im

,at−im

σim(atim, a
t
−im|st

m) · Π̃im(at
m, s

t
m) (23)

In this formulation E [ξtim|atim = 1, st
m] is the (conditional) expectation operator with

respect to the iid EV payoff shock and σim(atim, a
t
−im|sm

t ) is the joint probability distribution
of players’ actions given states.

Now if we stack up (23) for every one of the Ns states of the we find a system of Ns

equations in Ns unknown variables, in this case the value function for each state. The
solution to this (linear) system provides us with a unique continuation value for each state
as a function of parameters, beliefs and the distribution of future states. The solution for
any state st

m can be easily plugged in equation (20), leaving us with a (non-linear) system
of Ns equations with Ns unknown beliefs.

Before proceeding we are going to insert (21) into (23):

Vim(st
m;σi(·)) = σim(atim = 1|st

m) · E
[
ξtim|atim = 1, st

m

]
+

∑
at
im

σim(at
im|st

m) ·

π̃im(at
m, s

t
m) + β ·

∑
st+1
m

psm(st+1
m |st

m, a
t
m) · Vim(st+1

m ;σim(·))


Call

∑
at
im

σim(at
im|st

m) · π̃im(at
m, s

t
m) = Σim(at

m|st
m)·Γim(at

m, s
t
m), where Σim(at

m|st
m) is a

1×2N vector of probabilities for all possible tuple of players actions given states, Γim(at
m, s

t
m)

is the 2N × 1 vector of (non stochastic) profits in that given state for all possible combina-
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tion of players actions and
∑

at
im

∑
st+1
m

σim(at
im|st

m) · psm(st+1
m |st

m, a
t
m) = Zm(st+1

m |st
m), where

Zm(st+1
m |st

m) is a 1×Ns vector containing the (weighted) probabilities of each state when the
states are st

m and Ψi(s
t
m) ≡ σim(ati = 1|st

m) · E [ξtim|atim = 1, st
m]. Using this we can rewrite

the equation above as:

Vim(st
m;σim(·)) =

Ψi(s
t
m) + Σim(at

m|st
m) · Γim(at

m, s
t
m) + β · Zm(st+1

m |at
m, s

t
m) ·Vim(st+1

m ;σim(·))

In this equation Vim(σim(·)) is a Ns × 1 vector of value functions in which each line
represents a value function for a particular state. Now, stacking up these equations for any
possible state in the economy we can write:

Vim(σim(·)) = Ψim + ΣΓim + β · Zm ·Vim(σim(·)) (24)

= [I− β · Zm]−1 · [Ψm + ΣΓim]

The existence of the inverse matrix in the first bit of (24) follows from the dominant
diagonal property - see Pesendorfer and Schmidt-Dengler (2008). Here Ψim is a Ns × 1

vector stacking all possible values of Ψi(s
t
m) ≡ σim(ati = 1|st

m) · E [ξtim|atim = 1, st
m], ΣΓim is

a Ns × 1 vector of expected (non stochastic) profits for each state (where the expectation
is taken across each possible vector of actions conditional on states) and Zm is a Ns × Ns

transition matrix for all states.
� Linearity of the value function. Start from equation (24). The only term that depends
on parameters is ΣΓim. Each line in the Ns × 1 vector ΣΓim (represented as Σim(at

m|st
m) ·

Γim(at
m, s

t
m)) corresponds to the expected (non stochastic) profits for each state (where the

expectation is taken across each possible vector of actions conditional on states). Having in
mind the parametrization in (17) and (18) it is straightforward to see that for any state st

m,
Σim(at

m|st
m) · Γim(at

m, s
t
m) = K(st

m)
′
Θim, where K(st

m)
′ is a 1×Np vector of variables that

depends on the beliefs for all players and states, where Np is the number of parameters in
the model. Now, to simplify the notation, write [I− β · Zm]−1 = ∆, a Ns ×Ns matrix that
depends on the transition matrix Zm. Going back to (24) and using these facts it is easy
to see that Vim(σim(·)) = ∆·Ψim + ∆ ·K · Θim, where K is a Ns × Np matrix of variables
constructed by stacking up K(st

m)
′ for all states.
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� Linearity of the best response function. Start from equation (20). Use the definition
of Π̃im(at

m, s
t
m) to write:

∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 0, at
−im, s

t
m) =

∑
at
−im

σim(at
−im|st

m) · π̃im(atim = 0, at
−im, s

t
m)+

β ·
∑
at
−im

∑
st+1
m

σim(at
−im|st

m) · psm(st+1
m |st

m,a
t
im = 0, at

−im) · Vim(st+1
m ;σim(·))

Now we can use the equation above and rewrite the transition matrix (containing beliefs
and transition between states) as

∑
at−im

∑
st+1
m

σim(at
−im|st

m) · psm(st+1
m |st

m,a
t
im = 0, at

−im) =

Z0
m(st+1

m |st
m), where Z0

m(st+1
m |st

m) is 1 × Ns vector containing the (weighted) probabilities
of each state when the states are st

m and player i is choosing atim = 0. Using the same
argument that we used to state the linearity of the value function, it is easy to see that∑

at
−im

σim(at
−im|st

m) · π̃im(atim = 0, at
−im, s

t
m) = K(st

m, a
t
im = 0)

′
Θim, where K(st

m, a
t
im = 0)

′

is a 1×Np vector of variables when states are st
m and player i is choosing atim = 0. Therefore

we can write:

∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 0, at
−im, s

t
m) =

K(st
m, a

t
im = 0)

′
Θim + β · Z0

m(st+1
m |st

m) · Vim(st+1
m ;σim(·))

By substituting the value function using Vim(σim(·)) = ∆·Ψim + ∆ ·K · Θim, it is easy
to see that:

∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 0, at
−im, s

t
m) =

K(st
m, a

t
im = 0)

′
Θim + β · Z0

m(st+1
m |st

m) · [∆·Ψim + ∆ ·K ·Θim]

Analogously, we can write Z1
m(st+1

m |st
m) as the equivalent of Z0

m(st+1
m |st

m) when atim = 1

and K(st
m, a

t
im = 1) as the equivalent K(st

m, a
t
im = 0) when the action is atim = 1. With this
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we can calculate
∑

at
−im

σim(at
−im|st

m) · Π̃im(atim = 1, at
−im, s

t
m) as:

∑
at
−im

σim(at
−im|st

m) · Π̃im(atim = 1, at
−im, s

t
m) =

K(st
m, a

t
im = 1)

′
Θim + β · Z1

m(st+1
m |st

m) · [∆·Ψim + ∆ ·K ·Θim]

This means that the terms inside the inner curly brackets of (20) reduces to:∑
at
−im

σim(at
−im|st

m) ·
[
Π̃im(atim = 1, at

−im, s
t
m)− Π̃im(atim = 0, at

−im, s
t
m)
]

=

{
[K(st

m, a
t
im = 1)−K(st

m, a
t
im = 0)]

′
+

β · [Z1
m(st+1

m |st
m)− Z0

m(st+1
m |st

m)] ·∆ ·K

}
·Θim+

β ·
[
Z1

m(st+1
m |st

m)− Z0
m(st+1

m |st
m)
]
·∆·Ψim

Insert this formula into (20) and take logs and then write the LHS of the linearized
expression as yi(st

m) = ln
{
ln
[

1
1−H(ati=1|st;σi(·),Θ)

]}
. Therefore:

yi(s
t
m) = β ·

[
Z1

m(st+1
m |st

m)− Z0
m(st+1

m |st
m)
]
·∆·Ψim+{

[K(st
m, a

t
im = 1)−K(st

m, a
t
im = 0)]

′
+

β · [Z1
m(st+1

m |st
m)− Z0

m(st+1
m |st

m)] ·∆ ·K

}
·Θim

Given that elements in Ψim are known we can write y∗i (st
m) = yi(s

t
m)−β·[Z1

m(st+1
m |st

m)− Z0
m(st+1

m |st
m)]·

∆·Ψim. Also, to simplifiy the notation, use:{
[K(st

m, a
t
im = 1)−K(st

m, a
t
im = 0)]

′
+

β · [Z1
m(st+1

m |st
m)− Z0

m(st+1
m |st

m)] ·∆ ·K

}
= Mi(s

t
m)

Therefore, y∗i (st
m) = Mi(s

t
m) ·Θim .
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Appendix 2: Reduced Forms

Table 10: Marginal Effects of npubmt−1 and nprimt−1 on the Entry Probabilities of Private Players
(Bradesco and Itau) - Subsample npub ≥ 1

(I) (II) (III) (IV)
Nº Public 0.11467*** 0.12303*** 0.15040*** 0.14810***

[0.02] [0.02] [0.03] [0.03]
Nº Private -0.04343* -0.02822 -0.07914** -0.07935**

[0.02] [0.03] [0.03] [0.03]
Player Dummy Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes
State Dummies No Yes Yes Yes
Trend*State Dummies No No Yes Yes
Transfers, Expenditure, Agric. Prod. No No No Yes
Observations 9,348 9,164 9,164 9,162
Pseudo R2 0.87 0.88 0.92 0.92
Note: (***) Significant at 1%; (**) significant at 5%; (*) significant at 10%. Marginal effects calculated
at the sample means. Clustered standard errors at the municipality level in brackets. All the models have
lagged activity, number of public and private competitors and municipality payroll. Subsample npub ≥ 1
includes all municipalities that had at least one public player in every period.

Table 11: Marginal Effects of npubmt−1 and nprimt−1 on the Entry Probabilities of Private Players
(Bradesco and Itau) - Subsample 1 ≤ npub ≤ 3

(I) (II) (III) (IV)
Nº Public 0.19269*** 0.18806*** 0.20575*** 0.21391***

[0.03] [0.04] [0.04] [0.04]
Nº Private -0.05677* -0.06105* -0.12490*** -0.11986***

[0.03] [0.04] [0.05] [0.05]
Player Dummy Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes
State Dummies No Yes Yes Yes
Trend*State Dummies No No Yes Yes
Transfers, Expenditure, Agric. Prod. No No No Yes
Observations 7,301 7,117 7,117 7,115
Pseudo R2 0.87 0.88 0.92 0.92

Note: (***) Significant at 1%; (**) significant at 5%; (*) significant at 10%. Marginal effects calculated
at the sample means. Clustered standard errors at the municipality level in brackets. All the models
have lagged activity, number of public and private competitors and municipality payroll. Subsample
1 ≤ npub ≤ 3 includes all municipalities that had at least one and at most three public players in every
period.
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Appendix 3: CCPs

Table 12: CCP Logit for Public Players (BB and CEF)
(I) (II) (I) (II)

Sample:1988-2010 Sample:1996-2010
Lagged Activity 6.75*** 6.73*** 6.88*** 7.22***

[0.09] [0.10] [0.12] [0.14]
Market Payroll 0.03*** 0.02*** 0.04*** 0.02***

[0.00] [0.00] [0.00] [0.00]
Sample Payroll 0.07*** 0.17***

[0.01] [0.01]
Market 1 -1.15*** -1.17***

[0.26] [0.32]
Market 2 -1.09*** -1.45***

[0.23] [0.29]
Market 3 -0.64*** -0.88***

[0.22] [0.26]
Dummy BB 1.35*** 1.68*** 1.82*** 2.22***

[0.11] [0.13] [0.14] [0.17]
Constant -3.70*** -3.56*** -4.55*** -5.58***

[0.12] [0.25] [0.16] [0.33]
Observations 20,357 20,357 13,680 13,680
Pseudo R2 0.793 0.796 0.815 0.827

Note: (***) Significant at 1%; (**) significant at 5%; (*) significant
at 10%. Clustered standard errors in brackets. Model I does not
include sample payroll and market dummies. Model II includes
these variables.
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Table 13: CCP Logit for Private Players (Bradesco and Itau)
(I) (II) (I) (II)

Sample:1988-2010 Sample:1996-2010
Lagged Activity 7.44*** 7.32*** 8.05*** 8.17***

[0.12] [0.13] [0.18] [0.20]
N Public 0.25*** 0.25*** 0.46*** 0.63***

[0.05] [0.07] [0.06] [0.08]
N Private -0.42*** -0.40*** -0.57*** -0.35**

[0.10] [0.11] [0.12] [0.15]
Market Payroll 0.02*** 0.01*** 0.01*** 0.01***

[0.00] [0.00] [0.00] [0.00]
Sample Payroll 0.08*** 0.03**

[0.01] [0.01]
Market 1 -0.42 0.98**

[0.32] [0.38]
Market 2 -0.12 0.85***

[0.26] [0.32]
Market 3 0.13 0.51**

[0.21] [0.26]
Dummy Bradesco 0.05 0.04 -0.51*** -0.52***

[0.11] [0.11] [0.13] [0.13]
Constant -3.84*** -4.43*** -3.41*** -4.84***

[0.11] [0.39] [0.13] [0.46]
Observations 15,919 15,919 10,595 10,595
Pseudo R2 0.828 0.831 0.830 0.831
Note: (***) Significant at 1%; (**) significant at 5%; (*) significant at
10%. Clustered standard errors in brackets. Model I does not include
sample payroll and market dummies. Model II includes these variables.
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