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Abstract

The context and motivation for this thesis is gene mapping, the discovery
of genetic variants that affect susceptibility to disease. The goals of gene
mapping research include understanding of disease mechanisms, evaluat-
ing individual disease risks and ultimately developing new medicines and
treatments.

Traditional genetic association mapping methods test each measured ge-
netic variant independently for association with the disease. One way to
improve the power of detecting disease-affecting variants is to base the tests
on haplotypes, strings of adjacent variants that are inherited together, in-
stead of individual variants. To enable haplotype analyses in large-scale
association studies, this thesis introduces two novel statistical models and
gives an efficient algorithm for haplotype reconstruction, jointly called Hap-
loRec. HaploRec is based on modeling local regularities of variable length
in the haplotypes of the studied population and using the obtained model
to statistically reconstruct the most probable haplotypes for each studied
individual. Our experiments demonstrate that HaploRec is especially well
suited to data sets with a large number or markers and subjects, such as
those typically used in currently popular genome-wide association studies.

Public biological databases contain large amounts of data that can help
in determining the relevance of putative associations. In this thesis, we
introduce Biomine, a database and search engine that integrates data from
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several such databases under a uniform graph representation. The graph
database is used to derive a general proximity measure for biological entities
represented as graph nodes, based on a novel scheme of weighting individual
graph edges based on their informativeness and type. The resulting prox-
imity measure can be used as a basis for various data analysis tasks, such
as ranking putative disease genes and visualization of gene relationships.

Our experiments show that relevant disease genes can be identified from
among the putative ones with a reasonable accuracy using Biomine. Best
accuracy is obtained when a pre-known reference set of disease genes is
available, but experiments using a novel clustering-based method demon-
strate that putative disease genes can also be ranked without a reference
set under suitable conditions.

An important complementary use of Biomine is the search and visualiza-
tion of indirect relationships between graph nodes, which can be used e.g.
to characterize the relationship of putative disease genes to already known
disease genes. We provide two methods for selecting subgraphs to be vi-
sualized: one based on weights of the edges on the paths connecting query
nodes, and one based on using context free grammars to define the types
of paths to be displayed. Both of these query interfaces to Biomine are
available online.

Computing Reviews (1998) Categories and Subject
Descriptors:
F.4.2 Grammars and Other Rewriting Systems
G.2.2 Graph algorithms
G.3 Markov processes, Probabilistic algorithms, Statistical computing
H.2.5 Data translation
H.2.8 Data mining, Scientific databases
J.3 Biology and genetics

General Terms:
Algorithms, Experimentation

Additional Key Words and Phrases:
Association mapping, Bioinformatics, Context-free grammars, Disease
gene prioritization, EM algorithm, Graph mining, Haplotyping, SNPs,
Weighted graphs
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Chapter 1

Introduction

The context and motivation of this thesis is disease gene mapping, the dis-
covery of genes affecting disease susceptibility based on comparing genetic
variation between healthy and affected individuals. This discovery of ge-
netic variants affecting many diseases is the first step in the research process
aiming at understanding disease mechanisms on the molecular level. The
role of gene mapping is to enable targeting more elaborate follow-up studies
to a limited set of candidate genes. The most important practical goals of
gene mapping research are developing gene tests for selecting treatments
suitable to genetically different variants of the same disease, and ultimately
developing new medicines and treatments.

This thesis introduces two kinds of computational approaches to im-
prove the power of gene mapping studies. First, we describe a compu-
tationally efficient statistical haplotype1 reconstruction method which al-
lows for more accurate localization of genes affecting disease susceptibility.
Haplotype reconstruction factors the genetic variation measured from each
individual into two separate components (haplotypes): variants inherited
from the father and from the mother. This makes it possible to analyze ge-
netic variation by considering inheritance of segments of consecutive genetic
variants together, instead of just single variants at a time. The utility of
haplotypes reconstructed with the presented method in disease gene map-
ping is demonstrated by extensive simulation experiments.

Second, we present methods for utilizing readily available background
data from public biological databases for refining and exploring putative
gene mapping results obtained by analysis of genetic variation data. A ma-
jor outcome of this work is Biomine2, a database and search engine that

1We will explain what haplotypes are in Chapter 2, where we give an overview of the
genetics needed for this thesis

2http://biomine.cs.helsinki.fi
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2 1 Introduction

integrates several such databases under a uniform graph representation.
The graph database is used to derive a general gene proximity measure,
which can be used to rank putative disease susceptibility (DS) genes ob-
tained from a gene mapping study. The proximity measure also provides a
basis for visualization and explorative analysis of gene relationships.

The body of this thesis consists of 5 peer-reviewed publications. To
provide a framework for situating the publications within the field of gene
mapping, we next present the workflow of a hypothetical gene mapping
project. After that we give summaries of the original articles and the
author’s contributions to them. We conclude this chapter by outlining the
remaining chapters of this introductory part.

1.1 Workflow of a gene mapping project

Our illustratory workflow (Figure 1.1) is divided into two main phases: pri-
mary analysis (left) and refinement phase (right). In the primary analysis
phase, genetic variation data (genotypes) from the subjects under study
is analyzed to find regions of the genome that are statistically associated
with the disease. In the refinement phase, putative results from the pri-
mary analysis are prioritized and explored by putting them into the context
of known biology, as represented by the Biomine database in this thesis.
The goal of the refinement phase is to identify the most promising putative
DS genes resulting from the primary analysis as targets for follow-up anal-
yses by more elaborate laboratory experiments. Such follow-up analyses
include obtaining data from additional subjects to validate observed asso-
ciations, targeted DNA resequencing to uncover all genetic variants within
the disease-associated regions and ultimately functional genomics experi-
ments to isolate the precise molecular mechanisms leading to the disease.

The presented workflow is simplified and designed with the purpose of
illustrating the methodology presented in this thesis. It does not address
aspects that are not directly relevant to the publications of this thesis,
such as effects of population structure, interactions between DS genes, ef-
fects of environmental factors on disease, or follow-up analyses by further
laboratory experiments.

We next go through the steps of the example workflow, briefly outlin-
ing the role of the methods introduced in the original publications. More
complete summaries of the articles are deferred to Section 1.2.
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association analysis

     (Paper II)

Haplotype−based

reconstruction (Paper I)

Statistical haplotype

(papers III and IV)

Data download/integration

(papers III and IV)

     (Paper IV)

putative DS genes
Prioritization of 
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Figure 1.1: Overview of a hypothetical gene mapping study. The inputs
to the analysis are depicted by italic text, the steps of the analysis are
represented by boxes, and the results and intermediate results by normal
text. The steps using methods presented in the papers forming this thesis
are indicated in the corresponding boxes when applicable.



4 1 Introduction

Primary analysis

The research process summarized by Figure 1.1 begins with a study design
phase, where the researcher decides how subjects are ascertained for the
study, what is the number of genotyped subjects (sample size), what geno-
typing method is used (this usually also determines the set of measured
variants) and how the measured variants are to be analyzed. The study
design step largely determines the statistical power of the study, meaning
the probability of identifying the presence of genetic variants affecting dis-
ease susceptibility. Ideally, the study design phase should include analytic
calculations or simulation studies to ensure sufficient statistical power. Pa-
per II presents a simulation study addressing some of the issues arising
in the design of association studies, most importantly the choice between
family–based and case–control ascertainment strategies and an assessment
of haplotype reconstruction strategies.

The first concrete step of the study is ascertaining the subjects and get-
ting DNA samples from them. The DNA is then processed using laboratory
methods (genotyping) to extract genotypes representing the genetic variants
possessed by each subject, typically using a dedicated genotyping chip that
can measure variants at hundreds of thousands of loci simultaneously.

The main step of the primary analysis is testing the obtained geno-
types for association with the disease in question. In this thesis we fo-
cus on the simple case where the disease status is a binary variable (af-
fected/unaffected). The genotypes can either be tested for association with
the disease directly, or several consecutive variants can be tested jointly as
haplotypes. The latter, more powerful option requires that the genotypes
are first combined into haplotypes using e.g. statistical haplotype recon-
struction methods. One such method, HaploRec, is introduced in Paper I.
In Paper II, we experimentally compare association testing of haplotypes
reconstructed with HaploRec to alternative strategies and find it to be a
competitive option.

The result of the association analysis phase is a set of chromosomal
regions associated with the disease. The genes contained in these regions
are then assigned as putative disease susceptibility genes (DS genes). Ad-
ditionally, also nearby genes or genes otherwise known to be regulated by
transcriptional DNA elements within the associated regions may be as-
signed as putative DS genes.
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Refinement phase

In many cases the effects of individual mutations are too weak to be de-
tected reliably by using the primary genetic variation data only, even if
haplotypes are used to improve power. Due to the huge number of tested
hypotheses (variants within the whole genome), the set of putative DS genes
will almost certainly contain a large number of false positives: completely
non-related genes which appear to have a high correlation with the dis-
ease, just by chance. As follow-up analyses are costly and time-consuming,
it is important to focus these analyses only on the most promising candi-
dates by filtering out the false positives as well as possible. This filtering
process is addressed by the refinement phase of the example workflow (Fig-
ure 1.1, right).

Automatic prioritization of putative DS genes can be performed by
considering pre-known biological and molecular relationships between pu-
tative genes and already known DS genes as additional evidence for the
disease association. Even if pre-known DS genes are not available, it may
be possible to do the prioritization based on the mutual relationships of the
putative genes. Public biological databases contain a vast amount of read-
ily accessible data relevant to the disease gene prediction problem, such as
protein interactions [88, 47], genes’ effects on diseases [38] and functional
gene annotations [39, 79]. In this thesis, this knowledge is utilized through
the Biomine database, introduced in Paper III, which represents the known
network of public biological, medical and genetic knowledge derived from
a number of heterogeneous source databases as a single weighted graph. In
papers III and IV, we define a general similarity measure computed from
the Biomine graph; in Paper IV this measure is applied to the disease gene
prioritization task.

Although automatic DS gene prioritization methods can provide use-
ful information, their results will rarely be used as such. Additionally,
the researcher will typically want to inspect the putative DS genes manu-
ally (possibly concentrating on the top-ranked ones), by checking what is
known about them in the original databases and literature. The Biomine
database also facilitates such exploratory use, by finding and visualizing
relationships between the putative genes and known DS genes, or relation-
ships between the putative genes (the final step of the gene mapping work-
flow in Figure 1.1). These visualization functionalities can use the same
proximity measures that are used for the prioritization, making them well
suited for manual verification of the prioritization results. Alternatively,
graph queries can be performed using context-free grammars as the query
language (Paper V), allowing the querying of paths with specific semantics,
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e.g., paths that suggest a causal relationship or paths that confer similarity.

1.2 Summary of original publications

The original publications of this thesis represent rather diverse fields of
computer science and biology: algorithmic data analysis (Paper I), study
design in genetic epidemiology (Paper II), bioinformatics (papers III and
IV), and graph algorithms (papers III-V). Although they all share the com-
mon motivation of gene mapping, many of the contributions in the original
publications are not restricted to gene mapping applications, but are po-
tentially usable also in other bioinformatics and graph analysis tasks. We
next give brief summaries of the original publications and their roles in the
gene mapping workflow of Figure 1.1. More detailed descriptions of the
contributions contained in each paper are given in Chapter 6.

Papers I and II address the issue of using haplotypes in association
analysis, corresponding to the primary analysis phase of the gene mapping
workflow in Figure 1.1. A problem with haplotype-based analyses is that
commonly employed laboratory techniques do not directly reveal haplotype
information. Paper I describes HaploRec, an accurate and efficient method
suitable for genome-wide reconstruction of haplotypes needed in large-scale
association studies based on haplotypes. (Our earlier conference paper [26]
on the same topic was the first one to propose reconstructing haplotypes
for longer chromosomal regions simultaneously.) HaploRec is based on
statistically modeling local regularities in the genotype data.

Paper II contains a simulation-based evaluation of different study de-
signs in gene mapping, comparing family-based and case–control associ-
ation study designs under 3 different disease models. The experiments
demonstrate the power of study designs based on haplotype-based associ-
ation analysis, using HaploRec for the important haplotype reconstruction
step. The main result is that statistically inferred haplotypes can be equally
powerful to the true haplotypes for the purposes of association analysis.
Moreover, the results suggest that the case–control study design (combined
with statistical haplotype reconstruction) is a powerful alternative for the
more laborious family-based ascertainment approach, especially for large
data sets.

Paper III introduces the Biomine database that integrates data from
several public biological databases under a common graph data model and
repository, providing the foundation for the refinement phase of our gene
mapping workflow (Figure 1.1). A fundamental component of the Biomine
system is a proximity measure for assessing the strength of relationships
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between graph nodes representing genes and other biological entities. This
measure can be used e.g. to discover links between genes and diseases that
consist of annotated relationships derived from different source databases.
In Paper III, weights are assigned to individual graph edges based on the
degrees of nodes adjacent to the edge, and overall proximity of nodes is
measured using two-terminal network reliability [20] computed from a small
subgraph connecting the query nodes. Experiments to discover two kinds
of relationships are reported: ones between disease genes and the corre-
sponding disease record in the OMIM database [38], and others to dis-
cover connections between interacting proteins. The article also includes
an assessment of the statistical significance of discovered relationships by
comparing them to a null distribution obtained by random sampling.

Paper IV extends the work done in Paper III in several directions,
most importantly by two concrete applications: prediction of future links
based on a previous version of the database and, more importantly for
the topic of this thesis, prioritizing lists of putative DS genes based on
proximities computed in the integrated graph. A new cluster-based method
is introduced for the little-studied problem of gene prioritization in the case
that there are no previously known “reference” genes for the disease under
study. The paper also introduces weighting of different relationship types
based on optimizing link prediction performance, as well as improvements
to the edge weighting scheme based on node degrees. Finally, the database
is compiled from a more comprehensive set of source databases than in
Paper III.

Visualization of indirect relationships in the integrated graph may be
useful in exploratory analysis of putative gene mapping results (the final
step of the gene mapping pipeline in Figure 1.1). In Paper V, we describe
a query system that enables finding connection subgraphs linking a given
set of query nodes, providing a concise summary about their relationships.
The result of such a query is the graph spanned by all paths matching a
query, where the queries are based on the types of nodes and edges on the
paths. More specifically, the set of accepted paths is specified by a context-
free grammar (CFG) where the node and edge are used as terminal symbols
of the grammar. An important contribution of the paper is a modified ver-
sion of the well-known Earley algorithm [25], adapted to efficiently extract
subgraphs matching a given CFG from a large graph.

Connection subgraph queries can also be performed based on the node
proximity measures defined in papers III and IV; this usage of Biomine is
briefly described in Paper III, and a public prototype of a proximity-based
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graph query/visualization system is available at our web site3. A brief
description of the query engine is also given in Chapter 4.

1.3 Contributions of the author

The author played a major part in formulating the probability models and
algorithms in Paper I, implemented the methods, performed the experi-
ments and wrote a major part of the text. In Paper II, the author provided
the implementation for the haplotyping algorithm, implemented the auto-
mated test environment used for performing the study, and participated
in performing the experiments. The author implemented a major part
of Biomine, the data integration and query system used in papers III-V.
In Paper III, the author participated in developing the original idea and
methods, and performed the experiments. The author developed and im-
plemented the methods of Paper IV, performed the experiments and wrote
the majority of the article. In Paper V, the author participated in con-
ceiving and implementing the algorithms, performed the experiments and
participated in writing the article.

1.4 Structure of the introductory part

The rest of the thesis is organized as follows. In Chapter 2, we give an
overview of genetic variation and gene mapping, including study design
issues tackled in Paper II. In Chapter 3, we review the computational hap-
lotype reconstruction problem and outline our statistical haplotype recon-
struction approach, HaploRec, introduced in Paper I. We also discuss the
relevance of HaploRec and haplotypes in general for gene mapping. In
Chapter 4 we outline the Biomine database, and a general node proxim-
ity measure derived from it, based on Papers III and IV. We also describe
experiments for optimizing the parameters of the proximity measure and
validate it using link prediction as an example application. Furthermore,
we outline the use of Biomine for discovering and visualizing relationships
between biological entities, based on papers III and V. In Chapter 5 we
describe the disease gene prioritization problem, and outline the use of
Biomine for prioritization of putative disease genes, based on the contents
of Paper IV. In Chapter 6, we summarize the contributions of the thesis.
Finally, in Chapter 7 we discuss the relevance of the presented work in the
field of gene mapping and give an outlook for future research.

3Biomine search engine: http://biomine.cs.helsinki.fi



Chapter 2

Principles of disease gene mapping

In this chapter, we will give a brief overview of genetics and the principles
of disease gene mapping, to provide a basis for understanding the rest of
the thesis. We also review the problem of study design in gene mapping
and describe a particular type of gene mapping studies that is of interest in
this thesis: genome-wide association studies (GWAS), where the complete
genome is screened for disease-associated genetic variants without any prior
hypotheses on the location of the DS genes. The contents of this chapter are
based on standard textbook knowledge [7, 21, 44, 19] and previous theses
on disease gene mapping [69, 82, 40].

2.1 The human genome

The genome is the collection of hereditary information of an organism,
a copy of the whole genome being present in each cell of an organism.
The genome consists of DNA (deoxyribonucleic acid), which is made up
of simple units called nucleotides. There are four different nucleotides:
adenine (A), thymine (T), cytosine (C) and guanine (G), and the whole
human genome can be thought of as a very long sequence consisting of
approximately 2.9 billion nucleotides. More specifically, a DNA molecule
consists of two complementary strands where A is always paired with T
and C is always paired with G, so that both strands actually contain the
same information. These paired nucleotides are called base pairs.

The main purpose of DNA is to act as a template for the production of
proteins, which are functional units participating in most cellular processes.
The parts of genome that are used for producing proteins are called genes.
Only a small fraction of the genome comprises of genes; of the remaining
part, some regions have a role in regulating the activity of genes, but for

9



10 2 Principles of disease gene mapping

most part this non-coding DNA has no known function.

Human DNA is organized into 46 chromosomes, 44 of which are struc-
turally pairwise similar, or homologous. These homologous chromosomes
are referred to as autosomes. The autosomes form 22 chromosome pairs.
In each pair, one of the chromosomes is inherited from the mother and the
other from the father. In addition to the 22 pairs of autosomes, the normal
human genome has two sex chromosomes; a female has two X chromosomes
whereas a male has one X and one Y sex chromosome.

2.2 Genetic variation and genotyping

The majority of DNA is similar in all humans’ genomes. However, due
to mutations that have occurred during the population history, there is
variability at some locations of the genome. There are several types of such
variation, usually called polymorphisms. Of these, the most common are
single nucleotide polymorphisms (SNPs), variations of a single base pair.
Other types of genetic variations include deletion of one or more base pairs
from the sequence, insertions of a stretch of DNA into another place in the
genome and variable number of repetitions of a short DNA sequence.

A certain location in the DNA sequence is called a locus, and different
variants of the DNA at a polymorphic locus are called alleles. It is possi-
ble find out almost all genetic variants of an individual by using genome
sequencing methods to read the complete DNA sequence of the individual.
However, genome sequencing is quite expensive and slow, and for most
studies it is more cost-efficient to only examine the DNA at a predefined
set of marker loci that are known beforehand to contain relatively com-
mon variants. The list of specific alleles that an individual possesses at
each marker locus is called a genotype, and the process of determining the
genotype using laboratory methods is called genotyping.

SNPs are the most commonly used type of markers genotyping subjects
for the purpose of gene mapping. Current SNP genotyping methods are able
to determine hundreds of thousands or even millions of SNPs per subject
in a single study, enabling the screening of the genome with a reasonable
resolution and cost.

As there are two copies of each chromosome (except for the sex chro-
mosomes), each individual also has two separate alleles for each studied
polymorphic locus. A genotype is thus represented as a list of allele pairs,
which in the case of SNP markers each represent the two nucleotides of an
individual at a single locus. A part of an individuals’ genotype containing
allele pairs for a single chromosome can alternatively be viewed as a pair
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Inherited from father

Inherited from motheraaatactacataacctacaagagat

acatactacataacatacaatagat

alleles (variants) markers (loci)

Figure 2.1: Example of a chromosomal segment containing 4 SNP markers

of two haplotypes: strings of consecutive alleles located on the same copy
of the chromosome. Each haplotype represents the variants inherited from
one of the parents.

Figure 2.1 illustrates the basic concepts of genotype data, showing the
genotype and haplotypes of an individual on a short chromosomal segment
containing four SNP markers. The genotype is ({a, c}, {a, a}, {a, c}, {g, t}).
The haplotype inherited from the father is (c, a, a, t) and the haplotype in-
herited from the mother is (a, a, c, g). The haplotype representation thus
contains more information than the genotype representation, as it also spec-
ifies the parental origin of each allele (the order of allele pairs is not relevant
in the genotype representation).

Haplotypes of nearby markers are inherited together from generation
to generation (with some exceptions), which means that considering hap-
lotypes instead of independent genotypes makes it possible to more accu-
rately estimate whether a particular segment of DNA in the genomes of
two different individuals has been inherited from the same ancestor or not.
This information is particularly useful in disease gene mapping, as will be
explained in the following sections. Because genotyping methods do not
directly provide haplotype information, haplotype reconstruction is an es-
sential intermediate task in gene mapping methods using haplotypes. In
Chapter 3 we will provide an overview of statistical haplotype reconstruc-
tion, and outline the method HaploRec introduced in Paper I.

2.3 Inheritance, recombination and genetic dis-
tance

An offspring inherits two copies of each autosome, one from the mother
and one from the father. The DNA is transmitted from parent to offspring
through germ line cells, gametes, which unlike other cells contain just one
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copy of each chromosome (the other copy will be received from the other
parent). Meiosis (Figure 2.2) is the process where gametes are formed, by
combining DNA from both copies of each chromosomes of an individual.

BBA

(a) (b) (c) (d)

A B BA

A

A

A

B

B

A

B

B

A A B B

Figure 2.2: A schematic figure of a meiosis event for one chromosome. The
individual has inherited two copies of the chromosome from its parents
(denoted by A and B). (a) The DNA in the two chromosomes is duplicated
to form 4 chromatids. (b) The chromatids exchange genetic material; in this
example, two crossovers occur, denoted by the horizontal lines. (c) Two of
the chromatids have exchanged their DNA in the region between the two
crossover loci. (d) One of the four resulting chromatids is inherited to the
offspring.

During meiosis, usually one or more crossovers occur between the orig-
inal chromosomes of the parent, so that the chromosomes inherited by the
offspring from a single parent are not usually exact copies of the either of
the parent’s chromosomes, but instead a combination of shorter segments
from the two chromosome copies originating from the grandparents. In dis-
ease gene mapping, it is often of interest whether alleles at two markers on
the same chromosome have been inherited together from the same parental
chromosome, or instead from the two different copies of the chromosome
(having been separated by a crossover). When an offspring inherits the
DNA in two loci from different chromosomes of the parent (i.e. from dif-
ferent grandparents), it is said that a recombination has happened between
the loci.

Two loci are inherited independently, if they reside in different chromo-
somes. Likewise, alleles in two loci far apart in the same chromosome are
inherited nearly independently, due to the high probability of crossovers
between the two loci. When the distance between two loci is small, there
is an increased probability that no crossovers occur between the two loci
during a meiosis, so that the alleles in the same chromatid are passed to
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the offspring unchanged. In this case, the loci are said to be genetically
linked. This linkage between the disease locus and genotyped marker loci is
the key factor that enables using genetic markers for disease gene mapping.

2.4 Linkage disequilibrium and haplotypes

During the course of population history, the phenomenon of linkage leads
to non-random associations, called linkage disequilibrium (LD), between
alleles of closely spaced markers. Two loci are said to be in linkage dise-
quilibrium when certain combinations of alleles at these loci occur together
more often than they would do just by change, assuming the markers were
independent of each other.

Consider two alleles A and B in different loci with population frequen-
cies P(A) and P(B). Assuming that the loci are mutually independent in
the population, their probability of occurring together is a product of the
individual allele frequencies: P (AB) = P (A)P (B). However, if a combina-
tion of alleles occurs more or less often than would be expected assuming
independence (P (AB) 6= P (A)P (B)), the markers are said to be in link-
age disequilibrium. Several measures have been proposed to characterize
the amount of LD between two loci [23]. One widely used measure is the
absolute difference δ = P (AB)− P (A)P (B).

Although most measures in the literature consider LD between only two
loci, the concept of LD is not limited to pairs of loci. Pairwise measures
may fail to reveal even strong LD contained in a sample of chromosomes.
As an example, consider the haplotype frequencies in Figure 2.3.

haplotype frequency (%)

A B C 0.25
A b c 0.25
a B c 0.25
a b C 0.25

Figure 2.3: Example of LD over multiple markers.

There are three markers, where {A, a}, {B, b} and {c, C} are the pairs of
alleles occurring at each marker, respectively. The frequency for all alleles
is the same: P (x) = 0.5 for all x ∈ {A, a,B, b, C, c}. Looking at pairs of
markers does not reveal any LD; haplotype frequencies for any of the three
marker pairs are identical to ones obtained by assuming independence of the
markers (for instance, P (AC) = 0.25 = 0.5 · 0.5 = P (A) · P (C)). However,
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when inspecting all the three markers jointly, the allele at marker C can
always be predicted based on the alleles at markers A and B.

2.5 Disease gene mapping

Disease gene mapping (see e.g. Altshuler et al. [3] for a more complete
review) is the process of localizing mutations in DNA that increase (or
decrease) the risk of obtaining the disease under study. In the most basic
gene mapping setting, the phenotype of interest is a binary variable indicat-
ing whether an individual has the disease of interest or not, and the goal
is to locate mutations affecting the probability of obtaining the disease
by looking at the correlations between the disease status and genotypes
of a sample containing both healthy and affected individuals. The loca-
tions of the genome containing mutations correlated with the disease are
called disease susceptibility (DS) loci. Often, mutations affecting disease
susceptibility are located within genes, in which case we speak of disease
susceptibility (DS) genes. Also mutations outside of genes may affect dis-
ease susceptibility. This is not surprising, as comparative genome analysis
has shown that 5% of the human genome is evolutionarily conserved and
thus functional, while only less than one-third of this 5% consists of genes
that encode proteins [100]. Disease-affecting mutations outside of genes
typically affect disease through their role in regulating nearby genes [3].
Thus, also DS loci outside of genes should ideally be mapped to genes for
subsequent analysis, based on their proximity on the DNA sequence or
knowledge about regulatory relationships [80, 93].

If the complete DNA sequence were to be measured for all subjects,
gene mapping would be relatively straightforward (ignoring the statistical
problems from multiple testing and correlation between nearby markers):
just test each variant independently for statistical association with the dis-
ease. However, genome sequencing is still currently slow and expensive
compared to genotyping, and gene mapping studies are most often per-
formed by genotyping a limited set of predefined marker loci. This is a
feasible strategy owing to linkage between the DS locus and nearby marker
loci. The idea is that although each actual DS variant is probably not
among the set of genotyped variants, it is possible to approximately deter-
mine the DS locus by observing nearby markers that are in strong linkage
with it, and therefore also correlated with the disease status.

Disease gene mapping methods can be roughly categorized into two
categories: linkage and association-based methods. Family-based linkage
methods [65, 57] examine the transmission of both the disease and marker
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Disease locus

Generation 1

Current generation

Generation 2

Founder chromosome

BA

Figure 2.4: Evolution of a chromosomal region containing a disease muta-
tion. The disease mutation has been introduced to the founder chromo-
some. In the first two generations, crossovers at locations A and B have
replaced the ends of the chromosome by material from other chromosomes.
In the current generation, a short fragment of the founder chromosome
around the disease mutation still remains intact.

alleles within a known pedigree. The idea in linkage methods is that the
distance between a genotyped marker and the disease locus can be inferred
by observing how often the disease and the alleles at the marker locus are
inherited together, i.e. without being separated by a recombination in be-
tween. The location of the DS variant can then be estimated by combining
information from markers estimated to be located close to the DS variant.
A problem with linkage studies is that as they only consider inheritance in
a few generations, only a small number of recombinations occur within time
period spanned by the pedigree. This means that also markers relatively
far from the disease locus will be inherited together (without recombina-
tions) in the observed data, making it impossible to pinpoint the DS locus
very accurately.

In this thesis, we mainly concentrate on association mapping [17, 19, 6],
which is an alternative way of locating disease genes based on genotype
data. In association mapping, the disease locus is sought by finding mark-
ers that are in LD with the disease status, using genotypes from a set
of unrelated (or more precisely, very distantly related) individuals. The
key assumptions in association mapping are that each DS locus contains
a single mutation that has been introduced to the population by a certain
distant ancestor (founder), and that LD between the mutation and mark-
ers surrounding it is strong enough to be detected statistically. Such LD
is expected to exist because the mutation locus has been inherited through
the generations from the to the current carriers of the mutation as part of
a preserved ancestral chromosomal segment (see Figure 2.4).

A chromosomal segment shared by members of the current population
that has been inherited from a common ancestor without being split by re-
combinations during the population history is said to be inherited identical
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Disease status

Unobserved causal locusGenotyped locus

Indirect association

Direct association

Direct association

Figure 2.5: Indirect association between a genotyped locus and disease
status

by descent (IBD). In the ideal case that two specific alleles only occur in
a single IBD segment shared by some members of the current population,
they will be in perfect linkage disequilibrium. Even if this is not the case,
there will generally be at least some LD between variants located in the
IBD region. Due to the combination of this LD between the unobserved DS
locus and genotyped markers within the same IBD region, and the correla-
tion between the DS locus and the disease status, the genotyped markers
near the disease locus will also be statistically associated with the disease
(Figure 2.5), although more weakly than either of the direct associations.
Because the IBD segments where associations are observed will typically be
much shorter than the ones inherited intact without recombination in the
pedigrees considered in linkage studies, association mapping has the po-
tential to pinpoint the DS locus with far greater accuracy than do linkage
methods.

Tests of association and statistical significance An association study
is performed by comparing the frequencies of alleles or genotypes at marker
loci between groups of affected and unaffected individuals, in order to
determine whether a statistical association exists between the trait and
the marker. Perhaps the simplest method to test such associations is
based on constructing a 2 by 2 contingency table (Figure 2.6) for each
marker to be tested, where the presence of the disease and the presence
of a particular allele (A/a) are the variables, and the table cells con-
tain the counts of haplotypes that have the particular allele within each
group of subjects (healthy/affected). This is of course only one of a large
number of possibilities; instead of alleles, genotypes or haplotypes can be
used as variables to be tested, and these can be grouped in various ways
according to different assumptions about the inheritance of the disease
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(dominant, recessive, etc.). Also, instead of directly comparing allele or
genotype counts using a contingency table, the testing can be done using
an explicit disease model that expresses the likelihood of the genotype data
conditional on the disease status. In this case, the test of association is
based on comparing the likelihood of the observed data under the disease
model to its likelihood under a null model of no association. We will not
consider these alternative methods for testing association any further in
this thesis; see e.g. Clarke et al. [17] for a review.

Allele a A Total

Healthy fHa fHA fH·
Case fCa fCA fC·
Total f·a f·A

Figure 2.6: Contingency table for computing allelic association

Returning to the contingency table example (Figure 2.6), under the null
hypothesis of no association between the tested marker and the disease, we
expect the relative allele frequencies to be similar in the case and healthy
groups (fCa

fC·
= fHa

fH·
and fCA

fC·
= fHA

fH·
). The deviation between the observed

allele counts and ones that would be expected under the null hypothesis can
be measured e.g. by computing a χ2 score [101, 17] that is defined as the
sum of normalized squared differences between the observed and expected
values of the table cells.

The statistical significance of an association it characterized by a p-value
that tells how likely it is that, under the null hypothesis of no association,
the value of the test score would be at least as high as the one computed
from the observed frequencies. For the χ2 score, the theoretical distribution
is known and the p-value can be computed straightforwardly by comparing
the score based on the observed frequencies to this known distribution.

If the p-value is under a predefined significance threshold (a value of 0.05
is typically used), then the association is said to be statistically significant
(with the given threshold). Using 0.05 as the significance threshold thus also
means that when testing a marker with no association to the disease, the
probability of getting a false positive association is 0.05. We will discuss the
statistical significance in the case of multiple tested markers in the section
on genome-wide association studies below.
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Tests using multiple markers In the relatively rare case where the
disease locus is within the set of tested markers, or there exists a marker
that is in perfect LD with the disease locus, testing of single markers is
a sufficient strategy for detecting associations. However, often there is no
single SNP that would correlate completely with the disease locus, even if
all carriers of the disease-predisposing allele share a chromosomal segment
around the disease locus that is inherited IBD. This is because also members
of the current population that do not share the same IBD haplotype can
have the same marker alleles that are present in the haplotype, having
inherited them from other ancestral sources, thus diluting the LD between
the markers and the disease locus. Consider for example the haplotype
frequencies in Figure 2.7, where the (not genotyped) DS locus D is in perfect
LD with the haplotype consisting of genotyped markers A and B. However,
there is only an imperfect LD with alleles A and B individually, as they
also occur in haplotypes without the disease allele (rows 2 and 3).

observed haplotype DS locus frequency (%)

A B D 0.25
A b d 0.25
a B d 0.25
a b d 0.25

Figure 2.7: Example of LD between marker haplotype and disease alleles.
D denotes the causal disease allele and d denotes the normal allele at the
disease locus.

Thus, the power to detect associations can be increased if several mark-
ers are considered simultaneously [1, 78]. Several association mapping
methods that utilize LD across multiple markers have been published [89,
83, 60, 86, 52, 97]. Many of these methods require haplotypes as input,
and cannot work directly on genotype data. In addition to describing the
haplotyping method HaploRec introduced in Paper I and statistical haplo-
typing in general, the next Chapter will also discuss the use of haplotypes
in gene mapping.

2.6 Genome-wide association studies

In this thesis, the main interest is in genome-wide association studies (GWAS),
where typically hundreds of thousands or even millions of variants are
screened across the complete genome, without any prior hypotheses on
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the location of the DS variants [99, 64]. Before the recent advances in
genotyping technology that allow for the screening of the whole genome,
association analysis could only be used in studies when the set of candidate
regions is already restricted to a small subset of the genome by some prior
knowledge, such as linkage analysis results. Such studies include candidate
gene and fine-mapping studies, which consider only variants within a single
gene or within a candidate region containing approximately 5 − 50 genes,
respectively [6].

An inherent problem in GWA studies is the problem of multiple testing
of a very large number of hypotheses (markers), which almost invariably
leads to the discovery of a number of false positive associations. For in-
stance, when testing 100.000 markers, using a standard significance thresh-
old of 0.05 for each individual test would lead to approximately 5000 ac-
tually non-associated markers to be declared as associated (in addition to
any genuinely associated ones). There are methods to correct the p-values
to account for multiple testing [82, 66], but rigorous application of these
methods leads to only the strongest associations being accepted as statisti-
cally significant. In current gene mapping research, the interest is usually
in complex diseases [67] which are affected by a combination of multiple
genes and environmental factors. For complex diseases, there are typically
no “causal” mutations, but instead the contribution of each DS variant is
only moderate or weak. Therefore, applying stringent correction for multi-
ple testing may lead to most or all actual DS variants being missed, and in
practice a larger set of putative variants (almost certainly containing many
false positives) has to be included for further examination. Instead of using
a pre-defined significance level to rule out false positive findings, an alter-
native possibility is to determine a false discovery rate [94], which allows
the markerwise significance threshold to be set dynamically based on the
set of observed p-values and the desired ratio between the number of true
positive and false positive findings within the set of significant associations.

As the set of DS variants discovered by a GWA study necessarily con-
tains many false positives, further studies of the putative variants are
needed to validate the observed associations. Possible approaches include
genotyping these variants in additional independent samples in order to
identify the real associations, or sequencing the regions around the (geno-
typed) putative variants to discover the actual variants increasing suscep-
tibility to disease. As these follow-up studies are expensive, validation and
prioritization of putative disease genes based on existing biological data
is required before proceeding with the study. These will be the topics of
Chapters 4 and 5, respectively.
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2.7 Study design in association analysis

A gene mapping project begins with a study design phase (Figure 1.1,
upper-left corner), where the goal is to specify with a way of conducting
the study that maximizes the power to detect genetic variants, constrained
by the available resources. Issues constituting the design of a study include
how the trait of interest is defined, how the subjects to be studied are
ascertained, what genotyping method is used (this typically determines
the set of studied variants), and how the relationship between measured
genotypes and the trait of interest is analyzed. Expensive or otherwise
constrained components of the study include the ascertainment of subjects,
collecting phenotype data and performing the genotyping and analysis. We
will only briefly address the concept of study design here; for reviews on
study design in association analysis, see e.g. [67, 4, 64].

Statistical power

Ideally, the study design phase should include analytic calculations or simu-
lation studies to ensure sufficient statistical power for detecting the presence
of genetic variants affecting disease susceptibility, and also for assessing the
accuracy of localizing these variants. In gene mapping, statistical power
refers to the probability of detecting the presence of a genetic variant af-
fecting disease susceptibility, using a statistical test of significance with
a predefined significance threshold. Inadequate design may lead to insuffi-
cient power of detecting DS variants. In terms of the gene-mapping pipeline
(Figure 1.1), this means that there will be less true positives within the set
of putative DS genes passed as input to the latter part of the pipeline. As
a consequence, either a larger fraction of true positives will be missed alto-
gether, or the significance threshold has to be made less strict, increasing
the number of considered putative genes and thus making it more difficult
to identify the true positive ones later in the pipeline.

Sample ascertainment and haplotyping

Association studies are typically built around case–control groups or fami-
lies. In case–control studies, both cases (affected individuals) and controls
(healthy individuals) are sampled independently from a population. In
family-based studies, instead, cases are sampled from the population, their
parents are also recruited and genotyped, and control genotypes are then
formed by deducing the non-transmitted parental haplotypes using trio
haplotyping; these are called pseudo-controls (see Paper II for details).
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The major difference between the family-based and population-based
designs are as follows: (1) the formation of the control group, (2) haplo-
typing and (3) effective sample size. In case–control studies controls are
separate individuals, while in family studies pseudo-controls are used. The
use of pseudo-controls or siblings makes family-based studies robust against
population stratification, systematic differences in allele frequencies between
subpopulations that may cause false associations if the cases and controls
of the study are ascertained from different subpopulations [28]. On the
other hand, the use of pseudo-controls may cause imbalance between the
number of cases and controls, as parents may also be affected with the dis-
ease. Furthermore, with late-onset diseases, the trio-based option may not
be usable at all, as parents may not be available for genotyping.

In the family-based design, haplotypes can be straightforwardly deter-
mined by comparing the genotypes of the parents and offspring to see which
alleles have been inherited from which parent, while in the population-based
approach haplotypes must be determined using statistical inference. While
the family-based option does not suffer from errors introduced by statisti-
cal inference, it leaves some alleles missing, as trio-based inference cannot
be performed for markers where all genotypes are heterozygous for all the
members of the trio. This may be a problem in downstream analysis.

Finally, the effective sample size differs between the two approaches: in
the trio-based design, the transmitted haplotypes of the parents are dupli-
cates of the haplotypes of the children, which means that the population-
based design achieves a larger effective sample using the same genotyping
costs, increasing the power of the study.

A method for statistical haplotyping suitable for large-scale association
studies is presented in the next chapter. In Paper II, we present an empirical
simulation study addressing the power and accuracy of gene mapping study
designs as a function of sample ascertainment method, effective sample size,
and haplotyping method. Results of Paper II are discussed at end of the
next Chapter.
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Chapter 3

Computational haplotyping and
its use in gene mapping

As discussed in the previous chapter, haplotypes are the unit of inheri-
tance, and it is beneficial to perform gene mapping using haplotypes in-
stead of genotypes. However, only genotype data is readily obtainable by
laboratory methods, while haplotypes are considerably more difficult and
expensive to measure directly. When the genotyped subjects are related,
it is relatively straightforward to infer most of the haplotypes by consider-
ing the inheritance of alleles within the pedigree, deducing for each allele
which parent it has been inherited from. Fortunately, even when the geno-
typed subjects are unrelated, LD between nearby markers usually makes
it possible to infer the haplotypes with a reasonably high accuracy. This
process is called computational haplotype reconstruction, or more shortly
haplotyping. In this chapter, we will review the computational haplotype
reconstruction problem and outline our statistical haplotype reconstruction
approach, HaploRec, introduced in Paper I. In the end of this chapter, we
will also discuss the relevance of haplotypes in gene mapping.

3.1 Computational haplotype reconstruction

The computational haplotype reconstruction problem is stated as follows:
given a set of genotypes of unrelated individuals from the same population,
the task is to output the most likely pair of haplotypes for each individual.
The number of all possible haplotype pairs for a given genotype is exponen-
tial in the number of markers, and assuming the markers were completely
independent of each other, it would be impossible to say which of the pos-
sible solutions is the correct one. Fortunately, the haplotypes within a

23
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population usually share some genetic history, which means that there usu-
ally is strong LD between nearby markers. This LD can be exploited by
computational haplotyping approaches to greatly narrow the set of possible
solutions.

Formal description of the problem We assume a sequence (map)
M of ` markers 1, . . . , ` and denote the set of alleles of marker i by Ai.
The set of possible (unordered) allele pairs for marker i is denoted as Ai ={
{a1, a2} : a1, a2 ∈ Ai

}
. A haplotype H over M is then a sequence of alleles:

H ∈ A1 × A2 × . . . × A`, and a (multi-marker) genotype G over M is a
sequence of unordered allele pairs: G ∈ A1×A2×. . .×A`. For SNP markers,
|Ai| = 2. Assuming alleles are labeled “1” and “2”, SNP haplotypes are

vectors in {1, 2}` and SNP genotypes are vectors in
{
{1, 1}, {1, 2}, {2, 2}

}`
.

The allele of haplotype H at marker i is denoted by H(i). Similarly,
the allele pair of a genotype G at marker i is denoted by G(i). An allele
pair {a1, a2} is said to homozygous if a1 = a2; otherwise it is said to be
heterozygous. Given a pair of haplotypes {H1, H2} and a genotype G such
that G(i) = {H1(i), H2(i)} for all i, we say that {H1, H2} is consistent with
G, or that {H1, H2} is a (possible) haplotype configuration for genotype G.
Two haplotypes determine a unique consistent genotype in the obvious way.
A genotype, on the other hand, can have several haplotype configurations.
For a genotype G with k heterozygous markers

(
i.e., k = |{G(i) = {a1, a2} |

a1 6= a2}|
)
, there are 2k−1 different haplotype configurations. The set of all

possible haplotype configurations for a genotype G is denoted by CG, where
|CG| = 2k−1. A genotype that has only one or no heterozygous markers
has only one possible haplotype configuration, and is called unambiguous.
Analogously, a genotype with more than one heterozygous marker is called
ambiguous.

The set of input genotypes is denoted by G. The haplotype recon-
struction problem is now defined as finding the most plausible haplotype
configuration {H1, H2} ∈ CG for each genotype G ∈ G. Here, the interpre-
tation of “most plausible” is left open; it will depend on the assumptions
made by each different haplotyping method.

3.1.1 Haplotyping short regions of strongly linked markers

Clark’s algorithm When considering haplotypes consisting of only a
small number of markers in strong LD, the set of different haplotypes oc-
curring in the population is usually very small, perhaps only 4 or 5 different
haplotypes. In this case, it is often possible to solve the problem by finding
a small set of haplotypes that are consistent with the observed genotypes.
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The first computational approach that uses this idea was published by
Clark [16]. Clark’s algorithm uses as starting point a set of haplotypes
H trivially obtained from the unambiguous genotypes in the input. The
ambiguous genotypes are then resolved one by one, by finding a compati-
ble haplotype configuration {H1, H2}, where at least one of the haplotypes
{H1, H2} is found in the setH, and adding the complementary haplotype to
the set H. This process is repeated until all genotypes have been resolved,
or no more genotypes can be resolved. A drawback of Clark’s algorithm
is that the order in which the genotypes are resolved affects the result.
It is also possible that the algorithm fails to resolve all the haplotypes.
Clark proposes to run the algorithm multiple times with different random
seeds, and then use results from the order of execution which maximizes
the number of genotypes resolved.

Pure parsimony The problem can be formulated with a more explicit
objective function as the combinatorial pure parsimony problem [37], where
the goal is to find the smallest set of haplotypes that is consistent with
the set of observed genotypes. The pure-parsimony formulation can be
approximated efficiently for small data sets (30 markers, 50 individuals),
by using linear programming. It is, however, impractical for larger data
sets.

Perfect phylogeny A perfect phylogeny [36] approach to haplotyping
attempts to capture the evolutionary process leading to the present-day
haplotypes. This approach works by constructing an evolutionary tree (Fig-
ure 3.1) such that the observed genotypes are consistent with the haplotypes
in the tree. The current haplotypes are assumed to be derived from a com-
mon ancestor using an infinite sites mutation model, where each marker
locus is assumed to mutate exactly once during the history.

Multinomial haplotype model A major drawback of the approaches
above is that they do not utilize information about the frequencies of differ-
ent haplotypes. The statistical approach to haplotype inference is to jointly
model the distribution of the haplotypes in the population and estimate the
probability of compatible haplotype configurations based on the model. To
make the modeling feasible, the simplifying assumption of random mating
within the population is usually made, stating that the two haplotypes of
each individual are independent of each other. In the basic statistical hap-
lotyping approach [29, 68], haplotype probabilities are simply represented
by a multinomial model, where all possible haplotypes are enumerated and
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Figure 3.1: A phylogenetic tree for 5 haplotypes. The boxes on the last row
represent the haplotypes underlying the observed genotypes, and the other
boxes represent ancestral haplotypes. The numbers on the lines joining
haplotypes indicate positions where a mutation has occurred in the lineage
joining the two haplotypes. Note that some, but not all shown ancestral
haplotypes are present in the current-day population (last row).

each haplotype is assigned an independent probability P (H), correspond-
ing to the estimated frequency of that haplotype in the population. Under
this model, the likelihood of the observed genotype data G is defined as

L(G) =
∏
G∈G

∑
{H1,H2}∈CG

P (H1)P (H2). (3.1)

Here, the genotype data is interpreted as a random sample of haplotype
pairs drawn from the haplotype distribution specified by the model. In
practice, neither the parameters (haplotype frequencies P (H)) nor the indi-
vidual haplotypes are known in advance, and the model has to be estimated
from the same genotype data that is to be haplotyped. The haplotype prob-
abilities that maximize Equation 3.1 can be found using the Expectation
maximization (EM) algorithm [29]. Once the model parameters are es-
timated, each genotype is resolved into the pair of haplotypes {H1, H2}
that has the maximal probability P (H1)P (H2) among all haplotype pairs
consistent with the genotype.

3.1.2 Haplotyping longer regions

All the methods described above are suitable only for very short genomic
regions, where recombinations are very rare, and consequently only a few
different haplotypes exist in the population. When analyzing a larger num-
ber of markers spread over longer genomic regions, it is no longer practical
nor meaningful to model the haplotype distribution as a list of distinct
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haplotypes. Instead, the haplotyping method has to account for the re-
combinations that have randomly fragmented the haplotypes during the
evolutionary history. This means that only local regularities are observable
in the present-day haplotypes, while completely similar haplotypes rarely
occur in different individuals.

Multinomial model with partition ligation The first method to par-
tially address this issue was the partition ligation algorithm by Niu et
al. [68], which works in a bottom-up fashion so that haplotypes are first
reconstructed on short regions, using the EM algorithm based on the multi-
nomial model. For each subject, the B most probable haplotype pairs on
each short region are combined into 2 ∗ B2 longer haplotype pairs (each
pair of haplotypes can be combined in two ways). EM algorithm is then
again run on these longer regions, such that the set of possible haplotype
configurations for each subject is limited to the 2 ∗B2 pairs formed above.
This process is continued so that at each step, B most probable haplotype
pairs from each pair of neighboring regions are combined using the EM
algorithm, until haplotypes for the whole genotyped region have been ob-
tained. While the partition ligation algorithm is computationally efficient
and works relatively well for a moderate number of markers, it still mod-
els the complete haplotypes with a simple multinomial model, and cannot
accurately model the complex haplotype distributions of longer genomic
regions.

Haplotype block models A popular model for handling longer haplo-
types is the concept of haplotype blocks [22]. The block model assumes that
the genome is divided into relatively short regions where haplotype diver-
sity is low, and that these blocks are separated by recombination hotspots
where recombination occurs frequently, causing the linkage between adja-
cent blocks to be weak. Haplotype blocks are often estimated from hap-
lotype data by finding a fixed set of block boundaries, and modeling the
haplotype distribution within each block separately [22, 55]. Several hap-
lotyping methods based on blocks have also been proposed [27, 51], where
the haplotypes and block structure are estimated jointly.

The block model is conceptually simple and also convenient for associ-
ation analysis, as the haplotypes within each block can be interpreted as
multi-allelic markers and straightforwardly tested for association with any
method designed for analyzing single markers independently. However, the
block model fails to model longer-range LD which can extend over several
consecutive blocks. Also, while in some genomic regions there is a clear
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block structure, often this is not the case, and shared haplotype fragments
do not necessarily follow any fixed block boundaries.

Haplotyping based on frequent fragments Motivated by the aim to
more flexibly capture as much as possible of the local regularities present
in the haplotypes, we introduced in Paper I the haplotyping method Hap-
loRec, which models the haplotype distribution based on the set of frequent
haplotype fragments, that is all partial haplotypes that occur in the study
sample with at least a specified minimum frequency. The idea in HaploRec
is to estimate the set of frequent fragments to capture local patterns of
LD, and then combine information from these fragments into a probabil-
ity model for the complete haplotypes. This model can then be used to
evaluate the probabilities of alternative haplotype configurations, and to
find the most probable haplotype configuration for each subject. HaploRec
uses two alternative haplotype probability models: one based on a variable-
order Markov chain and the other based on segmenting each haplotype into
a mosaic of frequent haplotype fragments. We here briefly describe these
models; full specifications of the models and the HaploRec algorithm are
given in Paper I.

Let H(i, j) denote the sequence, or haplotype fragment, from the ith to
the jth marker in a given haplotype H. In the variable-order Markov model
the conditional probabilities at each marker i are estimated from fragments
H(si, i− 1) of varying length:

P (H) = P (H(1))
∏

i=2,...,`

P (H(i) | H(si, i− 1)). (3.2)

The length of the context H(si, i − 1), and thus the order of the Markov
chain, is individually adjusted for each position and each haplotype by
choosing the longest matching context that exceeds a predetermined mini-
mum frequency.

The segmentation model considers each haplotype as a sequence of inde-
pendent, non-overlapping fragments, and defines the probability of a haplo-
type to be the product of fragment probabilities. Instead of only finding a
single segmentation, the probability for the complete haplotype is obtained
by averaging over the set S of all possible segmentations:

P (H) = C−1
∑
S∈S

q|S|−1 ·
∏

(si,ei)∈S

P (H(si, ei)), (3.3)

where S is a segmentation of H into (non-overlapping) segments (si, ei),
q ∈ [0, 1] is a parameter determining how much more weight is given to
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segmentations with a smaller number of fragments, |S| is the number of
segments in segmentation S, and C is a normalization factor.

HaploRec is implemented using an EM algorithm that alternates steps
for reconstructing the haplotypes of each subject and estimating the model
parameters (set of frequent fragments). At each parameter estimation step,
the algorithm uses data mining techniques [90] to efficiently discover and
store the set of frequent haplotype fragments found in the current estimate
of the haplotype configurations. At each haplotype reconstruction step,
dynamic programming is used to efficiently compute the average over all
possible segmentations (Equation 3.3) for each potential haplotype and find
the most probable pairs of haplotypes, based on the current estimate of the
model parameters.

In contrast to most previous approaches, long-range LD between mark-
ers is not required for HaploRec to work, but it can be utilized where it does
exist. Our segmentation-based model bears some resemblance to previous
methods which combine haplotype block finding and haplotyping [27, 51].
However, whereas these models place universal block boundaries across the
whole population, our model averages over all possible segmentations for
each haplotype separately, without any fixed block boundaries. This makes
it possible to utilize LD also when a clear block structure does not exist, and
also enables utilizing LD between blocks in the presence of block structure.

Concurrent and later work on haplotyping Concurrently with the
development of HaploRec, several methods which model haplotypes using a
fixed number founder haplotypes (or clusters) have been proposed [75, 81],
where the cluster memberships are allowed to change continuously along
the chromosome, according to a hidden Markov model. Similar to Hap-
loRec, these models allow for both block-like patterns and gradual decline
of linkage disequilibrium with distance. However, HaploRec can more flex-
ibly represent regularities at various resolutions and various stages of the
population history, as it is not limited to a fixed set of founder haplotypes,
enabling it to more accurately model rare shared fragments.

After the publication of HaploRec, also several other block-free meth-
ods based on variable order Markov chains [12, 76] have been published.
However, the author is not aware of any significant improvements on ac-
curacy or efficiency in comparison to HaploRec; in contrast, in the more
recent experiments reported in the PhD thesis of Pasi Rastas [74], and an
article by Rosa et al.[77], HaploRec was found to be very competitive with
state of the art methods (see also Section 3.2 below).
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3.2 Summary and discussion of haplotyping re-
sults

The main motivation for developing the HaploRec algorithm was to obtain
an efficient and scalable haplotyping method suitable for whole genome as-
sociation studies. Particular design goals included (1) the ability to jointly
model a large number of potentially sparsely spaced markers while captur-
ing also long range LD in the data, and (2) computational efficiency, in
practice time complexity roughly linear with respect to both the number of
markers and subjects. The experiments of Paper I, as well as later work [74]
indicate that these goals were reached to a large extent. In the following,
we will briefly describe the experimental setting of Paper I, and discuss its
results. In Paper II, we applied HaploRec in a simulation study assessing
different gene mapping strategies, validating its applicability in an actual
gene mapping application. The experimental results of Paper II will be
discussed in the next section.

Experimental setting The experiments of Paper I consist of evaluating
haplotyping accuracy and running times of HaploRec and state-of-the-art
(at the time) methods, using simulated data sets with varying properties.
Five publicly available haplotyping programs were used for benchmarking:
fastPhase [81], Gerbil [51], Phase [85], PL-EM [73] and Snphap [18]. The
varied quantities include the number of subjects and markers, the distance
between markers, a well as the fraction of genotyping errors and missing
genotypes. Some experiments were also performed using real data from
the HapMap project [87], to validate and complement the results obtained
from simulated data.

We used Hudson’s coalescence simulator [43] to simulate genotype data
sets of 25 to 1000 subjects. The data had between 5 and 500 markers, with
average marker spacings between 6.6 and 166 kb, within chromosomal re-
gions having lengths between 166 kb and 16.6 Mb. These marker distances
correspond to genome-wide studies having 20,000 to 500,000 markers in the
whole genome. For details on the data simulation procedure, see the Meth-
ods section of Paper I. As an accuracy measure, we used switch accuracy,
which is defined as the fraction of neighboring phases (between each pair
of consecutive heterozygous markers) reconstructed correctly. All experi-
ments were run separately for 10 independently simulated data sets, over
which the accuracies were averaged.
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Summary of results In the rest of this section, we summarize the re-
sults of Paper I, referring to the figures of Paper I. In the experiments,
HaploRec scales in a unique way to large data sets: its accuracy improves
with both the number of markers (Figure 3) and the sample size (Figure 5)
in an unparalleled way (Phase being an exception in some aspects), while
being robust to increasing the distance between markers (Figure 4). This
combination of properties makes HaploRec especially suitable for genome-
wide association analysis, where large numbers of relatively sparsely located
markers are analyzed for thousands of individuals. In such settings, Hap-
loRec can outperform Phase in accuracy while being 2 − 3 orders of mag-
nitude faster. Although Phase is very accurate and can also benefit from
large samples, it is computationally very intensive, making it unsuitable
for genome-wide studies. In the experiments of Paper I, the fastPhase [81]
method scales reasonably well computationally, but with large data sets it
is clearly less accurate and also significantly slower than HaploRec.

An useful property of the HaploRec algorithm is that its accuracy in-
creases both when increasing the number of jointly haplotyped markers and
when increasing the number genotyped subjects. The first property means
that it is not an optimal strategy to perform haplotyping independently
in short regions; instead, as long regions as possible should be haplotyped
jointly, to fully utilize information from longer shared haplotype fragments.
These aspects are also linked: longer shared haplotypes are often too rare
to be reliably detected from smaller samples, meaning that the utility of
having a large number of subjects grows when longer regions are haplotyped
jointly, and vice versa.

The ability to benefit from increasing the number of haplotyped subjects
is getting more important, as current genome wide association studies re-
quire several thousands of subjects to obtain sufficient statistical power [64].
Also, such studies often aim at identifying rare disease haplotypes, which
can be modeled by the flexible models of HaploRec. Based on the experi-
ments of Paper I and Rastas [74], it appears that popular methods based
on hidden Markov models [81, 75] are not able to benefit from additional
information provided by increasing the number of subjects.

Our results also show that the running times of HaploRec scale lin-
early with the number of markers (Figure 7), and roughly linearly with the
number of subjects (Figure 5). This is an important practical property, as
both the number of genotyped markers and subjects in typical gene map-
ping studies have increased rapidly in the recent years. Currently, it is not
uncommon to have studies with one million markers and several thousand
subjects.
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A theoretically optimal haplotyping method would model the popula-
tion history of the haplotypes, like is done in the perfect phylogeny method
described above for short haplotypes. A biologically plausible method to
achieve this in the presence of recombinations is the ancestral recombina-
tion graph [35]. This method is, however, computationally intractable for
all reasonably sized data sets. Phase [85], which is the most accurate of the
compared methods, uses an approximation based on coalescence theory,
but also it is computationally intractable for modern data set sizes. All
practical haplotyping methods are thus trade-offs between computational
efficiency and accuracy.

Based on the experiments in Paper I, it appears that already relatively
simple statistical models, such as HaploRec, are sufficient to obtain an
accuracy comparable with the most accurate method (Phase) based on a
more complex model, while being significantly more efficient computation-
ally. Simulation experiments of Paper II comparing gene mapping results
obtained with haplotypes reconstructed using HaploRec to ones obtained
using the true haplotypes show that probably not much is to be gained by
more elaborate modeling in practice.

3.3 Haplotypes in gene mapping

The main benefit of using haplotypes in association-based gene mapping is
that they provide more accurate estimates of IBD status between chromo-
somal segments of different individuals than do single markers, providing
more power for detecting associations between marker alleles and the (usu-
ally not genotyped) DS allele. Haplotype analyses may also be useful for e.g.
capturing epistatic interactions of closely located mutations [15, 34, 49, 24]
or identifying rare DS variants that cannot be detected by GWAS analy-
ses [50]. In thesis, we will not discuss these latter possibilities, however,
and the rest of this chapter handles the use of haplotypes in detecting the
effects of individual mutations in GWAS analyses.

There are two simple practical approaches to using haplotypes in as-
sociation analysis: using a sliding marker window of haplotypes, or first
splitting the chromosomes into haplotype blocks, and analyzing haplotypes
within each block separately. In both cases, analysis methods using individ-
ual markers are straightforwardly applicable to haplotypes, by interpreting
the different haplotypes within each window or block as different alleles.

As discussed in Section 2.7, the choice on whether to base analysis on
haplotypes or genotypes is also closely related to other issues in study de-
sign, particularly the choice on whether to study trios of related subjects
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or unrelated subjects from the same population. With a population-based
sample, it is necessary to use statistical haplotyping, while in a trio-based
setting the haplotypes can be inferred directly. This choice also has an in-
direct effect on the sample size that is obtained when the genotyping costs
are kept constant, as using trio-based sampling, one third of the genotypes
are redundant and cannot be utilized for the association analysis. In Pa-
per II, we evaluate the use of haplotypes in gene mapping by performing
a simulation study where we compare trio-based and case–control study
designs having equivalent genotyping costs. The main questions addressed
by the experiments are as follows:

1. How much do we gain from using haplotypes in the analysis (instead
of single-marker genotypes)?

2. What is relative performance of population-based and trio-based sam-
ple ascertainment strategies?

3. Do errors introduced by the statistical haplotype inference have an
impact on the gene mapping performance?

4. Can the good performance of HaploRec be validated in a gene map-
ping setting?

To study these questions, we simulated genotypes and occurrence of
disease in a population of 100, 000 individuals using three alternative, chal-
lenging disease models. Each setting (combination of disease model, sample
ascertainment strategy, analysis method and sample size) was studied using
100 independent simulations. Performance under each setting was evalu-
ated by statistical power of detecting the presence of a DS variant in a
GWA study, and by the accuracy of locating the DS variant.

Haplotyping in the case–control setting was performed using HaploRec.
Gene mapping was performed by three alternative methods: simple allelic
association, haplotype association with sliding windows between 1 and 10
markers, and EATDT [60]. Of these methods, EATDT is applicable to trio
data only, while the association methods can be used both with trio and
case–control data.

The following main conclusions can be drawn from the results of Pa-
per II. First, maybe the most interesting result in the context of this thesis
is that using haplotypes statistically inferred by HaploRec is equivalent to
using the true haplotypes, in terms gene mapping performance (Table 3
and Figure 1 F). Second, among the considered designs, haplotype associa-
tion using case–control samples is the most powerful way of conducting the
study for all considered disease models, both in terms of statistical power
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and localization accuracy. As expected, the effective sample size has a clear
effect on both statistical power and mapping accuracy, which naturally fa-
vors the case–control setting enabled by statistical haplotype reconstruc-
tion. Third, the sample ascertainment method does not have much effect
on mapping accuracy. The results suggest that the case–control design is
a powerful alternative for the more laborious family-based ascertainment
approach, especially for large data sets, assuming population stratification
can be controlled.

Although it is convenient to perform haplotype-based association anal-
ysis based on small marker windows using either a sliding window or block-
based approach, it is beneficial to perform the reconstruction for longer
genomic regions jointly, as shown in the experiments of Paper I. Also, it is
preferable to do this with a method that can utilize as much of the informa-
tion present in the data as possible, such as HaploRec. Using HaploRec en-
abled us to perform haplotype reconstruction for the whole genomic regions
considered in a single run, improving the accuracy and efficiency compared
to the case of using a sliding window approach also for the haplotyping.

Also several more elaborate association mapping methods have been
published in which haplotype reconstruction is an important intermedi-
ate step (e.g. [89, 83, 60, 86, 52, 97]). HaploRec can naturally be used
in conjunction with any of these methods. However, the experiments we
performed for Paper II show that already a very simple haplotype-based
association analysis can perform as well as many of these more elaborate
methods. Variable-order Markov models much like the ones originally pro-
posed for haplotyping in Paper I have later been used as a component of a
gene mapping method [11].

Although haplotypes provide a significant theoretical increase in power
to detect associations compared to single-point analyses, haplotype-based
analyses have been used relatively little in currently popular GWA studies.
This may be due to several reasons, most notably the uncertainty intro-
duced by the computational haplotyping and the more complex interpreta-
tion of results. The problem of multiple testing may become more difficult
when using haplotype-based analysis, as correlations between overlapping
haplotypes are not as straightforward to account for as correlations be-
tween individual markers. Moreover, some associations might be detected
more readily using individual SNPs while others might only be discovered
using haplotypes [84]. For example, if already a single genotyped marker
is in perfect LD with the causal variant, haplotypes are not needed to de-
tect the association, and using them may unnecessarily dilute the signal of
association.
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Haplotypes in genome imputation Maybe the most concrete benefit
of haplotyping currently comes from genome imputation methods [63] that
have become very popular recently. Genome imputation works such that a
reference panel of genotypes is genotyped with a very high marker density
for a smaller set of subjects, and a larger sample of study individuals is
genotyped at a small subset of these markers. Then, untyped variants for
the study individuals are inferred based on the corresponding markers in
the haplotypes of the reference panel, by matching the haplotypes of the
study samples to the reference haplotypes, and filling in the missing values
from the corresponding markers in the reference haplotypes. This makes it
possible to test a significantly larger number of markers for disease associa-
tion with reasonable cost, while avoiding the additional complexity caused
by haplotype-based association analysis. While single-point analysis us-
ing imputed genotypes provides some of the benefits of haplotype analyses
(namely, the additional information from using the imputed markers that
may contain the DS variant or be in stronger LD with it than any single
genotyped marker), it cannot capture potential interactions between nearby
DS variants, as do haplotype analyses [9]. Also, haplotype reconstruction is
a crucial step in imputation studies: both the reference and study samples
need to be haplotyped to enable the imputation. We hypothesize that Hap-
loRec could also be suitable for performing the haplotype reconstruction
step needed in imputation analyses.
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Chapter 4

Biomine: an integrated graph
database and search engine

The topic of this chapter is Biomine, an integrated database of biological re-
lationships derived from public biological databases. In this thesis, Biomine
forms the basis for the refinement phase of the gene mapping workflow de-
scribed in Section 1.1. Biomine was introduced in Paper III, and further
developed in papers IV and V.

We begin this chapter by describing the background and motivation
for developing Biomine. We then describe in Section 4.2 the data model
and types of data integrated by Biomine. In Section 4.3 we describe the
graph-based proximity measure which is a core component in utilizing the
database for practical applications. The use of the proximity measure for
biological link prediction is demonstrated in Section 4.4, which summarizes
the link prediction experiments from Paper IV. Finally, we outline the
use of Biomine as an explorative graph query engine for the discovery and
visualization of relationships between biological entities, such as genes. Use
of Biomine for disease gene prioritization will be covered in the next chapter.

4.1 Background and overview

The traditional gene mapping paradigm ignores the existing wealth of
knowledge about genes and their relationships to diseases and other genes.
Such knowledge can be used to explore the network of biological relation-
ships surrounding putative disease genes, and also to automatically priori-
tize the putative predictions.

A large amount of background data is readily available in public bio-
logical databases. The relevant data includes e.g. previously known gene-
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phenotype associations, annotations of gene function, and protein interac-
tions. This background data is typically scattered across multiple source
databases, each accessed with its own set of query interfaces. Further,
they typically only provide localized access to the data, that is, one can
query the links and attributes for a single entity (e.g. gene). More complex
queries, such as finding chains of relationships linking two or more entities
are usually not supported. To enable more global analysis of such data,
the data needs to be integrated and made accessible under a uniform query
interface.

The idea in the Biomine project1 was to develop a system that integrates
data from diverse biological databases under a common graph data model
and repository. Figure 4.1 illustrates the contents of Biomine by showing
a subgraph containing the strongest (indirect) relationships between two
genes related to gastric cancer (the query and visualization system will
be described in Section 4.5). The goal of Biomine is to enable discovery
and evaluation of connections spanning multiple types of relationships de-
rived from different source databases. Such indirect relationships can act
as hypotheses for potential, yet undiscovered links, or they can be used to
describe and validate relationships obtained from experimental data. For
instance, in Figure 4.1, suppose that the leftmost gene (PIK3CA) was al-
ready known to be related to the disease under study (gastric cancer), while
the rightmost one (KLF6) was one of the putative candidates. The close
relationship between these genes (depicted in the figure) could then act as
evidence for the involvement of KLF6, increasing its priority in subsequent
analyses of the putative genes. A central tool for this kind of link discovery
is a general proximity measure derived from the integrated graph. Such a
proximity measure can be used for various purposes, e.g. predicting new
links, refining predictions based on some external measurements (e.g. asso-
ciation analysis results obtained from genotypes), and guiding visualization
of relationships. In Section 4.3, we will describe several such measures.

4.2 Data model and database contents

The Biomine graph database essentially is an integrated index of several
biological databases, each with different contents and format. Biomine is
based on a relatively simple data model: a labeled graph with typed nodes
and edges. Distinct entities of the source databases, such as genes, proteins
and gene ontology (GO) concepts, are mapped to nodes in the Biomine,
and cross-references between entities, such as GO annotations, gene-protein

1http://www.cs.helsinki.fi/group/biomine
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Figure 4.1: A subgraph summarizing the relationships between two genes
related to gastric cancer. The query genes, PIK3CA and KLF6, are marked
with a green border. The other nodes in the graph are the ones on the
strongest paths linking the query genes, as defined by the edge-weighting
scheme described later in this chapter.

relationships and protein interactions, are mapped to edges between nodes.
Additionally, nodes and edges can have arbitrary attributes, such as names
and reliabilities, to represent additional data from the source databases.
The chosen data model is deliberately simple, and our aim has not been
to comprehensively integrate all data from the source databases. Instead,
we just store the identities and various aliases of the entities and the link
structure, which is sufficient for performing the prediction and visualization
tasks in this thesis.

Biomine is based on data from a small set of representative public bi-
ological databases. These databases have been chosen based on the needs
of our primary application (disease gene mapping), as well as availability
of data in easily accessible format. Next, we briefly summarize the source
databases and types of data derived from them. See section “The Biomine
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database” in Paper IV for a more complete description.

The core entities in Biomine are genes and proteins, which are derived
from the NCBI’s Entrez Gene [62, 79] database and EMBL’s UniProt [88]
database, respectively. Genes and proteins from other source databases are
mapped to ones in Entrez and UniProt and are represented using a single
node in Biomine where possible. Physical interactions between proteins
are also derived from the UniProt and Entrez databases, which themselves
integrate data from several protein interaction databases. In addition, a
large number of predicted protein interactions are derived from the String
database [47]. Homology relationships between genes of different organisms
are derived from the HomoloGene database [79].

Phenotype nodes describing diseases and other inherited traits are de-
rived from the OMIM database [38], as are nodes representing allelic vari-
ants of genes and cytogenetic gene locations. Genes are linked to related
disease phenotype nodes based on annotations in Entrez gene and between-
record cross-references derived from OMIM.

Gene Ontology (GO) [39] is a taxonomy of molecular functions, bio-
logical processes and cellular components used to annotate genes and pro-
teins. Also the GO categories are represented in Biomine as nodes, and
the relationships within the ontology are represented as edges. Biomine
also incorporates protein structure classifications derived from the Inter-
Pro database [45] in the form of protein families and structural features of
proteins, organized in a hierarchy in the same way as GO categories. The
annotations linking genes and proteins to the above-described nodes rep-
resenting GO and InterPro records are derived mainly from Entrez Gene
and UniProt, and represented in Biomine as edges.

From the KEGG database [48], Biomine derives nodes corresponding to
biological pathways, drugs and other compounds from the KEGG database,
each represented by a dedicated node type in Biomine. Relationships
of genes to these entities are derived from the KEGG and Entrez Gene
databases and represented as edges in the Biomine database.

In addition to the specific biomedical relationships described above,
most of the source databases also provide annotated cross-references from
their records to articles (PubMed entries) where the corresponding biologi-
cal entity is mentioned. These cross-references are incorporated in Biomine
as article nodes linked to the corresponding biological entities. While this
kind of information is generally less informative than more specific biolog-
ical links, a large fraction of available information is only present in the
form of generic article references. The link prediction experiments of Pa-
per IV demonstrate the usefulness of incorporating article references in the
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database.

In the current version of the Biomine system, data is extracted and
stored for human and four model organisms: mouse, rat, fruit fly and
nematode (c. elegans). The focus is on human biology, and the additional
organisms are included to enable predictions based on potentially more
comprehensively annotated homologous genes in these model organisms.

Related work Concurrently with the development of Biomine, several
other data integration systems have been proposed in the literature. Of
these, most similar to our approach are ONDEX [53] and BIOZON [10],
which both collect the data from various sources under a single data store
using a graph data schema. In both, the data model is a graph with typed
nodes and edges, allowing for the incorporation of arbitrary data sources.
In addition to curated data derived from the source databases, both ON-
DEX and Biozon include in-house data such as similarity links computed
from sequence similarity of proteins and predicted links derived by text
mining. Biozon provides several types of queries, most interestingly search-
ing by graph topology and ranking of nodes by importance defined by the
graph structure. In ONDEX, the integrated data is accessed by providing
a pipeline, in which individual filtering and graph layout operations may
be combined to process the graph in application-specific ways. BioWare-
house [58] aims to provide generic tools for enabling users to build their own
combinations of biological data sources. Their data management approach
is rather similar to ONDEX and Biozon, but the data is stored in a rela-
tional database with a dedicated table for each data type instead of a generic
graph structure. This approach allows database access through standard
SQL queries, and is not directly suitable for graph-oriented queries.

4.3 Node proximity in graphs

Many analysis and visualization tasks in biological networks are based on
measuring node proximity. For instance, putative disease genes can be
ranked by their proximity to another set of genes already known to be
related to the disease [54]. Another application of node proximity is in
visualization of relationships between nodes: given a set of query nodes,
the task in subgraph extraction [30, 91, 41] is to select a subgraph of the
original graph that best summarizes the links (paths) between the nodes
of interest. A proximity measure can also be used to predict future links
in the source databases [59]. While arbitrary links usually cannot be pre-
dicted with reasonable accuracy based on the graph data alone, the link
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prediction problem using balanced sets of positive and negative examples
nonetheless provides a convenient framework for systematically evaluat-
ing different proximity measures and optimizing their parameters, as we
demonstrate in Paper IV.

In the following, we summarize our work on general node proximity
measures derived from the graph structure and weights of individual links.
This work has been originally presented in Papers III and IV.

4.3.1 Weighting of links

Often, analysis of biological networks is done using homogeneous graphs
(such as a protein interaction network), where it is natural to use uniform
weights for the edges of the network. However, with the heterogeneous
Biomine network considered in this thesis, better results can be obtained
when the edges of the network are weighted suitably (see e.g. Figure 4
in Paper IV). For example, an edge corresponding to an experimentally
verified protein interaction should probably have a higher weight than an
association between proteins predicted using only indirect evidence. Sim-
ilarly, a manually curated annotation about a gene’s effect on a disease
should be more important than just knowing that the gene and phenotype
are mentioned in the same article.

As an example of a second type of edge importances, consider two ar-
ticles, where one refers to 2 genes and the other one to 20 genes. Since
the former article is more specific, the corresponding edges are likely to be
more informative. A third and most obvious case of different importances
is when a source database specifies a weight or score for a relation such as
the confidence of predicted interactions in the STRING database [47].

Following the weighting scheme introduced in Paper III, we formalize
the above-mentioned factors as follows.

1. Relevance. Each edge type τ has a fixed relevance coefficient qτ ≥ 0
representing the relative importance of that relationship type. We
denote the relevance of an arbitrary edge e of type τby q(e) = qτ .
The suitable choice of values for each qτ is ultimately dependent on
the specific application at hand. In Paper IV, we show how to choose
the relevances such that they maximize link prediction accuracy. Al-
ternatively, the relevances can also be set manually by the user.

2. Informativeness. The informativeness i(u, v) ∈ [0, 1] of an edge (u, v)
is measured based on the degrees of its incident nodes. As a simple
method to penalize a node u with a high degree deg(u), we take
some negative power deg(u)−α of it. Here 0 ≤ α ≤ 1 is a parameter
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controlling how steeply the informativeness decreases with increasing
node degree. The informativeness of an edge (u, v) is then defined by
the degrees of its both endnodes:

i(u, v) =
√
deg(u)−α · deg(v)−α.

Based on preliminary experiments with different values of α, we by
default set α = 0.25. (Where needed, this parameter like any other
one can be optimized, e.g., by systematically testing different values,
possibly in combinations with other parameters. A thorough opti-
mization of all parameters is not within the scope of this thesis.)

3. Reliability. The reliability of an edge e, denoted by r(e) ∈ [0, 1],
measures how confident we are that the relation (and consequently
the edge) really exists. From the STRING database, we obtain a
reliability value for each predicted edge e, directly mapped to Biomine
as r(e). For edges derived from other databases, r(e) is currently
defined to be one, as they contain manually curated information which
is expected to be reliable.

We combine these three factors into an overall edge weight p(e) by
simply taking their product:

p(e) = q(e) · i(e) · r(e).

In the next section, we will define general node proximity measures
based on the edge weights. The above definition is directly applicable
when using random walk as the node proximity measure. However, for
probabilistic proximity measures, edge weights need to be in [0, 1], and
consequently the following modification is used:

p(e) = min(q(e) · i(e) · r(e), 1).

In this case weight p(e) can be interpreted as the probability that e repre-
sents an actually existing, relevant and informative relationship.

4.3.2 Node proximity measures

Several measures have been proposed for measuring the proximity of nodes
in unweighted graphs. For an experimental comparison of these measures,
see Liben-Nowell and Kleinberg [59]. For the weighted graphs considered
in this thesis, much less has been published. In papers III and IV, we have
used the four following, alternative proximity measures: probability of best
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path [Paper III], network reliability [5], expected reliable distance [72] and
rooted random walk [59].

Of these four measures, the first three are specifically defined for prob-
abilistic graphs, while the rooted random walk is normally used for un-
weighted graphs, but can be straightforwardly modified to handle gen-
eral weighted graphs. We will next review the definitions of the above-
mentioned measures.

Probability of best path Each edge e has a probability p(e) ∈ [0, 1] of
being “true”. Let path P consist of edges e1, . . . , ek. The path is true only
if all of its edges are true, and correspondingly the probability of P is the
product of the probabilities of its edges: Pr(P ) = p(e1) · · · p(ek).

The simplest possible proximity measure for two nodes s, t ∈ V is the
probability of the best path:

pbp(s, t) = max
P is a path from s to t

Pr(P ). (4.1)

An obvious shortcoming of this measure is that it does not take into account
other paths between s and t.

Network reliability To specify the next two, more complex proximity
measures that are not restricted to considering the single best path, we first
define a probabilistic graph model. Let G = (V,E, p) be a probabilistic, or
uncertain graph, where V and E are the sets of nodes and edges, and p is
a function assigning a probability to each edge. A non-probabilistic graph
g = (V,Eg) is a random realization of G if its set of edges Eg is sampled
from E according to the probabilities p, i.e., each edge e ∈ E is selected to
be an edge of g with probability p(e), independently of other edges. The
probability of a given random realization g is thus

Pr(g) =
∏
e∈Eg

p(e)
∏

e∈E−Eg

(1− p(e)).

The network reliability, pr(s, t) between nodes s and t is defined as the
probability that a randomly picked instance of G contains a path between
s and t:

pr(s, t) =
∑

g|s and t are connected in g

Pr(g). (4.2)
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Expected reliable distance Given a graph g sampled from G, we de-
note the shortest-path distance (measured as the number of edges) between
s and t by dg(s, t). The expected reliable distance [72] is now defined as the
expected shortest-path distance, computed over all instances g in which a
path exists between s and t:

dER(s, t) =
1

pr(s, t)
·

∑
g|s and t are connected in g

Pr(g) · dg(s, t). (4.3)

The expected reliable distance reflects the expected proximity of nodes s
and t, but does this on the condition that they are connected.

Random walk with restart As the final proximity measure, we con-
sider a symmetric, weighted version of a standard random walk stationary
distribution score with restarts [59]. We first define a directed version of
the score. A random walk starts at node s. It then iteratively moves to a
random neighbor of the current node, such that the probability of travers-
ing edge e is proportional to the edge weight p(e). Additionally, there is
a constant probability β of returning to the initial node s at each step,
instead of traversing an edge. The directed version of the score, dRW ′(s, t)
is defined as the stationary distribution probability of the walker being at
node t after indefinitely many iterations. The final, symmetric version of
the score is defined as the average of the corresponding directed scores:

dRW (s, t) =
dRW ′(s, t) + dRW ′(t, s)

2
. (4.4)

The probability of best path and network reliability measures are used in
the link discovery experiments of Paper III, and network reliability is found
to give slightly more accurate results. In Paper IV, we evaluate the four
measures in the task of link prediction. In these experiments, random walk
is found to give most accurate results. Rest of the experiments in Paper IV
are performed using the random walk measure. The public www-based
visualization engine of Biomine (described in Section 4.5) uses probability
of best path to select the displayed subgraph.

4.3.3 Statistical significance of links

While the proximity measures defined above can be used for ranking of
putative relationships, their values may be difficult to put into perspective.
The properties of a node, especially its degree, and more generally the
local network topology around the node have a large effect on the expected
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proximity to other nodes: nodes with more links are generally expected
to be more proximal to randomly chosen other nodes than are ones with
fewer links. This should ideally be taken into account when using proximity
values in practical applications.

In Paper III, we measure the statistical significance of observed node
proximity between a given node pair (s, t) by comparing it to the distribu-
tion of proximity values between randomly chosen node pairs in the graph.
Probability of best path or network reliability are used as alternative test
statistics, and the null distribution of proximity values is obtained by ran-
domly sampling pairs of nodes having similar degrees with s and t.

We consider two alternative null hypotheses:

1. Nodes s and t of types τs and τt are not more strongly connected than
randomly chosen vertices s′ and t′ of types τs and τt having similar
degrees with s and t, respectively.

2. Vertex s of type τ is not more strongly connected to vertex t than a
randomly chosen vertex s′ of type τ having similar degree with s.

The choice between the two null hypotheses depends on what we are testing.
In a symmetrical case, e.g. testing for significance of connection between
two candidate genes, the first null hypothesis is appropriate. If the roles
of the vertices are asymmetric, as in testing for the connection from a
set of candidate genes to a single phenotype, the second null hypothesis
should be used. In the experiments of Paper III, we have applied the first
null hypothesis to assessment of gene–gene links, and the second one to
assessment of gene–phenotype links.

For null hypotheses 1 and 2, the null distribution can be estimated
by sampling pairs of vertices (s′, t′) (Null hypothesis 1) or single vertices
s′ (Null hypothesis 2), and computing the proximities p(s′, t′) or p(s′, t),
respectively, for all pairs in the sample (here, p is one of the four above-
defined proximity measures). The p-value for the connection between s
and t is then the proportion of samples having at least as high proximity
as the one observed for (s, t). Because vertices of the same type may have
greatly varying degrees, we only sample vertices s′ and t′ that have degrees
close to (but not necessarily identical with) s and t, respectively. If several
hypotheses are tested (several candidate genes, for example), the resulting
p-values should be adjusted accordingly to account for multiple testing.
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4.4 Link prediction

In Paper III, we performed experiments for discovering indirect links be-
tween nodes, using a preliminary version of the Biomine database. We
performed experiments to find suitable values for the edge type-specific rel-
evances qτ and the informativeness parameter α that together define the
weighting of edges. In these experiments, probability of best path and
network reliability were used as alternative proximity measures. Promis-
ing results were obtained in discovering gene-phenotype links. However,
the evaluation setting was somewhat problematic, as trivial links (ones di-
rectly reflecting the same information that is to be predicted) can bias the
experiments. As there is no systematic way to avoid trivial links in the
experimental setting of Paper III, we resorted to removing all paths with
length below 3 as trivial.

To avoid this problem, in Paper IV we performed experiments using a
link prediction setting where the goal is to predict pairs of nodes that will
be connected by a edge in a future version of the graph, based on currently
existing indirect links. In practice this was done by using two temporally
separated versions of the Biomine database. This setting provides a system-
atic framework for comparing different proximity measures and adjusting
their parameters. We next overview the link prediction results of Paper IV.

Experimental setting We performed experiments for predicting two
types of links: protein interactions and phenotypic relationships of genes.
A three-year old version of the Biomine database was used to predict the
appearance of new links (ones that exist in the current database version,
but not in the old version). The tests are based on sampling a set of pos-
itive instances, that is node pairs that are linked in the current database
version, but not in the old one, and an equal number of randomly chosen
negative instances obtained by randomly pairing the nodes appearing in the
positive instances, excluding ones that are linked in the current database
version. The positive and negative sets are combined, and the goal is to
identify the positive node pairs. This is done by simply ranking the po-
tential links (node pairs) according to their proximity in the old database
version. The ability to discriminate positive instances from negative ones is
then evaluated using ROC analysis [31], a generic framework for analyzing
and comparing classifiers. The methods are compared by plotting ROC
curves and computing the AUC (area under ROC curve) as a composite
statistic to measure the performance of each tested prediction method. Ad-
ditionally, the statistical significance of the differences between the AUC of
different methods is evaluated by computing p-values using the web-based
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ROC analysis tool StAR [96].

We first compared the four proximity measures defined in Section 4.3.2,
and observed that the rooted random walk measure gave most accurate
predictions in both settings. We then performed a simple parameter op-
timization procedure to approximately optimize weights of different edge
types for maximizing link prediction accuracy in the protein interaction
and disease gene prediction tasks. Finally, we performed two sets of ex-
periments with the adjusted parameter values, with the goal of validating
the proposed approach of combining data from heterogeneous data sources
into a single node proximity measure.

The goal of the first experiment was to evaluate how much is gained by
suitably adjusting the weights, instead of using uniform edge weights. This
was done by comparing results obtained with adjusted parameter values to
ones using uniform relevances for all edge types, and also to ones where
degrees of nodes were not used for weighting links. The goal in the second
experiment was to identify the relative importances of different types of
links, and see how much is gained by combining all data, instead of using
any of the link types alone. This was done by comparing the prediction
accuracy obtained using all data in Biomine to that obtained by using each
individual type of link separately (only the most important link types were
considered here). Both of these experiments were performed with sepa-
rately sampled validation sets of positive and negative instances, distinct
from the corresponding sets used for optimizing the parameters.

Results Figure 4.2 shows the results from these experiments for the dis-
ease gene prediction setting. Roughly similar results were obtained also
when predicting protein interactions; for more details on the results, see
Paper IV.

The results for the parameter adjustment setting (Figure 4.2, left)
demonstrate that adjusting relevances of link types suitably clearly im-
proves the accuracy (AUC = 0.792 vs. AUC = 0.814, p-value 0.0002).
Moreover, the experiment shows that having a degree-based informative-
ness component in the edge weights is clearly useful as well (AUC = 0.758
vs. AUC = 0.792, p-value < 0.0001).

For the combined data vs. individual data types setting (Figure 4.2,
right), the results show that using all data in Biomine gives significantly
better prediction accuracy than any single data type alone, validating the
adopted integrative approach.
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Figure 4.2: ROC curves for predicting gene pairs related to same disease.
Left: Effect of weighting edges. Right: Combined data vs. individual data
types.

4.5 Biomine as a query engine

Biomine can also be used as an exploratory tool to discover and visual-
ize relationships between graph entities, corresponding to the last step in
the gene mapping pipeline illustrated in Figure 1.1. In a gene-mapping
project, the researcher will typically want to inspect what is known about
the discovered putative disease genes in the original databases and litera-
ture. Of particular interest is how the genes are related to each other, and
how they are related to already known disease genes. These questions can
be answered to some extent by searching for and visualizing paths linking
the genes of interest. The search functionality is not restricted to the gene
mapping application; also any other type of node represented in Biomine
can be used as query nodes.

Basic query functionality can be accessed through a web-based query
interface at http://biomine.cs.helsinki.fi, which allows for searching
for and visualizing connections between given biological entities. This pub-
lic query interface has been designed to be as simple to use as possible. The
user just gives a list of genes (or other entities) of interest as input. The
system then produces a subgraph of suitable size, containing paths that
aim to best summarize the relationship between the query nodes (see next
subsection for details on how the subgraph is selected). All nodes having
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the same set of neighbor nodes are collapsed into a single “group node”
to be displayed, to increase the number of nodes that can be conveniently
visualized as a single subgraph.

The resulting graph (see Figure 4.1 for an example) can be downloaded
to the user’s computer, or viewed in the browser using a graph visualization
program BMVis2. BMVis provides an interactive view of the subgraph,
where the user can zoom in and out and focus on different parts of the
graph. The user can also move graph nodes by dragging them to new
locations with the mouse. BMVis also provides interactive links to the
records of the original source databases.

The main query interface described above selects the subgraph to be
displayed based on the probability of best path measure (Equation 4.1).
There is also another interface that allows the user to explicitly specify
the types of queried paths using context-free grammars. In the next two
subsections, we will describe how the graph to be displayed is selected in
both of these query interfaces, respectively. The graph search functionality
of the main query interface is not covered by the original publications of
this thesis. We nevertheless describe its principles here due to its practical
importance in making the Biomine database available and applicable.

4.5.1 Queries based on probability of best path

In this query interface, the input given by the user is a set of query nodes,
and the result is a subgraph consisting of the most probable paths between
any pair of the query nodes. We will first describe the case when there
are exactly two query nodes, s and t, and then describe a straightforward
extension to the case of more than two query nodes. The abstract problem
is to find a connection subgraph H(s, t, k) ⊂ G linking the query nodes that
contains both s and t, fulfills some quality criterion and has (at most) a
specified number of nodes k. Although more elaborate criteria for selecting
connection subgraphs have been studied (see e.g. [41, 91]), we have chosen
to use a simple quality criterion based on probability of best paths in the
web interface, to obtain response times suitable for interactive use. Loosely
speaking, H(s, t, k) is constructed by adding s–t-paths in the order or de-
creasing probability until the given size limit of k nodes has been reached.
As it is simpler to find a subgraph containing all paths with a fixed minimum
probability minp, instead of directly enumerating the most probable paths,
in practice the graph is constructed by finding successively larger graphs
restricted by minp as follows. We define a candidate graph H(s, t,minp),

2https://github.com/DiscoveryGroup/bmvis
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to contain all nodes on any s–t-path P with probability Pr(P ) > minp,
and all edges which have both their endpoints among such nodes. First,
minp is set to a large value. Then graphs H(s, t,minp) are searched by
iteratively decreasing minp until the candidate graph contains at least k
nodes. At the end each iteration, all groups of nodes sharing the same set
of neighbors are collapsed into a single group node each, and each of the
group nodes is then counted as one node to be displayed.

Finding candidate graphs A concise way to describe the candidate
graph H(s, t,minp) is to define a betweenness measure bw(v, s, t) for all
nodes v ∈ G as the probability of the best s–t-path going through v:

bw(v, s, t) = pbp(s, v) · pbp(v, t). (4.5)

Here, the probability of the best such a path is simply the product of
probabilities of the best paths from v to both s and t. Each candidate
graph H(s, t,minp) then consists of all nodes v for which betweenness is at
least minp:

H(s, t,minp) = {v ∈ V |bw(v, s, t) ≥ minp}.

Fortunately, to find all nodes v with betweenness above a given threshold
minp, it is not required to compute Equation 4.5 for all nodes of the com-
plete graph G; instead, it is sufficient to consider the neighborhood of both
s and t up to the path length

√
minp. A q-neighborhood N(s, q) of a node

s is defined as N(s, q) = {v ∈ V : ppb(s, v) ≥ q}. All nodes of H(s, t,minp)
are contained in the union of the

√
minp-neighborhoods of the query nodes:

H(s, t,minp) ⊆ N(s,
√

minp) ∪N(t,
√

minp). (4.6)

This is because for any node v′ not in the union, bw(v′, s, t) = pbp(s, v
′) ·

pbp(v, t
′) <

√
minp ·

√
minp = minp, and thus v′ is not in H(s, t,minp)

either. According to Equation 4.6, the betweenness values only need to be
computed for nodes in the union and from these the ones with bw(v, s, t) ≥
minp make up the desired candidate graph H(s, t,minp).

Performing neighborhood searches Depth-first search restricted by
the current minp threshold is used to find the neighborhoods N(s,

√
minp)

and N(t,
√

minp) at each iteration of the search algorithm. Performing
these neighborhood searches is the most time-consuming part of the search
process. Therefore the search engine has a two-tier architecture: the graph
is stored on a separate cache server using a concise bit-optimized graph



52 4 Biomine: an integrated graph database and search engine

data structure, which provides efficient batch retrieval for the neighbors
of a node, and the actual search logic (including the weighting of edges)
is implemented by a Java program that is run separately for each user
query. The Java program calls the cache server to perform efficient batch
neighborhood queries required for implementing the neighborhood searches.
Results of the neighborhood searches are cached, so that performing iden-
tical queries in various stages of the iterative deepening process does not
cause significant overhead. Overall, the optimized search process allows the
search engine to answer typical queries in a few seconds.

Extension to more than two query nodes The algorithm described
above can easily be extended to handle a set S with an arbitrary number
of query nodes, by simply changing the definition of betweenness measure
to consider the maximum of all pairs within the query set:

bw(v, S) = max
s,t∈S

pbp(s, v) · pbp(v, t) (4.7)

There exists also a more flexible query interface that is available only
for registered users. This interface allows the tuning the query parameters
and storing of queries and query results on the server. Adjustable param-
eters include specifying weights of different edge types and controlling the
amount of degree penalty (see Section 4.3.1), and choosing the size of the
result graph. This query interface supports two types of queries: all pair-
wise connections within a single set of query nodes (similarly as the public
query interface, Equation 4.7), and all pairwise connections between two
sets of query nodes, excluding any connections within either of the sets
(Equation 4.8 below).

bw(v, S, T ) = max
s∈S,t∈T

pbp(s, v) · pbp(v, t) (4.8)

4.5.2 Queries based on Context-free grammars

In the previous section, connection subgraphs were defined quantitatively,
using the probability of best path for selecting which nodes are to be dis-
played. An alternative, qualitative approach is to specify the set of inter-
esting paths based on the types of nodes and edges. Instead of all paths
connecting two vertices, an investigator is often interested in paths with
specific semantics, e.g, paths that suggest a causal relationship or paths
that confer similarity.

With labeled graphs, it is natural to base queries on the path type—the
string of vertex and edge types on a path. A path class is a set of path
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Figure 4.3: A fictional connection subgraph summarizing the link between
gene S and phenotype T . The user has specified the source and target ver-
tices S and T , and the class of path types of interest (path types suggesting
causal relationship between a gene and a phenotype).

types with shared semantics. Figure 4.3 illustrates the research problem of
Paper V: extract a subgraph between two sets of query nodes that consists
of paths belonging to a given path class. In this example, the aim is to find
paths that suggest a possible causal link between a given gene (S) to a given
phenotype (T). This is done by defining a path class capturing relationships
through intermediate genes (A,B and C in the figure) that are 1) known to
be related to gene S, and also 2) to be linked to the phenotype T. The
first type of relationship is represented by path types interacts with and
belongs to Pathway -belongs to, while the latter type is captured by
paths of types affects and located in Locus linked to (here, a ’-’ is
added as a prefix to an edge type to indicate the corresponding inverse edge
type).

In Paper V, we introduce the use of context-free grammars (CFGs) as a
path query language for extracting subgraphs from a large graph. Node and
edge types are used as terminal symbols of the grammar, and non-terminal
symbols of the grammar correspond to path classes. A CFG consists of
a number of production rules that specify how paths in a given class are
constructed from sequences of node and edge types and other path classes.
For example, a rule A -> c B d states that concatenating terminal symbol
c, any path in class B, and terminal symbol d produces a path in class A.
The set of strings accepted by a CFG is defined by the productions of a
special query path class QUERY.

Returning to the query of the example figure, we define three path
classes: one (SIM) for capturing similarity of the genes, one (AFF) for cap-
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turing a gene’s (potential) effect on phenotype and the query class (QUERY)
as a combination of the first two. The productions of the grammar are as
follows:

(1) SIM -> interacts with

(2) SIM -> belongs to Pathway -belongs to

(3) AFF -> affects

(4) AFF -> is located in Locus linked to

(5) QUERY -> SIM Gene AFF

Given this grammar, the example query is defined simply by specifying
the source and target nodes S and T, and specifying QUERY as the query
class. The query system described in Paper V enables both the source and
target to be sets consisting of multiple nodes, in which case the result will
contain all matching paths between any pair of source and target nodes.

In Paper V, we introduced a modified version of the well-known Earley
algorithm [25] to find the subgraph containing all paths between the query
nodes that match a given CFG. The basic Earley algorithm performs pars-
ing of strings instead of paths in a graph, so the first task was to extend
the algorithm to handle graph data. A relatively simple way to do this is
to perform a depth-first search in the graph starting from the source node,
and perform the parsing for each possible path separately while doing the
search, such that the state of the CFG parsing is maintained separately
for each traversed path. The search for each traversed path is terminated
whenever the path type is found to conflict with the given grammar, or
the target node is reached using a path in the query class. This is not an
optimal strategy, as the number of paths to be parsed is potentially ex-
ponential in the search depth (length of longest path compatible with the
grammar). To make querying large graphs (such as Biomine) feasible, the
basic algorithm described above was extended in two respects to reduce the
number of states required: (1) bi-directional search is used, which halves
the required search depth; and (2) all paths between a pair of nodes hav-
ing the same path class are collapsed into a single state, instead of using
a separate state for each path. According to the experiments of Paper V,
these modifications greatly speed up the algorithm, making it applicable to
graphs within the size range of Biomine.

A public query interface to Biomine based on context-free grammars is
available at http://biomine.cs.helsinki.fi/cfg/. This interface allows
specifying the grammar, and setting the source and target nodes and max-
imum search depth. As in the query interface based on path probabilities,
the resulting graph can be downloaded to the user’s computer, or visualized
directly in the web browser using the graph visualization software BMVis.



Chapter 5

Graph-based disease gene
prioritization

The topic of this chapter is the gene prioritization phase of the gene map-
ping workflow (right-hand side of Figure 1.1): how to automatically pri-
oritize putative disease susceptibility genes so that further efforts can be
focused on the most promising candidates? Genome-wide association stud-
ies typically produce a large set of putative genes that appear statistically
associated with the disease, while actually only a fraction of these are true
positive findings. Before moving on with follow-up analyses of these genes,
it is useful to prioritize and filter the list based on what is already known
about them in the public databases.

In this chapter we describe how to automatically prioritize putative dis-
ease genes, based on the Biomine database and the graph-based proximity
measures described in the previous chapter. This chapter is mainly based
on Paper IV, where we adapted two existing graph-based disease gene pri-
oritization methods to be used with Biomine. One of these [54] measures
proximities of putative genes to a distinct reference set of genes (or other
suitable graph nodes) already be known to be associated with the disease,
while the other [32] uses only the mutual proximities or the putative genes.
We also introduced a novel method for performing disease gene prioriti-
zation that does not require a reference set. In the rest of this chapter,
we first give a short overview of related work on using graphs for disease
gene prioritization, and then summarize the gene prioritization methods
and results of Paper IV.

55
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5.1 Related work

Although putative disease genes are often prioritized by manually going
through the list of genes and using several databases and literature to check
what is known about each of them, several methods have also been pub-
lished for automatic disease gene prioritization. These methods are typi-
cally based on the principle that genes similar to ones already known to be
related to the disease of interest are to be considered as the most plausible
candidates.

The definition of similarity and types of utilized data vary a lot depend-
ing on each particular method, the former naturally being dependent on
the latter. The most common source of data is protein interactions, but
also shared functional annotations and pathways, as well as text mining
and gene expression similarity are commonly used.

In the following, we will review some of these methods considered most
relevant to the work in this thesis. For a more complete review of such meth-
ods, we refer the interested reader to a practical overview covering freely
available web tools for prioritizing candidate genes, written by Tranchevent
et al. [92]. A review on prioritizing GWAS results is provided by Cantor
et al. [13], and a review on utilizing gene networks for research of human
diseases is provided by Barabasi et al. [8].

We first list several gene prioritization methods that use only protein
interaction data. A trivial approach for predicting potential disease genes is
to just assign interaction partners of already known disease-related proteins
as candidates [70]. Krauthammer et al. [56] use a slightly more elaborate
method, where evidence from known disease genes is propagated to nearby
putative genes according to a score based on shortest paths distance, while
Kohler et al. [54] use a random-walk-based network proximity measure
instead of considering only a direct neighborhood or shortest paths.

In contrast to the previous methods, which only use protein interaction
data, Franke et al. [32] and Linghu et al. [61] both construct a network of
functional associations (“functional linkage network”) using multiple types
of integrated source data. They construct the network of functional associa-
tions using machine learning techniques to combine evidence from different
data sources, using a fixed cutoff value to remove unreliable associations.
Franke et al. [32] evaluate each candidate gene based on the shortest path
distance to other candidate genes, while Linghu et al. [61] only use infor-
mation from neighboring genes. Notably, the method of Franke et al. does
not require a pre-defined set of known disease genes, but instead prioritizes
candidate genes based on their distance to other candidates.

Similarly to Kohler et al. [54], Vanunu et al. [95] also use a random walk
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proximity measure, but they also expand the query from the given disease
to include other diseases based on phenotypic similarity. Evidence is then
propagated in a protein interaction network from all proteins known to be
related to any of these diseases.

Hwang and Kuang [46] consider both multiple types of associations
(edges) and multiple types of nodes. Instead of integrating them all to-
gether into a homogeneous network, they propose methods to propagate
information in the network while taking its heterogeneity into account.

An alternative to the network-based gene prioritization approaches out-
lined above is to directly utilize pre-known sets of functionally related
genes [98, 14] as the unit to be tested for disease association. The idea
in these methods is that each known pathway (or other pre-defined set of
functionally related genes) is tested for relative excess of disease-associated
genes, potentially accumulating information from several weaker associa-
tions into a single, stronger signal. The results of Chasman [14] indicate
that while strong associations remain best identified by conventional as-
sociation mapping methods, the gene set approach provides a useful com-
plementary mode of analysis for revealing modestly associated genes for
complex diseases.

5.2 Using Biomine for disease gene prioritization

5.2.1 Problem definition

We formulate the disease gene prioritization task as a binary classification
problem as follows. The set of statistically disease-associated genes from
an association study is denoted by S, and the subset of genes that actually
increase susceptibility to the disease (true positives) is denoted by SP ⊂ S.
The rest, SN = S − SP , are negatives, or false positives of the association
study. The task now is to predict SP (and SN ) by outputting an estimate
ŜP ⊂ S, using the information contained in the Biomine graph database
described in Chapter 4. The key assumption here is that genes affecting
the same disease tend to be more proximal in the graph of known biological
associations than randomly chosen genes (false positives of the association
study).

We consider two alternative formulations of the classification problem:

• Supervised classification using only positive instances (see, e.g.,
George et al. [33] and Kohler et al. [54]). In this easier formulation
we are given, in addition to S, a separate reference set SR of genes
already known to increase susceptibility to the disease.
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• Unsupervised classification (see, e.g. Franke et al. [32]). In this
“de Novo” version of the problem, we do not assume information
about known disease genes, and only S is given as input.

The idea in the supervised version of the problem is that among the sta-
tistically associated genes, those proximal to already known disease genes
will be identified as the most promising candidates. In the unsupervised
version such existing information is not assumed. Instead, associated genes
that are close to other associated genes will be considered as the most likely
candidates. In the unsupervised problem, the fraction of associated genes
within S must naturally be sufficiently high to perform reliable predictions.

5.2.2 Classifiers for disease gene prioritization

Disease gene prioritization with Biomine can use any the proximity mea-
sures defined in Section 4.3.2. We denote the chosen proximity measure
by p(s, t), and use it to define three alternative classifiers for the disease
gene prioritization task. The first of these is applicable in the supervised
classification setting, while the other two are applicable in the unsupervised
setting.

Supervised classifier ranks each gene s ∈ S based on its average prox-
imity to elements of the reference set SR:

scoreAprox(s) =
1

|SR|
·
∑
t∈SR

p(s, t). (5.1)

This definition is closely related, although not identical to the one used by
Kohler at al. [54]. A binary classifier is obtained by setting a threshold q:
ŜP = {s ∈ S : score(s) ≥ q}; ŜN = {s ∈ S : score(s) < q}.

KNN classifier ranks each gene in S by its average proximity to the k
nearest other elements of S:

scoreBknn(s) =
1

k
· max
S′⊂S−s,
|S′|=k

∑
t∈S′

p(s, t). (5.2)

This definition is motivated by the assumption that random genes (false
positives) are not likely to have many close neighbors in S; on the other
hand, genes actually related to the disease are expected to be proximal
to each other, and thus likely to be found in the set of k nearest neigh-
bors. This definition can be seen as a generalization of the scoring scheme
used by Franke et al. [32]. Again, a classifier can be obtained by simply
thresholding, as for the Supervised classifier above.
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Cluster-based classifier In Paper IV we propose the following new
method applicable to the unsupervised version of the problem: find a single
cluster ŜP ⊂ S of genes that maximizes

scoreBclus(ŜP ) =
∑
s,t∈ŜP
s 6=t

(p(s, t)− q) =
∑
s,t∈ŜP
s 6=t

p(s, t)−q · |ŜP |(|ŜP | − 1)

2
. (5.3)

Here, q is a parameter governing how proximal a gene should be on
average to the other members of the cluster to be considered positive. This
definition may be best explained by considering the decision of whether to
add a new gene s to some current estimate of ŜP . Adding a gene s increases
the score if the average proximity of s to the genes already assigned to ŜP
is larger than the constant q. The definition is similar to the maximum
edge-weighted clique problem [2], and also related to the outlier detection
problem in clustering [42], where the goal is to identify objects that are not
part of any cluster. The differences to the latter one are that here only one
cluster is sought, searching the cluster and handling of outliers is done in
a single integrated step, and most genes are expected to be “outliers”.

While the gene prioritization task is here presented as a binary classifi-
cation problem, the first two classifiers are based on computing a score that
can also be used for ranking as such. The Cluster-based classifier does
not directly provide such a score suitable for ranking, but instead performs
a binary classification, given a fixed value for the sensitivity parameter q.
A practical way of using the Cluster-based classifier for gene prioritiza-
tion is to vary the parameter q in order to obtain a number of predicted
sets of different sizes. Since the predicted sets are not monotone, that is, a
smaller predicted set is not necessarily a subset of a larger prediction, there
is not necessarily an immediately implied ranking of genes. However, as a
rule, genes that appear in smaller predictions and more often can be given
a higher rank.

5.2.3 Experimental setting

In this section, we summarize the gene prioritization results from Paper IV.
In these experiments, we used random walk with restart (Equation 4.4) as
the proximity measure p(s, t), as it outperformed the other tested measures
in the link prediction experiments, and also performed consistently well
in comparison to the other methods in preliminary tests with the disease
gene prediction problem. To implement the Cluster-based classifier, we
used a simple greedy algorithm for finding a cluster of positive genes that
approximately maximizes Equation 5.3 (see Paper IV for details).



60 5 Graph-based disease gene prioritization

We evaluated the gene prioritization performance using artificial gene
lists simulating lists of top-ranking genes from an association study, where
the positive instances come from 110 already known disease gene families
compiled by Kohler et al. [54] for the purpose of similar evaluations. Each
test case is a gene set S containing a fixed number of “positive” genes
SP from one of the 110 disease gene families, and a control set SN of
“negative” genes chosen at random from the other disease gene families.
As a baseline setting, we considered prioritizing gene sets with |SP | = 5
and |SN | = 15, and thus |S| = 20 genes in total. We also included more
challenging settings by varying both the number of positive and negative
instances, with |SP | ∈ {2, 3, 4, 5} and |SN | ∈ {5, 15, 25, 35, 45}. For each
combination (|SP |, |SN |), 100 test cases were generated, each containing
|SP | genes sampled from a single disease gene family and |SN | genes sampled
from among the other 109 disease gene families.

Some of the test cases are unrealistically easy to solve using the complete
Biomine dataset, since it may contain edges that directly reflect knowledge
about the disease gene families. For instance, direct textual references
between genes belonging to the same disease family could have been derived
from the OMIM database. To include more realistic and challenging test
cases, we carried out all experiments also using a version of the database
where the most obvious sources of phenotype-related data were excluded
(see Paper IV for details).

Results from the two problem settings, the supervised and unsupervised
one, are not directly comparable since they are not really practical alter-
natives: the supervised method should be used whenever a reference set
of known disease genes is available, since this helps in ranking; and when
such a reference set is not available, there is no other option but to use
an unsupervised method. Nevertheless, a comparison between the methods
can provide insight on how crucial having a pre-known reference set is for
the prediction task.

We compared the classifiers in settings where each (positive) gene is
scored using information from the same number of other positive genes by
all methods. For example, when |SP | = 5, each gene within SP is ranked
using the 4 other positive genes by the Supervised classifier. For the
KNN classifier, each positive gene is ranked using the 4 nearest neighbors
(in the optimal case the 4 other positive genes), while in the Cluster-
based method, each positive gene can potentially cluster with the 4 other
positive genes.
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Figure 5.1: Comparison of classifiers using ROC curves. Left: all data.
Right: obvious data sources removed.

5.2.4 Summary of experimental results

As a baseline setting, we tested the three proposed classifiers on the problem
of identifying the 5 of true disease genes from among a set of 15 unrelated
genes, using 100 independent test cases of 20 genes in total. The questions
addressed by this setting were (1) how well disease genes can be prioritized
using Biomine; (2) how much more difficult it is to prioritize disease genes
without a reference set of pre-known disease genes; and (3) without a known
reference set, how well the Cluster-based classifier works in comparison
with the simpler KNN classifier.

Figure 5.1 reports the results from these experiments as ROC curves av-
eraged over the 100 independent test cases, using either all data in Biomine
(left) or the version of Biomine with obvious links removed (right). (See
Figure 7 of Paper IV for a scaled version of the figure showing only the
beginning of the curves.) There are several observations from this experi-
ment. First, using all data in Biomine (left), the true disease genes can be
predicted with a rather high accuracy. Also in the more challenging case
of reduced data (right), predictions can be made with reasonable accuracy.
In both settings, the Cluster-based classifier obtains practically identi-
cal accuracy with the Supervised classifier for most of the ROC space,
although it uses less prior information. It is also clearly superior to the
KNN classifier. However, in the very beginning of the ROC curve (see
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Figure 5.2: Effect of increasing number of false positives on prediction
accuracy. |SP | = 5, |SN | ∈ {5, 15, 25, 35, 45}. Left: all data. Right: obvious
data sources removed.

Figure 7 in Paper IV) the Cluster-based method does not perform so
well. This is most likely because the beginning of the curve corresponds to
stringent (large) values of q, where only a part of the true positive genes
are included in the cluster; here, the Cluster-based method is not yet
able to utilize information

Varying the ratio of true and false positives We also performed
experiments to evaluate how increasing the number of false positives or
decreasing the number of true positives affects prediction accuracy. First,
we performed a similar experiment as the baseline setting reported above,
but varied the number of false positives between 5 and 45 while keeping the
number of positives fixed to 5, giving total number of genes to be ranked
between 10 and 50 (Figure 5.2). Secondly, we performed an experiment
where the number of positives |SP | varied between 2 and 5, with the number
of negatives fixed to 15 (Figure 5.3). Again, we tested the three proposed
classifiers, with complete and reduced data separately. Each point in the
figures is an average AUC over the 100 independent test cases with a specific
|SN | or |SP |.

As expected, for the Supervised classifier AUC is not affected by in-
creasing the number of negatives, as the ranking of each gene always occurs
using a fixed reference set, irrespective of the number of negative genes
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Figure 5.3: Effect of decreasing number of true positives on prediction
accuracy. |SP | ∈ {2, 3, 4, 5}, |SN | = 15. Left: all data. Right: obvious data
sources removed.

within the set of genes to be prioritized. On the other hand, the more
challenging unsupervised problem becomes more difficult when the amount
of negatives is increased, and the accuracy of the other methods decreases
quite steeply as the number of negatives increases. However, the Cluster-
based classifier is consistently superior over the KNN method, with a
clear margin. On the other hand, decreasing the number of positives has
a dramatic effect on accuracy, especially in the unsupervised version of the
problem, but also in the supervised version.

These results indicate that a reference set SR is obviously useful, but if
one is not available, relatively good predictions can still be obtained with
the Cluster-based method if the fraction of positive instances within the
set of genes to be prioritized is sufficiently high.

Notably, the Cluster-based method does not work well with the
smallest values of |SP |, and is outperformed by the KNN method in these
settings. Based on this experiment, it appears that at least 4 positive genes
are required in the set to be prioritized in order for the Cluster-based
method to be useful.
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Chapter 6

Contributions of the thesis

The contributions of this thesis are summarized below.

Paper I

In Paper I, we define two novel statistical models of haplotypes and give an
efficient algorithm for haplotype reconstruction using these models, jointly
called HaploRec. HaploRec, originally published as a conference paper [26],
was the first method that reconstructs haplotypes for longer chromosomal
regions simultaneously, such that all handled markers do not need to be in
strong LD with each other.

The power to handle genotypes from longer chromosomal regions comes
from a novel, flexible use of short patterns of haplotypes to model local LD,
while being able to also utilize longer-range LD where it exists. An impor-
tant benefit of this model is that the accuracy of HaploRec increases both
with increasing the number of jointly haplotyped markers and increasing
the number genotyped subjects. Computational efficiency of HaploRec is
demonstrated by the experiments of Paper I: it is roughly linear with re-
spect to both the number of markers and subjects. To achieve this, we
apply algorithmic techniques from the field of data mining in a novel way
to efficiently search and store the local patterns of haplotypes used in im-
plementing the models.

The above-mentioned properties make HaploRec suitable for handling
data from genome-wide association studies where genotypes of complete
chromosomes are haplotyped in a single run, and the number of subjects is
very large. Of previous methods, only fastPhase [81] can handle such data,
but with lower accuracy. The extensive systematic evaluations in Paper I
are also a significant contribution: we are not aware of other studies where
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the effect of marker spacing, number of jointly haplotyped subjects and
markers, effects of missing data effects and genotyping errors are evaluated
systematically.

Paper II

Paper II consists of a simulation-based evaluation of different study designs
for haplotype-based association analysis. The main contribution of the pa-
per is a systematic analysis of the gene mapping power as a function of
three separate factors: sample ascertainment method, effective sample size,
and haplotyping method. The main conclusion is that the case–control
design is a powerful alternative for the more laborious family-based ascer-
tainment approach, especially for large data sets. Another important result
is that statistically inferred haplotypes reconstructed with HaploRec can be
as powerful as the true haplotypes for the purposes of association mapping.
An additional result is that the choice of sample ascertainment method in
trio-based study designs does not have much effect on mapping accuracy.

Papers III & IV

The topic of Papers III and IV is Biomine, an integrated database of bio-
logical relationships, and its applications. Biomine was introduced in Pa-
per III and further developed in Paper IV. The main contributions of these
papers are as follows: (1) the Biomine database itself; (2) a novel prox-
imity measure for assessing the relatedness of graph nodes; (3) application
of the proximity measure to the tasks of disease gene prioritization and
link prediction. An important further contribution of Biomine is the public
query engine described in Section 4.5 which is, however, not covered by the
original publications.

Data needed in the refinement of initial gene mapping results is typically
scattered across multiple source databases. To enable joint analysis of such
data from multiple biological databases, the data needs to be integrated
and made accessible under an uniform data model and query interface.
Biomine provides such a resource.

A fundamental component in the application of Biomine is a graph-
based proximity measure for estimating the relatedness of biological objects
represented in the graph. Biomine introduces a novel schema of weighting
individual graph edges, based on three factors: relevance based on edge
type, an informativeness measure based on node degrees, and reliability
values extracted from the source databases. The resulting edge weights
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are used for constructing a general node proximity measure, by adapting
three existing proximity measures: one based on probability of best path
(Paper III), another based on network reliability (Paper III) and a third
one based on random walks (Paper IV).

In Paper III, the proposed node proximity measures are applied to link
discovery in biological databases, i.e., for prediction and evaluation of im-
plicit or previously unknown links between biological entities. Paper III
also presents a method for assessing the statistical significance of discov-
ered relationships.

In Paper IV, the node proximity measures are used for the task of link
prediction, using two temporally separated versions of the database as a test
setting. This setting provides a solid testbed for comparing and evaluating
different proximity measures. Results from the link prediction experiments
demonstrate that suitably weighting different link types clearly improves
prediction accuracy compared to the case of using uniform relevance for
all link types. The results also show that using all data in Biomine gives
significantly better prediction accuracy than any single data type alone,
validating the adopted integrative approach and edge weighting scheme.

Finally, in Paper IV the node proximity measure derived from Biomine
is applied to the disease gene prioritization problem. Two existing dis-
ease gene prioritization methods are adapted to be used with Biomine, and
also a novel method is introduced for the unsupervised version of the gene
prioritization problem, based on finding a single cluster of proximal genes
from the set of putative disease genes. The gene prioritization experiments
show that putative disease genes can be ranked with a reasonable accu-
racy using Biomine. Best prediction accuracy is obtained when an already
known reference set of disease genes is available, but experiments using the
novel clustering-based method demonstrate that putative disease genes can
also be ranked without an already established reference set, if the number
and density of true disease genes in the candidate set is sufficient. In this
unsupervised setting, the cluster-based formulation proved more accurate
than a simpler approach based on k nearest neighbors score already used
by Franke et al. [32].

Paper V

The main contribution of Paper V is the introduction of a novel problem:
finding the connection subgraph between two sets of nodes that is induced
by the set of paths matching a given context free grammar, where the node
and edge types of the graph are interpreted as terminal symbols of the



68 6 Contributions of the thesis

grammar. Using a CFG enables the investigator to qualitatively define the
paths of interest based on the path type, which is an alternative for the
qualitative graph proximity measures used in papers III and IV. Such flexi-
bility is needed for the heterogeneous data in Biomine, where the relevance
of different path types may be highly dependent on the types of nodes and
edges on the path.

We propose a modified version of the well-known Earley algorithm [25]
to find the subgraph containing all acceptable paths, by adapting the basic
algorithm to handle graph data instead of strings as input. To make query-
ing large graphs feasible, the basic algorithm was improved in two respects
to reduce the computational cost of the algorithm: (1) bi-directional search
is used, which halves the required search depth; and (2) all paths between a
pair of nodes having the same path class are collapsed into a single state, in-
stead of using a separate state for each path. According to the experiments
of Paper V, these modifications greatly speed up the algorithm, making it
applicable to graphs within the size range of Biomine.



Chapter 7

Conclusions

The overall motivation and framework for this thesis is disease gene map-
ping, as illustrated in Figure 1.1. Current gene mapping projects are typi-
cally based on a genome-wide scan where hundreds of thousands of markers
are genotyped from both affected and healthy individuals. This thesis in-
troduces two kinds of computational approaches to aid in such studies. The
first main contribution is HaploRec, a computational haplotyping method,
and evaluation of its use in the primary analysis of genotype data (left side
of Figure 1.1). The second main contribution is Biomine, a database and
set of methods for prioritizing and exploring the set of putative disease
genes obtained from the primary analysis (right side of Figure 1.1).

Although the topic of this thesis is disease gene mapping, many of the
methods included in thesis are not restricted to this particular application.
The developed graph query and analysis tools are applicable for any type
of labeled graphs, and the graph search and visualization functionalities of
Biomine can be used for other biological applications where the integrated
databases are relevant. In the rest of this chapter, we will discuss the
application of the presented methods in gene mapping and provide topics
for further research.

Haplotypes in gene mapping While theory and experiments indicate
that haplotype-based analyses have the potential to significantly increase
power, most published results to date from genome-wide association stud-
ies are still based on testing of individual markers. This is at least partly
attributable to the added complexity of statistical analysis and uncertainty
introduced by the statistical haplotype reconstruction. Also, genotyping
technology has developed at an enormous pace during the writing of this
thesis, enabling the study of significantly larger number of markers and
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subjects. When the number of tested markers grows, the relative bene-
fit of haplotype-based association mapping methods may decrease, as the
actual disease-affecting variants are more likely to be among the tested
markers. As discussed in Chapter 3, a recent trend in GWA studies is the
imputation of genotypes based on a reference set of completely sequenced
genomes, which allows the statistical inference of a much larger number of
genetic variants than is contained in the set of physically genotyped mark-
ers. While the use of imputation methods decreases the need of directly
using haplotypes for association testing, haplotype reconstruction is still an
crucial intermediate step in such methods. Also, haplotype analyses are ex-
pected to be beneficial due to their ability to capture LD with variants that
cannot be detected by current sequencing methods, and due to capturing
potential interactions between closely located DS alleles.

The Biomine database The Biomine database provides a foundation
for the refinement of phase of the disease gene prioritization and exploration
methods included in this thesis. The data model adapted in Biomine is de-
liberately simple and not tailored to any single application. The benefits
of the chosen model are generality, and also the uniform representation
of the graph for the proximity measurements used in the prediction tasks
on one hand and for visualization of subgraphs on the other hand. While
using a more specialized representation tailored for the target application
(e.g. disease gene prioritization) could allow for more accurate predictions,
promising results have been achieved already with the present version of
Biomine. However, to increase its applicability, the database could be im-
proved in some respects. The set of data currently integrated by Biomine
is by no means complete, and Biomine in its current form is more a proof
of concept than an exhaustive resource of biological data. In particular,
Biomine does not have a method for mapping markers to genes, a crucial
task in the analysis pipeline of Figure 1 which currently has to be per-
formed as a separate preprocessing step. Such a mapping could be based
on e.g. the genomic proximity of markers and genes, and markers being
located within known regulatory regions of genes. Other examples of infor-
mation that could potentially be added to Biomine is the internal structure
of metabolic and signaling pathways and known gene regulation relation-
ships. To enable wider applicability, Biomine would also benefit from the
possibility to integrate user’s own data.



71

Link prediction and evaluating proximity measures While the pri-
mary target application of Biomine in this thesis work has been the prioriti-
zation and exploration of putative disease genes, an important intermediate
goal was to test how well new relationships can be predicted based on a
previous version of the database, and to use this link prediction setting for
adjusting the weights of different data types. The main motivation for this
experimental setting was to provide an as unbiased as possible testbed for
the proximity measures derived from Biomine, rather than to provide any
directly applicable methodology for a particular problem. As discussed in
the previous chapter, these experiments serve to demonstrate the validity
of the chosen data integration approach and edge weighting scheme.

While relatively good prediction accuracy was obtained in the experi-
ments, it has to be noted that the prediction performance observed using
the two historical versions of the database does not necessarily imply that
a similar prediction performance would be obtained by future predictions;
it may be that research is biased by the current scientific knowledge rep-
resented in the source databases, and thus indirect links implied by this
knowledge are more likely to turn up in future research. Also, it may be
that research is likely to discover “low-hanging fruits” first, thus making it
gradually harder to obtain new knowledge in the future.

Finally, the reported link prediction accuracy is clearly not sufficient for
predicting links without any prior knowledge. While the settings consider
cases where the input is already chosen so that there is an equal number
of linked and unlinked gene pairs, the number of gene pairs that remain
unlinked in the complete database is several orders of magnitude higher.
However, when combined with additional data, this kind of predictions can
still be useful.

Disease gene prioritization Use of Biomine in disease gene ranking
enables identifying, from among a number of putative candidate genes, the
ones that appear most plausible based on the data contained in the source
databases. This approach is expected to work best in cases where several
functionally related genes contribute to the disease, and knowledge about
the functions of these genes is already present in the source databases. Ob-
viously, less studied genes with little or no functional annotations cannot be
identified in this way. The best results are naturally obtained when a refer-
ence set of already known disease genes is available. However, with a suffi-
cient true positive density in the candidate list, the proposed cluster-based
classifier without a reference set performed almost as well as a supervised
classifier using a reference set.



72 7 Conclusions

While the disease gene prioritization results in the unsupervised setting
are promising, more work is needed to make the methods practical. Ac-
curacy of the predictions is poor when the density of true positives is not
sufficient. An interesting future research topic in this area is combining
the supervised and cluster-based methods into a semi-supervised method
where information both from a reference set of disease genes and from mu-
tual proximities of the candidate genes would be used. This might be useful
especially in cases where only a small number of reference genes is available
for the disease under study.

Disease gene prioritization using Biomine is based on measuring node
proximities. This approach may be biased by the greatly varying node
degrees, since nodes with high degrees have more closer neighbors. There-
fore, considering the statistical significance of observed proximity values
instead of measuring node proximity directly is expected to be beneficial.
While estimation of statistical significance was done in the link prediction
experiments of Paper III, it was not used in the experiments of Paper IV
due to its computational cost. In practical applications, the set of poten-
tial relationships that needs to be evaluated is significantly smaller than in
these exhaustive experiments, in which case statistical significance should
be incorporated to the analysis.

Subgraph extraction and visualization Although the results from
gene prioritization experiments are promising, the current methods and
data are far from perfect and the results from automatic prioritization
methods need to be validated by manually by using biological databases
and literature. The Biomine query system facilitates this by searching
and visualizing relationships between the putative genes and known disease
genes, or relationships between the putative disease genes, and providing
links to the original databases. The search and visualization methods use
the same edge weighting scheme that is used for the prioritization itself,
making them well suited for manual exploration of the prioritization results.

The public search interface to Biomine has been designed to be as simple
to use as possible: basically the user just gives a list of genes (or other en-
tities) of interest. While this approach is convenient for simple exploratory
use, in many cases there would be a need to access and further process the
data in customized ways, which is not enabled by the current interface. In
communications with potential users it has turned out that customization
of the Biomine interface to meet the needs of specific applications would be
needed to make it more useful in practice and to perform more customized
queries and analyses.
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Qualitative queries based on context free grammars provide an alterna-
tive way of extracting and visualizing relationships between graph nodes.
While being applicable in their present form, CFG-based queries could be
made more useful by augmenting them with weighting of paths, by attach-
ing weights to the productions of the context-free grammar. Actually, a
major motivation for developing the CFG-based query system in the first
place was to provide a more flexible way of weighting different relationship
types based on the context of the edges, instead of only having edge-specific
weights. Due to time constraints, this extension to weighted productions
was never completed, however.

Practical application of Biomine The gene mapping workflow pre-
sented in this thesis (Figure 1.1) is somewhat idealized, and tailored for
providing a framework for the particular methods included in this thesis.
In practice each gene mapping project has its own structure, and the meth-
ods introduced in this thesis are applied on a case-by-case basis. At the
time of writing, HaploRec, the haplotyping method developed in this thesis
has 140 registered users, and the web-based interface to Biomine is being
used as an exploratory tool. Biomine has also been used as a component
of the semantic micro-array analysis pipeline SegMine [71], to discover and
visualize relationships between enriched gene sets.

The disease gene and link prediction functionalities of Biomine are not
currently publicly available, and can only be accessed using command line
tools within the network of the department of computer science where the
Biomine server is located. Partly for this reason, the applicability of these
methods in actual gene mapping research remains to be studied. They are
currently being applied to the prioritization of gene lists associated with
elevated lipid levels, but no results from this work are available yet.

There are two reasons for not having public access to disease gene pri-
oritization and link prediction features of Biomine. Firstly, providing such
access would require significant computational resources. Secondly, they are
currently based on prototype implementations targeted for method devel-
opment use, and it would require further efforts to build e.g. a web-based
interface for accessing these functionalities. Another option would be to
make the complete database and the related tools installable by any inter-
ested party; also this would be a substantial task due to the complexity of
the Biomine system.



74 7 Conclusions

Outlook Overall, the methods of this thesis aim to help in identifying
novel disease genes and understanding their function in the context of ex-
isting biological knowledge, with the ultimate goal of improving the preven-
tion and treatment of diseases with a genetic component. While already a
huge amount of disease genes have been identified to date, the area is still
currently under active research, and the genetic basis of many important
diseases is still poorly understood. Also the methods of producing data are
continuously improving, giving rise to larger and larger data sets. Efficient
and accurate haplotyping is an important component of genome imputa-
tion methods, which are a standard tool in current gene mapping research.
Especially for finding yet uncovered genes with relatively weak effects, the
importance of being able to explore existing biological knowledge and use it
for automatic prioritization of putative genes is evident. The continuously
increasing amount of information in public databases will naturally also
increase the accuracy and applicability of the automatic gene prioritization
methods based on such data.
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