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The times after Copernicus were times in which there were great debates about whether the planets
in fact went around the sun along with the earth, or whether the earth was at the centre of the
universe and so on. Then a man named Tycho Brahe evolved a way of answering the question.
He thought that it might perhaps be a good idea to look very very carefully and to record exactly
where the planets appear in the sky, and then the alternative theories might be distinguished from
one another.

Richard Feynman (1965). The Character of Physical Law.
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Abstract

Stochastic processes are mathematical objects that offer a probabilistic representation of
how some quantities evolve in time. In this thesis we focus on estimating the trajectory and
parameters of dynamical systems in cases where only indirect observations of the driving
stochastic process are available. We have first explored means to use weekly recorded
numbers of cases of Influenza to capture how the frequency and nature of contacts made
with infected individuals evolved in time. The latter was modelled with diffusions and
can be used to quantify the impact of varying drivers of epidemics as holidays, climate,
or prevention interventions. Following this idea, we have estimated how the frequency of
condom use has evolved during the intervention of the Gates Foundation against HIV in
India. In this setting, the available estimates of the proportion of individuals infected with
HIV were not only indirect but also very scarce observations, leading to specific difficul-
ties. At last, we developed a methodology for fractional Brownian motions (fBM), here a
fractional stochastic volatility model, indirectly observed through market prices.

The intractability of the likelihood function, requiring augmentation of the parameter
space with the diffusion path, is ubiquitous in this thesis. We aimed for inference methods
robust to refinements in time discretisations, made necessary to enforce accuracy of Euler
schemes. The particle Marginal Metropolis Hastings (PMMH) algorithm exhibits this mesh
free property. We propose the use of fast approximate filters as a pre-exploration tool to
estimate the shape of the target density, for a quicker and more robust adaptation phase
of the asymptotically exact algorithm. The fBM problem could not be treated with the
PMMH, which required an alternative methodology based on reparameterisation and ad-
vanced Hamiltonian Monte Carlo techniques on the diffusion pathspace, that would also
be applicable in the Markovian setting.
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Notations

f: vector of constant parameters

d: dimension of ¢

y;: observation made at time ¢;

n: number of observations available

wy: state of a system at time ¢ (wy = {x¢, 2 })

x4: state of the underlying driving process at time ¢

z;: complementary compotents of a system at time ¢. In an epidemic modeling setting, z:
corresponds to the absolute number of individuals in each compartment. The vector

containing the proportion of individuals in each compartment is noted 2,
Wo:p: path of the system between times ¢y and ¢,
Zo:n: path of the driving stochastic process between times ¢y and ¢,
P, prior distribution defined over .y,
Sy: absolute number of susceptibles at time ¢
s¢: proportion of susceptibles at time ¢
E;: number of exposed individuals at time ¢
I;: number of infectious individuals at time ¢
R;: number of resistent or retired individuals at time ¢
3: effective contact rate
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B¢ time-varying effective contact rate

k: symptoms development rate

7: recovery rate

r®J: rate of reactions converting individuals of type i into individuals of type j

75J: normalised rate of reactions converting individuals of type i into individuals of type
j, i.e. Ti,j (Zt) = Nfi,j (Zt)

R: ensemble of couples (i,j) corresponding to states between which the model allows

transfers

R¢: ensemble of couples (i,j) corresponding to states between which the model allows

transfers with stochastic rates
m: card(Z)
¢: number of compartments
k(59): stoichiometric vector of reaction (i, 5)
dI': gamma increment, used to model environmental noise

(i:9) . . .

zf "'t components of the stochastic process corresponding to gamma increments for re-
action (i, )

a;f *: components of the stochastic process corresponding to time-varying parameters

N . .
z, "”: components of the stochastic process corresponding to the number of occurrences

of reaction (i, j)
Q: diffusion matrix
QP diffusion matrix of the SDE followed by the time-varying parameters
p%: drift term of the SDE followed by the time-varying parameters
Q°: diffusion matrix of the SDE used to approximate the environmental stochasticity
Q?: diffusion matrix of the SDE used to approximate the demographic stochasticity
J: number of particles used in a Sequential Monte Carlo algorithm
N?: number of iterations of an algorithm

d: discretisation timestep



List of Figures 21

pY;_, pt transmission probability from male to female in an unprotected act
plt_, ¢ transmission probability from female to male in an unprotected act
NbActs: mean number of acts per client

Cond.ys: condom efficacy per act

NbClients®®: mean number of clients per month for high-risk sex workers
NbClients'f: mean number of clients per month for low-risk sex workers
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CUy: time-varying condom use
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obs
prev;

: observed prevalence at time ¢;

prev™°?l; modeled prevalence at time t;

7(.): MCMC target density

T transition kernel

ESS: Effective Sample Size

q(.|.): importance sampling density
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A: scaling coefficient of the random walk steps
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CHAPTER ].

Introduction

The topic of this thesis is the estimation of the full paths and parameters of stochastic pro-
cesses in settings were only indirect observations are available. This observation scheme
prevents the derivation of direct formulas providing information on the uncertain paths
and parameters. A possible approach, explored in this thesis, is to contrast simulated
trajectories of the system to the data. We concentrate on the problems encountered in epi-
demiology: in this field, statistical methodology provides with options that are limited,
yet not fully exploited by practitioners. Hence, we explore means to diminish the com-
putational burden of the current state-of the art Bayesian inference methods for indirectly
observed stochastic processes, while also concentrating on practicality. In addition, we
address the question of using diffusion processes to estimate key parameters evolving in
a potentially fully unknown manner. We consider different observational schemes, and
explore the applications of this approach in public health. Ultimately, we consider the
problem of inference for non-Markovian stochastic processes through the example of frac-
tional stochastic volatility models.

1.1 Modelling the spread of infectious diseases in human populations

This Section describes the questions explored by mathematical modellers in epidemiology,
as an introduction to the questions treated in this thesis. We first describe the variety of
challenges posed by infectious diseases, with examples of what has been achieved and of
some persistent issues and rising threats in the field of public health. We then motivate
the use of mathematical models to encompass the complex and nonlinear dynamics of
epidemics. In addition, we comment on the use that can be made of models in this setting,
stressing their utility and limitations. Lastly, we present the mathematical formalisms used
to model the spread of epidemics among a population, concentrating on population-level

23



24 CHAPTER 1. INTRODUCTION

compartmental models.

1.1.1 Diverse situations and challenges

Infectious diseases, and the questions of design, monitoring and evaluation of public health
interventions will be recurrent in this thesis. To start on a positive note on this matter,
we could cite the example of smallpox, the first and only infectious disease affecting hu-
mans to ever be eradicated (Fenner et al| [1988). This major achievement was endorsed
by the World Health Assembly on May 8th, 1980 (Breman and Arita) {1980). Yet, only thir-
teen years earlier the World Health Organisation (WHO) estimated that smallpox was still
killing 2 million persons per year. It took a global and coordinated effort of surveillance,
containment and vaccination to definitively free the world from smallpox. Nonetheless,
infectious diseases remain responsible for about 26% of the total number of deaths every
year, with striking disparities: infectious diseases cause 47% of deaths in African countries,
and about 8% in Europe (WHO, 2012b). The socio-economic dimension of the problem ap-
pears clearly, and has motivated studies on poverty traps appearing through the two-ways
retroaction mechanisms that link disease burden to economic health (Bonds et al., 2010).

Ambitious programs are being carried out, among which the project of polio eradi-
cation that started in 1985. The number of polio cases has greatly decreased, from over
350,000 cases in 1988 (Arita et al.,[2006) to 214 confirmed cases in 2012 (WHO, [2012a). Yet,
in 2012 polio remained endemic in Afhanistan, Nigeria and Pakistan, requiring a contin-
uous and careful effort of vaccination to potentially achieve eradication (Kew},[2012). Vac-
cines may not be the only way to go: recent studies suggest that testing systematically all
individuals over 15 every years old, and treating every person diagnosed as HIV positive
with antiretroviral therapy (ART) even before symptoms start to develop could allow HIV
elimination (zero incidence) in the coming decades (Granich et al 2009). However, this
idea is being debated and there is still a long way to elimination: the number of individu-
als accessing to treatment for HIV was multiplied by sixteen between 2001 and 2010, but it
is estimated that over 2 million individuals are still infected every year, of which 75% live
in Sub-Saharan countries (WHO) 2012b). This region is also severely affected by malaria,
that caused over 600,000 deaths worldwide in 2010, among which 86% were children aged
less than five years old (WHO, 2012b). Insecticide-treated bed nets and mosquitoes pro-
liferation control remain the main means to limit the epidemic, until efficient vaccines are
discovered (Raghavendra et al}[2011).

There is a risk that economic difficulties may lead to lower the efforts and investments
towards the fight against infectious diseases (Suhrcke et al., 2011). However, new chal-
lenges will appear in the coming years. For example the tuberculosis virus that already

kills over 1.4 million individuals every year is developing increasing resistance to current
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antibiotics (Shah et al.,[2007). Besides, perspectives of climate change raise concerns about
an increase in the number of disease-bearing mosquitoes, that could augment the number
cases of malaria and other mosquito-borne diseases as dengue or yellow fever (McMichael
et al., [2006). Additionally, emerging diseases that appear for the first time, or may have
appeared previously but are now being transmitted at a very rapid pace, are an important
challenge to surveillance and global response systems. They generally appear following
the adaptation of an animal virus or strain to humans, that constitute a naive population to
invade (Jones et al}2008). Careful surveillance systems are built to avoid the reproduction
of dramatic past experiences. New strains of influenza, for example, killed 50 millions of
individuals in the 1918 Spanish flu pandemic, between 1.5 and 2 million in 1957-58 (Asian
flu) and about 1 million in 1968-69 (Hong-Kong flu) (Hilleman, 2002). Yet, the authors
of Jones et al|(2008) have shown that the emergence of diseases has intensified over the
past 60 years, in part due to the development of intensive breeding, transportation and
urbanisation.

1.1.2 The dynamics of epidemics

The previous overview illustrates the need to achieve a good understanding of disease
transmission dynamics, in order to make an optimal use of limited financial and human re-
sources. We know, for a start, that the potential explosiveness of a disease can be measured
by its basic reproduction number R, that corresponds to the mean number of secondary
infections a newly infected individual causes in a fully susceptible population (Anderson
et al.|[1992). When Ry is over 1, each individual starts infecting more than one individual
and an epidemic bursts. The basic reproduction number can be seen as the ratio between
the rate of infection, i.e. the number of individuals infected each day, and the length of the
infectious period. This illustrates how evolutive compromises can be established: diseases
with short infectivity periods generally lead to high levels of infectivity, we call them acute.
Chronic diseases that induce life-long infectivity can allow for lower levels of infectivity.
A related quantity is the efficient reproduction number, that additionally accounts for the
proportion of remaining susceptible individuals at a given state of an epidemic (Anderson
et al}[1992). It is denoted R, and can be expressed in the following way:

transmission rate

" qx proportion of remaining susceptibles (1.1)

- length of infectivity perio

Epidemics spread until R; becomes smaller than 1, which can occur simply due to the
depletion of individuals susceptible to be infected (they are generally referred to as sus-
ceptible individuals), but also to vaccination campaigns or to changes in the transmission
rate due to prevention measures, holidays, climate, etc. In particular, epidemic waves gen-

erally wane before having infected the total population even in the absence of any external
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intervention. Another consequence of these mechanisms is that not all the population
needs to be vaccinated to maintain R; below one (Anderson et al., [1992). This is called
herd immunity.

Acute diseases are generally explosive and lead to quick epidemic bursts (Read and
Keeling), [2006). Renewal of the susceptible population is then necessary for these diseases
to persist in the population. For very transmittable diseases as measles, births suffice to
maintain it at an endemic level. Other acute diseases evolve along time to escape exist-
ing immunity induced by previous infections, which leads to competing mechanisms be-
tween different strains, or versions of the virus. For example, various strains of influenza
or dengue coexist (Ballegooijen and Boerlijst, 2004). A consequence of the absence or pres-
ence of immune escape is that the vaccine for measles used in 1960 would still be efficient
nowadays (Rota and Bellini}, |2003), while the vaccine for the H3N2 strain of influenza has
been updated 19 times between 1972 and 2001 (Hay et al.| 2001). These mechanisms clas-
sically lead to oscillating dynamics which chaotic properties have been illustrated (Bolker
and Grenfell, 1993} |Gupta et al) [1998; Stollenwerk et al., [2012). In this context, forecast-
ing the impact of an intervention as a vaccination campaign, for example, is a challeng-
ing task. In conjunction to these complex dynamics, the effective reproduction rate R; is
highly contextual, which is also a key complexifying factor. Transmission potentials vary
across the population, for example, in relation to age, risk behaviours, hygiene practices,
etc. This heterogeneity can induce high rates of disease prevalence in some population
clusters (Cori et al} 2009} (Choi et al., [2010; [Melegaro et al.,[2011). Transmission potentials
also vary in time, for example holidays generally tend to strongly decrease the numbers of
contacts kids make with each other every day (Wallinga et al.,2006). Besides, transmission
varies as awareness to a pathogen increases (Ferguson, |2007): this evolution was for exam-
ple observed among the homosexual community when HIV emerged in the 80’s (Cazelles
and Chau, 1997)).

At last, understanding and quantifying all these mechanisms is made harder by the
stochastic nature of diseases transmissions, and by the fact that most of the transmission
process is unobserved. Typically, the only available observations are noisy estimates of
the number of individuals developing symptoms for a specific disease, obtained through
medical diagnosis records (incidence data). It can alternatively consist of estimates of the
proportion of the population infected with a given disease at a given time (we call this
prevalence data). Observation regimes can vary depending on the type of disease and
state of the health surveillance system, but incomplete observation is and will probably re-
main ubiquitous. Indeed, it is very rare to know whom infected whom, and when, neither
do we generally know when individuals stop being infectious. Furthermore, all individ-

uals do not necessarily develop symptoms or consult a doctor. Such characteristics of the
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observation process itself are specifically hard to infer: for example, the estimates that can
be found in the literature of the ratio between the proportion of asymptomatic and symp-
tomatic cases for cholera range from 3 to 100 (King et al., 2008). Modelling these indirectly
observed stochastic processes is an attempt to achieve a better understanding of epidemic
dynamics and to inform public policies. It is a holistic approach aiming at capturing the
elements that play a role on the diffusion of diseases among the population, their interac-

tions and their dynamics.

1.1.3 Inference, a hypothetico-deductive approach

Dynamic models can be seen as a hypothesised probabilistic relation between the trajec-
tories of a system, noted wy.,, and constant quantities grouped in a parameter vector 6.
They induce the definition of a joint probability density p(wo.n, #). Reflecting the fact that
epidemics are only partially observed, the vector w; can be separated into its driving un-
derlying stochastic components z;, and complementary ones z; (w; = {,2,}). From a
Bayesian perspective, the knowledge or the uncertainty over the components of ¢ are en-
forced through the a priori density p(0). For a given parameter vector 6, the likely trajec-
tories of the system are reflected by the density p(wo.,|0). The likelihood of the data y1.,,
under a given scenario is given by an observation model defining p(y1.,,|0, z0:n)-

As suggested in the previous section, models will only ever be a rough approximation
of a complex reality. Yet, the latter does not prevent from following a scientific induc-
tive approach to derive conclusions from the confrontations of models to data. Experience
suggests that this process is likely to revise our understanding of infectious diseases (King
et al.}2008). By exploring the joint posterior density p(zo.r, 20:n, 8|y1.n), information can be
deducted respectively on the indirectly observed driving processes ., and on the param-
eter vector §. The validity of this information shall be critically examined from a three-fold
perspective. First, the uncertainties associated with the data collection should be reflected
in the observation model. Then, the limitations of the model itself should be acknowl-
edged and questioned, while considering the practical feasibility of proposing extensions
to palliate the imperfections of the model. A minimal condition requires the output of the
model to be able to fit the available observations of mechanisms they are meant to repro-
duce (Gelman and Shalizi, 2012). At last, the information derived regarding x¢., and 6,
reflected by the discrepancies between their marginal prior and posterior densities, should
not be considered as hard truth but rather as plausible and testable hypothesis (Popper)|
2002). When two models { M, M>} appear to efficiently fit the data, it is common practice
to either discriminate between them from their Bayes factor (KX = p(y1.n|M1)/p(y1.n|M2))
or using penalised likelihood indicators as the Akaike, Bayesian or Deviance Information
Criteria (respectively noted AIC, BIC or DIC) (Akaike, [1973;|Schwarz, |1978} [Spiegelhalter
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et al.,[2002).

We have presented the process of inference under a Bayesian perspective, and will
continue to do so in the remaining of this thesis, but a similar hypothetico-deductive app-
rocach is generally followed when a frequentist perspective is taken. The main difference
lies in the absence of a prior density over 6 reflecting known or hypothesised information
(although boundaries are classically enforced), and in the interpretations that are drawn

from the exploration of the likelihood surface p(y1.|%0:n, 20:n, 8).

1.1.4 Applications in public health

On top of the plausible hypothesis inferred from available data regarding transmission
dynamics and the values of the key parameters at stake, simulating scenarios of what will
happen in the future or what would happen under a given intervention is central in public
health applications (Garnett, |2002). Naturally, such forecast can only be as good as the
hypothesised models they rely on, so thorough examination of the latter is crucial, and a
critical perspective should be kept regarding projection results.

First, model forecasts are necessary to evaluate the impact of an intervention, which
is not only important in order to ensure that it has achieved its goals, but also to inform
future interventions (Pickles et al.,|2010). Indeed, a decrease (or an increase) in the num-
ber of recorded cases is not necessarily the sign of an efficient (or inefficient) intervention.
Epidemics have their own natural dynamic that should be accounted for (Brisson and Ed-
munds| |2006; [Boily et al., 2007 Pickles et al.,[2010; Baguelin et al., 2012). Hence, quantify-
ing the impact of an intervention, that is the difference between what happened and what
would have happened had the intervention not occurred, requires the simulation of a hy-
pothetical scenario corresponding to the absence of intervention. The work presented in
Baguelin et al.| (2012) illustrates this approach: it simulates epidemics of seasonal influenza
in the absence of vaccination campaigns, in order to assess the cost-efficiency of the yearly
vaccination programme. Naturally, the validity of the generated results is subject to the
quality of the transmission models used in this study, but they remain the only mean to
assess the level of herd immunity indirectly induced by the vaccination of a segment of the
population. This approach to impact evaluation has led to the definition of guidelines that
encourage to thoroughly explore sources of uncertainty (both from models and param-
eters) and assess the robustness of the results drawn from simulations (Drummond and
Jefferson) 1996; [UNAIDS, 2000} [Beutels et al.|, 2002). A different approach to evaluate inter-
ventions is the use of randomised trials. Originally, pharmaceutical clinical trials randomly
assigned a treatment or a placebo version of it to a series of individuals, which would pro-
vide strong evidence of its efficiency or inefficiency. Because infectious diseases spread

among the population, randomisation needs to be made at a community level (hence the
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terminology Community Randomised Trials, CRT). These approaches are appealing, but
they are generally very expensive, raise some ethical concerns, and require very careful
logistics (Boily et al.,[2007; Banerjee and Duflo} 2009). Hybrid approaches combining CRTs
and modelling-based impact estimates are being experimented on interventions against
HIV led in Botswana, Tanzania, Zambia and South Africa (Boily et al.,[2012). In addition,
models can be used to monitor in real time the impact of epidemics, providing estimates of
the effect size that can be expected at the end of the intervention, contributing to informed
real-time adjustments (Boily et al.,2012).

Alternatively, model forecasts are used as a tool to design optimal interventions by
predicting a priori what could be the outcome of different intervention scenarios. An ex-
ample is given in|Choi et al.| (2010), in which different vaccination strategies against human
papillomavirus (HPV) are explored. This preliminary study was rendered critical by the
high price of vaccines against HPV, and by the risk for HPV infections to slowly evolve into
cervical cancer. Scenarios were simulated from a variety of models reflecting the uncertain-
ties regarding the prevalence of HPV infections, patterns of sexual partnership, accuracy
of screening as well as duration of infectiousness and immunity. The resulting conclusions
were consequently conjectural, but they nevertheless permitted to discriminate a priori
between different approaches, and to evaluate the sensitivity of the achieved conclusions.
As such, it provides a robust evidence base for decision-making.

In some cases, the number of cases averted is not the only criteria for which an interven-
tion is evaluated. When a campaign aims at modifying individual behaviour, estimating
how the latter have evolved is crucial. However, the direct monitoring of this evolution
can be biased or uncertain. This question will be addressed in Chapter 2 of this thesis, on
the specific problem of estimating the evolution of condom use by female sex workers in
Southern India following the intervention led by the Bill & Melinda Gates Foundation.

1.1.5 Mathematical formulation of epidemic dynamics
The canonic Susceptible - Infectious framework

The core of the dynamics of infectious diseases epidemics is the mechanism of individuals
infecting each other. This fundamental principle leads to the distinction of infected and
infectious individuals, and individuals that could be infected and become infectious who
are called susceptibles. The way and the rate at which these infections occur can vary,
but they can generally be characterised through the mean number of persons an infectious
individual would infect over a given short period of time if all the other individuals were
susceptible. It is called the transmission or effective contact rate, and reflects both the

number of contacts and their nature, their propensity to effectively induce transmissions
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of the disease. The effective contact rate is generally noted /3.

Supposing that individuals can only be susceptible or infectious, the population can be
divided into two groups also termed compartments. The size of each compartment at a
time ¢ is an integer value respectively noted S; and I;, and the size of the population is
noted N. If the effective transmission rate is believed to be constant and uniform among
the population, the transmission process can be described in the following way:

Reaction Effect Rate
Infection  (Sy,I;) — (S; — 1,1, +1) B3¢l

The term reaction will be used generically to refer to transformations of the system
where the number of individuals in each compartment changes. For each reaction, its ef-
fect will be given along with its hypothesised rate of occurrence. In the present case, the
rate of transition 351, is motivated by the fact that each infectious individual transmits
the diseases at a rate 3, but only a fraction % of the individuals receiving the disease
are susceptible to become infected. This model makes the implicit assumption that infec-
tiousness is memoryless: it does not depend on how long individuals have been infected
for. A wide variety of models are derived from the Susceptible-Infectious (SI) framework.
They are still based on the same principle of homogeneous status and behaviour for all
individuals belonging to a compartment, independently of the time they have spent in it.
Nevertheless, there are different ways in which the realism of compartmental models can
be improved.

A first limitation of the SI framework is homogeneity: structured compartmental mod-
els are built to account for variations of given properties among the population. This het-
erogeneity can be related to a variety of factors including age, geographical location, risky
behaviours, immunity conferred by past infections, etc. A structured version of the SI
model would be based on the partition of the population into k groups labeled by indexes
{1,2, ..., k}. Hence, if infections among all groups are allowed a structured model can take
the form of k? reactions:

Reaction Effect Rate

&)
Infection in group 1 by group 2 (S, 1y = (8™ —1,1% + 1) p12) S 1)
L . : )
Infection in group i by group j (S, 19y = (8 — 1,19 1 1) B3Ua) S 0)

Infection in group k by group k — 1 (S, 157Dy = () — 1, 1Y 1) plkk=1) S pk=)

Although disease transmissions are the central process in epidemic dynamics, account-

ing only for the Susceptible and Infectious statuses is generally unrealistic. Biologically,
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the transmission of a disease allows the invasion of the organism of a susceptible individ-
ual by a pathogen. The phase of invasion is a continuous and progressive process, which
duration is not always negligible. For a given period of time, an exposed individual is
neither susceptible nor infectious. This phase is called the latent period, and the corre-
sponding compartment is generally denoted by E. It is also very common that individuals
only remain infectious for a given period of time, until they recover. The recovery process
can induce a permanent or temporary immunity, during which individuals are neither sus-
ceptible, exposed nor infectious: they are resistent (R). Models that account for the latent
phase and allow for recovery inducing permanent immunity are called SEIR models. They

take the following form:

Reaction Effect Rate

Infection  (Sy, By, Iy, Re) — (Se — LBy + 1,1, Ry) B3I,
Latent phase (S, By, I, Ry) = (Si, B, — 1,1, + 1,R;)  kE;

Recovery (St, By, It , Ry) — (St, By, It — 1, Ry + 1) ~L4

Additionally, the lack of memory of the SI framework is also a restricting assumption.
The motivation for this assumption is the definition of a Markovian system that will be
mathematically more tractable. A consequence of this choice is that, for example, the dis-
tribution of the duration of the latent phase in the SEIR is exponentially distributed with
mean k~!. The latter is known to be unrealistic, as studies have shown that a bell-shape
distribution would be more adapted (Boelle et al., 2011). A classic solution is to artificially
introduce p intermediary compartments, for example Efl), o Et(p ), with leaving rates pk.
This process results in an Erlang distribution for the duration of the latent phase, with
preserved mean k~! and variance (pk)~!. A similar approach can be followed for other
quantities, for example the duration of the infectivity period. We will denote SEPIR a
model relying on p compartments to model the latent phase. For illustration purposes, we
formulate the SE2I R model in a similar fashion than previous models:

Reaction Effect Rate
Infection (S, BV, EP 1L, Ry) — (S, — 1, B + 1L,EP I, R) B3I,
Latent phase 1 (S;, E (1) E(2) I,,Ry) = (S, E t” ~1, E<2> +1,1,R) 2kEY
(S, E ” E(2> I, Ry) — (S, BV E<2> 1,I, +1,R,) 2kE®

(Sy, E“) E<2) 1, Ry — (S, E“) E<2> L —1,R +1) AL

Latent phase 2
Recovery

We focus in this thesis on population-level compartmental epidemic models. The for-
malism they define is common when studying epidemics spreading among a population.
A classic alternative are individual-based models. They are also based on differentiated

statuses as infected, exposed, etc., but the state vector is composed of the state each indi-
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vidual, and potentially of details as the time spent in the current state, the history of pre-
vious infections, etc. Such models allow for a finer representation of heterogeneity among
the population. For example, the effective contact rate of a given group in a population-
level model is constant across the group, whereas individual-level models allow for each
individual’s transmission potential to be sampled from a continuous distribution, and be
individual-specific at any time. Such models, however, require more information to be
parameterised and often render inference computationally prohibitive unless the popula-
tion at stake is small. Typical examples where individual-based models have permitted an
effective exploration of transmission dynamics can nevertheless be found in the literature.
For example, the authors of Cori et al.[(2009) study both the temporal variability and social
heterogeneity in SARS transmission potentials from Hong Kong data where the number
of cases is limited and exactly measured. We could also cite Cauchemez et al|(2011), that
explores influenza transmission dynamics during the 2009 influenza pandemic in a semi-
rural community of Pennsylvania, where cases have been carefully recorded as well as
details on household constitutions and even seating charts for some classes.

An opposite example of a situation where the use of individual-based models is both
feasible and highly profitable is presented in|Demiris and O’Neill| (2005). It exhibits how
information on the effective contact rates among a structured population can be inferred
from only final outcome data indicating how many individuals have been infected in each
household of an isolated and small community. Due to the very limited nature of data, it
is beneficial to reconstruct the history of the epidemic with precision through a complete
graph of whom infected whom.

Markovian jump processes as a reference model

We will now consider a general formulation to describe transmission dynamics from a
population-level compartmental perspective that will serve as a reference in the remain-
der of the thesis. The description of the system is contained in a state vector z;, which
components represent the number of individuals in each compartment of the model. For
example, in the STR model, z; = (S; I R;)”. When the state vector no longer represents
absolute numbers of individuals but fractions of the population in each compartment, the
notation Z; will be used. Every reaction is associated with a couple of indexes (i, j), respec-
tively corresponding to the states individuals leave and go to. All the couple of indexes
are grouped in R, of size m. Births and deaths can be defined in the same manner by
artificially introducing source and sink compartments. The fluxes between compartments
i and j are represented by a stoichiometric vector k("7 € Z™. For example, infections in
an SIR model correspond to an individual leaving the susceptible (S) compartment and

going to the infected (I) compartment. Hence, the stoichiometric vector k1) associated
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with this reaction is ( —1 1 0 )7. Similarly, the vector k(>3 associated with recoveries
is (0 —1 1)T. Reaction (4, ) occurs at a rate r(*/), that depends both on the state of
the system z; and on the parameter values contained in . In the SIR model, for example,
0 = (8,7, S0, Io, N). With these notations, a general description of epidemic models can be

made:

Reaction Effect Rate

reaction 1 2z — z + k001 01z, 9)

reactionl  z; — z + k0D pCndl) (z, 0)

reaction m 2, — 2y + kUmodm)  plmaim) (2, @)
Which defines a Markovian jump process:

Reference Markovian jump process epidemic model

P(zis = 2z + k0D |z) = 709 (2,0)6 + 0(5)  forany (i,j) € R (1.2)
P(zrys = zlz) = (1= Y 707(2,0)6) + 0(9)
(4,5)ER

This mathematical formalism is able to reproduce stochasticity observed among finite pop-
ulations, that is termed demographic stochasticity. When transition rates can be written as
r(2t,0) = N7(z/N,0) = N7(%,0), they are said to be density-dependent. We will assume
in this thesis that all transition rates are density-dependent, as it is generally the case when
modelling epidemics and because transition rates can always be rewritten into this form.

The infinite population approximation

When studying systems with large populations or for theoretical studies, demographic
stochasticity is commonly neglected. Under the density-dependance assumption, when
the size N of the populations tends to infinity the dynamic of the normalised state variable
% converges in distribution on any bounded time interval (Ethier and Kurtz, [1986) to the
one of an Ordinary Differential Equation:

Epidemic model under

infinite population approximation

dz (7)) ( 5
= Z k2709 (2, 60) (1.3)
(i,7)ER
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This system of equations, resulting from the mass action principle, is analog to models
used in pharmaco-kinetics to monitor reactions among molecules in a solution. It is not
always the case in epidemiology that populations are large enough to apply this approxi-
mation. Besides, even in large populations it may happen that the size of some compart-
ments, typically I;, gets close to 0 which is a limiting case of the approximation. In such
cases, demographic stochasticity may play an important role.

Multinomial approximation of demographic stochasticity

The reference Markovian jump process model is generally not a tractable solution to ac-
count for demographic stochasticity. Indeed, it apprehends each reaction occurring in the
system, which number increases with the number of individuals. As a consequence, track-
ing or simulating exactly the evolution of the system requires an increasingly fine dis-
cretisation of time, which quickly becomes computationally prohibitive (Breto et al.,[2009).
Different solutions have been proposed, among which the approximation introduced in
Breto et al.| (2009) that accounts for the possibility of multiple reactions over short periods

) is the number of occurrences of

of time through a multinomial approximation. If Nt(i’j
reaction (¢, j) up to time ¢, and ANt(i’j ) = Nt(i’g) — Nt(i’j ), a Markov chain can be defined in

the following manner through its infinitesimal generator:

Epidemic model under

multinomial approximation

o . ¢ ) ) " o n@dD
P (AN =0 (i) € Rl ) = B T[4 MO | 1300 | ] (») +o(8)
i=1 k#i J#i
ars =zt y KCDANSD (1.4)
(i,j)€R
We use the following notations, with 7("/) = 0 if (i, j) ¢ R:
= Zt(i) _ Zn(i,k)
ki
plid) — plid) (Tu’j)(zt, 9)5) = (1—exp{ =S rtRs Y | pGD5 ST riR
ki ki

A4

M = ‘ - - L multinomial coefficient
( RD 1) D) (i) ) ( )
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The authors of Breto et al.| (2009) have proved that this infinitesimal generator charac-
terises a properly defined Markov chain in the limit § — 0. It allows efficient simulation
independently of the size of the population, and has been used to introduce an additional

source of stochasticity: white environmental noise.

Stochastic rates as a mean to capture environmental stochasticity

As stated in Section although models can be made more complete by extending the
number of compartments used to represent the state of an epidemic, they remain an ap-
proximation of a complex reality. Some factors may always be missing, or the role of these
factors may be simplified. Drivers as climate or human behaviour can vary in an unpre-
dictable way, modifying the rate at which the reactions of the model occur. For example,
temperature and absolute humidity, that have been shown to be negatively correlated with
transmission of influenza, exhibit intense variability (Shaman and Kohn,[2009). This source
of variability is called environmental stochasticity. The authors of Breto et al.| (2009) have
motivated the modelling of this source of uncertainty through an integrated noise process
with independent, stationary and nonnegative increments, that can be used as a multi-
plicative white noise over the transition rates. Although there are different alternatives, a
Gamma distribution is generally used to model these independent increments.

Under the multinomial approximation setting, with Al“gi’j ) = FETQ - ng’j ) being a
noise increment with Gamma distribution of mean ¢ and standard deviation vdo (), a
white environmental noise has been introduced in the following manner, by multiplying

transition rates r(*/) of a series of reactions R¢ € R by random increments AI‘EM ) instead
of ¢:
Epidemic model with stochastic rates
under multinomial approximation
» N c _ ' RN
P (ANt(”) =9 (i,5) € R|zt) — B ([[{M® [1=-3p | ] (pm)) n
i=1 ki i
2t4s = 2t + Z k(l’J)ANIS?J)
(L.7)eR

We use the following notations, with () = 0 if (i,j) ¢ R and AT\"") = §if (i, 5) €

o(d)

(1.5)
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R\ Re:

= Zt(i) _ Zn(m)

ki

plid) — plisd) (T(i,j)(zt,g)Argi,j)) —[1-expd - ZT(“’“)AFf’j) T(i,j)AFEi,j)/Zr(i,k)AFEi,j)

ki ki
() Zt(z) . . . .
MY = DD i) (i) ) (multinomial coefficient)
Demographic Environmental
stochasticity stochasticity

/ stochastic rates

multinomial

/ approximation

Reference Markov

jump process

epidemic model
stochastic rates
infinite /

population
approximation

Figure 1.1: Representation of the different epidemic models introduced in the thesis

Again, the authors of Breto et al.| (2009) have proved that this infinitesimal generator
characterises a properly defined Markov chain in the limit 6 — 0. Alternatively, environ-
mental noise can also be introduced in the infinite population setting, defining a stochastic
differential equation driven by Gamma noise:

Epidemic model with stochastic rates

under infinite population approximation

di; = Z k(i’j)f(i’j)(z't)dl—‘(i’j)—l— Z k(i’j)f(i’j)(z’t)dt (1.6)
(i,j)eR® (4,J)ER\R®
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Variations in climate and human behaviour, however, cannot always be modelled as
white noise as they have been shown to exhibit complex seasonal and inter-annual patterns
(Meehl, [1987) influencing epidemic dynamics (Viboud et al., 2004). We explore in this
thesis an alternative description of environmental noise by allowing certain parameters
to vary in time in order to capture the influence of time-varying drivers of epidemics.
A graphical representation of the different mathematical formulations of epidemic models
that have just been introduced is provided in Figure[1.1, When the size N of the population
tends to infinity, it is expected that the models based on the multinomial approximations
converge to the ones defined under the infinite population approximation. A complete
theoretical study of the nature of this convergence, however, has not yet been contributed

to the literature to our knowledge.

Modelling observation regimes

Observation regimes of epidemics can take a variety of forms. Examples of data used to
study their course are incidence, prevalence, and death counts. A substantial amount of
uncertainty is generally associated with the collection of such data, principally due to the
following reasons:

non-report: depending on disease severity, there can be a substantial proportion of individ-
uals that do not consult a doctor, which leads to unrecorded cases.

asymptomatics: a proportion of the individuals infected with a disease will be infectious
without developping any symptom. For influenza, virus inoculation to voluntary
individuals have revealed that the proportion of asymptomatics could vary between
25% and 40% (Carrat et al.,|2008).

false positives: different diseases can induce similar symptoms, which leads to uncertainties
in diagnosis records. For example, it has been estimated that only 40% of patients
that consult doctors for influenza-like symptoms are truly infected with influenza
(Finkenstadt et al., 2005).

A general model for incidence data is the binomial distribution. The number of recorded
cases on week i is denoted by y;, a accounts for the rate of false positives and p is the re-
porting rate (which incorporates asymptomatics). Under these notations, the probability
of recording y; new cases over week i, if Inc; is the true number of new infections having
occurred over the same week, is given by Binom((1 — o)y;, Inc;, p). In the SEIR model,
for example, incidence is defined as f kE.dt: cases can only be detected after the onset of
symptoms. Similar observation models can be derived for prevalence or attack rates. Un-

der infinite population approximations, a lognormal observation density can be used. To
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preserve the Markovianity of the model and of the observation process, an artificial addi-
tional component can be added to the state vector to account for the accumulation of new
cases over an observation period. For example, the state vector for an SEIR model that will
be observed through incidence can be formulated as {S¢, E¢, I+, Ry, Inc; }.

1.2 Bayesian inference for indirectly observed stochastic processes

In this section, we propose a general formulation for indirectly observed stochastic pro-
cesses, and present a series of notions that will serve as a basis for further development
along the thesis. The problem we address is the efficient exploration of the joint poste-
rior density p(zo:n, 0|Yo:n), Where xq., is the path of the driving stochastic process, and 6
is a vector of constant parameters playing a role in the dynamic and observation of the
system. More precisely, we will see that for any statistic that needs to be computed from
the target density p(zo:.n,0|yo:n), unbiased estimates relying on an approximate density
ps (238 lyo.,) based on a time discretisation with resolution § can be obtained up to Monte
Carlo error. If the inference algorithm is robust to refinements of the resolution §, both the
bias due to discretisation and the variability induced by Monte Carlo error can always be
reduced by increasing the computation time. Inference methods for which these sources
of error can be rendered negligible will be called asymptotically exact in this thesis: in such
cases, the hypothetical facts derived from the confrontation of a model to a given dataset
are intrinsic to the model. Thus, models can be tested and compared, independently of the
utilised inference algorithms.

Lastly, there appears to be a gap between the models and methods that are being used
by practitioners to design and evaluate public health interventions, and the models and
methods that have been appearing in the literature in the recent years (Brisson and Ed-
munds| |2006). This observation has motivated the development of plug-and-play algo-
rithms; in this perspective, ease of use and automatic calibration will be central concerns

in this thesis.

1.2.1 General framework for indirectly observed stochastic processes

We are interested in studying the paths and parameters of underlying stochastic processes
that deterministically drive the trajectory of discretely observed auxiliary variables ob-
served with noise. The driving process will be noted ;. The auxiliary or complementary
components, denoted z,, are generally needed to obtain a complete description of the sys-
tem and bridge the gap between the process of interest and the available observations of
the system. The concatenation of vectors x; and z, form the state vector w, = {x¢, z,}. We

allow in this general setting both z; and z; to be uni or multi-dimensional, and either real
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or integer-valued. We note z.,, and zy.,, the corresponding trajectories between times ¢
and t,. More generally, state variables with subscript ¢ will be an abuse of notation for
their value at time ¢;. The model can then be defined in the following way:

20:n = f(x(]:na 9) (17)
p(yilzi, 0) = he(zi, 0)

This general formulation encompasses all the problems explored in this thesis. It nat-
urally includes the case of directly observed stochastic processes, by setting z; = z, al-
though in that case specific solutions may be more efficient than the ones explored in this
thesis. An assumption often made in this context imposes the Markov property on w.
Markovian state-space model can simply be defined through their instantaneous dynamic
and the observation process:

Tiis ~ p(|2e, 26, 0)
246 ™~ f(Zt, T, 9) (18)
p(ilze,, ve,) = ha(24,,0)

Note that we make the potential interaction between z; and z; explicit in as z
may carry information about past values of the driving stochastic process. We will now
give examples of such processes, starting with the general formulations of compartmental
epidemic models introduced in the previous Section.

Compartmental epidemic models

We illustrate here how the different epidemic models that have been introduced in the pre-
vious section (see Figure[L.T) can be formulated as indirectly observed stochastic processes.
The simplest stochastic model is defined under the infinite population approximation by
introducing environmental stochasticity through stochastic rates. Noise increments can be
contained in a vector {wr(i’j) ,(i,7) € R° }, with R¢ C R containing the indexes of reactions
with stochastic rates:

o —drf D for () € RS

dig= Y KO G 0l YT RO (5, 0)de
(i,7)ER* (i,j) ER\Re



40 CHAPTER 1. INTRODUCTION

For illustration, we also provide the formulation of epidemic models with stochastic
rates under the multinomial approximation in the indirectly observed stochastic process
framework. It additionally involves =¥ “? which denotes the total number of times reac-

tion (4, j) has occurred up to time ¢:

2 =ar for (i) e R® (2F" =6 if (i,j) € R\ Re)

n
c (i,9)
(i,5) (i,4) (i,5) (i,9) i i i)\
p(Iﬁ_(sJ _ xi\; J +ﬂ(i,j)\9ﬂiv J ,J{ j %) =E H M®|1= Zp(z,k) H (p(m)) +0(9)
i=1 ki Ji

i i) N(d)
2t4s = 2t + E k(ld)l’t
(1,4)ER
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Hypoelliptic diffusions

Diffusion processes, that are a classic example of stochastic processes, will be recurrent
along this thesis. They correspond to the solutions of stochastic differential equations writ-

ten in the following manner:

dwy = py(wy, 0)dt + LdBE (wy, 0) (1.9)

The matrix L is referred to as a dispersion matrix, and dB{? is a Brownian motion with
diffusion matrix Q. This formalism, is also used in [Sarkka| (2006), and allows the flexible
introduction of various types of correlated and uncorrelated noise that will be explored in
Chapter 2. Hypoelliptic diffusions correspond to cases where the matrix LQL” is degen-
erate. Without loss of generality, these systems can all be reformulated under the Marko-
vian indirectly observed stochastic processes framework (Eq , with LQL" being non-
singular:

day = (x4, 0)dt + LdBE (wy, )

dzy = f(z, 2, 0) = pi (x4, 2,0)dt

(1.10)
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Integrated Brownian Motion

The Integrated Brownian motion (IBM) will be utilised in this thesis as a way to derive
a differentiable path from a diffusing object. It can be simply defined in the following

manner:

dCUt = O'dBt (1 11)
d2t+6t = J]tdt .

Volatility models and extensions thereof

The Stochastic Volatility models, ubiquitous in financial applications, are a classic example
of indirectly observed diffusion processes formulated as stochastic differential equations.
They model the price u; of an asset as a diffusion process which volatility term is driven by
a quantity v, that is also stochastic and follows a diffusion process. Prices are considered to
be exactly observed at discrete times (¢;);=1.,, defining an observation vector (y;);=1.n. A
general class of Stochastic Volatility models can be written in the following way (Heston)

1993), with dBt(l) and ngQ) being independent Brownian motion increments:
dus = (fry — 0y (v¢)?/2)dt + ou(vt)dB,gl)
dve = K£(py — vy)dt + ovngz) (1.12)

Yi = Uy,

They can be put in our indirectly observed diffusions framework:
dxy = k(y — x4)dt + 0,d By

t
zt:/ oy(x5)%ds (1.13)

ti—1

Yi = N(icr + puts —tic1) — 2¢,/2, 2t,)

In Chapter 4, we will develop efficient inference methods for fractional versions of the
stochastic volatility models, where the stochastic volatility is driven by non-independent
fractional Brownian motion increments.

1.2.2 Simulation schemes

Generally, the models that have just been considered are intractable: it is not possible to
simulate trajectories from them without relying on time discretisations. We present here

the schemes that can be used to simulate paths from the previously mentioned models. As
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the discretisation time step tends to 0, it is expected that the probability densities implied
by the discretised models converge to the one of the continuous-time model. The valid-
ity of this convergence result, as well as the nature and speed of convergence, will vary
depending on the model and discretisation scheme.

Simulating paths of stochastic differential equations

One of the simplest ways to sample from a stochastic differential equation, whether it is
hypoelliptic or not, is the Euler-Maruyama algorithm (Kloeden and Platen), [1999; [Sarkka,
2006). The strong convergence of this algorithm is of order O(§'/2), but as in the determin-

istic setting Runge-Kutta algorithms allow for higher orders of convergence.

Algorithm 1 Euler-Maruyama algorithm: sampling from an SDE (Eq.
Initialise zg, t =0
while t<T do
Draw ¢ from N(0, Q(t)d)
witss = wi'* + p(wi*,0)8 + Le
t=t+946
end while

Simulating from the reference Markov jump process epidemic model

Doob and Gillespie have explored means to generate exact simulations from the Markov
jump process epidemic model of Eq. [1.2|(Doob)} (1942} 1945; Gillespie| [1977). Given the state
z; of the system at a time ¢, the Doob-Gillespie algorithm relies on the simple probability
distribution of the following event:

"no reaction occurs during [¢; ¢ + 7 and reaction ¢ happens at time ¢ 4 7"

Algorithm P follows, for the exact exploration of p(z;|6) in continuous time. However,
its computational cost increases exponentially with the size of the population, through the
necessary decrease of time increments 7. Alternative means to simulate from the Markov
jump processes used in epidemiology have been explored. Gillespie, again, proposed a
T — leap algorihtm that serves as a basis for the multinomial approximation introduced in
Breto et al.| (2009).

Simulating epidemics through multinomial processes

The epidemic model resulting from the multinomial approximation, with stochastic rates
(Eq , is formulated in terms of its infinitesimal generator. From this formulation, an
Euler simulation scheme can be directly derived, that is presented in Algorithm 3]
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Algorithm 2 Doobs-Gillespie algorithm

Initialise z(0), t =0

while t<T do
Sample a lag 7 with p(7) = (Z(i,j)E’R r(09) (24, 0)) exp (—T S uner ) (2, 0))
Sample a reaction (i, j) knowing that p(-9) = -9 (2;,0)/ 37 ). e 7% (24, 0)
2(t+71)=2(t) + k;
t=t+T1

end while

Algorithm 3 Euler scheme for Markov Jump processes
Initialise z(0), t =0

while t<T do
for each incoming compartment i do
Generate noise increments A7) = I‘gf(s) — 1" ~ Gamma(6/ TG O hq)

Generate process increments
(ANGY L ANGTY ANSTD AN ROY

multin(z{"”, p{" ", .. pf™ Y pt Y plt 1 = 3 )
Withpgw) = (1_exp{— Ek (k) (24, 9)AF£Z7k)})7‘(i’j)(zt, Q)Argm)/ Zk r(GK) (2, Q)AFENC)

end for
for each incoming compartment & do

Seta); = R + 3, AN
end for
t=t+T1

end while

(for notation simplicity, we consider R = R¢ = [1,¢]?)

Non-Markovian stochastic processes : the fractional Brownian motion example

Because of the non-Markovian property of the fractional Brownian motion, sample paths
cannot be iteratively generated as in the previous examples. To obtain a discretised path
of length NV and step size §, a direct solution would be to sample a vector e ~ N(0, ) and
to multiply it by the Cholesky decomposition of the covariance matrix defined by:

2t 2H 62 2H 2H 2H
Yim = l—m+1 +—l-m-1 — 67l —m ifl#£m
211_521‘[

However, both obtaining the Cholesky decomposition of ¥ and multiplying it by ¢ have
a O(N?) complexity. An O(N log N) implementation can be obtained by diagonalising %
using a Fast Fourier Transform algorithm. This approach was first suggested in |Davies
and Harte| (1987) and will be presented in further detail in Chapter 4.
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1.2.3 The Monte Carlo Markov Chain machinery
Founding principles

Monte Carlo Markov Chain (MCMC) methods are used to estimate properties of proba-
bility densities in cases where analytic formulas cannot be directly derived, and samples
cannot be directly generated. If we note z (z € R?) the random variable of a target density
7(.), MCMC algorithms only require the ability to compute 7(x) for any z, up to a mul-
tiplicative factor. Their founding mechanism is the construction of a Markov chain that
randomly explores R? taking values (1), 2, ... (N)) which will asymptotically mimic
samples drawn from the target distribution. The chain is defined through a transition
kernel K that determines the transition probability p(.|z(*"1)). The chain converges to an
invariant distribution if K is irreducible (from any state there is a positive probability to
visit any other state) and aperiodic. The detailed balance condition is a sufficient but not
necessary condition to ensure that the invariant distribution of the chain is the target den-
sity m:

7(z) K (2 V]2®) = 7(2C D) K (2@ |20-Y) (1.15)

A critical dimension of MCMC algorithms is their efficiency in mizing, i.e. in gen-
erating samples that are as independent as possible. Unless K(.|z(?)) is equal to 7(.), N
samples of the MCMC trajectory will not provide the same amount of information as N
independent and identically distributed (i.i.d.) samples from the target density 7. This can
be quantified by the Effective Sample Size (ESS), for example, that estimates how many truly
iid. samples the MCMC output is equivalent to (Geyer, [1992; Brooks and Roberts), 1998):

N
max

ESS({zWM 2@ 2N = -
42500y Correl({a®), a0, {2, 20 })

(1.16)

This indicator will be used in this thesis to assess the efficiency of MCMC algorithms
utilised to explore the complex and high-dimensional target density p(zo.n, #|y0.» ). Before
diving into the presentation of basic and more advanced MCMC algorithms, we introduce
the most classic way to define transition kernels that respect the detailed balance condition:
the Metropolis-Hastings step (Metropolis et al.,1953; Hastings) [1970). At each iteration of
the chain, a proposed value z* is sampled from an importance distribution ¢(.|z(")), and
accepted with probability:

m(a*)q(z?]2%)

]. . TN~ <
N @®)g(@ )

(1.17)

Otherwise, z'T! is set equal to z’. The proportion of proposed samples that have been
accepted determine the acceptance rate. The Metropolis Hastings step allows the use of
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any importance distribution ¢ respecting the irreducibility and aperiodicity conditions, al-
though other choices are also possible. It is generally observed that increasing the dimen-
sion of = decrease the acceptance probability. The Gibbs algorithm offers a first solution
to this problem: at each iteration of the chain each component (or group of components)
of z is updated independently, conditionally on the values of the others. This strategy
can be useful when the marginal conditional density of the components being updated is
tractable or easy to be sampled from. It can nevertheless induce poor mixing if the compo-
nents being updated are strongly correlated to the ones they are being conditioned on.

Random walk Metropolis algorithm: theory and adaptive implementation

Algorithm 4 random walk Metropolis algorithm
0)

Initialise 2
fori=0to N do
Sample z* ~ N (2(), £9)
Accept z* with probability 1 A :((;(;))

end for

The random walk Metropolis is based on Metropolis-Hastings steps using a multivari-
ate normal importance sampling distribution: ¢(.|z(?) = N'(2(?), £9) (see Algoritm @) The
efficiency of this algorithm on a given problem depends on the calibration of the covari-
ance matrix ¥¢. Theoretical results have been demonstrated in the situation where the
target distribution 7 is a multivariate normal density:

Proposition 1.1. When m is a multivariate normal density, the acceptance rate that maximises the
mixing efficiency of the random walk Metropolis algorithm is 23.4% (Roberts et al.,|1997)

Proposition 1.2. When w is a multivariate normal density, optimal results are achieved by using
27 = 2382 Cou(n) (Roberts et al.,[1997).

When the target distribution is not a multivariate normal density, these results are ex-
trapolated and followed as rules of conduct. They were used to derive adaptive versions
of the random walk Metropolis algorithm, based on a decomposition of X7 into AX. A first
adaptive algorithm exploits the monotonicity of the acceptance rate as a function of A. The

Metropolis-Hastings ratio of a random walk Metrpopolis algorithm is 7;((%1:)) Hence, if the

mass of the target density is concentrated in a certain region and « is in this region (which
is the case with high probability if the chain has converged), increasing the value of X in-
creases the risk for z* to escape that region, leading to low values of w(z*) and rejection of

T;((x;)) close to one

x*. On the contrary, excessively small values of A will induce values of
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and high acceptance rates. Therefore, the targeted acceptance rate can be approached by
iteratively adapting A with a cooling rate a € [0; 1]:

i1 = \i x a'(AccRate; — 0.234) (1.18)

A second adaptive algorithm relies on the fact that, as the chain progresses, the gener-
ated samples are meant to mimick i.i.d. samples generated from the target distribution =.
Consequently, the empirical covariance matrix obtained from these samples can be used as
a proxy for the optimal covariance matrix % x Cov(7). The resulting adaptive algorithm
proposed in [Roberts and Rosenthal| (2009) is based on the following importance sampling

distribution:
. 9382 N2.38% .
q(Jz@P) = aN (m(l)7)\d2(o)> +(1—a)N (a;“), Adz“)) (1.19)

With ¥, being the empirical covariance matrix obtained from the i samples generated
by the chain. The use of a mixture of normal distributions (« is generally set to 0.05) is
meant to avoid convergence to local modes.

Gradient-driven moves: the example of the Metropolis-Adjusted Langevin Algorithm

The Metropolis-Adjusted Langevin Algorithm (MALA) allows higher mixing performance
than the random walk Metropolis algorithm by incorporating information about the gra-
dient of the target distribution. The algorithm is based on the Langevin diffusion with

stationary distribution 7, defined by the following SDE:
1
dl’t = §V log W(Jff)dt + dBt, (120)
From this diffusion, an importance sampling distribution can be derived:
. £ .
q(Jz) =N (96(1) + §V10g7r(x(l)),52q) (1.21)

This first-order Euler discretisation of the Langevin diffusion introduces an approxima-
tion that has to be corrected for by a Metropolis-Hastings step. Again, it has been proved
that in the case of a multivariate normal target density the optimal acceptance rate for
the MALA is 57.4% (Roberts and Rosenthal| [1998)). The classic version of the MALA is
presented in algorithm 5]

1.2.4 Exploring sequentially structured distributions: particle filtering

A companion alternative to Monte Carlo Markov Chain algorithms are Sequential Monte
Carlo algorithms. Their founding principle is the exploration of probability densities that



1.2. BAYESIAN INFERENCE 47

Algorithm 5 MALA algorithm
0)

Initialise
fori =0to N do
Sample 2* ~ N (zV) 4+ £V logm((V),eX9)
Accept z* with probability 1 A :(Eﬁ))) exp(—h(z*) + h(z®)),
where h(z) = Vlogm(z)T (29)~1V log 7r(x)
end for

can be decomposed as a product of terms. These terms are aggregated progressively in
order to achieve a smooth transfer from a simple initial density corresponding to a single
term of the product, up to the full target density. The particle filter terminology is used
when SMC approaches are applied to the exploration of a Markovian, timely structured
density. A smoothing version of the most classic particle filter, referred to as Systematic Im-
portance Resampling algorithm, is presented in Algorithm 6] (Doucet and Johansen), 2009).
This algorithm can provide a sample Zo.,, from Py (zo.n|y1:n), and an unbiased estimator
Dps(Y1:n]0) of p(y1:n]0). Under mild assumptions, the authors of |[Del Moral (2004) and |An-
drieu et al.|(2010) have proved the following properties:

. Cp
Hp}{f(xo:nwl:n) _p($0:7z,|y1:'n)” < 7 (122)
~J
P2 (yinl0) . D
Var(—2LZ 7y < Zn
o = 7

Where C), and D,, are constants depending on the model and on the number of ob-
servations n. The distance ||ps — p1]| is defined as the total variation distance between the
two distributions. Consequently, the particle filter is a solution to achieve asymptotically
exact estimation of the marginal likelihood with precisions increasing as O(J/2), where .J
is the number of particles. In addition, due to the intractability of the models considered
in this thesis it is necessary to discretise time with a resolution J in order to sample from
P(Ti:it1]T4i, 0). When referring to the discrete representation of a path, the superscript dis
will be used; for example for a time step J, the discrete skeleton of z; will be denoted by
@S = {xg, 25,725, .., 24, }-

An approximate solution to the filtering problem for nonlinear and stochastic dynamic
models is provided by the Extended Kalman Filter (EKF) algorithm (Jazwinski, 1970; Sarkka,
2006). We consider its continuous-discrete version tailored to dynamic models formulated
as stochastic differential equations, with p corresponding to the drift component of the
model (which Jacobian is noted V), and diffusion and dispersion matrices being respec-
tively noted @ and L. The EKF, described in Algorithm [/} is based on a gaussian approx-
imation of the observation process i (which Jacobian is noted V1), resulting in a mul-
tivariate normal density for p(z;|yo.,) characterised by its mean m, and covariance C;. It
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Algorithm 6 Particle Smoothing algorithm for indirectly observed stochastic processes

Set L =1, Wéj) = %, sample (acéj))j:l,,,,J from p(z¢|0) and calculate (z((jj))J 1

fork=0ton—1do
for]—ltOJdo

Sample (:vk k+1) from p(z{% . ||z, 0) and calculate (z,i{,l+1)

Set a¥) = h(Yg+1, Z;(H)la 0)

end for o

SetT/karl—Z ;and L=Lx $3 a

Resample (zéj,zﬂ, m(() LH) ,...,J according to (ngi-)l)'
end for

Algorithm 7 Continuous-discrete Extended Kalman Filter algorithm

Set L = 1 and initialise the mean state m; and covariance C;
fork=0ton—1do
forj=1to J do
Integrate between ¢; and t41:
dgt“ = M(mh 0)
9 = Vu(my, 0)Cy + CyVp(my, 0)T + LQLT
Compute the prediction error err = y;, — 1 (my, 6), and the following quantities:
S = V’(/J(mt, )CkVQZJ(mt,H)T + Ry
K= CtVZb (mt, )S_l
Update the mean state and Covariance:
my = my + Kerr
Ct = Ct - KSKT
Update the likelihood L(0) = L(#) x N (err;0,S)
end for
end for

provides with a deterministic and biased estimate p”% ¥ (y;.,|0) of the marginal likelihood,
for any discretisation of time with step 4.

1.2.5 Full inference for stochastic processes

Sequential Monte Carlo techniques are a natural framework to explore p(zd%|yi.,,0). In
order to account for the uncertainties regarding the parameter vector 6, we are aiming for
the exploration of the joint posterior density p(z@s, 0|y1.,,). Because of the high dimension
of the target density, classic MCMC methods fail to be efficient and robust solutions. The
particle MCMC algorithm offers a solution relying on the efficiency of particle filters (An-
drieu et al., 2010). The principles of its particle marginal Metropolis Hastings version are
illustrated in Algorithm [8} the high-dimensional density exploration problem is reduced

to the design of an MCMC algorithm over 6, based on the likelihood p,(y1.,|0) estimated
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by a particle filter conditioned on . A second version of the PMCMC, the particle Gibbs
algorithm, has been introduced in|Andrieu et al.|(2010). This algorithm will be presented
in further details in Chapter 2 of this thesis. The authors of |[Andrieu et al|(2010) have
shown that the algorithm was asymptotically exact for a given discretisation of time, as
under classic assumptions when the number of iterations N? tends to infinity:

1975 (56, 0 lg1:m) = P, Olyin)l| 0 asi — oo (1.23)

Every iteration of the MCMC algorithm implies running a particle filter to explore the
range of likely paths of the system under the current value of §. Consequently, the PMCMC
is a computationally demanding algorithm; its complexity if of the order of O(nJN?). The
mixing efficiency of the MCMC scheme will be critical in the applicability of the algorithm.
In the absence of techniques to efficiently estimate the marginal score Vg log p(0|y1.,,), ran-
dom walk Metropolis algorithms are generally used. Even in its adaptive form, the pa-
rameterisation of its initial covariance matrix 3¢ will be a central issue: we will explore in

Chapter 2 a mean to automatise this process, rendering the PMCMC approach plug-and-
play.

Algorithm 8 Particle MCMC algorithm (particle marginal Metropolis Hastings version)

Initialise (%),
Use Particle Smoother to compute p(y.,/0(*)) and sample m(()?,)l from p(x3% |y1.,, 0)
fori = 1to N? do

Sample 0* from ¢(.|0(*)

Use PS to compute L(6*) and sample z,,, from p(z8is |yi.p,, 0%)

Accept 0 (and x.,,) with probability 1 A LL(((’*)‘]((’(Z)'Q*)

| 6)q(@100)
Record A(+D and 2™
end for

An alternative solution is the SMC? algorithm presented in [Chopin et al|(2012). It
explores both the probability density of xg., and # with an SMC algorithm, starting from
the initial target p(zo, §) and progressively incorporating the available observations. The
global complexity of this algorithm is similar to the PMCMC, but its ability to automati-
cally adapt the number particles being utilised and to progressively learn from previous
samples what could be seen as the equivalent of the covariance matrix ¥¢ are promising
features. At last, an asymptotically exact and plug-and-play solution to the frequentist
problem of maximising the marginal likelihood p(y|#) has been proposed in Ionides et al.
(2006) and later in lonides et al.| (2011). This approach has been used for several applica-
tions in epidemiology, and it can be used to efficiently initialise the Markov chain of the
PMCMC by incorporating the prior density into the maximised function of 6.
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1.3 Plan and contributions of the thesis

1.3.1 Capturing the time-varying drivers of an epidemic using stochastic

dynamical systems

The intrinsic dynamics of epidemics have been extensively studied: predictability remains
limited by the intrinsic stochastic and sometimes chaotic nature of diseases transmission,
but mathematical formalisms exist to address these aspects. The variability of human be-
haviour, however, remains an important source of uncertainty in epidemic models. Cross-
sectional heterogeneity is a complex matter that has led to the development of structured
epidemic models accounting for age classes, contact patterns specific to schools, work-
places, households, etc. Variations of of human behaviour in time, however, have been
seldom considered. The need to explore this question further has been expressed in |Fer-
guson| (2007) and |Funk et al|(2010), based on several examples of spontaneous changes
in human behaviour also referred to as prevalence-elasticity of human behaviour. Varia-
tions of behaviour in time, as well as other time-varying drivers of epidemics as climate,
are generally reflected by the evolution of some key parameters of diseases transmission
models. The use of diffusion processes to model the variations of such parameters was
proposed in [Cazelles and Chau (1997) and |Cori et al.| (2009). The first study estimated
the evolution of risk behaviours among the gay community in Paris from HIV cases data,
using an approximate inference framework. In|Cori et al[(2009), a more elaborate infer-
ence method was used that still required crude discretisation of time, and strongly relied
on the exact observation scheme of SARS, the pathogen at stake. We propose in the sec-
ond Chapter of this thesis a generalisation of these previous studies, and illustrate their
applicability on weekly incidence data for influenza in the context of the 2009 HIN1 pan-
demic. This chapter is mainly based on an article published in Biostatistics, written jointly
with Kostas Kalogeropoulos (LSE) and Marc Baguelin (Health Protection Agency). The
development of an extended framework towards the combination of different types of
environmental and demographic stochasticity, with corresponding stochastic differential
equation approximations, is a subsequent development of this work.

1.3.2 Estimating changes in condom use from limited HIV prevalence data

Epidemic models are increasingly used to monitor the impact of interventions. In the third
Chapter of this thesis, we explore the applicability of the novel methods introduced in
Chapter 2 to capture the evolution of prevention behaviours, condom use by female sex
workers in this case, from limited prevalence data. This study is conducted in the context
of Avahan, the large-scale intervention of the Bill & Melinda Gates Foundation against

HIV in India. However, the limited nature of data is common characteristic of large-scale
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interventions, due to the cost of regularly and consistently collecting epidemic data. We
illustrate that good levels of sensitivity can be achieved, allowing to effectively assess the
impact of interventions while controlling the risk of over-estimation. Thereafter, we ap-
ply the method to evaluate the evolution of condom use in ten districts targeted by the
intervention, and discuss the possibility of integrating survey-based estimates of condom
use to reduce uncertainty. This chapter is mainly based on an article currently under revi-
sion, written jointly with Kostas Kalogeropoulos (LSE), Peter Vickerman (London School
of Hygiene and Tropical Medecine), Michael Pickles (Imperial College) and Marie-Claude
Boily (Imperial College). The generalisation of the method to different districts and in-
corporation of survey-based condom use estimates is a subsequent development of this
work.

1.3.3 Bayesian inference with the advanced HMC algorithm

In spite of the recent developments for asymptotically exact and plug-and-play inference
(Lonides et al.,[2006; | Andrieu et al., 2010;|Chopin et al.} 2012), computational costs remain a
limiting factor in the exploration and application of models in epidemiology. Both the PM-
CMC and SM C? algorithms rely on the exploration of conditional densities p(zo.,|y1.n,6)
for series of values of §. Hence, the computational complexity of both algorithms is of
the order of O(nJN?) with n being the number of available observations, J the number
of particles being used, and N? the number of considered values of §. Furthermore, the
number of necessary particles in the general case grows exponentially with the dimension
of the driving stochastic process (Daum and Huang| 2003). We propose an alternative so-
lution that allows to simultaneously update the full path of the driving process x¢., and
the parameter 6 through HMC steps with k leapfrogs. In this case, each of the iteration
requires the simulation of only k scenarios of the system, with associated scores, instead
of hundreds or thousands of particles. Moreover, the HMC algorithm is applicable to non-
Markovian dynamic models: we apply it to a fractional stochastic volatility model, and
illustrate how good mixing properties can be achieved even on high-dimensional objects
such as the paths of indirectly observed stochastic processes. This work has been con-
ducted in collaboration with Kostas Kalogeropoulos and Alex Beskos (University College
London).






CHAPTER 2

Capturing the time-varying drivers of
an epidemic using stochastic
dynamical systems

2.1 Introduction

Epidemic models are often used to simulate disease transmission dynamics, detect emerg-
ing outbreaks (Unkel et al.,2012), and assess public health interventions (Boily et al.| 2007).
In order to capture the dynamics of epidemics, the main focus is generally made on their
intrinsically dynamic elements such as the depletion of susceptibles or the population im-
munity evolution. Nevertheless, there are time-varying extrinsic factors that are crucial
to the epidemic course. These may include social cycles (holidays), public interventions
and climatic variations. This has been illustrated for diseases such as cholera, malaria
(Cazelles et al., 2005; Ionides et al., 2006) or influenza (Shaman and Kohn, 2009). These
studies were conducted either by relating climatic and incidence time-series (Cazelles et al.),
2005), which does not disentangle the effect of intrinsic and extrinsic factors, or by experi-
mentally assessing the virus resistance in different climatic conditions (Shaman and Kohn)
2009), requiring an extrapolation to the population scale. Overall, the time-varying na-
ture of epidemics poses a challenging statistical problem stressing the need for suitable
computational tools (Ferguson, 2007).

This Chapter considers a flexible modelling framework that encompasses time-varying
aspects of the epidemic via stochastic differential equations. We aim at providing robust
inferential procedures, incorporating the uncertainty associated with key parameters and
accounting for data and model limitations. In order to provide an accurate and feasible
computational toolbox, we provide Markov Chain Monte Carlo (MCMC) algorithms util-

53
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ising recent developments such as particle MCMC (PMCMC) algorithms (Andrieu et al.
2010) and adaptive techniques (Roberts and Rosenthal, 2009). Modelling aspects are pre-
sented in Section 2, while the computational framework is presented in Section 3. In Sec-
tion 4 we evaluate the performance of the proposed adaptive PMCMC schemes on sim-
ulated data. In Section 5 we present various applications of the methodology to the 2009
A/HIN1 pandemic. Section 6 proposes a general modelling framework allowing for the
combination of time-varying parameters, stochastic rates and demographic stochasticity.
We also provide with corresponding diffusion approximations to facilitate the calibration
of this general class of models. Finally, Section 7 concludes with some relevant discussion.
Further details can be found in the Supplementary Materials.

This Chapter is directly adapted from an article published in Biostasticts, co-written
with Kostas Kalogeropoulos (London School of Economics) and Marc Baguelin (Health
Protection Agency & London School of Hygiene and Tropical Medicine). Section [2.6|is a
subsequent development of this work.

2.2 Modelling framework

2.2.1 Epidemic models with time-varying coefficients

We adopt a SEIR model as a guide in this Chapter, although the methodology can be ap-
plied to other dynamical systems. The model is set in (2.1), in which s; accounts for the
proportion of susceptible individuals at time ¢. Similarly, e;, i; and r; respectively corre-
spond to exposed (infected but not infective), infective, and removed (or resistant) indi-
viduals. New infections occur at a rate 3s;i;, implying that the susceptible individuals
make effective contacts at rate § (the effective contact rate), and only a fraction 4; of these
contacts are made with infective individuals. The average period spent in the exposed (E)

and infectious (I) compartments is respectively given by k! and v~ 1.

ds .

ditt = —fsiy

de .

ditt = Bsyiy — key

i (2.1)
1 .

ditt = kre — i

are _

a Vit

The basic reproduction number, R, represents the number of secondary infections
from a primary infected individual in a fully susceptible population. A related quantity is
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the effective reproduction number, R;, that refers to the number of secondary cases from
an infected individual at time ¢. R; is a context-dependent quantity of high interest to pol-
icy makers as it indicates the possibility for the epidemic to grow (R; > 1) or to decrease
(R; < 1) (Anderson et al.,[1992).

Epidemic models can be quite detailed (including individual characteristics, geographic
information etc.), or basic such as the SEIR model that geographically aggregates the
cases and assumes deterministic transmission processes occurring at a given frequency
each time infected and susceptible individuals meet. The simplest models allow easier
inference and interpretation, but they are based on strong assumptions that could lead
to misleading conclusions. In this Chapter we adopt stochastic extensions of the deter-
ministic SEIR model. The additional dynamic error is likely to contain structural mis-
specifications and can subsequently be explored and potentially revised. We focus on
large-scale epidemics, for which random effects in transmission processes can be consid-
ered to be well-approximated deterministically (Kurtz, [1981). The paradigm we adopt
attributes the model limitations mainly to the time-varying nature of the effective contact
rate, henceforth denoted as j;, rather than to the variability in individual characteristics or
in transmission processes.

An early approach to estimate R; can be found in [Fine and Clarkson| (1982). It can be
implemented through discrete generation models or by reconstructing the chain of trans-
mission (Cauchemez et al., [2006; (Griffin et al.| 2011). However, as R; estimates contain
both the effects of evolving transmissibility and immunity, quantitative conclusions can
hardly be generalised to cases where the immunological situation is different. We there-
fore concentrate on estimating 3, rather than R;. A number of approaches use a finite-
dimension function space for the trajectory of 3;. Low-dimensional examples can be found
in|Cauchemez et al|(2008), in which j; is modeled as a piecewise linear function. In some
higher-complexity models, as in Cauchemez and Ferguson| (2008) and lonides et al.| (2006),
B¢ is estimated freely with a few-weeks resolutions. Loosely speaking, as the number of
parameters for the trajectory of 3; increases, model-induced biases fade out at the expense
of the variance. A compromise is required to improve robustness and is often controlled
through a regularising parameter. For example, in |[He et al.| (2011), 5; is estimated using
cubic splines calibrated via AIC.
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2.2.2 Diffusion driven epidemic models

We consider models where some coefficients in (2.2)) are modelled with diffusion processes;
in particular, focusing on the effective contact rate 3;:

ds )

ditt = —Bisti

de )

(Ttt = Biseir — key

di .

ditt = ket — iz (22)
dro _

at "
dzlt = % (2%, 0)dt + 0% (2% ,0)dB,, ¥ = g% (B,)

Here, 1 (-) denotes the drift, o (-) the volatility and g% (-) is a transformation meant
to project the possible values of 5, on the real line. The assigned diffusion may capture
features such as behaviour changes, preventive measures, seasonal effects, holidays etc.
When prior knowledge on 3, is available, it can be reflected in p%(-) and ¢%(-). For ex-
ample, if the contact rate is expected to converge, an Ornstein Uhlenbeck process can be
chosen. Other options may include a sigmoid or a sinusoidal form. In absence of prior
information, or when the researcher wants to impose little restrictions, a Brownian motion
can be used, with pf(-) = 0 and ¢%(-) = ¢. This model, with g% (-) = log(-), is hence-
forth denoted as BM. The obtained output can be either reported or used as an exploratory
tool to construct a more structured model; see Section and Chapter 3 for applica-
tions. The choice of BM implies a continuous, yet non-differentiable path satisfying the
Markov property. In cases where §; is believed to evolve as a smooth function of time,
higher order Brownian motions could be used. The latter may be regarded as equivalent
to non-parametric approaches such as cubic splines (Wahba) [1990) with the model in
imposing a prior on f3;, and ¢ being a regularising factor. The rate 3; can be perceived as
a product of a smooth and a rough component; the former being a population average of
the intrinsic transmission procedure and the latter containing extrinsic factors such as the
amount of contact among individuals. It is therefore important to build a framework that
contains both smooth and rough models.

The above model can be estimated with an Extended Kalman Filter (EKF), as in/Cazelles
and Chaul(1997). The EKF, described in the Introduction of this thesis, allows for fast com-
putations but is based on Taylor and Gaussian approximations whose error could be non-

negligible; see Supplementary Materials for a relevant simulation experiment (Appendix
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A). Nevertheless, the EKF can still be used as a tool to construct efficient proposal distribu-
tions for MCMC schemes. It can also be used to optimize sequential Monte Carlo (SMC)
algorithms, but either at a strong computational cost (Sarkka and Sottinen) [2008) or crude
time discretisations (Merwe et al., [2001; |[Dukic et al., 2009). Next, we develop a general
framework for efficient MCMC schemes that allows fine time discretisations.

2.3 Data augmentation via MCMC for diffusion driven epidemic

models

This section presents a general inferential framework for diffusion-driven epidemic mod-
els. We adopt the Bayesian paradigm to incorporate parameter uncertainty and prior
information in the estimates of ; trajectories. The problem can also be cast as estimat-
ing partially observed hypoelliptic diffusions, thus presenting various difficulties (Pokern
et al., 2009). We begin by setting the model and justifying the need for data augmenta-
tion. Existing MCMC algorithms are considered but they can lead to extremely inefficient
MCMC chains. We address the issue by taking advantage of the specific model structure
to construct adaptive PMCMC schemes.

2.3.1 Model and data augmentation setup

For ease of exposition we focus on models satisfying (2.2), but the framework covers mod-
els with different ODE systems or more time-varying coefficients, as in Section2.5.3] Being
in continuous time, ¢ can take any value between t; and ¢,,. We denote z;.; the path of
the ODE states vector z; = {s¢,es,%,7:} between observation times ¢; and ¢;. The data,
Y1:n = {¥1, .., Yn}, usually provide information for i, at specific times (prevalence data) or
for integrals of z; (incidence data). In either case, we assume that they are obtained with
error as the collection procedure is typically associated with additional uncertainty. The
observation distribution is denoted with P, with density n(y1.,,|20.n,0). Note that, in the
model of 1i 2 can be written as a deterministic function f(-) of ¥ and the parameters
(k,7,20) C 6. This function is the solution of the ODE and can be written as an intractable
time integral involving z?*. Hence, the model becomes:

daff = (a0t + 0 (2" 0)dB,

yl:n‘ZO:nv 0~ Py(y1:n|ZO:n> 9)
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We denote with P, the distribution of the diffusion z/* defined from the SDE above.
We require the existence of a unique weak solution which translates into some mild as-
sumptions on p%(.) and ¢%(.); e.g. locally Lipschitz with a linear growth bound (k-
sendal, 2003). The distribution of P ,», may also be viewed as a prior on x?t, or else B;. The
model can now be defined from P, P,s,, and the assigned priors on 6, denoted by = (6):

(20, 0ly1in) X f(Y1m|Z0m, 0) X dPyo, x m(6) (2.4)

Given direct observations on z*, it would have been possible to draw approximation-free
inference on dP s, using the approach of Beskos et al.[(2006). However, this is not possible
in our case given the non-linear functionals in f(-) that render [2.4]intractable. We proceed
by discretizing the path of z;, and therefore of 5; and z;. More specifically, we introduce
m points between each pair of successive observation times t; and ¢;41 (i = 0,1,...,n—1).
When referring to the discrete representation of a path, the superscript dis will be used;

for example for a step § = the discrete skeleton of z{* will be denoted by =@ =

dlé

m+1’

{z0, s, T2s,- .., 2, }. The use of zi% allows for approximations of through the Euler-

Maruyama scheme to evaluate d]P’ﬁt :

p(ﬂ??fﬁlfroﬁz) = H px d15|x(Z 1)579)7
it tg<id<t, (2.5)

dw\fflfsl)éNN{ (i— 1)6+5:U’z"t(x(1 1)579 oo "f(f(q 1)579)2}

Moreover, given zd%, the ODE can be solved numerically to obtain 2§’ and evaluate

p(y1:n]285,6). The approximation error can be made arbitrarily small by decreasing the

user-specified parameter 4.

2.3.2 Data augmentation via Gibbs schemes

Model can be put in the context of (Chib et al.| (2006), [Kalogeropoulos| (2007) or |Go-
lightly and Wilkinson (2008) In these approaches, a Gibbs scheme can be used to sample

from the joint posterior in (2.4) of zd% and 6. The data augmentation algorithm alternates

dm dv,s

between drawing z§!; given #, and updating 6 conditional on the augmented path z§

The MCMC protocol ensures that the chain provides samples from the marginal posteri-

dzs

ors of =y and 6. Nevertheless, the properties of the algorithm may become unacceptably

poor. There are two essential issues associated with such schemes. The first concerns the
non-trivial step of sampling on the diffusion pathspace of zi*. The second problem is

dzs

caused by the high posterior correlations between zf; and 6, leading to reducible chains

as 0 decreases (Roberts and Stramer, [2001).
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The majority of the literature on data augmentation schemes for diffusions handles the

conditional updates of z¢:$ with an independence sampler. As it is difficult to find good

proposal distributions for the entire x{’, the path is usually split into blocks. Overlapping

blocking strategies are essential to ensure that all points are updated and continuity of
the path is retained. An alternative way to update z3% is to use the particle filter via
the Particle Gibbs algorithm of [Andrieu et al| (2010). However, unless the issue of high

dis

posterior correlation between z{’;

and 6 is resolved, none of these schemes will improve
the overall MCMC performance. The problem is caused, for example, by the quadratic

variation process of z/* that identifies components of . For % (2, §) = o we get

6—0 -
i to<id<tp

tn
lim Z (zdis — x‘(iffl)(;)g = / o?ds = o*(t, — to) (2.6)
to

Thus, the conditional posterior of o converges to a point mass as ¢ tends to 0. In prac-
tice this translates into an increasingly slow MCMC algorithm with a convergence rate
of O(671) (Roberts and Stramer, 2001). Schemes with a fixed ¢ (Cori et al., |2009) could
work in some occasions but the approximation error could be substantial. In some cases,
the problem can be tackled with suitable reparametrisation. The approach of |[Roberts and
Stramer| (2001) involves transforming z%* to a diffusion &% with unit volatility. An alter-
native scheme is offered by |Chib et al|(2006) where the driving Brownian motion of z?*
is being used. In these algorithms the ODE states vector z4’* becomes a function of o, &/t
and . Hence, in a Metropolis step, every proposed value of o* is associated with the cor-

responding values of 24%". This succeeds into breaking the perfect dependence between

24 and o, even for § — 0. However, since components of zJ% (or functionals thereof) are

n
observed with error, the associated proposed values 24" should be close to the data for
the move to be accepted. As the observation error becomes small and the data increase,
this becomes increasingly difficult and leads to very small moves for o and poor MCMC
mixing. More details and simulations supporting this argument are provided in the Sup-
plementary Materials (Appendix B). Consequently, we overcome this issue by updating
235 and 6 jointly via the PMCMC algorithm, which is essential as it is not straightforward
to implement joint updates with the other approaches mentioned in this section.

2.3.3 Adaptive particle Markov Chain Monte Carlo algorithms

Particle filters are SMC algorithms used to recursively explore conditional densities in state
space models (Doucet and Johansen, 2009). For given values of 6, J particles (a:,gj )) are
sequentially propagated from ¢, to t,. In various time steps t;, the trajectories that best
fit the data yy.; are given more weight through resampling. Algorithm [J]shows how they

can be applied in our context. The quantity L' () provides estimates of p(y1.;|¢) and the
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Algorithm 9 Particle Smoothing algorithm

Initialise: Set L°(9) = 1, Wéj) = %, sample (xéj))jzl,mJ from p(x0|f) and calculate
(z(()J ) )j=1,....n by solving the ODE (for example with the Euler scheme)
fori=0ton—1do
forj =1toJ do '
Sample (z7) 1) from p(z% | |y, 0) (see Eq. [2.5) and calculate (zi(:]i)Jrl) by solving the
ODE

Set a) = h(yis1]25)1.6)
end for o ‘ A ‘
Set W1} = g5, and Li+1(6) = Li(6) x 5 T o)

k=1
Resample (/) 1, 2(),1)j=1,....s according to (W,1}),
end for

resampling step is essential to control the variance of that estimate over time. Algorithm[9]
also provides a random sample from p(2¢%|y1.,,, 6). In order to sample from p(z {2, 0|y1.,.),
the PMCMC algorithm can be used. PMCMC was introduced in |Andrieu et al.| (2010)
and successfully integrates particle filters in MCMC algorithms. Its implementation is

presented in Algorithm The issues raised in Section are now addressed as xd’$

Algorithm 10 Particle MCMC algorithm (particle Marginal Metropolis Hastings version)

Initialise: 89, to an initial value.
Use Particle Smoother to compute L(6) = p(y;.,[0), and sample 2! from
p(w(lhfz |y1:n7 6‘(0))
fork =1to N? do
Sample 6* from q(.|0(")
Use PS to compute L(0*) and sample z7.,, from p(x9%|yi.,, 0%)
Accept 0* (and z7.,,) with probability 1 A Wm
Record §(+1) and z{*F")
end for

and 6 are sampled jointly. In other words, 283 is being numerically integrated out while a
sample from its posterior is obtained at each MCMC iteration.

Although the PMCMC algorithm is theoretically valid even for a single particle (An-
drieu et al., |2010), large values of .J are usually required for reasonably stable acceptance
rates and large moves in the 6 space. It is therefore essential to update the d-dimensional
6 at once, making the proposal ¢(.|¢) crucial to the overall MCMC performance. In this
chapter we propose to use the adaptive Metropolis algorithm of [Roberts and Rosenthal
(2009). After transforming the parameters to take values in the real line we use a Normal
distribution centered at the current value of # and with covariance given by A¥. Static ran-
dom walk metropolis proposals set & = I or ¥ = ¥. Adaptive schemes change the value
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A at each iteration ¢ to obtain acceptance rate of 0.234 through diminishing adaptation:
AOFD = exp {log()\(i)) + a"(AccRate — 0.234)} , 2.7)

where the cooling rate ¢ < 1 can be set to 0.999 and AccRate denotes the acceptance
rate up to iteration i. The general shape of the importance sampling distribution g(.|6"))

can also be progressively adapted:

. . 2.382 | 2.38% .
q(.169) = aN (9(”, A‘:)fz(m) +(1—a)N (9@, )\?;82“)> (2.8)

In this alternative adaptive scheme, « is usually set to 0.05, () is the posterior covari-
ance matrix estimated by the draws up to i, and ©(?) should be specified in advance. In
this chapter we enhance the above adaptive algorithms utilising information from the EKF
to estimate the covariance 3 or (%), One choice, EK-Mode, is the observed information
matrix evaluated through numerical differentiation at the mode of the approximate pos-
terior density proportional to pZX¥ (y;.,,|0)p(6). Another choice, EK-MCMC, is to run an
MCMC scheme based on the EKF approximation of the likelihood p“¥%(y;.,|0) and com-
pute the posterior covariance from the draws. Note that the computational burden of these
methods is marginal with regards to the PMCMC. As demonstrated in Section 2.4} the use

of these initialisations can result in substantial improvement.

24 Simulation experiments

The proposed algorithms are illustrated and tested on simulated data in this section. We
focus on the BM model, where log(3;) follows a Brownian motion with volatility o, cor-
responding to the case of little information on the shape of §;. The trajectories of 5, were
drawn either from the BM model itself (experiment 1) or from a deterministic sigmoid
curve (experiment 2). The data y;, ¢« = 1,...,50 represent noisy observations of weekly
new cases of the epidemic ([, ., ; keidt). We complete the model by assigning a Normal

eek i

distribution to each log(y;) with mean log( [ ., ; ke;dt) and variance 72. The parameters
were tuned to obtain realistic epidemic incidence curves, and observations were generated
setting 7 = 0.1 (experiments 1.a and 2.a), and 7 = 0.05 (experiments 1.b and 2.b). The as-
signed priors were informative for k, v and r;, and vague for e, i;,, 0 and 7. We used
3,000 particles and 100,000 MCMC iterations after a long burn-in period, in order to esti-
mate o, 7 and fi.,. The number of particles was determined by preliminary exploration
of the impact of J on the acceptance rate, illustrated by figure [2.1| for two values of the
measurement error parameter 7. Similarly, the discretisation step ¢ is determined by mon-

itoring quantities such as E[p5(c|y1:n)] or E[ps(T|y1.,)] for different values of . As shown
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Figure 2.1: Acceptance rate as a function of J, in two situations where the noise amplitude
is respectively 10% (full line) and 5% (dotted line).

Exp 1l.a Exp 1.b Exp 2.a Exp 2.b

7 Simulation value 0.1 0.05 0.1 0.05

Posterior mean 0.103 0.083 0.078 0.050

Posterior median 0.103 0.084 0.077 0.050
Posterior 95% c.i.  [0.051;0.152] [0.027;0.137]  [0.063;0.96]  [0.042;0.060]

o Simulation value 0.07 0.07 n.d. n.d.

Posterior mean 0.066 0.083 0.016 0.014

Posterior median 0.064 0.084 0.015 0.014

Posterior 95% c.i.  [0.048;0.090] [0.046;0.089] [0.010;0.027]  [0.001;0.021]

Table 2.1: Mean, median and 95% confidence intervals for 7 and ¢ estimates in four ex-
periments.

in figure2.3) convergence is observed as § tends to 0. In the present series of experiments,
0 was fixed to 0.1.

Figure shows estimates and 95% pointwise credible intervals of the path for ex-
periments 1.a and 1.b provided by the adaptive PMCMC initialized with EK-MCMC. The
posterior output is in good agreement with the simulation trajectories suggesting that the
underlying trajectory of 3; can be estimated reasonably well from the partial and noisy
observations considered (experiments 2.a and 2.b with 7 = 0.05 lead to similar results).
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Figure 2.2: Convergence of the posterior density as the Euler discretization time-step &
decreases (x-axis in the log-scale)

Moreover, Tablepresents the mean, median and 95% credible intervals for the estimates
of o and 7 in each experiment. True values for o and 7 are contained in the 95% credible
intervals in all cases but 7 in experiment 2.a. A potential explanation for this slight under-
estimation may be the fact that we estimate a smooth trajectory with a Brownian motion
which artificially captures part of the noise.

Next, we use the data of experiment 1 to compare the proposed adaptive PMCMC

schemes. Comparison is made in terms of the effective sample size (1 +23 5 n(z)) R ,
with . 7(i) being the sum of the lagged sample auto-correlations, as in |Geyer (1992) or
Brooks and Roberts| (1998). We record the minimum ESS among the MCMC components
and multiply by 100 to monitor the percentage of the total iterations that can be consid-
ered as independent. We consider three covariance matrices for each of the two adaptive
algorithms defined in Section[2.3.3} I; and the ones from EK-Mode and EK-MCMC. Simu-
lation results are presented in table Combining the initialisation based on EK-MCMC
or EK-Mode to the adaptation of ¥¢ leads to sampling performance close or equivalent
to what is achieved when using the optimal but a priori unknown matrix Cov[p(6|y1.n)].
Additionally, initialisations with EK-Mode and EK-MCMC directly allow for effective ex-
ploration of the target density, and thus a quicker burn-in adaptation period than with Id
for which, even when adapting €, more than 100,000 iterations are required to generate 10
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Figure 2.3: Illustration of how the underlying dynamic of the effective contact rate can be
estimated from weekly recorded cases. Green dots indicate simulated observed incidence
(top panels). Green lines indicate simulated effective contact rate trajectories (bottom pan-
els). Black dotted lines indicate the mean of the pointwise posterior density. Dark and
light blue areas show credible intervals, respectively at 50% and 95% levels.Top panels:
simulated weekly numbers of cases observed with noise, and corresponding model-based
offline reconstructions (left: experiment 1, right: experiment 2) Bottom panels: simulated
and estimated trajectory of the effective contact rate (left: experiment 1, right: experiment
2)

effectively independent samples. The substantial improvement induced by the proposed
adaptive algorithms is expected to intensify as the dimension of # increases.
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Algorithm parameter ming(ESS) relative to optimal

p .

o being adapted ming(ESS) initialisation X = Cov[p(8|y1.n)]
Id € 0.008% 0.01
EK-Mode € 0.19% 0.14
EK-MCMC € 0.54% 0.39
Id 4 0.57% 0.41
EK-Mode 24 1.24% 0.89
EK-MCMC 39 1.38% 1.00

Table 2.2: Relative efficiency of the different versions and initialisations of the adaptive
PMCMC algorithm, via the minimum ESS (%) after adaptation.

2.5 The 2009 A/H1IN1 pandemic

2.5.1 Data, model and estimates

The proposed methodology is illustrated on data from the A/HIN1(2009) pandemic in
England between June and December 2009. The data consists of estimates of weekly ILI
cases yi., provided by the Health Protection Agency (Baguelin et al.,2010). The estimates
were obtained from the recorded ILI cases among a selected sample of GPs. They ac-
counted for over-reporting due to similarities in symptoms with other respiratory diseases,
based on subsequent virological positivity tests. Corrections for asymptomatic infections
and the propensity of each patient to consult were also made. Overall these corrections
lead to a multiplicative correction coefficient ¢ = 10, whose value is also supported by a
further serological survey (Miller et al.},[2010). In our analysis c is initially held fixed to 10,
but this choice is explored further in Section[2.5.2} We adopt a model that admits noisy data
to reflect the associated uncertainty. The noise model of Section 2.4 was used, combined
with a BM formulation of P,. Vague priors, N~((0,10°%), were put on 7, o and . The
priors for k and v were obtained from additional data sources (Baguelin et al,, 2010), the
results of which are summarised through Normal distributions that place 95% probability
in a symmetric manner between 1.55 and 1.63 days for the latent period k!, and between
0.93 and 1.23 days for the infectious period y~!. A Dirichlet distribution was used for the
initial proportions in compartments S, E, I, R, constraining the mean of the one in R to be
0.15, its variance 0.15%, and the means of the other initial proportions to be equal.

The adaptive EK-MCMC algorithm was applied to the data and Fig. depicts the
incidence curve together with the posterior mean and pointwise 95% credible intervals
(corresponding traceplots for the components of # are shown in figure[2.5). Estimates of j3;
are also displayed indicating various changes over time. The changes in 3; are consistent
with the argument that schools closure for holidays have been driving the epidemic: differ-
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ent values are observed during school and holidays periods, appearing to be synchronised
with schools opening and closing. Posterior summaries for the static parameters, as well
as a sensitivity analysis on the priors can be found in table[2.3] They suggest that estimates
are quite sensitive to the choice of prior for £ and +, but not to the remaining parameters.

Total Influenza Incidence
2000 \ \ T

1500 4 1

Incidence
)
o
F
|

500 b

| 1 1 1 1 1
22 Jun 20 Jul 17Aug 14Sep 12 Oct 9 Nov 7 Dec 4 Jan

Effective contact rate
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22 Jun 20 Jul 17Aug 14Sep 12 Oct 9 Nov 7 Dec 4 Jan

Figure 2.4: Weekly incidence data from the A/HIN1 2009 influenza pandemic and cor-
responding offline estimates of the effective contact rate. Green dots indicate incidence
estimates provided by the Health Protection Agency. Black dotted lines indicate the mean
of the pointwise posterior density. Dark and light blue areas show credible intervals, re-
spectively at 50% and 95% levels. Holidays are indicated by a light grey area. Top : ob-
servations of the weekly total number of A/HINI influenza cases in London (per 100,000
inhabs.) and model-based offline reconstruction. Bottom: offline estimates of the effective
contact rate.
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Figure 2.5: MCMC traceplots for each component of ¢

2.5.2 Application in real time. Was the first wave waning due to depletion of

susceptibles?

In this section the proposed methodology is applied in real time, i.e. considering partial
datasets from June 2009 up to the 20th of July, the 7th of September and the 26th of Octo-
ber. Each time the algorithm is run from scratch to provide samples from the joint posterior
7(%1:4,0]y1::). From a computational cost point of view this procedure can be improved fur-
ther by utilising previous MCMC runs, for example under the SMC? framework (Chopin
et al., 2012). We did not pursue this direction further, as the PMCMC algorithm runs quite
fast (less than 2 hours on a standard PC). In order to reduce uncertainty, especially at early
stages, the value of 7 was set to 0.1 rather than being estimated as in Section We
otherwise use the same model as before: main results are shown in Fig. A model with
integrated Brownian motion was also fit but BM was chosen in terms of Deviance Informa-
tion Criterion; see figure In addition, figure [2.7]also illustrates what is obtained from
a Frequentist approach relying on an optimisation of the marginal likelihood, which can
be done with the maximum likelihood via iterated filtering algorithm (MIF) introduced
in (Ionides et al.,2006). As the density p(8o.,|y1:n) does not account for parameter uncer-
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T kYt o4t By E(0) I(0) R(O) o

2.5% quantile 0.04 155 093 080 52x107¢ 1.6x107% 0.02 0.04

25% quantile 0.09 157 103 116 1.6x107°> 7.0x10"% 0.12 0.05

Median estimate 011 159 1.08 135 23x107° 1.6x10"° 0.17 0.06

75% quantile 013 1.60 113 156 3.1x107° 28x107° 022 0.07

97.5% quantile 017 1.63 123 213 52x107® 65x10~° 033 0.10
Median when ry, shifted +10% 0.11 159 1.09 141 2.0x107° 19x10~° 0.19 0.06
Median when r, shifted +20% 0.11 159 1.09 144 1.8x107°> 2.1x107°% 024 0.06
Median when 7y, shifted -10% 0.11 1.59 1.08 131 22x107° 22x10"° 0.15 0.07
Median when 7y, shifted -20% 012 1.59 1.09 127 19x107° 21x107°> 0.13 0.07
Median when k™! shifted +10% 0.11 159 1.09 133 1.8x107° 22x107° 0.15 0.06
Median when k~! shifted +20% 0.12 1.60 1.08 134 1.8x107° 23x10~® 0.17 0.06
Median when k! shifted -10% 0.12 158 1.08 1.28 2.0x107% 2.0x107®> 0.16 0.06
Median when k~! shifted -20% 0.12 157 1.09 131 1.9x107% 20x107° 0.16 0.06
Median when v~ ! shifted +10% 0.11 159 1.12 123 22x10™° 21x10~® 015 0.07
Median when v~ ! shifted +20% 0.10 159 1.14 118 2.0x107° 24x10~° 0.15 0.07
Median when v~ shifted -10% 0.11 159 1.06 137 1.9x107° 20x10~®> 0.16 0.07
Median when v~ shifted -20% 0.10 159 1.02 146 2.0x107° 1.8x10~®> 0.17 0.07

Table 2.3: Original estimates compared to the ones resulting from respectively tilting the
priors on r;,, v~ 1 or k! by +10, +20, -10 or -20%

tainty, the resulting pointwise 95% credible intervals are narrower; roughly 50% on the
6-month dataset and even more at early stages with less information on 6.

On August 1%, the first wave of the epidemic had waned, incidence rates were de-
creasing and schools had closed. Two scenarios were competing to explain the epidemic
decline: (i) holidays had caused the waning of the epidemic by lowering the effective con-
tact rate. Hence, a similar or stronger wave could occur when schools would reopen in
September in colder climatic conditions. (ii) The epidemic had stopped independently of
holidays because a critical proportion of the population had been infected, conferring a
sufficient level of herd immunity to stop the epidemic. In this case, no second wave was to
be expected in September. On August 15 there was great uncertainty around the value of
¢ (Baguelin et al., |2010), which is crucial in distinguishing between the two scenarios. We
therefore conducted the following exercise.

The PMCMC algorithm, run up to August 1st, provides samples from the posterior of
the difference in 3; between August 1°¢ and July 13" (before the decrease in incidence).
For ¢ = 10, the 97.5% point of this posterior is —0.32, indicating a decrease in /3;. The latter
supports scenario (i), as the competing scenario is associated with a zero-decrease in f;.
Nevertheless, as this value depends on ¢, the algorithm was run for different values of it



2.5. THE 2009 A/HIN1 PANDEMIC 69

Total Influenza Indicence DIC =61.5
2000
1000
Otes
20 Jul 14 Sep 9 Nov 20 Jul 14 Sep 9 Nov
DIC = 159
2000 3
% 2
1000
1
o-e : : : 0 : : :
20 Jul 14 Sep 9 Nov 20 Jul 14 Sep 9 Nov
DIC = 249
2000 3
% 2
1000
1
ole 0
20 Jul 14 Sep 9 Nov 20 Jul 14 Sep 9 Nov
DIC = 343
2000 3
2
1000
1
ole

20 Jul 14 Sep 9 Nov 20 Jul 14 Sep 9 Nov

Figure 2.6: What could have been inferred by carefully following the epidemic in real
time? Green dots indicate observed incidence estimates provided by the Health Protection
Agency (left panels). Black dotted lines indicate the mean of the pointwise posterior den-
sity. Dark and light blue areas respectively indicate 50% and 95% credible intervals of the
posterior density. Holidays are indicated by a light grey area. Left panels: HPA estimates
of the weekly total number of A/HINI influenza cases in London (per 100,000 inhabs.)
Right panels: “real-time” estimates of the effective contact rate.

ranging from 20 to 150. The results appear on Fig. Note that the 97.5% point of interest
increases as a function of ¢ and reaches 0 for a correction factor close to 70. As this level
seemed unrealistic (Baguelin et al| [2010), the experiment provides evidence in favour of
scenario (i) highlighting the danger of a second wave in September, that actually occurred.

Such evidence can be important for decision-makers, especially when considering imple-

mentations of preventive measures as vaccines.
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Figure 2.7: Modeling choices and implications, aiming for robustness. Black dotted lines
indicate the mean of the pointwise posterior density. Dark and light blue show credible
intervals, respectively at 50% and 95% levels. Left panels: estimates from an alternative
modelling approach: exploring the full posterior density of an IBM diffusion model (left).
Right panels: estimates from an alternative methodological approach: exploring the poste-
rior density of a BM diffusion model conditioned on a likelihood-maximizing parameter
0* provided by the MIF algorithm (right)

2.5.3 A multiple age group diffusion driven SEIR model

The analysis of Section2.5.T|can be used to construct more structured models. For example,
the effect of holidays is evident and may differ from children to adults, thus casting doubts
on the assumption of a homogeneous population. It seems more natural to consider a
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Figure 2.8: The implication of different scenarios for the real value of underreporting on the
decrease of the effective contact rate between July 13! and August 1%*. For each value of c,
the mean of the posterior density for 3(August 15¢) — B(July 13") is plotted in black. Dark
and light blue areas respectively indicate 50% and 95% credible intervals of the posterior
density. The dotted line locates the scenario whith no change in the effective contact rate.

model with two age groups (c: children and a: adults) and target all possible effective
contact rates among them. In our notation 5°* refers to the effective contact rate from
children to adults and s{ denotes the proportion of susceptible children at time ¢. For
reasons of parsimony we assign Brownian motions to log(3¢¢), log(8{*) and treat §<*, 5%°
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as constant. The dynamic part of the model is now given by

ds§ N . N
D s (Breis e + it 30

deg c ccqc N caza N c
E:‘St tZth+ Ztm 7k6t

dsa a (l/(]/'(lN ac, N
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=74

= key — iy

The data from the A/H1IN1(2009) pandemic provide incidence estimates for children
and adults separately so they can be used to estimate the model of (2.9). If only final out-
come data were available, not all effective contact rate parameters would be estimable.
However, the temporal dataset provides extra information by the relative variation of sus-
ceptible and infective population in adults versus children. We applied the EK-MCMC
scheme, which was essential in order to obtain reasonable MCMC performance. Fig.
depicts the results. Unlike earlier attempts with versions of a multi-group model with a
single diffusion driving all contact rates, the fit appears to be good. The trajectory of chil-
dren seems to be similar with that of Fig. thus stressing their role to the evolution of
the epidemic. Posterior summaries for the parameters can be found in table[2.4].
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Figure 2.9: Offline estimates of the effective contact rate among children and adults during
the A/HIN1 2009 influenza pandemic using a 2-classes age-structured model and age-
specific incidence data. Green dots indicate observed incidence estimates among each
age group provided by the Health Protection Agency (first and second panels). Black
dotted lines indicate the mean of the pointwise posterior density. Dark and light blue areas
respectively indicate 50% and 95% credible intervals of the posterior density. Holidays are
indicated by a light grey area. First panel: HPA estimates of the weekly total number of
A/HIN1 influenza cases among children in London (per 100,000 inhabs.) Second panel:
HPA estimates of the weekly total number of A/HIN1 influenza cases among adults in
London (per 100,000 inhabs.) Third panel: offline estimates of the effective contact rate
from children to children. Fourth panel: offline estimates of the effective contact rate from
adults to adults.
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Posterior mean Posterior median Posterior 95% c.i.

k1 1.56 1.55 [1.53;1.60)

yt 1.00 1.00 [0.92;1.08]
Bee(0) 1.44 1.36 [0.89, 2.30]
Baa(0) 1.40 1.39 [1.25;1.64]

Bea 0.30 0.31 [0.16;0.50]

Bac 0.32 0.32 [0.18;0.48]
E.(0) 2.1 x107° 1.9 x 1075 [1.3 x 107°;3.8 x 1077]
1.(0) 1.2 x 1075 1.4 x 1075 [0.6 x 107%;2.9 x 1077]
R.(0) 0.13 0.12 [0.06; 0.26]
E.(0) 2.1x107° 2.0x107° [1.1 x 107%;3.5 x 1077]
1,(0) 1.0 x 107° 1.0 x 1079 [0.3 x 107°;1.5 x 107?]
R, (0) 0.16 x 107 0.16 [0.09;0.28]

o, 0.11 0.10 [0.08;0.15)

Oq 0.08 0.08 [0.05;0.11]

Table 2.4: Mean, median and 95% confidence intervals for the parameters of the structured
model applied to the A/HIN1 pandemic data

2.6 Coupling time-varying parameters, stochastic rates and

demographic stochasticity: towards an extended framework

As presented in the Introduction, the authors of [Breto et al.| (2009) have proposed an alter-
native to the infinite population approximation made in this Chapter. Under this frame-
work, the finite and discrete nature of the population is preserved and the demographic
stochasticity is reflected with a multinomial distribution allowing for multiple reactions
over short periods of time 4. In this Section, we extend the use of time-varying parameters
in this alternative setting to allow the exploration of parameter variations in conjunction
with demographic stochasticity. We also derive a general formulation allowing for both
stochastic rates and time-varying parameters for a complete description of environmen-
tal stochasticity. Although identifiability issues could arise if too many sources of uncer-
tainty are introduced in the model, in the presence of strongly informative data and in
specific cases it may be profitable to capture environmental stochasticity in different man-
ners. Lastly, we propose a generic way to extend the use of the continuous-time Extended
Kalman Filter in these more general settings by providing SDE approximations driven by
Brownian motion for the different models and types of stochasticity. Generic expressions
will be provided, and they will be illustrated on the following SIR density-dependent jump
process model:
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Reaction Effect Rate
Infection  (S;, Iy, Ry) — (S¢ — 1, I, + 1,Ry) B3I
Recovery  (Si, I, Ry) — (Si, I —1,R, +1)  ~I,

The model above is generalised with the following notations:

Reaction Effect Rate

reaction 1z — z + k001 001z, 9)

reaction |z, — z + kUd) (a2, 0)

reaction m  z; — z¢ + kUmodm) - plmdm) ()

As previously mentioned, we concentrate on density-dependent models where rates
can be reformulated as r;(z;) = Nv;(2,) with 2, = z;/N. For example, by noting s, = S;/N
and i; = I;/N in the SIR model:

71(8t,0¢,7¢) = Bstiy (2.10)

7o (St, i, 1) = Vi

2.6.1 Generalisation of the use of time-varying parameters

We start by proposing a general model under the infinite population assumption that com-
bines stochastic rates and time-varying parameters:

General framework for environmental stochasticity

under infinite population approximation

xf(i‘j) = dfgi’j) for (i,5) € R®
0¢
xfia = xf‘ + uf (:cf‘ﬁ)dt + LetdBtQ (2.11)

D D A O AN F S S A L CAPHN ) P
(i,5)ERe® (1,5)ER\R®

This model takes the form of a hybrid stochastic differential equation driven by Gaus-
sian and Gamma noise. Alternatively, under the multinomial approximation of the de-
mographic stochasticity, we propose to extend the definition of the infinitesimal generator
introduced in [Breto et al.| (2009) by combining stochastic rates and time-varying parame-

ters to model environmental stochasticity:
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General framework for environmental stochasticity

under multinomial approximation

L7 = ar for (i) e Re (28 =6 if (i,j) € R\ Re)

w5 =al 4l 0)dt + L dB2"
Hi

c (i,5)
(i5) (i,4) (i,4) (i,4) ; ; A\
Py =2l e F ) = B (T MO (1= 3000 ) T (249
i=1 k#i j#i

i i) N(E3)
Zops = 2 + Z k(m)xt
(i,5)€ER

using the following notations, with r(%9) = 0 if (i, j) ¢ R:

= z,gi) — Z n(Hk)

ki

Pl = 09 (100 (2, a0} ) = (1 ~oxp { 3 plisk) g }) DD
k

k
A

() — . . .
M ( DD i) (i) ) ) (multinomial coefficient)

The validity of the Markov chain defined by this infinitesimal generator under the ad-
ditional introduction of a time-varying component z* in the rates (%) will be the subject
of subsequent theoretical work, to ensure that the stable properties of numerical solutions

as J tends to 0 are the properties of a properly defined limiting continuous time process.

2.6.2 Diffusion approximation of the demographic stochasticity

In order to provide an SDE approximation of the demographic stochasticity, we rely on
the theoretical results on state-dependent Markov jump processes presented in Ethier and
Kurtz| (1986). They have been more recently adapted in a structured SIR epidemic mod-
elling setting in |Dargatz| (2007), and are generalised in this section. Jump process models

can be characterised by their master equation:

gP(zt): > Dy = kOD ) P(z — kD) = 3" 00 (2,0)P(z)  (2.12)

ot
(i,4)ER (i,7)ER

The first term corresponds to the probability for the state vector of evolving into z;, and

the second corresponds to the probability of leaving the state z;. In a SIR model setting,
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Figure 2.10: Representation of the different models introduced in the thesis

the master equation becomes:

0
ap(st;ft,Rt) = ﬁ

Sy +1
( t; )(It_l)P(St+17]t_17Rt)

+ ’y(It + 1)P(St71t +1,R; — 1) (2.13)
S

— B P(Se 1, Ry)

- ’YItP(St,IuRt)

This equation can be written in terms of normalised quantities, with e = 1/N::
0 , 1 , ,
il (st me) = —Bse +€)(ie —€)Pse + 6,0t —e,,11)
v(it +€)P(st,0e +€,7 —€) (2.14)

E’yitp(stv ita Tt)

The diffusion approximation relies on the limit of this expression when ¢ — 0 while N
is kept constant. The author of Dargatz (2007) shows that in this case, the former master
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equation converges to the following partial differential equation:

) 0 . . 0 ) _ .
P(St,Ztﬂ“t) = %5Stztp(8t71t,7“t) - &(5&% - ’Y%)P(Snltﬁ’t)

ot
1021, . ,
L BsiiPlsuin ) @15)
10% 1 . < ;
— 5 i Bseie = i) Plse,iv. 1)
0% 1 . .
— @NBStZtP(St;ZDTt)?

which is equivalent to

0 . d .. . . 10 0 . . .
%P(Staltyrt) = _%[A(Shlt?rt)P(Stalta’rt)] + iaa[z(stalt7rt)P<st;Zt7rt)] (216)
—Bsyit Bsiit —Bstiy 0
Where A(sy,ie, ) = | Bspiy — i | and S(se,ie,7¢) = 5 | —Bssie Bseir +vie  —7i
’Y’L.t 0 —’Y%t ’Y’Lt

Following Kloeden and Platen| (1999), 2.16|is a Fokker-Planck equation corresponding
to a diffusion process that is a solution of

dz = A(%)dt + LdB2" 2.17)
Here, we follow the formalism of [Sarkka| (2007) where dB® " is a Brownian motion with
diffusion matrix Q¢ and L is a stoichiometric dispersion matrix such that LQYL =¥

-1 0

. 1 0

Ol spiy) = — [ Poie 0 and L=| 1 -1 (2.18)
N0 0 1

Equation can be transposed in the natural scale of z; = [S;, I, R;]T, with A = N A
and Q7 = N2Q¢:

dz = A(z)dt + LdB2" (2.19)

This result can be generalised based on the density-dependance property of rates (r(*7)).
Formal proofs for the general case of density-dependent jump processes can be found in
Ethier and Kurtz|(1986). The authors demonstrate that the dynamic of a density-dependent
Markov jump process can be approximated with equation[2.19|with d Bt being a multivari-
ate Brownian motion with diffusion matrix Q¢ = Ndiag{r("?), (i,7) € R} = diag{r(7),
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(¢,7) € R}, and L being the ¢ x m stoichiometric matrix which columns are the stoichio-
metric vectors k(") with (i, ) € R. Additionally, the vector A(t) is determined by:

A(z) = Y ke (5, 0) (2.20)
(1,j)ER
Lastly, the resulting expression for ¥ is the following:
S(z) = LQ'L = Y kEDrD) (5, )T (2.21)
(1,7)€ER

2.6.3 Diffusion approximation of the environmental stochasticity

This section focuses on environmental stochasticity. In this perspective, we consider an
infinite population leading to a deterministic behaviour in the absence of environmental
stochasticity or time-varying parameters following a diffusion:

dz = A(z)dt (2.22)
In the case of the SIR model:
dsy = —[sipdt
diy = (Bsyiy — vig)dt (2.23)
dry = yigdt

The framework proposed in [Breto et al.| (2009) introduces environmental stochasticity
by replacing deterministic time increments dt by stationnary and nonnegative increments
dT'; with mean dt and variance o2dt. Here, if environmental noise is put over the transmis-

sion parameter j3:
dSt = —Bstitdl—‘t
dit = ﬁStitdFt — ’)/Zfdt (224)

dry = yizdt
We propose to derive a Gaussian formulation of epidemic models with environmental
stochasticity by approximating dI'; as dt + odB;, i.e. the Gamma-distributed increments
are replaced with a deterministic drift and a Brownian motion term with corresponding
mean and variance. Thus, the model can be written as a stochastic differential equation:
dSt = —ﬁstztdt — Uﬁstitngl)
dit = (ﬁstitdft — "/Zt)dt + O'ﬁstl'tdBlgl) (225)

d’/‘t = ’}/tht
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In the general case, independent environmental noise can be enforced upon any subset

R¢ € R of all reactions. In the natural scale of z;:
dz = A(z)dt + L°dB" (2.26)

L is the ¢ x Card(R°?) stoichiometric matrix which columns are the stoichiometric vec-
tors k(-) with (i, j) € R¢. In addition, dBZ * is a Brownian motion with diffusion matrix
Q° = dmg{a r(i.5)(2t)?, (i, j) € R} containing the variance of the different environ-

mental noises 1mposed upon the system.

2.6.4 Gaussian SDE approximation in the general case

From the previous results, the general epidemic model under the infinite population as-

sumption can be approximated with the following SDE:

dzf = 1% (%, 0)dt + L0 dB2"

(2.27)
dz = Az, 2% ,0)dt + L¢dBE",
where A is the following vector :
A) = (( Sozyen KO () ). (2.28)

Additionally, if demographic stochasticity is accounted for (typically through the multi-
nomial approximation), the SDE approximation becomes

dzlt = pb (2%, 0)dt + L(”dBQ '
dze = Az, 2%, 0)dt + LdBZ

In this case, the matrices L and @ are constructed by concatenating the dispersion and

diffusion matrices of the different sources of independent noises:

L:(Ld Le) and Q:(%d c?) (2.29)

2.7 Discussion

In this chapter, we examined epidemic models where some of the parameters are mod-
elled with diffusions or integrals thereof. The main motivation was to account for time-
varying drivers of epidemics (virus evolution, seasonality, schools closure, etc), while
maintaining a simple interpretation. We presented a unified framework that supports
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data-augmentation MCMC schemes based on fine partitions of the diffusion path; the as-
sociated approximation error can be controlled by the user without affecting the MCMC
performance. This solution can be viewed as an extension of the approaches by

and Stramer| (2001) and (Chib et al.| (2006) to the more challenging observation regime of
this Chapter. The consideration of the algorithms in a continuous-time setting revealed

major issues associated with Gibbs data-augmentation schemes. These difficulties justi-
fie the use of particle MCMC, which updates paths and parameters jointly, while point-
ing directions for future research on Gibbs schemes. We also presented a computational
machinery based on the PMCMC algorithm (Andrieu et al., 2010), that was integrated in
an adaptive MCMC context. In particular, we consider EKF-based initialisations of the

adaptive algorithms that can offer substantial improvement, especially in cases with many
static parameters. Increased stability and improved approximation of non-linear dynam-
ics could be achieved be replacing replacing the Extended Kalman Filter by a Square Root
Uscented Kalman Filter (Van Der Merwe and Wan, 2001). Nevertheless, the application of
the PMCMC remains computationally demanding, and relying on a random walk explo-

ration of the parameter space can be critically limiting, in particular for complex epidemic
models. Situations of structural identifiability leading to hyperbolic shapes of the poste-
rior distribution (see for example Figure also illustrate a limitation of the robustness
of the random walk Metropolis scheme: as the orientation of the posterior distribution of
the two components #; and 6, varies over the parameter space, it is necessary to rely on
region-specific covariance matrices ¥, driving the random walk, following the ideas of
[Roberts and Rosenthall (2009) or [Girolami and Calderhead] (2011).

Figure 2.11: Posterior covariance of structurally unidentifiable parameters. Figure origi-

nating from Raue et al.| (2009).

On a modelling perspective, our study starts from a simple SEIR model under the in-
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finite population approximation. The proposed methodology can be viewed as an ex-
ploratory tool towards more structured models; e.g. the age-structured model of Section
5.3 that appears to be an improved representation of reality. This approach can help in de-
veloping richer models and testing alternative scenarios for public health interventions, or
to bring further insights on extrinsic factors such as climate on the dynamics of epidemics.
Moreover, this framework can support multiple sources of data, of potentially different
nature: [Rasmussen et al| (2011) has shown how epidemiological time series and genetic
sequences can be combined for more informative estimates using the PMCMC algorithm.
While we worked mainly with influenza time series, the developed methodology can be
applied to other cases as illustrated in Chapter 3.

Time-varying parameters can be seen as an alternative to the stochastic rates introduced
in Breto et al.[(2009) to model environmental stochasticity. The combination of these two
approaches allows to model high-frequency variations as well as longer term trends in
time-varying drivers of epidemics. In the last Section, we have proposed a unified frame-
work allowing for the combination of different types of environmental and demographic
stochasticity, along with a generic and adaptive inferential framework. The application
of the Extended Kalman Filter to this general setting relies on additional approximations:
the diffusion approximation (Ethier and Kurtz| [1986) and a Gaussian approximation of in-
dependent Gamma increments. The robustness of these approximations and their impact
on the contribution of the EKF-based pre-exploration of the posterior density will be the
object of further research.



CHAPTER 3

A Bayesian approach to estimate
changes in condom use from limited
HIV prevalence data

3.1 Introduction

Significant resources are being committed to implement large-scale interventions against
infectious diseases such as HIV/AIDS, that killed an estimated two million individuals
in 2008 (UNAIDS, 2009). Although such interventions are implemented on a large scale
because they are expected to work, increasing attention is given to their evaluation to
understand what still needs to be done to control the epidemic and eventually achieve
elimination, ensuring that resources are not waisted on strategies that do not work.

Even if antiretroviral therapy has become an important component of large scale pre-
vention interventions, condom use and circumcision remain important strategies for re-
ducing HIV transmission. While there are difficulties in estimating condom use trends
accurately, due to biases inherent in self-reported behaviour (Turner and Miller} 1997} Ze-
nilman et al., |1995; |Hanck et al., |2008), its average level closely determines the spread of
HIV (Boily et al., 2007). Thus, it is important to assess if trends in epidemiological data
such as HIV prevalence can be used to infer the impact of interventions on risk behaviours
that are susceptible to self-reported bias. This is motivated by the fact that directly ob-
served quantities as HIV prevalence do not provide straightforward indications on the
impact of an intervention. Indeed, an epidemic has an intrinsic dynamic, which can cause
the prevalence to grow although an efficient intervention is being led if the intervention
is introduced early in an epidemic. Alternatively, in a mature epidemic the prevalence
can decrease even though on-going interventions are inefficient (Boily et al., 2002). How-

83
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ever, the trajectory of CU over time, and especially since the beginning of a prevention
programme, can shed light on the impact of the intervention and on the future trajectory
of the epidemic. In this light, we apply a Bayesian methodology to trends in HIV preva-
lence data, focusing on the specific example of Avahan, India AIDS initiative, a large-scale
HIV/AIDS intervention targeted to high risk groups.

The Avahan intervention was motivated by high levels of HIV prevalence amongst
high-risk groups observed in southern India (typically over 20%) (Ramesh, et al., 2008),
which lead to concerns about infections bridging to their long-term partners and the gen-
eral population. The programme was launched by the Bill & Melinda Gates Foundation in
2003 (BMGE, 2008), and has targeted high-risk groups for HIV infection, in particular fe-
male sex workers (FSWs), by promoting and distributing free condoms. Different studies
have been conducted to examine the impact of Avahan (Boily et al., 2007; |Deering et al.,
2008 |[Lowndes et al.,2010; Pickles et al.,2010), and to learn from it in order to inform future
large-scale interventions. A key part of such evaluations is the examination of how risk be-
haviours, chiefly condom use (CU) defined as the proportion of sex acts protected by con-
doms at a given time have changed over the course of the intervention. However, this can
be difficult to measure in practice. Baseline CU may be difficult to record when an interven-
tion needs to be implemented rapidly, as happened with Avahan, or may be recorded only
on few occasions. While those targeted by the intervention may be asked about their CU
history (Lowndes et al.|,[2010), their answers may be subject to social desirability and recall
biases. In principle, the total number of condoms sold or distributed can be enumerated
(Bradley et al.,[2010), but accurate records may not be available, condoms may be used for
family planning by lower-risk individuals, and the distribution of condoms is not a guar-
antee of their correct usage (Bradley et al., 2010; [Kumar et al., 2011). Thus, in addition to
direct approaches through quantitative behavioural surveys or records of condom avail-
ability, model-based methods can be used to infer unobserved quantities of interest, such
as CU, from observed quantities such as HIV prevalence using knowledge of the dynamics
of large-scale epidemics. A first study in the context of Avahan was presented in [Pickles
et al| (2010). In this work, a deterministic dynamic model for HIV /sexually transmitted
infections was formulated based on a compartmental representation incorporating hetero-
geneous sexual behaviour. The model included various parameters for which informative
prior distributions were used. Prior elicitation was based on various data sources, such
as previous literature (see [Pickles et al[(2010) for more details) and serial cross-sectional
surveys termed integrated behavioural and biological assessment (IBBA) conducted in the
districts of India targeted by the intervention. The objective was to utilise this model and
assess its ability to fit the available prevalence observations under three different hypoth-
esised scenarios of evolution of CU.
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The work we present in this Chapter operates in the same context as in [Pickles et al.
(2010), but focus is given on exploring the entire space of CU trajectories rather than con-
sidering three scenarios regarding its evolution. Similarly, the model formulation can also
be put in a state-space setting where an underlying latent process (CU trajectory) is in-
directly observed through the prevalence data, and the link between these quantities is
given by the deterministic model for HIV infections. Inference in this context is a challeng-
ing task given the limited amount of HIV prevalence data aside from initial conditions
(three or four observations in total) that are concentrated over a period of 6 years and are
utilised to estimate a 25-years long trajectory. Various models for the CU trajectories were
considered, including smooth and non-differentiable (yet continuous) choices. In the re-
mainder of this Chapter, the term trajectory prior is used to refer to these models in order
to avoid confusion with the deterministic HIV model. Focus is given on estimating the
amplitude of the change in CU since 2003 (the start of Avahan) in order to assess the im-
pact of the Avahan intervention on CU. The properties of the estimators arising from the
methodology introduced in Chapter 2 are studied via simulations, and the performance
is assessed from a decision-making perspective through their sensitivity and specificity in
detecting strong changes in CU.

The next section presents the models introduced in this Chapter, the data that are typ-
ically available for such studies, and the way in which prior information is incorporated.
The computational techniques, mainly the particle MCMC algorithm, are also presented.
The methodology developed to compare the performance of the proposed trajectory pri-
ors is presented in Section 3.3} and the results from this study are introduced in Section[3.4]
along with an application to real data from the Indian AIDS initiative Avahan. In Section
the analysis is extended to ten districts targeted by the Avahan intervention, and to
the Bayesian synthesis of model-based and survey-based CU estimates. Finally Section[3.6
concludes with some relevant discussion.

This chapter is directly adapted from an article currently under review, co-written with
Kostas Kalogeropoulos (London School of Economics), Peter Vickerman (London School
of Hygiene and Tropical Medicine), Michael Pickles (Imperial College) and Marie-Claude
Boily (Imperial College). Section [3.5]is a subsequent development of this work.

3.2 Models and methods

3.2.1 HIV transmission model for female sex workers

We use a structured deterministic model of HIV transmission in a stable but open popu-
lation of sex workers and their clients, under the infinite population approximation. The
model structure accounts for high-risk ( R) and low-risk (LR) FSWs, who have different



86 CHAPTER 3. ESTIMATING CHANGES IN CONDOM USE FROM LIMITED DATA

numbers of clients (M). State variables SHE [HE GLE [LE GM and M respectively rep-
resent the absolute number of susceptible and infected individuals among high-risk FSWs,
low-risk FSWs, and clients. This model is parameterised using data from serial cross-
sectional bio-behavioural surveys (IBBAs) in Mysore district in southern India (Ramesh, et
al., 2008). Some uncertainty remains about these biological and behavioural parameters,
which is reflected on the estimates of CU using a Bayesian approach (De Angelis et al.
1998). As motivated in|Vickerman et al.[(2010), low-risk individuals uninvolved directly in
sex work are ignored as they have little influence on the dynamics of the epidemic. Each
individual in these three groups is either susceptible to HIV infection, infectious, or retired
either due to death or ceasing commercial sexual activity. The flow-diagram correspond-
ing to high-risk FSWs is shown in Figure In addition, individuals that either decease
or stop being involved in commercial sex are replaced by susceptible ones, maintaining
the population at risk at a constant size. As illustrated in Figure the force of infection

B is a function of a number of different parameters:

e NbClients? and NbClients™?: number of clients of FSWs per month, which differs
for high risk and low risk FSW

o NbEncounters: mean number of encounters with a FSW per client per month
o NbActs: number of acts per client encounter

e pi - orpl ., : probability of HIV transmission from male to female or female to
male respectively during an unprotected sex act

o Cond.yy : efficacy of condoms in protecting against transmission of HIV per sex act

e CU/(t): proportion of commercial sex acts with FSWs that are protected by condoms,
that we allow to vary in time (parameter that we want to estimate)

Additionally, the transmission dynamics of HIV will depend on the following dura-
tions:
® Up&y OF iy, ¢ average duration of sexual activity as a sex worker / client

e o~ !: average life expectancy with HIV
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Figure 3.1: Flow-diagram of the model for high-risk FSWs. Transmission dynamics for
low-risk FSWs and clients are defined similarly

In mathematical terms, the model can be defined with a set of differential equations:

dsyr rrorr L LR
dt = P Toty + rsw + o)l
drt"® rrorr 1 LR
T BES; Totr (krsw + a)l;
dSHR M
T —5HR5tHR7T;t + (upsw + @) I
dTHR ™ . @1
¢ HRoHR i HR
- —t I
7 ISy Totnr (prsw + )l
ds}M M oM IR HE M
e —B S, (PmpLR(TotLR) + PmpHR(TotHR)) + (par + )1y
ﬂtM—BMS]V[ Proprr( I )+ Propur( i ) ) = (par + @) I
dt t PLR TotLn PHR Totrn Har t
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Using the following notations:

BER = [1 — (1 — ply_, p) NP2 NbClients"R(1 — Cond,. sy CUy)

BHIE =1 — (1 — ply_, o) VPAUINOClients“ (1 — Cond,. sy CUy)
NbClients™ + NbClients® _ Totp

BM = [1— (1= plan) N 5 ) Tot,, (L~ CondesCUY)
NbClients"ETot g
Proprr = ; -
NbClients™RTotpr + NbClientstETotgg
NbClients“BTot;
Propyr =

NbClients"RTotpr + NbClientstET oty g

In the model above, three types of constant parameters are involved:

e Initial prevalence among the different groups of interest in 1985:
Oi.c. = {Siogs: Ions Sibks, Ioss: Sioss [9ss }
o Constant parameters describing the biological and behavioural determinants of HIV:
Orr. = {upsw, iar, o, NbClients™ R, NbClients™® pti, o p%_, 1/, NbActs, Cond.y s}

e Parameters that play a role in the CU trajectory priors for: cu

All three components §; ., 0, and Ocy are integrated into a global vector of constant
parameters, denoted by 6. Under this notation, the trajectory zo., of the space vector
2 = {SFR PR SGHE [HE GM M3 ig defined as a deterministic function of § and CUy.,
(i.e. zo.n = f(8,CUy.,)) through an HIV transmission model, and is compared with the
available observations, denoted by yi.,. Note that the function f(.) is not available in
closed form but can be obtained given the trajectory of CUy., by solving the above or-
dinary differential equations (ODE). More specifically, we introduce a time discretisation
with equidistant points of time step ¢ resulting in a discretised skeleton of CU denoted
Ccudiser = {CUy,,CUyy 6, CUyy 425, ..,CUy, }. The partition of the CU trajectory can be
made arbitrarily fine by the user-specified parameter ¢ to limit the approximation error
induced by the time discretisation.

Assigning a model for the observation error provides the likelihood of the observation
Y1., conditionally on the CU trajectory: p(y1.,|0, CUy.,, ). In this Chapter, we use a binomial
distribution considering that prevalence estimates are derived from a random sample of
425 FSWs or clients in the Mysore district. More specifically if we denote prev™°d¢! the
value of prevalence estimated through the HIV transmission model (prev"°¢! = (IFF +

%
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IHR)/2 if prevalence among FSWs is observed at time ¢;, prev™*?¢! = IM if prevalence

among clients is observed at time ¢;), the observation model is the following:

425 x prev?®® ~ Bin(425, prev™°del) (3.2)

7 %

Overall, the model appearing of Figure[3.1]and Equations[3.1]is a simplified version of
the one in in (Pickles, et al., 2010). This was done mainly for parsimony reasons; models
of increased complexity can be used provided that there is adequate information on their

parameters. More details on the informative priors that have been used are provided in

Section[3.2.3

3.2.2 Trajectory priors for condom use

In this Chapter, we introduce three different formulations for the evolution of the CU
trajectory. Our first trajectory prior, denoted BM, assigns a Brownian motion to CUy.y,
transformed to take values in the real line. Initial considerations in [Pickles et al.| (2010)
and classic literature on smoothly growing quantities also motivated the introduction of
alternative formulations based on sigmoid-shaped growth curves. Hence, the second tra-
jectory prior, denoted by dBR, is based on the generalised Bertalanffy-Richards model; see
for example (Garcia) (1983} [Yuancai et al.|[1997). In order to enrich this context and address
estimation issues that can be encountered with the dBR (Lei and Zhang},2004), we also con-
sider an alternative empirical sigmoid curve (dSigm). In what follows, we denote with x;
the latent process that drives the CU trajectory, which in turn is linked with the prevalence
observations through the model in Section[3.2.1]

Brownian motion (BM)

The first formulation assigns a Brownian motion to a transformed version of the CU tra-
jectory. As the latter has to be constrained in the [0,1] region, we work with the logit trans-
formation of CU,, denoted by:

o, = exp(xy)
I+ exp(ay)
dl’t = O'dBt (33)

The use of diffusion processes to describe time varying quantities in contexts associated
with uncertainty has been explored in Chapter 2 of this thesis. It can also be seen as a prior
according to which z; is a random walk with continuous, yet non-differentiable trajecto-
ries. It is used here as an attempt to incorporate a limited amount of prior information
on the shape of the trajectory. It can also be used as an exploration tool for potential

modelling-remodelling steps towards more informative formulations. Variations of this
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formulation may include smoother diffusion models, by taking integrals of the Brownian
motion, or alternative transformations such as the probit link. We note at this point that
very little information is available on the volatility in which is determined mostly by
its prior. More details are provided in Sections and

Deterministic Bertallanfy-Richards function (dBR)

Qualitatively, reconstruction of CU trends by alternative methods (Lowndes et al.| [2010;
Bradley et al., 2010) suggest that CU was quite low in 1985, and has grown over the recent
year. The above motivated the use of a growth curve parametric model instead of the
Brownian motion diffusion. This is in line with various approaches in modelling quantities
that are smoothly growing in time in different contexts such as biology (Zwietering et al.,
1990), marketing (Lessne and Hanumaral [1988) and epidemiology (Omranl [1971). We use
the generalised Bertalanffy-Richards (BR) family (Richards)[1959; Garcia) [1983) that can be

written as:
1

CU, =n(1 — Be ")T™m (3.4)
or else, in differential equation framework:
CU, = [(1—m)z,+n' "= (3.5)
dry = —kxudt

This family contains various growth curves, including the logistic (m = 2) and Gompertz
(m — o0) functions. The growth curve can be parameterised by four quantities: the initial
value of CUy, the time of inflection ¢;,, the value of CU after an infinite time (7, also termed
as the asymptote), and the shape or allometric parameter m. Note that the time of inflection
can be related to the parameter & by the following equation:

B
kXt = 10%(@) (3.6)

Furthermore, this definition implies that the initial value CUj is lower than mTwy. In
order to focus on sigmoid-shaped growth curves, we restrict our attention to cases where
m > 1 (Yuancai et al||1997). For illustration, the slope of the curve at its inflection point is
a complex and non-monotonous function of m:

cU _m_ n 17(CU0>(17 L) _1
—(tin) = T-m — — ] Ui I-m 7
1) = b= = L log(—— 67)

Deterministic empirical sigmoid curve (dSigm)

An empirical sigmoid model is also considered to address the potential difficulties that can
arise with the parameterisation of the dBR. Since growth models are used to study intrinsi-

cally growing objects, trajectories that are inexplicably stable for a long period of time and
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that eventually start picking at a rapid pace are not typical under the BR formulations. It
may however be the case that the extrinsic influence of the Avahan intervention induces
a late increase of CU after fifteen years of stability or slow increase. Moreover, inference
on the allometric parameter m in dBR can be problematic (Lei and Zhang), 2004). These
may lead to underestimating the amplitude of a shift in CU under the potential influence
of the Avahan intervention. For this reason, we also consider an alternative sigmoid curve,
defined in the following way:

CU;y = a+ At
dry = —kxudt (3.8

Here the model is parameterised by its baseline (CUy), its asymptote (1), its time of inflec-
tion (¢;,), and the increase rate (r), from which a, b and c can be computed:

a = CUO —b

b = (n—CUp)ec (3.9
- 1

© T Tietw/r

The slope of the curve at its inflection point is now a simpler function of the model param-
eters than with the previous model (Equation[3.7):

dcU . . n—CU,

g (tin) = 1 (3.10)

Stochastic growth curves

It is also possible to combine the Brownian motion and the growth curve approaches us-
ing diffusions. Stochastic extensions of the dBR and dSigm model can be considered, in
which the mean behaviour remains intact while some random perturbations are intro-
duced through a stochastic differential equation. In order to ensure positivity, restrict CU;
below one and retain the link with deterministic dBR curve, a geometric Brownian motion
can be used to replace equations and

dx; = —kxidt + oxdBy (3.11)

The stochastic growth curve defined by (3.5) and (3.11) was also mentioned in (Garcia
(1983). A convenient feature for both stochastic extension of dBR and dSigm is the fact

that since 1

T 1-m
and x; is strictly negative, the resulting CU trajectory is maintained strictly below 7. Given

y (cui=m —ntmm), (3.12)

the limited data at our disposal, these models can hardly be fitted in the context of this
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Chapter. Nevertheless, they may be helpful in cases where more observations are avail-
able.

3.2.3 Priors

The parameters contained in 6; .. and 6;, cannot be identified from the prevalence obser-
vations only, so we assign informative priors on them. These are summarised in Table
and are similar to the priors used in [Pickles et al|(2010). General quantities as transmis-
sion probability for unprotected acts, or life expectancy with HIV are based on previous
literature, whereas priors concerning quantities that are more sociologically and geograph-
ically specific were estimated from cross-sectional individual-based surveys (IBBAs) in the
district of Mysore.

The parameter vector § includes an additional component, 6¢c, that contains the pa-
rameters for different models describing the CU trajectories, 8 = {6,604 ,0cu}. Al-
though there is some information in the data for 6c, the posterior will depend on the
prior to a large extent. As mentioned earlier, there is very little information on the volatil-
ity parameter of the BM formulation. Throughout this Chapter we used a Uniform prior
between 0 and 0.5. As explained in more detail in Section the parameter of main
interest in this study is the quantity ACU = CUszpp9 — CUszgp3. Simulations suggest that, if
we combine the BM approach with a Unif(0, 1) prior for CUy (CU in 1985), this results in
a symmetric prior on ACU that is centered around 0 with 2.5% and 97.5% points at 0.6
respectively. We considered it as a reasonably vague prior for ACU and evaluated the
performance of the resulting model via the simulation experiments of Section More
diffuse priors can also be used by setting a larger value for the upper limit of the Uniform
prior for 0. Regarding the parameters of the sigmoid curves, we used vague priors that
are also shown in Table

3.24 Computational schemes for implementation

The joint posterior density p(6, CU{¥|y1.,) can be computed pointwise up to proportion-
ality, using the HIV transmission model of Section [3.2.T| which links the prevalence obser-
vations with the CU trajectories, the trajectory priors of Section and the remaining
priors of Section For the dBR and dSigm trajectory priors, it can be put in a non-
linear regression framework, with the non-linear function being the solution of the ODE,
and can therefore be implemented with standard software such as WinBUGS through WB-
Diff (Lunn| [2004). However this is not possible for the BM case where more involved
techniques are required. Since the posterior probability density function is intractable, a

data augmentation scheme can be utilised. This inference problem poses some challenges
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HIV transmission model

Range of uniform priors for the

parameters definition Notation district of Mysore (Pickles et al. 2010)
Py of i
Pty of i
Condom efficacy per act Condeyy 80%-95%

Mean number of acts per clients NbActs 1-2
Mean number of clients per high-risk FSW NbClients"? 46.6-54.0 clients/month
Mean number of clients per low-risk FSW NbClientstt 20-23.7 clients/month
Toral number of FSWs Totrr +Totyr 2144
Cliens/FSW population ratio T — 7-19
Mean length of sexual activity as FSW ppt 45-54 months
Mean length of sexual activity as client tar 154-191 months
Mean life expectancy after infection with HIV a™t 87-138.5 months
Initial proportion of infected FSWsin 1985 % 0%-5%
Initial proportion of infected clients in 1985 HIVy/Toty 0%-5%
Condom trajectory priors parameters definition Notation Prior
Allometric parameters (dBR) m N(1,10%) x 1 4oof
Growth rate (dSigm) r N(0,10%) x Iy 4o
Asymptote (dBR, dSigm) n Unif(0,1)
Initial Value (all trajectory priors) CUy, Unif(0,1)
Time of inflection (dBR, dSigm) tin Uni f(1985,2009)
ey CUam owCu
Volatility (BM) o Unif(0,0.5)

Table 3.1: Table of priors for the different components of {0; .., 0, 0cu}
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due to the high dimension of the discretised representation of CU% and its strong cor-
relation with the vector of constant parameters, #. This correlation imposes problems to
Gibbs schemes on ¢ and CU{*, leading to extremely poor mixing and convergence prop-
erties. As motivated in Chapter 2, the particle MCMC algorithm (Andrieu et al., |2010)
offers a solution by updating the two components jointly, thus reducing the problem to a
small-dimensional MCMC on 6 based on the estimates of the likelihood p, ¢ (y1.,,|0) that are
provided by a particle filter.

Each iteration of the random walk Metropolis Hastings algorithm, operated in a trans-
formed parameter space (log or logit) to ensure positivity or boundedness constraints on
each parameter, requires an execution of the particle filter. Consequently, substantial com-
putational cost is induced if the importance sampling covariance matrix 39 is ill-adapted.
Adaptive approaches (Roberts and Rosenthal, 2009) can be used to tune ¥¢ but they can
require lengthy explorations of the target space. We propose to speed up this process by

pre-exploration of a proxy posterior density pZ&¥

(0|y1.n) relying on a Gaussian approxi-
mation of the dynamic system and the Extended Kalman filter methodology as illustrated
and motivated in Chapter 2. A simple bootstrap version of the particle filter is used as
it is not straightforward to consider data-driven transition proposals given the complex

observation regime of our model.

3.3 Evaluation methodology based on ensemble simulations

Given the limited amount of prevalence data available (four or five prevalence observa-
tions, including initial conditions), it is very likely that the posterior densities will be in-
fluenced substantially by the choice of CU trajectory priors and their parameters. In this
section we explore the performance of the proposed inferential mechanism via simulation-
based experiments designed to mimic the behaviour of datasets typically encountered in
the context of application studied. Clearly, the approach of this Chapter heavily relies on
the HIV infection model and the results will be quite sensitive to its specification. We
therefore set up the simulation experiments under the assumption that the model of Sec-
tion[3.2.1} parameterised according to the priors of Section [3.2.3 is correct. Focus is given
on quantities related with the CU trajectories that can be estimated from the samples of
the posterior distribution provided by the MCMC algorithms of Section under the
different choices presented in Section We also provide some discussion regarding
the static parameters appearing in the CU trajectory priors.
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3.3.1 Parameter of interest

By fitting each of the previously introduced models we obtain samples from the marginal
posterior density p™!"(CU{|y;.,) (meth € {dBR, dSigm, BM}). However, our interest
mainly lies in the amplitude of the shift in CU between 2003 and April 2009 measuring the
estimated increase in CU during the intervention, henceforth denoted by ACU. The pos-
terior draws of CU trajectories can be transformed to provide samples from the posterior
of this parameter of interest. The samples can then be used to form an estimator ACU™¢th
of ACU, such as the posterior median of P (ACU 1.y, ). In what follows we explore the
frequentist properties of this estimator, derived from each of the trajectory priors.

It may also be of interest to assess the estimating capabilities, given the limited amount
of data, for the hyperparameters of the various CU priors (CUy, 1, r, m, ti, and o). It
appears that the limited prevalence data contain information for some of them (CUy, 7,
tin), whereas some others are hard to estimate and are determined mostly by their prior
(r, m and o). Nevertheless, from application point of view interest lies mainly on ACU
while the remaining quantities (in CU priors) can be regarded as nuisance parameters.
Another appealing feature of ACU is that it appears in all models and therefore provides
an omnibus quantity for comparison. Hence, inference properties of these parameters
(CUy, m, v, m, t;n, and o) are only studied indirectly through inference properties of ACU.

3.3.2 Measures of performance

The performance of each estimator ACU™*" in estimating ACU is evaluated from the
following criteria (where L = 100, the number of simulations):

Bias™" = 1S (ACU™™" — ACU)
MSE™eth = LS~ (ACUpme™ — ACU)?
Stdmeth — \/MSEmeth _ (Biasmeth)Q

In addition to the quantities above we are also interested in assessing the discriminative
ability of each model in detecting increases in CU. Focus is given to increases in CU that
are at least as high as a pre-specified threshold T. When analysing the data, a researcher
may decide that CU did increase more than T if the value of the estimator Acumeth s
higher than a user-specified threshold ¢. Each decision mechanism may lead to different
types of error and is therefore associated with a particular sensitivity and specificity. More
specifically we can define the true and false positives in the following way

HACU™th >t ACUST)
H(ACU>T)

e Sensitivity (true positives rate) for ¢:

tHACU™th <t ACULT)
H(ACU<T)

o Specificity (1 - false positives rate) for ¢:
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We proceed by first reporting sensitivities and specificities corresponding to the case
of t = T. This corresponds to saying that ACU is higher than T if its estimator is higher
than 7. We then use a range of different ¢’s and obtain the sensitivity-specificity pair that
corresponds to each of them. A lower detection threshold ¢ will increase the sensitivity of
the method, but it also increases the risk for false positives, and vice versa. These pairs are
combined to form the Receiver Operating Characteristics (ROC) curve by plotting sensitiv-
ity versus 1-specificity. The area under the ROC curve (AUC) provides an overall measure
of discriminatory power as it reflects the probability of correctly classifying a randomly
chosen positive instance as higher than a randomly chosen negative one (Fawcett, 2006).
For example, an AUC value of 50% indicates no power (i.e random choice).< This detailed
procedure is repeated to assess the ability to detect two different levels of increase in CU,
with T set to 20% and 40% respectively.

3.3.3 Simulation procedure

The performance of the estimators derived from the different trajectory priors is measured
using a set of simulated experiments where CU trajectories are sampled from a given
growth curve model, and parameters from 6; .. and 6, are sampled following their prior
distributions. To maximise the utility of this test procedure for future application of this
methods to help evaluate Avahan in different districts, only plausible and realistic CU tra-
jectories are considered: cases with prevalence in 2010 between 2% and 40% and with CU
shifts that occurred after 1995. Furthermore, the test trajectories have been sampled so that
ACU regularly spans the [0; 0.6] interval.

For each of these experiments, an epidemic is simulated to provide observations (™)
replicating the observation scheme applied in Mysore: three prevalence estimates among
female sex workers and one among clients, concentrated during the period of the inter-
vention (step 2 of Figure3.2). From these observations, the MCMC algorithm is applied to
each method to sample from p(CU"|y5im) (step 3 of Figure . Then, given the pos-
terior CU samples the estimators ACU™¢" can be computed and compared to their true
counterparts ACU (step 4 of Figure by calculating the measures of performance of the
previous subsection. Examples of ROC curves obtained in such manner are provided for
the Brownian motion trajectory prior in Figure
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Figure 3.2: Simulation procedure, repeated 100 times for each trajectory prior

3.4 Results

3.4.1 Comparison of the CU trajectory models from ensemble simulations

The results of the simulation experiments are presented in Tables and Table
focuses on the frequentist properties of the estimators, derived from the median of the
posterior densities provided by each trajectory prior, and reports the bias, the standard
deviation and the MSE of each estimator. Table 3.3|concentrates on the ability of the model
to classify shift amplitudes of CU from 2003 to 2009 in the right order (AUCs), and more
specifically on the risk of overstating versus understating the quantity of interest. In other
words, we aim to address questions such as was the shift in condom use during the intervention
over 0.2 (0.4)?, via the corresponding sensitivity and specificity and the resulting AUC.
The first table of this section (Table suggests that no model tends to consistently
overstate ACU as all biases are negative. More precisely, the dBR model tends to strongly
understate the shift in amplitude, by 0.23 in average. The bias of the dSigm model is
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Figure 3.3: ROC curve when testing for ACU > 0.2 and ACU > 0.4, under Brownian mo-
tion trajectory prior. This curve was estimated from 100 simulations. Very similar shapes
are obtained for the alternative trajectory priors.

smaller (—0.17), but optimal results are obtained with the Brownian Motion model (—0.13).
Similarly, in terms of MSE, the performance of the BM model is better. Figure (3.4 shows
the bias, estimated from 100 simulations, of each trajectory prior as a function of the true
amplitude of the shift in CU. It suggests that the bias increases as a function of the size
of the true amplitude of the shift in CU, and that the ranking of the different models is
consistent across different configurations (from no shift in CU to moderate and high shifts
in CU). If, for example, the true shift is 4-0.5, it is on average underestimated by 0.15 with
the best method (BM) and more than 0.35 points with the BR method.

Table[3.3]and Figure[3.4]suggest that all estimators based on the median of the posterior
density of p(ACU |y1.,) have good distinguishing power: the AUC is between 0.82 and 0.91
in all cases. In line with the results of Table the estimates provided by the BM model
achieve better sensitivity (68% and 49%) than the other models (between 5% and 51%), and
very good specificity (over 94%). The performance, particularly the sensitivity, decreases
as the level of increase in CU that is being tested for increases.

The results presented in these tables provide an informative qualitative assessment for
the ability of the different models to capture ACU from limited prevalence data on an im-
portant and diverse set of likely scenarios (100 experiments). First of all, MSE and AUC
figures suggest that although the number of prevalence observations is low and some el-
ements of the transmission process are uncertain, it is still possible to extract information

on the time-varying parameter and provide estimates of the amplitude of the shift in CU
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Figure 3.4: Bias of each model as a function of the true amplitude of the shift in condom
use, estimated from 100 simulations.

during the intervention. Furthermore, there seems to be a possibility to control the risk of
overstating these quantities by analysing the outputs of the three models that offer differ-
ent levels of compromise between sensitivity and specificity. Thus, although the procedure
may fail to identify some shifts in CU, we have provided some evidence suggesting that
if a shift is detected it is likely to be true. The latter, in the context of interest, results in
conservative estimates of intervention impact on CU trends.

The bias in estimating ACU under each of the CU trajectory priors can be attributed
to a large extent to the prior implied by each formulation on ACU. As mentioned in Sec-
tion 3.2.3|the BM approach results in a symmetric prior on ACU that is centered around 0
with 2.5% and 97.5% points at +0.6 respectively. The posterior median is therefore pulled
towards 0 resulting in conservative estimates. The amount of shrinkage depends on the
upper limit of the Uniform prior on ¢. The corresponding priors under the dBR and dSigm
formulations result in priors for ACU that put more mass around 0, although this heav-
ily depends on the values of r and m that are hard to estimate. The resulting biases are
therefore higher but they have been obtained without placing informative priors on their
hyperparameters, as was done with o under the BM formulation.

The two models with the higher overall performance, BM and dSigm, are quite dif-
ferent in nature: the dSigm trajectories are smooth, whereas under the Brownian motion
prior they are non-differentiable. Hence, the choice between the two models can also be
based on prior beliefs of the researcher regarding the smoothness of the CU trajectories.
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Deterministic Deterministic Brownian

Bertalanffy- empirical motion
Richards sigmoid
Bias -0.23 -0.17 -0.13
Error standard deviation 0.16 0.17 0.17
Mean Squarred Error (MSE) 0.078 0.0057 0.045

Table 3.2: Frequentist properties of the different estimators of the amplitude of the shift in
condom use during the intervention, estimated from 100 simulations

Deterministic Deterministic Brownian

Bertalanffy- Empirical motion
Richards Sigmoid

AUC 0.91 0.9 0.9

ACU > 0.2? Sensitivity 46% 51% 68%
Specificity 100% 100% 96%

AUC 0.85 0.83 0.82

ACU > 0.4? Sensitivity 5% 38% 49%
Specificity 100% 95% 94%

Table 3.3: General distinctive power (AUC) of the median estimator of the shift, and spe-
cific sensitivity and specificity when answering: is the shift in CU during the intervention
stronger than 0.2? than 0.4? These quantities were estimated over 100 simulations.

3.4.2 Application: what can be inferred on the trajectory of CU in Mysore
from limited HIV prevalence data?

Mysore is one of the districts targeted by the Avahan intervention, and Avahan was the
first HIV prevention intervention in this region. Four HIV prevalence estimates have been
obtained between 2003 and 2009: three among female sex workers, and one among clients.
Results from the inference procedure using a Brownian motion model are shown in Figure
suggesting a strong impact of the intervention. The purpose of this Chapter was to as-
sess what level of increase of CU between 2003 and 2009 can be inferred while controlling
the risk of overstating it. As it was shown in section dSigm models could provide
a good alternative to the BM formulation. Hence, we also present here results obtained
with this model for the Mysore dataset (see figure bottom panel). Table|3.4|shows the
estimates of ACU for each of the three presented trajectory priors. The results indicate a
positive increase in all cases. In particular, for the BM and dSigm models the correspond-
ing posterior means are 0.54 and 0.55 while the 95% credible intervals are [0.04;0.99] and
[0.14; 0.99] respectively.
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Posterior Posterior 95% credible

mean median interval
Deterministic Bertalanffy-Richards 0.30 0.28 [0.11;0.73]
ACU Deterministic Sigmoid 0.53 0.54 [0.14;0.99]
Brownian motion 0.52 0.55 [0.04;0.99]

Table 3.4: Estimates of the change in CU in Mysore between 2003 and 2009.

A stronger conclusion regarding a lower bound for the CU shift between 2003 and 2009
can be made by comparing the posteriors medians to the results of Table If the en-
semble of simulations is to be considered realistic, an argument in favour of a CU increase
being at least 0.4 can be made. Since the posterior medians are more than 0.4 under both
BM and dSigm models (0.54 and 0.55 respectively), Table 3.3|suggests that a statement for
ACU > 0.4 will be correct with probability given by the specificity of each model (94%
BM and 95% dSigm). While being more informative than the credible intervals obtained
directly from the posterior densities (over 0.04 and 0.14 respectively with BM and dSigm),
these numbers are heavily dependent on the assumption that the simulations of Section
provided an adequate representation of the reality.

Finally, Figure [3.5|and Table [3.4| show that the results obtained from the deterministic
Sigmoid and Brownian motion models strongly coincide: they suggest that CU was stable
over the 1985-2003 period, remaining below 0.5, sharply increased between 2003 and 2007,
and stabilised between 0.8 and 0.9.

3.5 Generalisation to ten districts targeted by Avahan, and integration

of survey-based estimates

3.5.1 Impact estimators derived from limited prevalence data

The approach presented in the previous sections was repeated to analyse data from other
districts of southern India targeted by the Avahan intervention. In each district, three or
four HIV prevalence estimates have been obtained between 2003 and 2010. The prevalence
estimates, along with observation dates, are presented in Table The Table illustrates
the variety of situations; for example, the level of prevalence among FSWs at the time of
the first IBBA was as high as 33.9% in Belgaum and 37.3% in Yevatmal, and below 10% in
Shimoga end Chennai. Yet, in all regions the estimated levels of prevalence have decreased
between the first and last IBBA. In this section, we apply the methodology introduced ear-
lier in the Chapter to estimate the impact of the intervention during the complete period of
the intervention (from 2003 to 2010). Although most of the parameters of the HIV model
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Figure 3.5: Estimates obtained for Mysore district.

a) reconstructed prevalence trajectory among female sex workers when condom use mod-
elled with Brownian motion

b) reconstructed prevalence trajectory among clients when condom use modelled with
Brownian motion

c) reconstructed condom use trajectory when modelled with Brownian motion

d) reconstructed condom use trajectory when modelled with deterministic Sigmoid
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District Date Group Estimate District Date Group Estimate
Mysore 2004 FSWs  26.11% Hyderabad 2006 FSWs 14.3%
2006  FSWs 24.2% 2006 Clients 2.4%
2008 Clients 5.4% 2009 FSWs 9.6%
2009 FSWs 11.1% 2009 Clients 3.7%
Belgaum 2005 FSWs 33.9% Yevatmal 2006 FSWs 37.3%
2007  Clients 6.2% 2006 Clients  10.9%
2008  FSWs 27.3% 2009 FSWs 26.7%
2010 FSWs 22.3% 2009 Clients  11.7%
Bellary 2005 FSWs 15.6% Salem 2006  FSWs 12.9%
2007  Clients 6.0% 2006 Clients 3.5%
2008  FSWs 14.2% 2009 FSWs 11.3%
2010 FSWs 6.3% 2009 Clients 1.9%
East Godavari 2006 FSWs 26.3% Shimoga 2005 FSWs 9.7%
2006 Clients 8.3% 2007  Clients 2.3%
2009 FSWs 23.3% 2008  FSWs 8.9%
2009 Clients 9.6% Chennai 2006 FSWs 3.2%
Guntur 2006  FSWs 21.3% 2006 Clients 2.2%
2006 Clients 6.6% 2009 FSWs 2.0%

2009 FSWs 8.4%
2009 Clients 7.1%

Table 3.5: Prevalence estimates in each region with corresponding years.

represent biological quantities that are considered to be constant over the different dis-
tricts, prostitution practices significantly vary between regions. Consequently, the prior
densities imposed upon the mean number of clients per month per FSW for high and low
risk groups is specifically adjusted in each district using IBBA survey data. Similarly, the
number of encounters per client per month as well as the mean length of sexual activity as
FSW or client are adapted to each district.

The analysis presented in the previous section shows that the BM and Sigm models al-
low similar levels of sensitivity and specificity. For reasons of clarity, we will only present
here the estimates obtained with the BM model in the different districts. The resulting
ACU estimates are summarised in table If the results in table [3.3| were to be trusted,
assuming that the ensemble simulations provided an adequate representation of reality,
table[3.6lwould suggest that the shift in CU in Mysore and Bellary was over 0.4 with prob-
ability 94%, and additionally over 0.2 in Belgaum and Guntur with probability 96%. By
only relying on the 5% quantiles of the posterior densities of ACU, results suggest that the
shift in CU is significantly positive in Mysore, Belgaum, Bellary and Guntur.
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Region Posterior median 95% credible interval
Mysore 0.55 [0.04; 0.99]
Belgaum 0.30 [0.00; 0.99]
Bellary 0.50 [0.01; 0.99]
East Godavari 0.02 [-0.29; 0.99]
Guntur 0.26 [0.00; 0.99]
Hyderabad 0.12 [-0.11; 0.99]
Yevatmal 0.19 [-0.22; 0.99]
Salem 0.02 [-0.18; 0.98]
Shimoga -0.00 [-0.22; 0.93]
Chennai 0.00 [-0.24; 0.98]

Table 3.6: ACU indirectly estimated from prevalence data in each region, with associated
credible intervals

3.5.2 Contrast of model outputs with survey-based condom use estimates

The results of Table|3.6|are based on prevalence estimates and the HIV transmission model
in which some constant parameters are parameterised using the information obtained
from cross-sectional surveys (IBBAs). As part of these surveys, FSWs have also been asked
for an estimation of the proportion of their last commercial sex acts that had been protected
with condoms. From these answers, an estimate of the shift in CU between the first and
last IBBA among FSWs can be derived, that is provided for each district in Table To
allow direct comparison, the median estimator of the posterior density of the shift in CU
between the last and first IBBA among FSWs is computed from the outputs of the indirect
inference procedure. The estimates for each district are given in Table allowing for the
direct comparison of the information derived from direct surveys among FSWs, and the in-
formation indirectly inferred from prevalence estimates and the HIV transmission model.
The difference between both estimates of CU progression between the first and last IBBA
are shown in the last column: it is below 0.05 in every district but Mysore (+0.17), Bellary
(+0.07), Salem (-0.07) and Shimoga (-0.15).

There is a significant dependence of this difference on the number of FSW prevalence
estimates available in each district. This association provides potential explanations for
the important discrepancies observed in four cases. In both Salem and Shimoga, only two
estimates of prevalence among FSWs are available, which gives more weight to the prior
that is centered around zero. Additionally, survey-based CU estimates at first IBBA are
consistently significantly higher than model-based ones: under the levels of CU at first
IBBA hypothesised by survey-based estimates, as strong progressions as suggested by the
model are unlikely. For example, it is impossible to have an 0.46 increase in CU over 5 years
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Region CU estimate at first IBBA CU progression between first and last IBBA
Survey-base Model-based Difference Survey-base Model-based Difference

Mysore 0.65 0.42 +0.23 0.29 0.46 -0.17
Belgaum 091 0.77 +0.14 0.05 0.07 -0.02
Bellary 0.82 0.69 +0.13 0.08 0.15 -0.07
East Godavari 0.93 0.75 +0.18 0.05 0.00 +0.05
Guntur 0.96 0.98 -0.02 0.03 0.01 +0.02
Hyderabad 0.94 0.49 +0.45 0.02 0.02 +0.00
Yevatmal 0.98 0.37 +0.61 -0.00 0.04 -0.04
Salem 091 0.27 +0.64 0.07 0.00 +0.07
Shimoga 0.72 0.08 +0.64 0.15 0.00 +0.15
Chennai 0.96 0.85 +0.11 0.03 0.00 +0.03

Table 3.7: Survey-based estimate at first IBBA and estimated progression untill last IBBA.
Model-based estimates of the corresponding quantities indirectly estimated from preva-
lence data.

in Mysore if its level in 2004 was 0.65. In addition, the results from ensemble simulations
in the setting of Mysore indicate that model-based estimates of CU in 2004 (date of the first
IBBA in Mysore) already tend to over-estimate reality by 0.05 ( with standard deviation
0.2). Hence, this evidence confirms that survey answers may be consistently positively
biased, which was already suspected due to social desirability. This bias would explain
the discrepancies between model and survey estimates in Mysore and Bellary.

3.5.3 Bayesian synthesis and final estimates

In this final section, we derive estimates of the shift in CU during the period of the in-
tervention by synthetising the information provided by prevalence estimates, the HIV
transmission model and cross-sectional behavioural surveys including survey-based con-
dom use estimates. Nonetheless, due to the a priori suspected risk of over-estimation in
survey-based estimates of condom use, and to the consistently higher estimates provided
by surveys when compared to model-based estimates, we incorporate in the model the
risk for survey answers to be overestimated by up to 25%. The observation function for
survey-based estimates of CU is the following:

y ~ Bin(n, pCU), (3.13)

Here, n corresponds to the number of FSWs that have answered the survey (generally
around 400), CU, is the true value of condom use at time ¢, and p is the overestimation pa-
rameter which prior is set to be uniform between 1 and 1.25. The resulting estimates of CU
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Figure 3.6: Condom use estimated trajectories resulting from the Bayesian synthesis of
prevalence estimates and cross-sectional behavioural surveys including survey-based con-
dom use estimates (red dots)

are presented in Table[3.8] with associated trajectories provided in Figure[3.6] The incorpo-
ration of survey-based condom use estimates allows for narrower posterior estimates. In
particular, the lower bound of the 95% credible interval in Yevatmal is brought over zero,
providing evidence for an increase of condom use over the period of the intervention.
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Region Posterior median 95% credible interval
Mysore 0.50 [0.15; 0.96]
Belgaum 0.19 [0.00; 0.94]
Bellary 0.36 [0.02; 0.97]
Yevatmal 0.33 [0.00; 0.97]
Shimoga 0.22 [-0.08; 0.87]
Guntur 0.39 [0.03; 0.99]
Hyderabad 0.18 [-0.04; 0.96]
East Godavari 0.07 [-0.05; 0.94]
Chennai 0.05 [-0.06; 0.95]
Salem 0.20 [-0.24; 0.98]

Table 3.8: ACU estimates in each region with associated credible intervals resulting from
the Bayesian synthesis of prevalence data and biased survey estimates

3.6 Discussion

In this Chapter, we presented a Bayesian approach to draw conclusions regarding the evo-
lution of time-varying behavioural parameters in the context of HIV such as condom use
among female sex workers. Inference can be based on prevalence estimates while a sub-
stantial amount of information from additional sources can be incorporated via prior dis-
tributions. In order to describe CU trajectories we introduced three different formulations
based on Brownian motion and growth curves such as the generalised Bertalanffy Richards
and empirical sigmoid models. To our knowledge, these formulations are new in this con-
text. The presented computational framework allows estimation of CU trajectories as well
as functionals thereof, using the methodology introduced in Chapter 2. Nevertheless, in
comparison to the situations considered in Chapter 2, the problem of evaluating the Ava-
han intervention by estimating its impact on CU from prevalence estimates is of additional
difficulty due to the limited amount of information; the application to Mysore district was
based on three observations of prevalence among FSWs and one among clients, plus hy-
pothesis on the initial value of prevalence in 1985. A series of simulation experiments were
conducted in order to assess the validity of the procedure, examining the frequentist prop-
erties of the underlying estimators and the ability of the model to avoid overestimation
via conducting ROC analysis. The evidence from the simulation experiments is encour-
aging, suggesting that the approach can be used in this context for making conservative
estimates of changes in CU both with the Brownian motion and the deterministic sigmoid
trajectory priors. However, the overall performance is bound to depend on the determin-
istic HIV infection model which was parameterised based on a substantial amount of prior
information, as in Pickles et al.{(2010), as well as on assumptions such as the very low HIV
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prevalence in 1985. Most of the prior information utilised in this study was obtained from
additional data sources (IBBAs).

While the representation of HIV transmissions in this Chapter is simpler in behavioural
terms in comparison with the model presented inPickles et al. (2010), the model is enriched
as it explores the CU trajectories space rather than working with three pre-determined sce-
narios. Nevertheless, there are reasons for a potential overestimation of the shift amplitude
in this simpler model as coinfection with other sexually transmitted diseases were ignored
(although higher transmission probability per unprotected act were allowed to compen-
sate for the latter), and no acute phase was considered. However, diffusion driven models
aim at capturing and compensating for structural mis-specifications while capturing the
main dynamics of the system and have been shown here to provide conservative esti-
mates. Overall it may be viewed as a different and complementary choice in the trade-off
between richness and tractability of the model compared to |Pickles et al|(2010). Lastly,
this approach relies on the hypothesis that changes in transmission probabilities are solely
related to changes in CU, ignoring for example potential changes in the frequency of com-
mercial sex partnerships. This choice can be motivated by the strong focus of the Avahan
intervention on prevention measures and the relative stability in the frequency of com-
mercial sex exhibited by the series of cross-sectional bio-behavioural surveys that were
conducted during the period of the intervention.



CHAPTER 4

Bayesian inference with the advanced
Hybrid Monte Carlo algorithm

41 Introduction

Chapters 2 and 3 have motivated and illustrated the use of the particle marginal Metropolis
Hastings version of the PMCMC algorithm to explore the joint posterior probability den-
sity p(xd% . 0lyo.,) in the context of Markovian indirectly observed stochastic processes.
Building up on the principles of the PMCMC algorithms, the authors of (Chopin et al.
(2012) have defined an alternative pseudo-marginal approach: the SMC? algorithm. This
algorithm allows for an automatic calibration of the number of particles and a progressive
adaptation to the structure of the posterior density as observations accumulate. From this
perspective it is an interesting alternative to the PMCMC to achieve full Bayesian infer-
ence on indirectly observed stochastic processes. Nevertheless, both algorithms require
the propagation of J particles for each value of 6. Their computational complexity is con-
sequently of the same order of magnitude: O(nJNg). We explore in this third Chapter
the use of the advanced version of the Hybrid Monte Carlo algorithm (HMC), targeted to
Hilbert spaces to infer the paths (z3$) and parameters () of indirectly observed stochastic
processes (Beskos et al., 2011).

Typically, the efficiency of MCMC algorithms deteriorates as the dimension of the tar-
get density increases. For example, the authors of Roberts et al.| (1997) have shown that
the scaling of the importance sampling distribution of a random walk Metropolis algo-
rithm, in cases where the target is a multivariate normal density of dimension d, should
decrease linearly in d to ensure convergence. As a consequence, for high values of d the
chain can only make small local moves and generate strongly correlated samples. In such
cases, the exploration of probability densities becomes computationally intractable as the

109
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dimension of the problem increases. The Hybrid Monte Carlo algorithm provides a so-
lution to efficiently explore complex and high-dimensional target densities (Girolami and
Calderhead| 2011). In particular, the advanced version of the HMC algorithm defined in
Beskos et al.| (2011) allows for large, gradient-driven moves in Hilbert spaces. These al-
gorithms will be presented in Section To our knowledge, the work presented in this
Chapter is the first attempt to jointly estimate the paths and parameters of a stochastic
process with an advanced Hybrid Monte Carlo algorithm: the Hilbert space of trajectory
paths is augmented with the parameter space, allowing for joint and simultaneous up-
dates of zd% and 0. As such, the advanced HMC can be seen as an alternative to the
pseudo-marginal approaches. Differences between the particle Marginal Metropolis Hast-
ings algorithm utilised in the first Chapters of this thesis and the advanced HMC algorithm
mainly lie in the fact that the PMMH can be seen as Markov Chain designed in a small-
dimensional space, based on the costly estimation of p, (1., |¢), while the advanced HMC

operates in the high-dimensional joint space of xd and 6 based on the direct and exact

estimation of the augmented likelihood p,f (y1.,|2d%, ). One of the first quantitative com-
parisons between these two algorithms in the context of stochastic volatility models will
be presented in Section [4.3]of this Chapter.

Furthermore, we explore the ability of the advanced HMC algorithm to deal with non-
Markovian stochastic processes. We consider the possibility for a stochastic volatility
model to be driven by a fractional Brownian motion whose increments are correlated in
time, which is motivated by recent studies that have questioned the memoryless nature of
the volatility of financial time-series (Chronopoulou and Viens| 2012). Difficulties arise
when attempting to achieve full Bayesian inference for non-Markovian stochastic pro-
cesses as particle filters cannot be directly used to explore the filtering density p(z3% |y1.,,, ).
In this Chapter, we adapt the advanced HMC algorithm to the fractional stochastic volatil-
ity model, and illustrate with simulations how the level of memory of the system, charac-
terised by the Hurst parameter H, can be estimated within a few hours from the equivalent
of a year-long time series of daily market prices.

This Chapter presents work being conducted in collaboration with Kostas Kalogeropou-

los (London School of Economics) and Alex Beskos (University College London).

4.2 An efficient MCMC sampler

In the absence of tractable formulas for the forward Kolmogorov equations, the dynamic
of the system is approximated by discretising time over periods of length §. Under suitable
conditions, the probability density over the trajectories of the discretised system converges

in distribution to the one of the original continuous-time system as ¢ tends to 0. The prin-
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cipal problem addressed by the advanced HMC algorithm is the robustness of the mixing
properties of inference algorithms as § becomes increasingly small.

4.2.1 A priori decoupling z., and 0

Our general definition of indirectly observed stochastic processes allows for the depen-
dency of the density of the underlying stochastic process ., on components of the pa-
rameter 6. In some cases, a sample trajectory of the stochastic process x¢.,, contains infi-
nite information on its driving parameters. For example, the posterior probability density
p(al{xzo, s, T2s,...,xn}) of the volatility of a discretised trajectory of a simple Brownian
motion dx; = odB; tends to a Dirac distribution as  tends to 0. When possible, it is prof-
itable to change the formulation of the model so as to a priori decouple the paths z.,, and
parameter vector . This reparameterisation is particularly necessary when the joint space
of ., and 6 is explored with a joint scheme that updates the paths and parameters of the
system alternatively.

In the simple case of a uni-dimensional Brownian motion driven by a constant volatil-
ity, for example, an auxiliary variable &¢., = o~ 2., can be defined which has a priori
unit volatility: the prior distribution of #.,, is independent of the parameters of the model.
In the general case, ad hoc solutions need to be found that have been explored in|Golightly
and Wilkinson|(2008) and |[Kalogeropoulos et al.| (2011).

4.2.2 Classic version of the Hybrid Monte Carlo algorithm

The HMC algorithm was first introduced in [Duane et al.| (1987), and originally called
Hamiltonian Monte Carlo algorithm as a reference to the physical interpretation of its prin-
ciples. The rationale for the HMC algorithm is an analogy with classic dynamics, where
probability 7(q) is assimilated to energy E(g) through the formula 7(q) = e~ £(@/T (Neal,
2010), where q is the variable of interest, T’ the temperature (generally fixed to 1), and Z the
normalising constant. The current position of the chain, ¢, is augmented with a momentum

vector p, thus defining a total energy H:

1
H(q,p) = —logm(q,p) = —logm(q) + §ptp (4.1)

The vector p can be seen as the initial momentum of a point object located in ¢, moving
without friction along a hilly surface where the height of the surface at a given point is
the opposite of its potential energy ¢(¢) = —logn(g¢), and the kinetic energy is % ptp. The
trajectory of the object under these hypotheses can be obtained by integrating the energy
conservation equations resulting into the system of Hamiltonian equations To avoid
confusion, the time variable introduced in the Hamiltonian equations will be denoted with
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a subscript H. A consequence of the conservation of energy is that when the trajectory of
g approaches regions with higher potential, the kinetic energy decreases. On the contrary,

the speed increases as ¢ moves towards regions of lower potential:

dg _0H
dty ~ Op
Hooop 4.2)
dp _ OH
dtH N 8q

The trajectory resulting from this physical analogy is used to define a mapping 1 :
{gi,pi} = {qi+1,pi+1} in the joint {g, p} space. From this mapping, a theoretical two-step
MCMC algorithm can be constructed. First, a new value of the momentum p is sampled
from the density imposed upon p, which is classically a standard multivariate normal den-
sity. Then, the mapping generates a new couple of values for the position and momentum,
of equal energy hence equal probability. It can be shown that this scheme respects the
detailed balance condition, and thus converges to the target density 7 (Neal, [2010). Nev-
ertheless, the system of Hamiltonian equations can only be solved by discretising the time
ti. The number of integration steps conducted, leading to a proposed couple {z*, p*}, is
denoted L, and their size is noted h. The properties of the continuous-time mapping v
are not necessarily preserved by its discretised version. For example, the following Euler
integration scheme loses the volume-preservation property of the Hamiltonian:

Euler Hamiltonian mapping

Setq* =qgand p* =p
fori=1toL—1do

Set ¢* = ¢* + hp* and p* = p* — hV¢(q*)
end for

Importantly, the integration scheme does not guaranty the conservation of the total
energy. However, this issue can be addressed by a Metropolis-Hastings step based on the
ratio % =exp|—H(q¢*,p*)+H(q,p)] (see algorithm. When the number of leapfrogs
is one, the HMC is equivalent to the Metropolis-Adjusted Langevin Algorithm (MALA),
introduced in|Roberts and Stramer| (2002) and mentioned in the Introduction of this thesis.
The leapfrog integration method is generally preferred over the Euler scheme as it allows

for an exact conservation of volume:

Leapfrog Hamiltonian mapping
Set¢* = gand p* = p — 2V¢(q)
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fori=1to L —1do

Set ¢* = ¢* + hp* and p* = p* — hVo(q*)
end for
Set ¢* = q* + hp* and p* = p* — 4V ¢(q*)

Algorithm 11 HMC algorithm
Initialise ¢(0)
fori=0to N do
Sample p ~ N(0, Id)
Apply a Hamiltonian mapping v, 1, : {¢,p} — {¢*, p*}
Accept ¢* with probability 1 A :((qq(;)) exp(—3(p'p — p*'p*))
end for

In particular, the integration error induced by the leapfrog scheme is of order k3, while
the rate of convergence of the Euler scheme is one order of magnitude lower (Neal, 2010).
The exploration of a target density with the classic HMC algorithm is expected to require
far less iterations than when using a random walk Metropolis scheme. To begin with the
optimal acceptance rate, that can be monitored through the number of leapfrogs L or by
their size h, is considered to be around 80%, whereas the optimal acceptance rate of a
random walk exploration of the target is 23% (Roberts et al.,1997). Most importantly, the
moves proposed by the HMC algorithm will be less local, which can significantly diminish
the correlation between successively generated samples. However, the authors of [Beskos
et al.| (2011) have shown that the size h of the jumps need to decrease as O(dil/ 4), with
d being the dimension of the target density. For this reason, the mixing performance of
d
0

the classic HMC will not be robust to the increase of the dimension of x{’$ as the discrete

approximation of the modelled dynamic is refined.

4.2.3 Advanced Hybrid Monte Carlo algorithm

The authors of Beskos et al.[(2011) have proposed a discretisation scheme for the Hamilto-
nian equations that is well-defined in the Hilbert space of the continuous path zg.,. It is
based on the decomposition of the Hamiltonian equations into two systems:

dp

dq
an =" @, #(q)

dg _ dp
dtp P diy

4.3)
= —q
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The solution operators of can be respectively defined as =; and =

Ety(2,0) = (¢,p — tV(q))

e (0,p) = (cos(tr)gq + sin(ty)p, — sin(ta )g + cos(tm)p) (4.4)
By defining the integration time step h such as cos(ty) = %, an elementary inte-

gration leapfrog can be alternatively expressed as:

B ha+aqn h
Phj2 =Po— 5~ 5 Vo(qo)
qh = qo + hpp 2 (4.5)
_ hg+an h
Ph=Prj2— 55 5 Vo(qn)

From this novel mapping, the advanced HMC algorithm can be derived on the same
principle as in its classic version (Algorithm . The mathematical proofs for the validity
of the algorithm in the Hilbert space can be found in [Beskos et al.[(2011) and Beskos et al.
(2012). It has been applied to the estimation of diffusion paths, and positively compared to
the advanced MALA algorithm introduced in Beskos et al.| (2008). We propose to extend
its use to the joint estimation of the path and parameters of a potentially non-Markovian
stochastic process, and compare its sampling performance and computational burden to
the PMMH algorithm in the Markovian case. In this perspective, the target density is
augmented to encompass the parameter vector ¢ and its prior density:

QS(L]) = ¢($0:m 9) == Ing(y0:7L|x0:7L7 9) - p(a) (4.6)

And the Hamiltonian equations are decomposed in the following manner:

dgq dp

_ . . 47
e =0 g = V(0. 0) (47)
dq dp t
dtH =D, dtH - (I'O:nao)

4.2.4 Scaling mass matrix

Both the classic and advanced versions of the HMC algorithm can be further modified
by introducing a scaling matrix M reflecting the shape of the target density and potential
correlations between the components of the position vector ¢. For illustration, we pro-
vide with the modified classic Leapfrop Hamiltonian mapping and corresponding HMC
algorithm (Algorithm [12):

Leapfrog Hamiltonian mapping
Set ¢* = gand p* = p+ 2M~1Vn(q)
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fori=1to L —1do

Set ¢* = ¢* + hp* and p* = p* + hM 1V (q*)
end for
Set ¢* = ¢* + hp* and p* = p* + EM~'Vn(q*)

Algorithm 12 HMC algorithm with scaling mass matrix M

Initialise ¢(0)
fori =0to N do
Sample p ~ N (0, M 1)
Apply a Hamiltonian mapping ¢, 1. : {¢,p} = {¢*,p*}

Accept ¢* with probability 1 A :((qq(:))) exp(—3 (p'Mp — p**Mp*))

end for

4.3 Application: full Bayesian inference for a fractional stochastic
volatility model

4.3.1 A long-memory stochastic volatility model

We begin by motivating the use of stochastic volatility models, and the central role they
play in the definition and valuation of financial products called derivatives. The value of
derivative products depends on the evolution of the price of one or several auxiliary goods
that are referred to as underlying assets. They are materialised by a contract between two
parties: one of the most classic types of derivatives are options, that provide the buyer
the right (but not the obligation) to buy or sell an underlying asset on a given date at
a price specified by the initial contract (the strike price). In the cases where the option
provides a right to buy at maturity (European Call option), the buyer will naturally be
willing to exercise the option at a time ¢ if the price of the underlying asset P, at this
instant is higher than the strike price Px. If there was no uncertainty in the evolution of
the price of the underlying asset, the associated derivative products would have no value:
the probability for the asset price P; to ever go beyond P is either 0 or 1. In both cases the
buyer or the seller has no interest in committing to the contract. Following this reasoning,
it appears clearly that the higher the uncertainty regarding the evolution of P, the higher
the probability for it to exceed the strike price Px and generate a benefit to the buyer.
Hence, if the dynamic of the asset price is modelled with a stochastic differential equation
(Equation [4.8), where the drift function is usually determined by the risk-free interest rate,
the value of a derivative product is generally an increasing function of the volatility o of
the underlying price, aside with a series of other factors.
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dP, = p(P,,0)dt + o(P,,0)dB, (4.8)

Consequently, it is important for both parties to have a sound estimation of this volatil-
ity, in order to determine the price they are willing to pay for the derivative product. It
is also a mean to estimate the risk that is induced by the contract: given this estimation,
each party takes positions to hedge against this risk (cancel or reduce the risk of loss). A
first solution to this problem was provided by Fischer Black and Myron Scholes in 1973,
through the derivation of a differential equation that governs the price of an option over
time (Black and Scholes} [1973). This equation is meant to be used to quantify the risk taken
by both parties at each instant, and theoretically allows them to perfectly hedge against it.
The impact of this model has been considerable, and it is still an ubiquitous tool on trading
floors. Nevertheless, the Black & Scholes model relies on assumptions that have been long
questioned. Importantly, they imply that the volatility of the underlying price of an option
is constant, which has been constantly negated by observations. The latter has motivated
extensions to the classic formulation: stochastic volatility models are an example of these
extensions, in which the volatility v, itself also follows a differential equation:

dP; = pp(Py, vt,0)dt + op(vr, 6)dB) 49)
dvy = py, (vg, 0)dt + oy (vg, a)dBt&) .

Stochastic volatility models are a canonic example of indirectly observed stochastic
processes. Inference of the driving parameter vector ¢ has been the subject of active re-
search, posing similar problems to the ones encountered with population-level compart-
mental epidemic models. Hence, efficient and asymptotically exact inference has been
made possible by the recent development of the PMCMC and SMC? algorithms. How-
ever, empirical evidence shows that the independence of the stochastic increments driving
the dynamic of the volatility is a questionable hypothesis. It has been observed that the
autocorrelation function of the squared high frequency returns often only slowly decays
to zero, suggesting a long memory for the dynamic of the stochastic volatility (Ding et al.,
1993; [Lobato and Savin, (1998;|Chronopoulou and Viens), 2012). The authors of|Comte and
Renault (1998) have introduced the use of a fractional Brownian motion in a stochastic
volatility model to account for long memory of the process. As in [Chronopoulou and
Viens| (2012), we model log-returns (u; = log P;) as a mean-reverting Ornstein-Uhlenbeck
process coupled to a Scott volatility model (o(v;) = exp(v:/2)) driven by a fractional ex-
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tension dB}! of the classic Brownian motion motion:

duy = (jty — 0y (v4)?/2)dt + 0 (v¢)d By

(4.10)
dvy = k(py — v)dt + o, dBE.

A fractional Brownian motion (fBM) is a centered Gaussian process {Bf,t € R, }
which paths are continuous with probability 1, that is characterised by its Hurst parameter
H € (0, 1] and its covariance:

1
Cou(Bf!, B!) = §(|tl2H + s — [t = s[*) (4.11)

The classic Brownian motion corresponds to the case H = 1. For higher values, in-
crements of the Brownian motion are positively correlated. For lower values, they are
negatively correlated. Figure [f.2)provides with three realisations of the fractional Brown-
ian motion for different values of the Hurst parameter H. This framework allows for the
incorporation of long memory in the dynamic of the volatility, with a parameter H that
characterises and quantifies the type and level of memory involved. The calibration of this
type of models, however, remains an open challenge from a statistical methodology per-
spective due to the lack of Markovianity of the implied stochastic volatility model. In this
case, the particle filter cannot be directly applied to sequentially explore the filtering den-
sity p(zo:n|y1:n, 8). We propose here to apply the advanced Hybrid Monte Carlo Algorithm
to achieve efficient and asymptotically exact inference on this example of non-Markovian
indirectly observed stochastic process. As in previous examples, in practice the algorithm
will consider the driving noise B on a regular grid of N points of length § = T/N. The
increments are defined as:

gr=Bi! =Bi’;, 1<k<N (4.12)

These increments determine the N-dimensional fractional Gaussian noise vector g. The
direct way to generate realisations of the fBM is to multiply a vector of IV i.i.d. realisations
of N(0,1) and multiply it by the Cholesky decomposition of I, the covariance matrix of g:

7(0) (1) o y(N=2) (N -1)
. 7(‘1) 7(9) W(N.— 1) W(N.— 2) @13)
YN —-1) y(N-2) - (1) 7(0)

52H

Here, v(k) = E[ grot+k Gko | = %|k+1|2H+?|k—1|2H—52H|k\2H fork > 1,and v(k) =

82" if k = 0. This process allows to a priori decouple the path of the noise driving the
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system from the parameters of the model, following Subsection[4.2.1} However, calculating
the Cholesky decomposition of I' for each new value of H requires O(N?) operations.
We rely on the Davies and Harte method for sampling g, presented in |Wood and Chan
(1994), to implement an O(N log N) implementation of the advanced HMC algorithm for

the fractional stochastic volatility model.

H=0.25 H=0.5 H=0.75

0.1 0.05 0.3

5
time time time

Figure 4.1: Realisations of the fractional brownian motion, with volatility 0.08 and respec-
tive Hurst parameters 0.25, 0.5 and 0.75

4.3.2 O(N log N) implementation of the advanced HMC on a fractional

stochastic volatility model

The Davies and Harte method for sampling g relies on the Toeplitz structure of I': each
descending diagonal from left to right is constant. By introducing the auxiliary matrix

0 YN -1) .- v(2) A1)
o V(N‘— 1) 9 7(.3) 7(‘2) | @14)
v(1) v(2) oo y(N=1) 0

a circulant covariance matrix can be constructed which rows can be obtained by shifting

the previous one by one index to the right:

0:(5 F;) (4.15)

The circulant property allows for a fast eigen-expansion based on the fast Fourier trans-

form methodology, providing the following decomposition:
C = PAg P~ (4.16)
Where P is the 2N x 2N transformation matrix with constituent elements

Py, = — 2mi &) (4.17)

1
Van OXP ( N
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The matrix P corresponds to a projection from the natural to the frequency domain, and
P* is its complex transform. The diagonal elements of Ay = diag{Ao, M1,.., \an_1} are
determined by the following, where (c¢; ;) denotes the elements of the first row of matrix
C:
2N -1
Ak = Z cojexp (— 2mi 45 ) . (4.18)

Using the fast Fourier transform, these elements can be obtained in O(N log N) oper-
ations (Cooley and Tukey, [1965). With this decomposition, the square root of C' can be
extracted in O(N) operations:

C'? = PAYPP* . (4.19)

Furthermore, the O(N log N) cost of the multiplication of a vector of N i.i.d. realisations
of N(0,1) by C''/2 can be further reduced to a linear cost, as suggested inWood and Chan
(1994), by sampling a vector z ~ N(0,I>y) and multiplying it by the sparse matrix Q
constructed in the following way:

o Q' = diag{1,1/v2,1/v2,...,1/V2}
o Q'? =diag{0,i/v2,i/V2,...,i/V2}
e QM Q¥ i1 =1/V2for2<i<N-1
e Q7 Q% 114 =1/V2for2<i<N-1,Q3 =1

The sampling process of fractional Brownian motion increments go.,, is summarised in
algorithm

Algorithm 13 Simulation of a fractional Brownian motion realisation gg.,,
Sample zp.on ~ N (0, Ion ) by C/2
Calculate 2.,y = AY2Qz0.0n. [cost O(N)]
Calculate z(). y = Px(.5 and return g; = (/.. [cost O(N log N)]

Additionally, the implementation of the advanced HMC algorithm requires the calcula-
tion of gradients V¢(q) = Vé(xo.2n, ). We will now focus on the corresponding formulas,
and specify how they can be calculated while preserving the O(N log V') complexity of the
algorithm. The available observations provide the values of the log-price u; of the under-
lying asset at a finite set of points:

yl:'n:{ut,c :k:O,l,...,n}.
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Conditional on the path vg.,, u; satisfies the Markov property. Hence, without loss of
generality, we focus on the pair of observations (y;_1, yx). The model defined by the set of
equations [4.10|determines the distribution of y, given y;_1 and the path vj,_y.x:

Tk ty
yk|yk717vk71:k ~ N{ykl +/ (e —Uu(Us)2/2)dS7 / Uu(vs)gds} (4.20)
t—1 th—1

Multiplying the above pair of successive observations determines p(y1.y, [vo.n, 0):

n

p(yl:nh}o:nﬂ) = Hp(yk|yk—17vk—1:k79) (421)
k=1
Hence,
bk 2 2
G t [y —yk—1 = [, (1 = 0u(v5)?/2)ds]
log[p(y1.n|vo:n, 0)] = C+ ——log / ou(vs)?ds)— kol
Poantions 0 = O+ ~51on( | oulun)'ds) YL
(4.22)
And accounting for the fact that integrals are discretised:
e, —1 T 1 2 2
L : e = ye—1 = 22525, (1= ou(vi)®/2)d]
log[p(y1:n|vo:n, 0)] = C+ — log( Uu(vi)Q(S)_ jt =
kzzl 2 _]Z 2% S, au(v:)20,
(4.23)

From this formula, the expressions for V,log[p(y1.n|v0:n, #)] can be derived using the
chain rule:

( dg():n )T(dv():n

dzoan’ “dgon

dgon T ,dVo:n\T
Vo, logp(ymlvo:m9y):(§§ ) ( dgzi ) Volog p(yinlvon, by) (4.24)

T
) VU logp(yl:n‘vo:na ay)

v3?0:2N IOgP(yl:n\Uo;n, 0) =

dvo.n \ T
Vﬁv Ing(yl:n‘vO:naa) = ( dg ) vv 10gp(2/1:n|110:n79y)

Vo, 10g p(Y1:n|v0:n, 0) = Vg, log p(y1.n[vo:n, 0,)

The direct implementation of these formulas leads to a quadratic cost in N. We will
present here how the complexity of these calculations can be reduced to O(N) or O(N log N),
focusing on the illustrative cases of (%)T, Vo 1og pn (Yo:n [Vo:n, 0,) and (ag%) First, it

appears clearly that
8%‘

6‘gj

=0 ifi<j (4.25)

and 5 5
Vi+1 V;
= 1+ K0) 4+ 0,05 4.26
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Thus,

8'Ui s
= 0,(1 — k)T X ;s 4.27
99; oy KOt) X 05> ( )

dvo:n

This can be used to iterative calculate V,, 1og p(y1.n |[vo:n, 0y) and ( on )T:

alog[p(ylzn|v0:n7 9)] dvi T 310gp(y1:n\7)0:n, ey)
= — 4.28
890:n ; (dgj) 8111‘ ( )
_ (1 + /i(S) 810g[p(y1:n‘vo:na 9)] + 0, 810gp(y1:n|v0:na ey)
0gj+1 Ovjt1

Similarly, the calculation of (%) can be achieved in O(N log N) operations through

the eigen decomposition allowed by the fast Fourier transform:

agO:n o 8A1/2
OH = 0H

Similarly, all the necessary gradients of ¢(x¢.2n,0) can be computed with O(N) or

Qzo:2N (4.29)

O(N log N) operations. Exhaustive details for the different calculations involved can be
found in the appendix (Appendix B).

4.3.3 Simulation and Results

Simulated trajectory 1 (H=0.5) Simulated trajectory 2 (H=0.85)

0 500 1000 1500 2000 tIErST(i()e 3000 3500 4000 4500 5000 0 500 1000 1500 2000 tIZI?r(:()e 3000 3500 4000 4500 5000
Figure 4.2: Simulated paths of fractional stochastic volatility with respective Hurst param-
eters 0.5 and 0.85. Additionally, we set o, = 0.08, k = 0.03, p, = —3, and vy = 3.

This section focuses on two simulated realisations of the fractional stochastic volatility
model introduced in The choice of parameter values for these two simulations are
based on the choices and findings made in/Chronopoulou and Viens|(2012): in both datasets,
the volatility of v, is set to 0.08, « is equal to 0.03, y, and ., are respectively set to —3 and
—0.002, and the initial value v is set to 3. The only parameter that differs between the two
datasets is the Hurst parameter H, that is set equal to 0.5 in Dataset 1, and 0.85 in Dataset 2
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in order to compare the mixing performance of the advanced HMC algorithm both in the
absence and presence of memory. We will also assess on this example the identifiability of
the Hurst parameter H. Lastly, Dataset 1 will be used to compare the mixing performance
of the advanced HMC and PMMH algorithms in the Markovian case ( fixed to 0.5).

Low-informative uniform priors are defined over the parameters o, (Unif[0;0.5]),
(Unif0;20)), o, (Uni f[—20; 20)), o (Unif[—20;20]) and , vo (Uni f[—20; 20]). Furthermore,
H is constrained between 0.4 and 1, as evidence from the literature indicate that the incre-
ments of stochastic volatility models tend to be positively correlated (Chronopoulou and
Viens| 2012). The length of the simulated time series is 250, which corresponds to a year
of daily asset prices. The discretisation time step 4 is set to 0.05, leading to an underlying
vector zg.on of dimension 5,000.

Sampling performance

We start by comparing the performance of different versions of the advanced HMC algo-
rithm on Datasets 1 and 2. In particular, we explore the possibility of updating z¢.ox and ¢
simultaneously (this will be indicated with the superscript Joint), or in an alternate manner
(superscript Gibbs). For both versions, three values of L are considered: 1, 10, 20 (the value
of L is indicated by the subscript). When L = 1, the algorithm is equivalent to the MALA.
The leapfrog size h is manually calibrated each time to set the acceptance rate between 60%
and 90%, and the algorithm is run for 20,000 iterations. The computation time, that is ac-
counted for to compare the efficiency of the different algorithms, corresponds to a Matlab
implementation run on a Macbook Pro with 2.3 GHz Intel Core i7 processor.

Results of these experiments are provided in Tables4.1|and For each case, the mini-
mum ESS (in %) over § and z.o is given, along with the CPU time taken by each iteration
of the algorithm. From these numbers, the average number of independent samples gener-
ated over 100 seconds is computed, which allows a comparison of the relative efficiencies
of the different algorithms. First of all, the results suggest that efficient exploration of the
target density p(zo.2n, 8]yo.n) can be be achieved by using the advanced HMC algorithm,
irrespectively of the absence (H = 0.5) or presence (H = 0.85) of underlying memory. The
most time-efficient implementation is HMCZ§"", where 20 joint leapfrog steps are made
at each iteration to update the paths and parameters simultaneously. In average, this al-
gorithm allows to generate the equivalent of 1.9 independent samples every 100 seconds:
reliable estimates of the paths and parameters can be obtained within several hours from a
year-long dataset of asset prices. Besides, the Tables indicate that updating the paths and
parameters jointly is uniformly better than performing the updates alternatively. This re-
sult suggests that the paths and parameters of the system are strongly correlated, and that
updating them together is beneficial despite the increased dimension of the target space.
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Sampler  ming(ESS) min,(ESS) time 100 x mmiﬁir(bfss) relative W
HMC{bbs 0.1% 2.7% 0.22 0.45 1.00
FIMCGitbs 0.5% 2.2% 0.78 0.64 142
HMCGs 0.9% 1.9% 1.44 0.62 1.38
HMC{°int 0.1% 0.5% 0.10 1.00 2.22
HMC{git 0.4% 1% 0.53 0.75 1.67
HMCZom 1.8% 3% 0.97 1.90 422

Table 4.1: Relative efficiency of the different implementations of the advanced HMC algo-
rithm on Dataset 1 (H = 0.5), via the minimum ESS (%) and CPU times (seconds).

ming (ESS) ming (ESS)

Sampler  ming(ESS) min,(ESS) time 100 x relative

time time
HMC{/ibbs 0.1% 0.7% 0.22 0.45 1.18
HMC;jbbs 0.3% 3.8% 0.78 0.38 1.00
HMCSibbs 1.0% 6.0% 1.44 0.69 1.82
HMC{gint 0.1% 0.5% 0.10 1.00 2.63
HMC{gimt 0.5% 1.0% 0.53 0.94 247
HMCgit 2.2% 3.0% 0.97 2.26 5.95

Table 4.2: Relative efficiency of the different implementations of the advanced HMC algo-
rithm on Dataset 2 (H = 0.85), via the minimum ESS (%) and CPU times (seconds).

Identifiability of the Hurst parameter

After validating the mixing performance of the advanced HMC algorithm, we assess the
identifiability of the different parameters involved in the model. The parameter H is of
particular interest, as it characterises the level and type of memory of the system. Figures
and {4.4{suggest that under the vague uniform priors imposed in these experiments, all
six parameters are identifiable. The posterior density p(H|yi.,) is only weakly informative
as it spans all over the range of values allowed (0.4 to 1), but its mode provides a good
estimate of H on these two examples. Indeed, its value is 0.47 for Dataset 1, and 0.91
for Dataset 2. Additionally, Figure |4.5|illustrates that the indirectly observed path of the
fractional stochastic volatility model can be efficiently reconstructed from daily observed
asset prices.
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Figure 4.3: Posterior marginal densities for the different parameters of the model with
Dataset 1 (H=0.5). True values are indicated with a green dot.
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Figure 4.4: Posterior marginal densities for the different parameters of the model with
Dataset 2 (H=0.85). True values are indicated with a green dot.

Comparison with the particle MCMC algorithm in the Markovian setting

When the Hurst parameter H is fixed to 0.5, the model we are exploring collapses to a
classic Markovian stochastic volatility model to which the PMMH algorithm can be ap-
plied. We now compare the performance of the advanced HMC and PMMH algorithms
on Dataset 1 in sampling from p(zo.2n, 0|y1.n), Where 6 is a five-dimensional parameter
{00, Ky fou, i, V0 }. As in the previous section, the advanced HMC algorithms are imple-
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Estimated trajectory 1 Estimated trajectory 2
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Figure 4.5: Simulated paths of fractional stochastic volatility with respective Hurst param-
eters 0.5 and 0.85. Additionally, we set o, = 0.08, x = 0.03, y,, = —3, and vy = 3.

mented in two versions specified by their superscripts Gibbs and Joint, indicating whether
zo:2n and 6 are updated alternatively or jointly. The PMMH is implemented in its simplest
version, relying on a default bootstrap sampler and a random walk exploration of the pa-
rameter space. A basic adaptive scheme is used where the multiplicative factor of the
sampling covariance ¥.¢ is tuned to achieve a 23% acceptance rate. The samples generated
during the transient adaptation phase are discarded in the performance analysis; results
are presented in Tables In Table we consider the case where the scaling mass ma-
trix M of the HMC and the importance sampling covariance matrix ¥¢ of the PMMH are
no longer set to Id but to the covariance of the posterior density p(6|y1.,,). The dependency
of the acceptance rate as a function of the number of particles is illustrated in Figure
In order to disentangle the impact of the Monte Carlo variability of the likelihood estimate
on the PMMH mixing efficiency and the intrinsic performance of the PMMH scheme, two

versions of the algorithm are tested with respectively 100 and 2000 particles.

Tables and suggest that on this example the advanced HMC algorithm com-
pares favourably with the PMMH based on a random walk exploration of the parameters
space. To begin with, the comparison of the two series of simulations show that adapt-
ing the mass matrix is highly beneficial, as it multiplies by 9 and 14 the mixing efficiency
of PMMH algorithms, and by 6 the one of the HMCg¢™ algorithm. However, we note
that it has no significant impact on the performance of the HMCS;%** algorithm. This re-
sult indicates, as in the analysis conducted in the Non-Markovian setting, that correlation
between the paths and parameters of the system is the limiting factor of the Gibbs imple-
mentation of the HMC algorithm. As a consequence, when using the optimal mass matrix
M = Cov[p(0|yi.n)], the PMMHj o algorithm mixes better than HMCS*s. In addition, we
note that increasing the number of particles of the PMMH algorithm from 100 to 2000 does
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Figure 4.6: Acceptance rate of the PMMH on a stochastic volatility model (H=0.5) as a
function of the number of particles.

Sampler  ming(ESS) ming(ESS) time 100 x mnesESS)  polative mine.s(BSS)

time time
PMMHj 49 0.1% 1.0% 0.32 0.31 1.0
PMMHs000 0.1% 1.2% 1.02 0.1 0.3
HMCbbs 0.1% 1.8% 0.17 0.58 1.9
HMC;jbbs 1.0% 4.5% 0.62 1.61 5.2
HMCS;ibbs 2.4% 4.2% 1.17 2.05 6.6
HMC{ ot 0.1% 0.5% 0.09 1.11 3.6
HMC{gm 0.6% 1.0% 0.40 1.50 4.8
HMCgmt 2.4% 2.9% 0.76 3.16 10.2

Table 4.3: Relative efficiency, via the minimum ESS (%) and CPU times (seconds). In this
case, the mass (M) and sampling covariance (3¢) matrices are set to the Identity matrix.

not contribute significantly to the mixing efficiency, but multiplies the computational bur-
den by three. For this reason, the version with 100 particles is taken as a reference for the
performance of the PMMH algorithm: on this example, the Joint version of the advanced
HMC algorithm with 20 leapfrog steps is 6 to 10 times more efficient than the PMMH
algorithm. These results may vary depending on the number of observations being con-
sidered, as the reparameterisation used in the HMC requires O(N log N) operations, and
the number of particles used in the PMMH would need to be adapted. The particle Gibbs
algorithm version of the PMCMC introduced in |Andrieu et al.| (2010) has not be tested in

our analysis, although it could have taken direct advantage of the formulas derived for
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Sampler  ming(ESS) minz(ESS) time 100 x Tnes5S)  polatiye mine.s(BSS)

time time
PMMH; o9 0.9% 1.7% 0.32 2.8 1.0
PMMHoa000 1.4% 2.0% 1.02 1.37 0.5
HMCS§;ibbs 2.6% 2.7% 1.17 2.22 0.8
HMCygmt 13.0% 40.3% 0.76 17.1 6.1

Table 4.4: Relative efficiency, via the minimum ESS (%) and CPU times (seconds). In this
case, the mass (M) and sampling covariance (¥7) matrices are set to the posterior density
Covariance matrix.

Vop(0)2dis, y1.,). However, it is likely that its mixing performance would have been simi-
lar to the ones of the HMCSi®** algorithm, as the latter seem to have been directly limited

by the strong correlation between the path and parameters of the system.

Limitations

Although the results obtained with the fractional stochastic volatility model are en-
couraging, difficulties are encountered when incorporating a leverage effect in the stochas-
tic volatility model:

dug = (1 — 04 (v4)?/2)dt + /1 — p20,(ve)dWy + poy (v)dBE

(4.30)
dv; = k(l, — vy)dt + o,dBH.

A traceplot of the parameter p generated from a run of the HMC{§""* algorithm is given
in Figure [4.7] along with the associated joint likelihood values. This plot illustrates a limi-
tation of the advanced HMC algorithm, as poor mixing performances of the algorithm are
observed when the chain explores high values of p in absolute value. These difficulties
can be understood by looking at the formula of the augmented log-likelihood in Equa-
tion Conditioned on z¢.2n, the amplitude of the observation noise is proportional
to /1 — p? which corresponds to the term —1 log(1 — p?). Consequently, the likelihood
density p(y1.n|To.2n,0) as a function of z¢.2n, conditioned on high values of |p|, is more
peaked: it reaches higher values (as illustrated in Figure[4.7), and induces smaller moves.
Yet, the latter does not imply that the marginal posterior p(p|y1.,) is necessarily higher for
high values of |p|, as it is equal to the integral of the joint posterior p(xo.2n, 0|y1.) Over all

trajectories of zg.2n'
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e —1

log[p(y1:n|zo2n, 0)] = Z ;log 1—p?) Z ou(v;)%6;) (4.31)

1=Jtp_y
—1
Wk — Yr—1 — Z?Z}tkil (s — 00 (v3)?/2)8; — /)Ezt’}f . ou(vi) ABH)?
a J
25 (1= ) 0% oulve)?6,

The issue illustrated by this example can be imputed to the divergence of the joint

likelihood function as p tends to £1 for volatility trajectories that closely match the obser-
vations. This problem may be tempered by the introduction of additional data, or by using
more informative priors for the leverage parameter p. However, robust and general solu-
tions to this problem may require the development of pseudo-marginal methods adapted
to the non-Markovian setting, that would prevent the chain from being trapped in peaks
of the joint likelihood. The latter is a subject for further research.

p(yl:n |x0:2N7 9)

100

50

-50

-100
0 0.5 1 1.5 2

Figure 4.7: Traceplots of values taken by p and the augmented likelihood p(y1.,,|%0:n, 0)
during a problematic realisation of the HMC{§" algorithm.

4.4 Discussion

We have illustrated in this Chapter the potential of advanced Hybrid Monte Carlo methods
to achieve efficient exploration of the joint posterior density p(xo.n, 0|y1.) for indirectly
observed stochastic processes. Simulations have shown on two examples that efficient
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inference for model[4.10|can be performed from a year-long time series of daily asset prices.
These examples suggest that it is possible to infer the type and level of memory of the
fractional Brownian motion driving a stochastic volatility model. The extension to model
however, indicates that difficulties can be encountered when strong dependencies
between the paths and parameters appear a posteriori in some regions of the explored
space.

In addition, we have shown on two simulated datasets that updating simultaneously
the paths and parameters of the system with the advanced HMC algorithm could lead
to better performance than a simple adaptive implementation of the PMMH algorithm.
These results motivate further empirical and theoretical comparisons with the PMMH and
PGibbs implementations of the PMCMC, as well as with the SMC? algorithm. For exam-
ple, it will be interesting to compare the dependency of the cost induced by the different
algorithms as a function of the number of observations n, the length of the parameter vec-
tor 6, and the dimension of the driving stochastic process z;. In particular, if this dimension
is denoted k, the authors of Daum and Huang| (2003) have shown that in the general case
the number of particles required to control the variance of the likelihood computed with a
particle filter increases exponentially as k£ grows. On the other hand, if the advanced HMC
algorithm was applied to a system with multi-dimensional driving stochastic process z,
the number of gradient calculations would increases linearly with k. Nonetheless, the mix-
ing efficiency may deteriorate with increasing values of k: this open question remains to
be investigated. From the perspective of epidemiology, the possibility of achieving effi-
cient and exact inference for non-Markovian systems may allow interesting extensions to
the actual modelling framework. For example, non-exponential waiting times could be
introduced in the models to offer a better representation of disease transmission dynam-
ics. Additionally, if the linear complexity of the method as a function of % is confirmed,
spatially-structured compartmental epidemic models in continuous time could become
computationally tractable.

At last, the advanced HMC algorithm appears to imply cumbersome calculations to
derive the analytic formulas of the gradient V¢(q). However, the calculations presented
in this Chapter and in the corresponding Appendix suggest that a systematic recursive
formulation could be generalised for systems that are fully Markovian or Markovian con-
ditionally on xo.,. For such classes of problems that can be expressed in a generic manner,
the use of gradient-driven inference methods as the advanced HMC could be facilitated by
symbolic calculation libraries, thus extending the paradigm of plug-and-play algorithms.






CHAPTER 5

Future Research

The natural extensions of the work presented in Chapters 2, 3 and 4 have been discussed
at the end of each Chapter. The theoretical foundations of a general framework reflecting
environmental stochasticity through stochastic rates and time-varying parameters, both
under the infinite population and multinomial approximations, will be explored further.
The robustness of the Gaussian approximation utilised to extend the use of the Extended
Kalman Filter to this general framework will also be the subject to further examination.
This generic plug-and-play toolbox for inference on epidemic models, allowing for the
automatic calibration of the particle MCMC, shall permit diverse applications in epidemi-
ology and public health as illustrated in Chapters 2 and 3. Additionally, the novel method-
ology introduced in Chapter 4 offers promising perspectives: it permits exact and efficient
exploration of the posterior marginal density p(6, 285 |yi.,) in the Non-Markovian setting,
while being robust to refinements in the discretisation of time. Furthermore, the ability
of the advanced HMC to jointly update 6 and xd% at each iteration with global, gradient-
driven moves makes it an interesting alternative to pseudo-marginal approaches. Its ex-
tension to more general settings with multi-dimensional underlying processes zy., is a
natural step for future research, along with a more thorough comparison with the PMMH,
PGibbs and SMC? algorithms.
Lastly, we provide here with three related subjects of further research.

5.1 Bayesian inference for sparse high-dimensional systems

The epidemic models that have been utilised in this thesis did not account for the geo-
graphic distribution of individuals: all cases were aggregated over a given city (London,
in Chapter 2), or over a given district (Southern Indian distrcts in Chapter 3). However,
there is increasing evidence that the spatial dimension plays an important role in epidemic
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dynamics. The authors of (Grenfell et al.|(2001), for example, show how measles stays en-
demic in large cities between two epidemics, and how smaller cities of the periphery are
randomly reignited at each epidemic burst. More recent studies have identified similar
traveling waves for influenza (Stark et al|2012), and stressed the need for adapted tools to
fully apprehend the epidemiological and evolutionary dynamics of viruses over space and
time (Viboud et al.,2013). The general framework of population-level compartmental epi-
demic models explored in this thesis does allow for the definition of geographical patches
(cities, districts, regions, etc). For example, a two-cities SI model could take the following

form:

Reaction Effect Rate
Infection city 1 (5D, 1D 52 1™y 55 (59 — 1,10 41,67 1P)  pS 1D
Infection city 2 (Sf” 1 ) 5 1(2)) - (S(l) V.52 1,1 1 1) S;f ®

S migration, city 1tocity 2 (S\", 1", 52 1%y — (S 1 I(1 5P 41,19 ozStl)
I migration, city 1 to city 2 (Slfl) I 5(2 I(2)) — ( -1, 5(2) I, @ +1) aIt(l)
S migration, city 2 to city 1 (Szfl)Jt(l) 5(2) I(z)) — (S(l) + 1 I(l) 5(2) - 1 I(z)) aSt(Q)
I migration, city 2 to city 1 (St(l) I 5(2 1(2)) — (S(l) I(l) +1, S(Q) -1 aIt@)

Naturally, the size of the state vector z; containing the number of individuals in each
compartment increases linearly with the number of geographical patches. Similarly, the
number of reactions that correspond to infections also increase linearly, as infections oc-
cur independently in each patch. If migration is allowed between any couple of cities, the
number of reactions that correspond to migrations increase quadratically. We have seen in
the Introduction that the dimension of the driving stochastic process x; was equal to the
number of sources of noise. For the simple SI model proposed here, the dimension of x;
will increase linearly with the number of patches n,, if only independent environmental
noise over the transmission rates 3 is considered. If all reactions are stochastic, which is
the case when demographic stochasticity is accounted for, the dimension of z; will increase

quadratically with the number of patches n,,.

In the general case, the number of particles required to control the level of noise in the
estimation of the marginal likelihood p(|y1.,,) with a particle filter increases exponentially
with the dimension of the driving stochastic process z; (Daum and Huang), 2003). For this
reason, exploring the spatial and temporal dynamics of an epidemic model accounting
for the different sources of stochasticity with the PMCMC approach utilised in this the-
sis quickly becomes intractable. However, the correlation structure of the vector z; will
be sparse, with most information concentrated in diagonal blocks corresponding to each

patch, in addition to some terms outside of these blocks corresponding to correlation in-
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duced by migration. These terms shall be of much lower magnitude than the correlation
observed within a same patch, except in the case of small cities in which epidemics are
driven by bigger cities. In this setting, could the specific sparse structure of the correlation
matrix of x; be exploited to avoid the exponential cost of the estimation of p(6|y;.,) with a
particle filter? In particular, is it possible to achieve a linear computational complexity in
the number of patches n, by assuming conditional independence? Under this assumption,
the model could be explored as n, independent patches submitted to an external forcing
from the other patches, with patch-specific independent particles. The exact definition and
properties of this approximate filtering algorithm for sparse high-dimensional stochas-
tic processes will be the subject of further research. Alternatively, if a high-dimensional
MCMC solution is adapted to the exploration the joint posterior density p(6, zo.n|y1:r), the
partial independence between patches may be exploited in an exact manner by running a

Gibbs algorithm in which city-specific components of {6, x¢.,, } are updated alternatively.

5.2 Sequential version of the advanced Hybrid Monte Carlo Algorithm

Monte Carlo Markov Chains rely on an iterative exploration of the target space. Asymp-
totic convergence results ensure that the successive positions of the chain provide in the
long run equivalent information than independent and identically distributed samples
from the target density. One limitation of the advanced HMC algorithm, as any MCMC
algorithm, is its intrinsic sequential structure that prevents direct parallelisation. A clas-
sic alternative to MCMC algorithms, as illustrated by the PMCMC and SMC? couple of
methods frequently evoked in this thesis, are Sequential Monte Carlo algorithms.

Algorithm 14 Sequential version of the advanced HMC algorithm

Initialise .J particles {(/(") xé )) (0, xég)} from the prior distribution p(zo.,|0)p(6)

w 9(]')11()_')
Compute the weights w (67 x((f,)L) p(y1]609), xo n) and W} = Zklcil(ﬁ—(’“;)()’“)

Resample {7, (§9), z(j ) 2)} to obtain J equally weighted particles {+, (¢ ),*817)1)}

y G) -
Sample (60, z(7)) ~ Ky (-|(0”,7)))
for: =2ton do @ 2 .
p(y1::|0Y) j_ w0 ,z))
P(y1i-1100) & Om and W; -3 w7(9(j)ox<j>)

Resample {W/, (§9), a: )} to obtain J equally weighted particles {+ (9(3),*0%)1)}

Sample (6/0), 2/7)) ~ Kj<.|<9< D))
end for

Compute the weights w; (0@, z/) ) =

Hence, a sequential version of the advanced Hybrid Monte Carlo algorithm can be de-
rived, as illustrated in Algorithm |14} based on the example of the SMC filter with MCMC
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moves presented in Doucet and Johansen| (2009). For examples as the fractional stochastic
volatility model, the dimension of the target space is not augmented at each iteration due to
the non-Markovian structure of the problem. The notation K (.|0, z.,,) denotes the transi-
tion kernel of the advanced HMC algorithm conditioned on the j first observations, where
a sample (6%, zj).,,) is proposed from a Hamiltonian mapping based on p(y1.;|6*, z§.,,) and
accepted or rejected through a Metropolis Hastings step. This SMC implementation of the
advanced HMC algorithm allows a direct parallelisation of the calculations by computing
the weights and updating the samples independently for each particle over multiple pro-
cessors. Additionally, it has been argued that SMC algorithms could less easily be trapped
in local modes (Del Moral et al.,|2006), which may be a solution to the problems encoun-
tered when estimating the leverage parameter p in the fractional stochastic volatility model
of Chapter 4. Lastly, improvements of this algorithm may be achieved by performing the
rejuvenation step based on the transition kernel before the computing the weights and
resampling the particles. Indeed, as suggested in [Doucet and Johansen| (2009), the distri-
bution of the samples would be closer to the target density p(6, 2o.n.|y1:5)-

5.3 Epidemic dynamics and climate: a mechanistic exploration

In Chapters 2 and 3 of this thesis, we have proposed a mean to capture the time-varying
drivers of epidemics, and we have explored the applications of this approach in a public
health setting focusing on evolving contact patterns and behaviour. We have shown how
hypothesis on the drivers of epidemics could be tested in real time during an epidemic,
and how unobserved and evolving behaviour could be indirectly estimated from epidemi-
ological data. An alternative time-varying driver of epidemics is climate, that can play
both a direct and indirect role. It has been proved by experimentation in laboratories that
absolute humidity had a significant impact on the influenza virus survival and transmis-
sion (Shaman and Kohn}2009). Furthermore, climate seasonality influences the time spent
indoors and the nature of contacts (Lipsitch and Viboud) [2009). The significant influence
of climate is also a likely hypothesis for diseases that are transmitted through mosquitoes:
the density of Aedes Aegypti and Aedes Albopictus has been shown to be strongly seasonal,
with peaks in rainy periods (Rao, [1967; Schultz, 1993). However, the precise impact of the
forcing of climate on the inter-annual variability of infections cases has been hardly quan-
tified, and is a recurrent point of debate. Indeed, the variability in the yearly number of
cases of some seasonal diseases as Dengue or Influenza can also be linked to the antigenic
drift, or to complex interactions between strains and with other pathogens. An example
of irregular dynamics of yearly epidemics is given in Figure that shows the number
of secondary cases of Dengue along time in the district of Chiang Mai, Thailand, and ex-
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hibits a strong inter-annual variability. The authors of |Aguiar et al.| (2011), for example,
have proposed a parsimonious multi-strain model of Dengue that produces similar types
of variability solely through the chaotic properties of the system, with the influence of cli-
mate being restricted to a simple sinusoidal multiplicative factor of the effective contact
rate: 8, = [y x (1 + esin(wt + ¢)). More direct confrontation of models to data is required;
in |Cazelles et al.| (2005), climatic time-series are confronted to time-series of Dengue in
Thailand and analised through wavelet analysis. By comparing not only the type of dy-
namics but rather by exploring in details the synchrony of both signals, further evidence
is provided for the significant role of climate in explaining the inter-annual variability of
Dengue epidemics.

This problem offers a natural application to the inference framework proposed in this
thesis to capture the influence of time-varying drivers of epidemics. The parsimonious
multi-strain model introduced in |Aguiar et al.|(2011) can be used as a basis to indirectly
infer the dynamic of the effective contact rate 5, from the available incidence data. Differ-
ent models could be used to model the dynamics of this parameter: it could for example
be simply modelled as a postivively constrained Brownian motion (dlog 5; = 0dB;), or a
periodic component could be explicitly added, restricting the analysis to the anomaly term
B; modelled as a randomly time-varying quantity:

By = Bo x (1 + esin(wt + @) + By)
B, — dB, (5.1)

Estimating the trajectories p(Bo.n|y1:n) OF p(80:n|y1m) may be a mean to start disen-
tangling the role of climate from the consequences of evolutive competition between the
four co-existing Dengue strains. Preliminary results on this problem are encouraging: a
strongly significant correlation (0.28, with p-value below 10~7) has been identified between
p(BOm\ylm) and the anomalies of the El Nifio 1-2 index. The problem will be further ex-
plored, in the perspective of building an explicit forcing model p(By..|y$“"). From such
a model, Bayesian synthesis of climate and epidemic data could be achieved, leading to
the exploration of p(Bo.n, 0|y?", y§'™). It is possible that the integration of both sources of
data may increase our understanding of Dengue dynamics, and extend the predictability
horizon of Dengue epidemics. Furthermore, it might also contribute to the understanding
and response to the re-emergence of Dengue in regions like Europe, from which it had

disappeared since 1927.
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Monthly recorded cases, Chiang Mai district (Thailand)
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Figure 5.1: Monthly recorded secondary Dengue cases in the Chiang Mai district, Thailand



APPENDIX A

Supplementary material for Chapter 2

Assessing the validity and limitations of the Extended Kalman

approximation

In this appendix we compare the particle filter with the Extended Kalman Filter, to quan-
tify the impact of Gaussian and Taylor approximations on the path estimates of the system.
A set of 100, 7-month long time-series of weekly influenza cases were drawn from the BM

model. In order to simulate realistic epidemic datasets, we randomly selected influenza

time-series (y1;o"?7)1% from the freely available Google FluTrend data (Ginsberg et al.|

2008). For each of the datasets, we obtained estimates of (35."/)1%

90 . These were then used to generate time-series (y; "™ )2 The static

and corresponding
parameters (;);
parameters of the model (initial conditions, k, v, o and 7) were assumed to be known, in

order to isolate the problem of estimating ;. We compare the following two estimators of

BS im.
o AP7 = ErI(B,]yl.;,6%) obtained from the filtering distribution

o BFKE — EEKE(B1y,.; 0*) where EFKF () denotes expectation under the approxi-

mate Extended Kalman Filtering density.

The performance of the estimators is measured through their bias and Mean Squared
Error (MSE). The bias of the estimates provided by the EKF is 0.0285 while use of /"
reduces the bias by about 78% (0.0063). The corresponding relative reduction in MSE is
10% (0.0270 to 0.0242). Use of the smoothing distribution estimator is associated with
a further 87% (0.0032) reduction in the MSE. In conclusion, the bias introduced by the
Extended Kalman approximation is non-negligible with regards to the level of accuracy

that can be obtained with exact particle methods on this type of datasets. Nevertheless,

137



138 APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2

this study has shown the approximation to be reasonable and motivates the use of the
approximated model as a proxy for the exact one.

MSE  Bias
EKF 0.0269 0.0285
Particle filtering 0.0242  0.0064
Improvement with regards to EKF -10%  -77%
Particle smoothing 0.0032  0.0027

Improvement with regards to P. filtering  -87%  -64%

Table A.1: Mean Squarred Error and Bias of §; estimates provided by the EKF, particle
filter and particle smoother

Details on Gibbs data-augmentation schemes

In this section we provide more details on the Gibbs schemes discussed in Chapter 2.
Stochastic epidemic models presented in this Chapter can be written as

daf = P (2%, 0)dt + 0% (z*,0)dB,, 0 <t <t,
yl:n|ZO:na 0 ~ IP)y (yl:n|Z0:n7 0) (Al)
20:n = f(xgtnv 0)

where z, represents the ODE states vector observed trough partial and noisy data y;.,,. The
rest of the model is defined in section 3.1 of Chapter 2. Since it contains intractable densities
we work with the time discretised versions zg$ and 2% and proceed using the Euler
approximating scheme. A Gibbs algorithm alternates between updating the trajectories of
z3% (and consequently zd%) given 6, and vice versa. Nevertheless, as the Euler time step §
goes to 0, the quadratic variation process of z%* uniquely determines the value of 8 in % (.)
and the algorithm degenerates (Roberts and Stramer, 2001). In practice this translates into
a mixing time of O(671).

In the context of diffusion-driven epidemic models, this problem was dealt with suit-
able reparametrisations such as the ones in|Chib et al|(2006) or Kalogeropoulos|(2007). The
latter uses the Lamperti transform, i.e. 7 — H(z?*,0) = n(z?,0) — n(25,0) =: u; where
n(+;0) is an antiderivative of (¢ )~1(-;0). Assuming that ¢ (-; ) is continuously differ-
entiable, an application of Ito’s lemma provides the SDE of the transformed diffusion u;
as:

duy = v(ug;0)dt +dBy, uy =0, (A.2)
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where .
H-
v(ug; 0;) = Mﬂ;( 71(%76)’938) — 100“
o t(H (ut,ﬂ),G) 2

Let P* denote the distribution of u,. Girsanov formula provide its density with respect to

(Hfl(ut, 0), 0) .

that of a standard Brownian motion, denoted by W,

. /t" V(us; 0)d 1/t" V(ug; 0)%ds (A3)
awW Xp o Us; Us 2 /s Us; s .

and the state vector can be written as

20:n = hu(UO:n,$8t7979v)~ (A4)

The model can be defined from (A.3), (A.6) and (A.I). It contains intractable quantities
but can be accurately approximated given the time discretisation of the diffusion path. An
alternative reparametrisation, defined in discrete time, was suggested in|Chib et al.| (2006).
It uses the transformation below

Ty — (xft_é — opbe (xft,H))

o0 (J:fi(;, 6)

wy = ,Vt. (A5)
In our setting the driving Brownian motion of z8%, denoted by w’s and provided by (AJ5),
can be used to provide a discrete skeleton of the state vector

240 = o (i, x,0,0,). (A.6)

The model is now given by wgi, that can be transformed to z¢* for which the Euler-

Maruyama approximation can be used, and which can be approximated using the
i
Data augmentations schemes can be used for the models above. Gibbs versions of such

schemes will alternate between updating ud’s (or wd’) and consequently 2% given 6, and

discretised state vector z

¢ conditional on either ud’ (or wds). The first step can be done either by the overlapping

block strategies in (Chib et al|(2006) and |[Kalogeropoulos| (2007) or with a particle filter in
the context of a particle Gibbs algorithm. The second step of updating 6 given ud’s or wd’s

is usually implemented through a random walk Metropolis algorithm:
e Let 6¢ and zd% be the current values of 6 and {5 respectively. Propose 6* from

q(616°)-
e Compute 235* = hy, (ug.p, 25", 0%, 0,)
o Accept with probability

77(0*7 Z(()ZZ,SL* ‘yl:na Ugli*av)q(ecw*)

1A - 2
71'(007 ngff\yhn, Ug?ff@u)qw* |0C)
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For the [Chib et al. (2006) formulation, ul5 can simply be replaced with w’s in the algo-
rithm above.

Unfortunately both of the above algorithms may perform poorly. The problem is that
every proposed value of 6 implies a proposed trajectory of the ODE states vector z;. As
parts or functionals of this trajectory are observed with error, the proposed value of 6 will
not be accepted unless its associated z; trajectory is close to these observations. Conse-
quently, only small steps can be made on the ¢ space and the algorithm mixes very slowly.
The problem intensifies as the noise variance becomes smaller and as the time horizon of
the epidemic increases. Implementations of such algorithms in the simulated and real data
of this Chapter are in line with this argument. Figure[A|displays the posterior draws for ¢
in the dataset of the simulation experiment 1 of Section 4 in Chapter 2. The posterior draws
of o were obtained from a particle Gibbs algorithm combined with the algorithm above;
note that in this model ud% and w’ are equal. In order to isolate the problem, the algo-
rithm was run on ¢ and §; only, and all the other parameters were held fixed at the values
they where simulated from (a value of 7 = 0.1 was used). The true value of o was 0.07 and
we used a § = 0.1. As clearly shown in the traceplot the mixing of the chain is quite poor,
thus casting doubts on the reliability of its output. The difference in mixing quality with
the corresponding traceplot generated with the PMCMC algorithm is substantial.

To sum up, both formulations of Gibbs data augmentation schemes (with or without
reparametrisation) are very likely to lead to inaccurate and inefficient MCMC algorithms.
The use of particle MMH algorithms is therefore essential and Chapter 2 focuses on its

implementation on diffusion driven epidemic models.
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Figure A: MCMC traceplot for o when using a Particle Gibbs scheme with reparametriza-
tion



APPENDIX B

Supplementary material for Chapter 4

We provide here with the detailed formula used to compute the different gradients in-
volved in the application of the advanced Hybrid Monte Carlo algorithm to the fractional
stochastic volatility model:

alogp(ylzn|1)0:n70y) agO:n agO:n ov; % % 0v; alng(ylzn|UO:n79y)
v; 9% 7 OH ' 0o, Ok’ Ou, Ovg’ Oty ’

First, if k is defined as ¢t < j < tg:

9log[p(y1:n|voin, 0)] _ o7 (vj)ou(v;)d
. - Jt, —1
v Zi:kjf,k,l o (v)20;

0L ()00 lun — g1 = ST (i — 0u(0:)%/2)3)]
Jt
Sk ou(vi)20,

e — o1 — S0 (= 0u(02)2/2)8,12 X 0l (v5) 7 (v;)6

+ T
(Zié}cjtk71 ou(vi)?6¢)?
(B.1)
By direct application of matrix calculus:
Lg(;” = PAY2Q (B.2)
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As mentioned in Chapter 3:

agO:n . 8A1/2
on ~ g 9% (B3)

where

A2 2N-1
i J o gk
EY T exp( 2mi ) (B.4)

Which can be directly derived from the fact that for k£ > 2,

(k) =21og(6)6*7 0.5k + 1127 +0.5|/k — 12 — |k|*H) (B.5)
+ 62H (log(|k + 1) |k + 112H 4+ log(|k — 1))|k — 1> — 21log(|k|)|k[*H) (B.6)
Otherwise:

if k=0, 0y(k)/OH = 2log(0)5*H
ifk=1,0y(k)/0H = 21og(0)0%7 (0.5 x 22H — 1) 4+ §2H log(2)22#

81}1'
Doy

can be computed recursively using the following formula:

Ot B i)+ ®
Similarly,
87;;1 :%: (1~ £6) + pud — i (B8)
Again,
Oipr  Ov

ot =g (L= 50) (B.9)
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" —ikd (B.10)

At last,

e = Yot — 0 (e — 0u(03)/2)8]
(B.11)

alng(ylzn|U0:n7 Gy) _ Z 1=Jt,_,
Ot k=1 Z?L@-tk*l oy (vi)?0
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