
The Enduring Scandal of Deduction

Is Propositional Logic Really Uninformative?

Marcello D’Agostino
Dipartimento di Scienze Umane Università di Ferrara (dgm@unife.it)
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Abstract. Deductive inference is usually regarded as being “tautological” or “ana-
lytical”: the information conveyed by the conclusion is contained in the information
conveyed by the premises. This idea, however, clashes with the undecidability of first-
order logic and with the (likely) intractability of Boolean logic. In this article, we
address the problem both from the semantic and the proof-theoretical point of view
and propose a hierarchy of propositional logics that are all tractable (i.e. decidable
in polynomial time), although by means of growing computational resources, and
converge towards classical propositional logic. The underlying claim is that this hi-
erarchy can be used to represent increasing levels of “depth” or “informativeness” of
Boolean reasoning. Special attention is paid to the most basic logic in this hierarchy,
the pure “intelim logic”, which satisfies all the requirements of a natural deduction
system (allowing both introduction and elimination rules for each logical operator)
while admitting of a feasible (quadratic) decision procedure. We argue that this logic
is “analytic” in a particularly strict sense, in that it rules out any use of “virtual
information”, which is chiefly responsible for the combinatorial explosion of standard
classical systems. As a result, analyticity and tractability are reconciled and growing
degrees of computational complexity are associated with the depth at which the use
of virtual information is allowed.

Keywords: Boolean Logic, Tractability, Semantic Information, Analytical Reason-
ing, Natural Deduction

1. Introduction: the enduring scandal of deduction

Traditionally, there are two ways to explain the function of deductive
inference:

1. Deductive inference governs truth-transmission. The set of all pos-
sible worlds that make (the conjunction of) the premises true is
included in the set of possible worlds that make the conclusion
true.

2. Deductive inference governs the “information flow”. The informa-
tion conveyed by the conclusion is contained in the information
conveyed by (the conjunction of) the premises.
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2 D’Agostino and Floridi

In classical logic, (1) and (2) are reconciled by means of a somewhat
controversial notion of “semantic information”, which makes the in-
formation conveyed by a sentence equal to the set of all the possible
worlds ruled out by that sentence. The basic idea is simple and can be
briefly explained as follows.

Intuitively, information goes hand in hand with unpredictability.
More precisely, the Inverse Relationship Principle (IRP), as Barwise
labelled it, states that there is an inverse relation between the prob-
ability of P — which may range over sentences of a given language
(as in (Carnap and Bar-Hillel, 1953) and (Bar-Hillel, 1964)) or events,
situations or possible worlds (as in (Dretske, 1981)) — and the amount
of semantic information carried by P . More formally, the semantic
content (CONT) of P is measured as the complement of the a priori
probability of P :

CONT(P ) = 1 − Pr(P ) (1)

CONT does not satisfy the two requirements of additivity and con-
ditionalization, which are satisfied by another measure, the informa-
tiveness (INF) of P , which is calculated as the reciprocal of Pr(P ),
expressed in bits:

INF(P ) = log
1

1 − CONT(P )
= − log Pr(P ) (2)

Nowadays, one often translates IRP modally, by stating that the se-
mantic information conveyed by P is the set of all possible worlds, or
(more cautiously) the set of all the descriptions of the relevant possible
states of the universe, that are excluded by, or are inconsistent with,
P . IRP has been assumed as uncontroversial at least since Popper, who
is often credited as the first philosopher to have advocated it explicitly
((Popper, 1934)). And it has provided the basis for systematic attempts
to develop a formal analysis of semantic information since Shannon’s
breakthrough ((Shannon and Weaver, 1949)).

Unfortunately, any analysis of semantic information that subscribes
to IRP runs into two main difficulties: the Bar-Hillel-Carnap Paradox
((Floridi, 2004)) and the “scandal of deduction” ((Hintikka, 1973)). In
this paper, we shall be concerned exclusively with the latter, but a
brief outline of the former will help to set the discussion into the right
context.

Following IRP, the less probable or possible P is, the more semantic
information P is assumed to be carrying. It follows that contradictions
— which describe impossible states, or states whose probability is 0 —
are the sort of messages that contain the highest amount of semantic
information. This is conceptually unpalatable, to say the least. Bar-
Hillel and Carnap (Carnap and Bar-Hillel, 1953) were among the first
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The Enduring Scandal of Deduction 3

to make explicit this prima facie counterintuitive inequality but also to
bite the bullet:

It might perhaps, at first, seem strange that a self-contradictory sentence,
hence one which no ideal receiver would accept, is regarded as carrying
with it the most inclusive information. It should, however, be emphasized
that semantic information is here not meant as implying truth. A false
sentence which happens to say much is thereby highly informative in our
sense. Whether the information it carries is true or false, scientifically
valuable or not, and so forth, does not concern us. A self-contradictory
sentence asserts too much; it is too informative to be true. (p. 229).

Since its formulation, the Bar-Hillel-Carnap paradox has been recog-
nised as an unfortunate, yet perfectly correct and logically inevitable
consequence of any quantitative theory of weakly semantic information
(TWSI; “weakly” because truth-values play no role in it, as the passage
cited above makes explicit). As a consequence, the problem has often
been either ignored or tolerated as the price of an otherwise valuable
approach. Recently, a solution to the paradox has been proposed1 which
consists in showing that TWSI is based on a semantic principle that
is too weak, namely the assumption that truth-values supervene on
semantic information. A semantically stronger approach, according to
which information encapsulates truth, can avoid the paradox and is
more in line with the ordinary conception of what generally counts as
factual information. However, even assuming a strongly semantic ap-
proach, the traditional theory of semantic information is still challenged
by another highly counterintuitive consequence.

Consider what happens when we follow IRP in the opposite di-
rection. Make a statement more and more likely and you gradually
decrease its informational content. In the end, when the statement has
probability 1, or is true in all possible worlds, it conveys no information
at all, and so all logical truths, being tautologies, become equally unin-
formative. But in classical logic, a sentence Q is deducible from a finite
set of premises P1, . . . , Pn if and only if the conditional P1∧. . .∧Pn → Q
is a tautology. Accordingly, since tautologies carry no information at
all, no logical inference can yield an increase of information. Indeed,
by identifying the semantic information carried by a sentence with the
set of all possible worlds it excludes, it can be immediately recognized
that, in any valid deduction, the information carried by the conclusion
is contained in the information carried by the (conjunction of) the

1 ((Floridi, 2004) and (Floridi, 2005), see (Bremer and Cohnitz, 2004) chap. 2 for
an overview)
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4 D’Agostino and Floridi

premises. This is what is often meant by saying that tautologies and
inferences are “analytical”.2

As pointed out by Dummett, the approach just described stems from
an ultra-justificationist attitude, which seeks to obtain a bullet-proof
notion of deduction that leaves no room for sceptical attacks:

Once the justification of deductive inference is perceived as philosophically
problematic at all, the temptation to which most philosophers succumb
is to offer too strong a justification: to say, for instance, that when we
recognize the premises of a valid inference as true, we have thereby already
recognized the truth of the conclusion.(Dummett, 1991, p. 195)

According to Hintikka, this can be described as a “scandal of deduc-
tion”:

C.D. Broad has called the unsolved problems concerning induction a scan-
dal of philosophy. It seems to me that in addition to this scandal of
induction there is an equally disquieting scandal of deduction. Its urgency
can be brought home to each of us by any clever freshman who asks,
upon being told that deductive reasoning is “tautological” or “analytical”
and that logical truths have no “empirical content” and cannot be used
to make “factual assertions”: in what other sense, then, does deductive
reasoning give us new information? Is it not perfectly obvious there is
some such sense, for what point would there otherwise be to logic and
mathematics? (Hintikka, 1973, p. 222)

and, to quote Dummett again:

If that were correct, all that deductive inference could accomplish would
be to render explicit knowledge that we already possessed: mathematics
would be merely a matter of getting things down on paper, since, as soon as
we had acknowledged the truth of the axioms of a mathematical theory,
we should thereby know all the theorems. Obviously, this is nonsense:
deductive inference has here been justified at the expense of its power to
extend our knowledge and hence of any genuine utility.(Dummett, 1991,
p. 195)

By trivializing deductive reasoning, the ordinary approach to semantic
information gives rise to a new problem which appears to be worse than
the one it set out to solve: if the conclusion of a deductive argument
is always “contained” in the premises, why is deductive reasoning gen-
erally perceived as highly valuable epistemically? If all theorems are
“contained” in the axioms of a theory, how is mathematical discovery
possible at all?

In the following pages, we shall argue that there is a very reasonable
sense in which classical deduction is actually informative, even at the
propositional level, and hence that the scandal of deduction can be
dissolved.

2 For a recent reconstruction of this informational-analytical interpretation of
classical deduction see (Corcoran, 1998).
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The Enduring Scandal of Deduction 5

To begin with, in Section 2 we shall briefly review three classic
attempts to avoid the scandal, none of which turns out to be par-
ticularly satisfactory. The constructive part of this section will consist
in showing both the evolution of the problem and how our strategy
is comparable to the one adopted by Jaakko Hintikka, insofar as we
shall also distinguish, as Hintikka does in (Hintikka, 1973), between
degrees of informational depth. At the end of this section, we shall be
left with a slightly revised version of the problem: how can the informa-
tion carried by the conclusion of a propositional inference be entirely
“contained” in the information carried by the premises, given that this
information, according to a well-known conjecture in computational
complexity, cannot be unpacked by means of a computationally feasible
procedure?3

In Section 3, we shall investigate this problem against the back-
ground of the traditional tenet that logical reasoning is “analytical”,
examine the various senses in which the word “analytical” has been
used in this connection, and lay down our general strategy for solving
the problem via an informational-oriented approach.

In Sections 4 and 5, we shall critically examine two alternative
approaches to classical semantics and show why they are unsuitable
to provide a good basis for our sought-after informational approach to
logical deduction.

Section 6 is the heart of our positive proposal. There we identify a
new, stricter, sense in which classically valid inferences may be non-
analytical: when any proof of their validity essentially requires the
(temporary) introduction of virtual information,4 namely information
that is by no means contained in the premises, but must nevertheless be
taken into consideration in order to obtain the conclusion. Analytical
inferences, in this stricter sense, are exactly those that do not require
any essential use of such virtual information. We argue that this stricter
sense of “analytical” can be motivated, in the Kantian tradition, by the
requirement that analytical reasoning should not be “augmentative”:
the train of thought that leads from the premises to the conclusion
should not visit information states that lie outside the one defined
by the premises. On the other hand, the use of virtual information is
so entangled with the traditional semantical approaches (discussed in

3 This question, which is the background problem of the present paper, was put
forward and discussed in (D’Agostino and Mondadori, 1999). Here we improve on
that analysis and attempt to find a solution.

4 We are adapting here an expression from physics, where virtual particles are
particle/antiparticle pairs which come into existence out of nothing and then rapidly
annihilate without releasing energy. They populate the whole of space in large
numbers but cannot be observed directly.
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6 D’Agostino and Floridi

Sections 4 and 5), that it appears to be inextricably intertwined with
the meaning of the classical propositional operators.

So, in Section 7, we start to untie this knot and propose a re-
definition of the logical operators which avoids any appeal to virtual
information. We initially address the problem in terms of the “meaning
as use” approach that, in logic, is traditionally associated with Gentzen-
style natural deduction systems and with the related idea that the
meaning of the logical operators can be defined by specifying appro-
priate intelim (introduction and elimination) rules for them. We then
propose an alternative to classical natural deduction which, though
being compliant with all the strictest requirements for a meaningful and
well-behaved deductive system that have emerged from the Gentzen
tradition, is weaker than the standard one. Its intelim rules can be
interpreted as characterizing “a” meaning of the logical operators —
we call it their informational meaning — which does not require any
use of virtual information.

In Section 8, we show that deducibility in this natural deduction
system is a computationally tractable problem, satisfies the subformula
property and admits of an efficient normalization procedure, showing
that the difficulties which motivate this paper disappear by waiving
virtual information.

In Section 9, we address the same problem — that of characterizing
the informational meaning of the logical operators — from a different
and more “semantic” perspective, in terms of valuations. According to
this approach, the meaning of an operator is given by specifying a set
of constraints on admissible partial valuations which represent possible
information states (rather than “possible worlds” which are, by way of
contrast, represented by standard Boolean valuations).

This leads us, in Section 10, to define the notions of shallow infor-
mation state and shallow information content, which are based on the
informational meaning of the logical operators discussed in the previous
sections. These notions can be contrasted to those of “possible world”
and “semantic information”, which are based on their classical meaning.
Uninformative deductive reasoning, the truly “analytical” one, can now
be identified with that kind of reasoning that does not increase the
shallow information carried by the premises.

In Section 11, we address the problem of gradually retrieving the full
deductive power of classical propositional logic by means of a bounded
recursive use of virtual information. While the latter is banned from the
basic “strictly analytical” deductive arguments, those which are truly
uninformative, its incremental iterated use leads to more and more
powerful deductive systems, which exhibit increasing levels of logical
depth. Although these systems are all tractable, their growing compu-
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The Enduring Scandal of Deduction 7

tational complexity approaches intractability as their deductive power
approaches that of classical propositional logic.5 The underlying sug-
gestion is that such incremental use of virtual information corresponds
to increasing degrees of “synthetic” reasoning in classical propositional
logic.

2. Three classic attempts to avoid the scandal

The standard attempt to sweep the scandal under a psychologistic rug
is well-represented by Hempel’s words:

It is typical of any purely logical deduction that the conclusion to which
it leads simply re-asserts (a proper or improper) part of what has already
been stated in the premises. Thus, to illustrate this point by a very ele-
mentary example, from the premise, “This figure is a right triangle”, we
can deduce the conclusion, “This figure is a triangle”; but this conclusion
clearly reiterates part of the information already contained in the premise.
[. . . ] The same situation prevails in all other cases of logical deduction; and
we may, therefore, say that logical deduction — which is the one and only
method of mathematical proof — is a technique of conceptual analysis:
it discloses what assertions are concealed in a given set of premises, and
it makes us realize to what we committed ourselves in accepting those
premises; but none of the results obtained by this technique ever goes by
one iota beyond the information already contained in the initial assump-
tions. Since all mathematical proofs rest exclusively on logical deductions
from certain postulates, it follows that a mathematical theorem, such as
the Pythagorean theorem in geometry, asserts nothing that is objectively
or theoretically new as compared with the postulates from which it is
derived, although its content may well be psychologically new in the sense
that we were not aware of its being implicitly contained in the postulates.
(Hempel, 1945)

According to this view, the role of logical reasoning is that of helping us
to bring out the full informational content of sentences, so that one can
clearly see that the conclusion is contained in the premises by simple
inspection. It is as if the premisses of a logical deduction were like
compressed springs: they don’t generate new information but merely
store it and then release it again once they return to their original
shape, namely once the deduction is fully laid down to include the
conclusions.

5 The idea of approximating classical propositional logic via a sequence of
tractable subsystems has been pursued by several authors, with an entirely different
motivation, in the context of automated reasoning. See the end of Section 11 for a
brief discussion of the literature.
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8 D’Agostino and Floridi

For Wittgenstein, the whole problem was, needless to say, a pseudo-
problem, arising from our use of an imperfect language. Given a “suit-
able notation”, logical deduction could actually be reduced to the mere
inspection of propositions:

When the truth of one proposition follows from the truth of others, we
can see this from the structure of the propositions. (Tractatus, 5.13)

In a suitable notation we can in fact recognize the formal properties of
propositions by mere inspection of the propositions themselves. (6.122).

Every tautology itself shows that it is a tautology. (6.127(b))

In accordance with Wittgenstein’s idea, one could specify a procedure
that translates sentences into a “perfect notation” that fully brings out
the information they convey, for instance by computing the whole truth-
table for the conditional which represents the inference. Such a table
displays all the relevant possible worlds and allows one to distinguish
immediately those that make a sentence true from those that make it
false, the latter representing (collectively) the “semantic information”
carried by the sentence. Once the translation has been performed, logi-
cal consequence can be recognized by “mere inspection” as being “clear
and distinct” in a Cartesian sense. Following the truth-table example,
in order to recognize the soundness of the inference one would only need
to check whether the column corresponding to the conclusion contains
“1” for each row where all the premises are given the value “1”. This
clearly shows that the conclusion is true in all possible worlds where
the premises are true; therefore the set of possible worlds excluded by
the conclusion (that make the conclusion false) is included in the set of
all possible worlds that are excluded by the conjunction of the premises
(that make all the premises false).

Thus, if information could be fully unfolded by means of some me-
chanical procedure, the scandal of deduction could be avoided without
appealing to psychologism. Sometimes we fail to immediately “see”
that a conclusion is implicit in the premises because we express both
in a concise notation, a sort of stenography that prevents us from fully
recognizing the formal properties of propositions until we decode it into
an adequate notation. Semantic information is a perfectly good way of
specifying the information carried by a sentence with reference to an
algorithmic procedure of translation.

Although this idea may seem (at first sight) to work well for propo-
sitional logic, one can easily see how it clashes with the undecidability
of first-order logic. To put it with Hintikka:

[. . . ] measures of information which are not effectively calculable are well-
nigh absurd. What realistic use can there be for measures of information
which are such that we in principle cannot always know (and cannot have
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The Enduring Scandal of Deduction 9

a method of finding out) how much information we possess? One of the
purposes the concept of information is calculated to serve is surely to
enable us to review what we know (have information about) and what
we do not know. Such a review is in principle impossible, however, if our
measures of information are non-recursive.(Hintikka, 1973, p. 228)

At this point, it is useful to consider Hintikka’s proposal, if only briefly.
It consists in distinguishing between depth information and surface
information. The former coincides with Carnap’s and Bar-Hillel’s se-
mantic information and is a kind of potential information, which is
non-computable and is not increased by deductive inference. By con-
trast, the latter is effectively computable and is increased by deductive
inference. The growth of surface information is related to inference
steps that introduce new individuals in the argument, which Hintikka
describes as examples of the Kantian notion of “synthetic a priori”
arguments. In Hintikka’s approach, propositional logic turns out to be
genuinely tautological or “analytical” in the sense of being entirely
uninformative: for Boolean sentences surface and depth information
coincide, so propositional inferences are really trivial, as witnessed by
the existence of a mechanical decision procedure.

Hintikka’s proposal has been variously criticized.6 One of its draw-
backs is that it applies only to a restricted set of deductions in polyadic
predicate calculus, and does not apply at all to deductions in monadic
predicate calculus and propositional calculus. So we shall not follow
Hintikka’s detailed proposal regarding first-order logic. We shall, how-
ever, endorse his general strategy, based on a distinction between dif-
ferent degrees of informational depth. As will be shown presently, this
is a fruitful way of tackling the question whether propositional logic
really is informationally “tautological” or “analytical”.

When Hintikka put forward his proposal, the impact of the research
area known as “computational complexity” had not yet been fully
appreciated. The distinction drawn within the domain of effective pro-
cedures between those that are “feasible”, i.e. run in polynomial time,
and those that are not, is widely accepted today. Within the domain of
what is decidable, the attention is now focused on “tractable” problems,
i.e. those that are solved by a feasible procedure. Tractable problems
are regarded as the only problems that are solvable “in practice”. On
the other hand, there are problems that, although being algorithmically
solvable in principle, are provably “intractable”: the most efficient algo-
rithm that solves them runs in superpolynomial (typically exponential)
time.

6 On this point, see the recent (Sequoiah-Grayson, 2008)
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A celebrated theorem, due to Stephen Cook ((Cook, 1971)), has
shown that the tautology problem is computationally hard (NP-hard).
This means that it belongs to a large class of difficult problems related
to each other by a common computational fate: the existence of a fea-
sible (polynomial time) algorithm to solve one of these problems would
involve the existence of a similar procedure for all of them. Therefore,
by a commonly accepted conjecture, the tautology problem is regarded
as intractable.

The starting point of our investigation is that the (almost certain) in-
tractability of classical propositional logic provides an argument against
the idea that propositional inference is “tautological” or “analytical”,
in the sense clarified above. If classical propositional calculus is com-
putationally intractable, it is simply false that “when the truth of one
proposition follows from the truth of others, we can see this from the
structure of the propositions” because, pace Wittgenstein, many non-
trivial deductive structures are just too complex to unravel. It is not
that we cannot see and explore the logical space in question, but that
no mechanical procedure will ever have sufficient time to complete the
full explorations required.

This objection is nearly as strong as Hintikka’s argument leading
to a similar rejection in the case of first-order logic, due to its unde-
cidability. In the propositional case, the problem of unfolding semantic
information, though being solvable by means of an effective procedure,
is (most likely) intractable. The result is that Hintikka’s claim can be
reworded thus:

Measures of information which are not feasibly calculable are well-nigh
absurd. What realistic use can there be for measures of information which
are such that we in practice cannot always know (and cannot have a
method of finding out) how much information we possess? One of the
purposes the concept of information is calculated to serve is surely to
enable us to review what we know (have information about) and what
we do not know. Such a review is practically impossible, however, if our
measures of information are intractable.

The reader who finds this argument plausible will agree that the solu-
tions discussed above leave the scandal of deduction unmitigated even
in the formerly “decent” field of propositional logic. The scandal can
now be reformulated thus: how can the information carried by the
conclusion of a propositional inference be “contained” in the infor-
mation carried by the premises, given that this information cannot
be unpacked by means of a feasible procedure? True, the existence
of an effective procedure for computing semantic information in the
case of propositional logic does make a difference with respect to the
case of first-order logic. For it provides an objective and well-defined
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The Enduring Scandal of Deduction 11

sense in which propositional logic is tautological. However, the main
motivation for addressing this problem at all, namely the incompat-
ibility between the alleged tautological character of logical reasoning
and its “informational usefulness” remains unchanged. If propositional
logic is informationally “trivial”, why is the tautology problem so hard?
And why are so many efforts made, both in theoretical and in applied
computer science, to try and solve special cases of this allegedly trivial
problem?

3. What is analytical deduction?

The characteristic of being “analytical”, when used to qualify logical
reasoning, may be interpreted in different senses. The most common
are the following:

1. Semantic or meaning-theoretical. An inference is analytical when its
soundness depends solely on the meaning of the logical operators
which occur in its premises and conclusion. This sense of “analyti-
cal” usually comes with a theory of how the meaning of the logical
operators is specified;

2. Informational. An inference is analytical when the information con-
veyed by its conclusion is “contained” in the information conveyed
by its premises. In this second sense, “analytical” means simply
“uninformative”;

3. Syntactic. A formal deduction (a sequence of inference steps in a for-
mal system of deduction) is analytical when it obeys the subformula
principle. The exact formulation of this principle depends on the
adopted formal system of deduction. However, the basic idea is that
every formula occurring in the deduction must be a subformula of
the final theorem to be proved.7 In Gentzen’s words: “No concepts
enter into the proof other than those contained in its final result,
and their use was therefore essential to the achievement of that
result”(Gentzen, 1935, p. 69) so that “the final result is, as it were,
gradually built up from its constituent elements” (Gentzen, 1935,
p.88).

7 Recall that a sentence P is an immediate subformula of a sentence P ′ if and
only if P ′ has one of the forms P ∨ Q, Q ∨ P , P → Q, Q → P , P ∧ Q, Q ∧ P ,
¬P . A sentence P is a subformula of a sentence P ′ if and only if there is a sequence
P1, . . . , Pn, with n ≥ 1, such that (i) P1 = P ′, (ii) Pn = P , and (iii) Pi+1 is an
immediate subformula of Pi, for i = 0, 1, . . . , n − 1. Notice that, according to this
definition, P is a subformula of P itself. A proper subformula of P is any subformula
of P which is different from P itself.
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12 D’Agostino and Floridi

While the third, syntactic sense is utterly clear and relies on the tech-
nical notion of “subformula” or “constituent” of a sentence, the first
sense depends on a more precise formulation of the adopted theory
of meaning for the logical operators, and the second on a clarification
of the notion of information content and of what it means that some
amount of information is ”contained” in another. Despite this residual
vagueness, the semantic and informational senses are closely related to
each other and to the syntactic one. For, it seems natural to assume
that an inference carries no information if and only if its conclusion can
be “seen” as true, whenever its premises are true, by simply looking
at the definitions of the logical words occurring in the sentences. In
this sense, one could say that analytical inferences are those which
are recognized as sound via steps which are all ”explicative”, that is,
descending immediately from the meaning of the logical operators, and
not “augmentative”, involving some intuition that goes beyond this
meaning.8 From this point of view, it seems reasonable to require the
semantic and informational senses to be co-extensional :

All inferences that are analytical in the semantic sense should
be analytical also in the informational sense and vice versa.

(3)

Moreover, if an inference is analytical in the semantic sense, then it
should be possible to prove its soundness by means of some formal
deduction which is analytical in the syntactic sense as well. This ex-
pectation seems further justified if one adopts a “molecular” view of
language, that is “any view in which sentences carry a content which
belongs to them in accordance with the way they are compounded out
of their constituents, independently of other sentences of the language
not involving those constituents”.9 So, a deductive inference which is
analytical in the semantic sense, should not require the consideration

8 “Analytical judgements (affirmative) are therefore those in which the connec-
tion of the predicate with the subject is cogitated through identity; those in which
this connexion is cogitated without identity, are called synthetical judgements. The
former may be called explicative, the latter augmentative judgements; because the
former add in the predicate nothing to the conception of the subject, but only
analyse it into its constituent conceptions, which were thought already in the subject,
although in a confused manner; the latter add to our conceptions of the subject a
predicate which was not contained in it, and which no analysis could ever have
discovered therein.” Immanuel Kant, Critique of Pure Reason, translated by J.M.D.
Meiklejohn, Henry G. Bohn, London 1855. Mutatis mutandis, one could say that an
inference is analytical if it adds in the conclusion nothing to the information con-
tained in the premises, but only analyses it in its constituent pieces of information,
which were thought already in the premises, although in a confused manner. The
confusion vanishes once the meaning of the logical operators is properly explicated.

9 (Dummett, 1978), p. 222.

DagostinoFloridi-kl.tex; 8/09/2008; 15:00; p.12



The Enduring Scandal of Deduction 13

of any linguistic expression which is not a constituent of its premises
or of its conclusion. Therefore, it also seems natural to require that:

All inferences that are analytical in the semantic-informational
sense should be provable by means of formal deductions which
are analytical in the syntactic sense, that is, such that they obey
the subformula principle.

(4)

Let us then say that a logic10 L is analytical if, whenever Γ ⊢L P for
some set of sentences Γ and some sentence P , the inference from Γ
to P is analytical both in the semantic and the informational sense.
Given our assumption (4) above, we should also expect that for any
analytical logic L, there exists a formal system of deduction S which
is sound and complete for L and such that, whenever Γ ⊢L P , there is
an S-deduction of P from Γ which is analytical in the syntactic sense,
i.e. that enjoys the subformula property.

It may seem, at first sight, that Boolean logic meets all our require-
ments for such an analytical logical system:

1. all the sound inferences of Boolean logic are analytical in the
semantic sense, once the meaning of the logical operators is explicated
via the usual truth-table semantics;

2. all the sound inferences of Boolean logic are analytical in the in-
formational sense, once the notion of information content of a sentence
is explicated via the theory of semantic information;

3. given classical semantics and the classical notion of semantic in-
formation, the semantic and informational sense of “analytical” are
co-extensional, in accordance with our requirement (3) above;

4. there are proof-theoretical formulations of Boolean logic (e.g.
the truth-table method, Gentzen’s sequent calculus LK or Smullyan’s
analytical tableaux) in which all sound inferences can be proved by
means of formal deductions which are analytical in the syntactic sense,
in accordance with our requirement (4) above.

However, as argued in the introduction, the computational “hard-
ness” of Boolean reasoning spoils this rosy picture. According to the
widely accepted conjecture that P 6= NP , most probably there is no
practical decision procedure to establish whether the semantic infor-
mation carried by the conclusion of an inference is contained in that
carried by its premises. It seems, therefore, paradoxical to claim that
we are unable to decide, in practice, whether the conclusion carries

10 Following Tarski, we identify a logic L with a consequence relation, that is, a
relation ⊢L between sets of formulas and formulas satisfying reflexivity (Γ∪{P} ⊢L P
for every set of formulas Γ), monotonicity (Γ ⊢L P implies Γ∪∆ ⊢L P , for all Γ,∆),
and transitivity (Γ ⊢L P and ∆ ∪ {P} ⊢L Q imply Γ ∪ ∆ ⊢L Q). The monotonicity
condition is also called weakening, and the transitivity condition is also called cut.
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14 D’Agostino and Floridi

any new information. Even worse, according to the (almost as widely)
accepted conjecture that NP 6= co-NP , the length of formal proofs
in propositional logic cannot be efficiently bounded, and so we may
even be unable, in practice, to show that the information content of
the conclusion is contained in the information content of the premises.
According to this view, the information content of a sentence should
be something that “is there”, but often cannot be feasibly expressed
or communicated. This appears to be rather distant from what is com-
monly intended by “information” and suggests that the standard notion
of information content, defined in terms of semantic information is, in
some sense, too strong.

At this point, we are left with the following problem:

PROBLEM 1. Is there a sensible, weaker, definition of the information
content of a sentence — let us call it “shallow information content”
— such that it is always feasibly recognizable whether the information
carried by the conclusion is contained in the information carried by the
premises?

The expression “sensible” indicates that we are not looking for any
weaker notion of information content that solves our Problem 1.11 In
view of our assumption (3) above, a solution to this problem must
consist in a weaker notion of information content, which can be paired
with a correspondingly weaker characterization of the meaning of the
logical operators, in such a way that, if this weaker characterization is
adopted, the associated semantic sense of “analytical” would still be
co-extensional with the informational sense.

Thus, our new problem is: what is wrong with classical semantics?
What is it that makes it unsuitable to define a feasible notion of
information content? To put it positively:

PROBLEM 2. Is there a sensible semantics for the logical operators
of Boolean logic which is (i) weaker than the standard truth-table se-
mantics, and (ii) better suited to define a corresponding feasible notion
of information content?

This problem, namely the semantic characterization of tractable infer-
ence, has received a good deal of attention in computer science circles,
but it has never, to the best of our knowledge, been addressed from the
philosophical vantage point that we take in this paper. In Sections 6–
9, we shall propose a solution to Problem 2 which will be key to our

11 Otherwise, this could be trivially achieved in a variety of ways, for instance,
by simply assuming that the information content of a sentence consists in the set
containing the sentence itself, and that the corresponding analytical inferences of
Boolean logic are only the inferences Γ ⊢ P such that P ∈ Γ.
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characterization of a feasible notion of information content. Problem 1
will then be solved in section 10.

Let us first examine why more conventional semantic approaches are
not suitable for this purpose.

4. Why classical truth-conditional semantics is unsuitable

What is a “sensible” semantics for the logical operators? Classical logi-
cians have a straightforward answer to this question: the time-honoured
semantics based on the truth-table definitions. The meaning of each
logical operator ♯ is explicated by providing necessary and sufficient
conditions under which a sentence containing ♯ as its main operator is,
respectively, true and false in a given state of affairs w.

C1 ¬P is true in w if and only if P is false in w;

C2 P ∧Q is true in w if and only if P is true in w and Q is true in w;

C3 P ∨Q is true in w if and only if P is true in w or Q is true in w;

C4 P → Q is true in w if and only if P is false in w or Q is true in w;

C5 ¬P is false in w if and only if P is true in w;

C6 P ∧Q is false in w if and only if P is false in w or Q is false in w;

C7 P ∨Q is false in w if and only if P is false and Q is false in w;

C8 P → Q is false in w if and only if P is true and Q is false in w.

Such conditions provide an explanation of the meaning of the logical
operators in terms of the two central notions of truth and falsity, which
are assumed as understood. It is regarded as essential to understanding
of these notions that they obey the classical principles of bivalence (each
sentence, in a given state of affairs, is either determinately true or deter-
minately false) and non-contradiction (no sentence can be at the same
time true and false in the same state of affairs). Both principles can
be concisely expressed by assuming that a sentence is false if and only
if it is not true. Observe that, if the principle of bivalence is accepted
as part of the classical meaning of “true” and “false”, clauses C5–C8
become redundant since they can be derived from clauses C1–C4.

This approach has been severely criticized as too “metaphysical”.
As Weir puts it, for example:
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16 D’Agostino and Floridi

[Classical semantics] has come under a great deal of attack, especially from
those who subscribe to the Wittgensteinian slogan that meaning is use
and interpret it as requiring that all ingredients of meaning can be made
manifest in our use of sentences, especially in teaching or communicating
their senses, for it is often claimed that classical bivalent semantics, in
ascribing truth-values to sentences regardless of whether these values are
discoverable, violates this requirement.(Weir, 1986, p. 459)

A less “metaphysical” approach might consist in replacing classical
truth and falsity, as central notions of the theory of meaning, with
other, more accessible ones. Since we are looking for a semantic char-
acterization of the logical operators more in tune with a feasible notion
of information content, it seems natural to explore the possibility of
specifying the meaning of the logical operators in terms of central
notions of informational nature. Suppose, for example, that we replace
the expressions “P is true in the state of affairs w” and “P is false
in the state of affairs w” in clauses C1–C8 with, respectively, “the
piece of information ‘P is true’ belongs to the state of information
S” and “the piece of information ‘P is false’ belongs to the state of
information S”. It is obvious that this move immediately implies that
the classical Principle of Bivalence should be abandoned: there is no
reason to assume that, given an arbitrary sentence P and a state of
information S, either the piece of information “P is true” or the piece
of information “P is false” should belong to S.

Moreover, it is apparent that some of the clauses that define the
meaning of the logical operators also cease to be intuitively sound.
Consider, for instance, clause C3: if a piece of information “P ∨ Q is
true” belongs to a given information state S, this by no means implies
that either the piece of information “P is true” belongs to S or the piece
of information “Q is true” belongs to S. Under the commonsense notion
of information, it is perfectly reasonable that we hold the information
that P ∨Q is true without holding either the information that P is true
or the information that Q is true. Indeed, this kind of irreducible dis-
junctive information is essential in most database applications. Similar
considerations hold for clause C6: holding the information that P ∧Q
is false does not imply either holding the information that P is false or
holding the information that Q is false.

Hence, some of the truth-table conditions that provide the classical
definitions of the logical operators do not survive such an informational
reinterpretation. This suggests that, from this point of view, the op-
erators are somehow overdefined and this in turn leaves us with the
problem of whether the standard necessary and sufficient conditions
can be reformulated so as to provide a coherent and intuitively sound
“informational semantics” for the logical operators.
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Before addressing this problem, let us examine an important alter-
native conception regarding the meaning of the logical operators, which
seems more attuned to the “meaning as use” approach usually ascribed
to Wittgenstein.

5. Why classical intelim semantics is unsuitable

The semantic conception discussed in this section can be traced back to
the way in which Gentzen presented his “natural deduction” systems.
It consists in defining the logical operators directly in terms of the basic
rules that govern their use in deductive reasoning. From this point of
view, the meaning of a logical operator is defined by a set of primitive
logical rules that completely determine the role it plays in any deductive
argument. Typically, such primitive rules for an operator ♯ must specify
both the immediate conditions, under which a sentence containing ♯
as the main operator can be introduced into a deductive argument
(introduction rules for ♯), and the consequences that can be immedi-
ately drawn from such a sentence (elimination rules for ♯). We call this
approach intelim semantics for the logical operators. Gentzen’s natural
deduction system NJ for intuitionistic logic provides a paradigmatic
example.12 The inference rules in such a natural deduction system are
best formulated in terms of sequents, namely expressions of the form
Γ =⇒ P where Γ is a finite set of sentences (the assumptions) and P
is a single sentence (the conclusion), whose standard reading is “we
have a deduction of P from the assumptions in Γ”. Intelim rules have
sequents as premises and as conclusions. For instance, the introduction
rule for ∧ is:

Γ =⇒ P ∆ =⇒ Q

Γ,∆ =⇒ P ∧Q

12 Gentzen himself suggested that the rules of this system could be taken as
definitions of the logical operators. Indeed, he proposed that the introduction rules
would be sufficient for this purpose and that the elimination rules could be ulti-
mately “justified” in terms of the introduction rules, and this idea was later refined
into criteria of admissibility for putative definitions of the logical operators that
culminated in Prawitz’s inversion principle: no information can be obtained from
applying an elimination rule to a sentence P that would not have already been
available if P had been obtained by means of an introduction rule. For instance, by
applying the elimination rules for ∧ to the sentence P ∧ Q we can obtain P and
Q, both of which would have already been available if P ∧Q had been obtained by
means of the standard introduction rule for ∧. It is exactly this “harmony” between
introduction and elimination rules that guarantees that the deductive system as a
whole is syntactically analytic, i.e. that it enjoys the subformula property.
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where Γ,∆ means Γ ∪ ∆, the two sequents above the horizontal line
are the premises, and the sequent below the line is the conclusion. The
rule says: “if we have a deduction of P from the assumptions in Γ and
we have also a deduction of Q from the assumptions in ∆, then we ipso
facto have a deduction of P ∧Q from the assumptions in Γ ∪ ∆.”

A typical feature of natural deduction is that some of the rules
allow for the discharge of assumptions. For instance, the standard
introduction rule for → has the form:

Γ, P =⇒ Q

Γ =⇒ P → Q

where Γ, P is a simplified form for Γ∪{P}, and the standard elimination
rule for ∨ has the form:

Γ =⇒ P ∨Q ∆, P =⇒ R Λ, Q =⇒ R

Γ,∆,Λ =⇒ R.

In these rules, some of the assumptions which occur in the premise-
sequents (namely P in the first rule, and P and Q in the second) do
not occur in the conclusion sequent. They are regarded as “provisional”
or “virtual” assumptions, which are “discharged” by the application of
the rule. The reader is referred to any good exposition of Gentzen’s
natural deduction (such as (Tennant, 1990)) for the details.

This approach seems to work very well with intuitionistic logic, but
there is a problem when it is transposed into the context of classical
logic: it is impossible to find a system of intelim rules which is (i)
sound and complete for classical propositional logic and (ii) analytical
in the syntactic sense, i.e. such that it enjoys the subformula property.13

Gentzen’s solution to this problem was more technical than philosoph-
ical, and consisted in introducing multi-conclusion sequents, namely
expressions of the form Γ =⇒ ∆ where both Γ and ∆ are finite sets
of sentences, as the basic proof-theoretical units.14 However, this can
hardly be considered as a satisfactory solution. As Dummett puts it:

A sequent of the form A =⇒ B,C cannot be explained by saying “if
you have asserted A, you may with equal right assert either B or C”, for
that would imply that you can assert either one at your choice; and the
formulation, “If you have asserted A, then either you may assert B or you

13 On this point see, for instance, (Leblanc, 1966).
14 Gentzen developed this idea into a new calculus, the sequent calculus, which is

quite different from the original natural deduction setting. Cellucci has shown how
a form of multi-conclusion natural deduction can be better suited for the analysis
of the logical operators. On this point see (Cellucci, 1988). For a general discussion
of various formulations of classical natural deduction see also (Cellucci, 1995).
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may assert C”, does not entitle you to make any further assertion until
you learn which of them you may assert.15

A better solution consists, in the case of classical propositional logic,
to shift from sentences to “signed” sentences as assumptions and con-
clusions of sequents.16 A signed sentence is an expression of the form
tP or f P , where P is a sentence of a standard propositional language.
Note that the signs t and f are by no means to be interpreted as new
logical operators, in that they cannot be used inside a sentence, nor
can they be iterated. They can only be used to prefix a sentence; their
intuitive meaning is that the prefixed sentence is evaluated as “true”
and “false” respectively. If signed formulas become the basic units of
logical reasoning, and inference rules are, accordingly, formulated in
terms of sequents of signed formulas, then several natural deduction
systems can be presented which enjoy the full subformula property.
The reason is that all the troubles that arise when one tries to explain
classical negation in terms of the notion of “proof” — intended as the
central notion of semantic theory by means of which the meaning of
the logical operators is to be specified17 — disappear when the classical
notions of truth and falsity replace it in this role.18

In what follows, we shall use ϕ, ψ, etc. to denote signed formulas, and
X,Y , etc. to denote finite sets of signed formulas. We shall also denote
by ϕ the conjugate of ϕ, that is, the signed formula tP if ϕ = f P and
the signed formula f P if ϕ = tP . A rather elegant natural deduction
system of this kind — which is closely related to Smullyan’s analytic
tableaux, to Gentzen’s sequent calculus, to Smullyan’s “analytic nat-
ural deduction” (Smullyan, 1965), and to the systems EN and EN∗

discussed in (Bendall, 1978) — consists of the sequent rules illustrated
in Table I.19 What happens if we apply the same informational rein-
terpretation to this natural deduction system that we applied in the
previous section to the classical truth-tables? That is, if we reinterpret

15 (Dummett, 1991), p. 187.
16 For the background motivations of this approach, see (Bendall, 1978).
17 On the role of such a “central notion”, see (Dummett, 1991), especially pp. 32–

33, 62–64 and 317.
18 Accordingly, the very notion of subformula must be modified: a subformula of

a signed formula s P , where s is t or f , is any signed formula s Q where Q is a
subformula of P .

19 Actually, half of the operational rules of this system are redundant. The struc-
tural rule RA allows one to derive the introduction rules from the elimination rules
and vice versa. However, this redundant presentation is useful in order to highlight
the connections between this system and standard natural deduction; moreover, in
the following pages it will help us to compare this system with an alternative natural
deduction system in which the classical reductio ad absurdum rule is not allowed and
therefore introduction and elimination rules are not derivable from each other.
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Table I. A system of natural deduction with signed formulas for classical
propositional logic.

R X =⇒ ϕ provided that ϕ ∈ X

W X =⇒ ϕ /X ′ =⇒ ϕ provided that X ⊆ X ′

RA X,ϕ =⇒ ψ;X,ϕ =⇒ ψ/X =⇒ ϕ

t∧ I X =⇒ tP ;X =⇒ tQ/X =⇒ tP ∧Q

t∧ E X =⇒ tP ∧Q/X =⇒ tP

X =⇒ tP ∧Q/X =⇒ tQ

t∨ I X =⇒ tP/X =⇒ tP ∨Q

X =⇒ tQ/X =⇒ tP ∨Q

t∨ E X =⇒ tP ∨Q;X, tP =⇒ ϕ;X, tQ =⇒ ϕ/X =⇒ ϕ

t → I X =⇒ f /X =⇒ tP → Q

X =⇒ tQ/X =⇒ tP → Q

t → E X =⇒ tP → Q;X, f P =⇒ ϕ;X, tQ =⇒ ϕ/X =⇒ ϕ

t¬ I X =⇒ f P/X =⇒ t¬P

t¬ E X =⇒ t¬P/X =⇒ f P

f ∧ I X =⇒ f P/X =⇒ f P ∧Q

X =⇒ f Q/X =⇒ f P ∧Q

f ∧ E X =⇒ f P ∧Q;X, f P =⇒ ϕ;X, f Q =⇒ ϕ/X =⇒ ϕ

f ∨ I X =⇒ f P ;X =⇒ f Q/X =⇒ f P ∨Q

f ∨ E X =⇒ f P ∨Q/X =⇒ f P

X =⇒ f P ∨Q/X =⇒ f Q

f → I X =⇒ tP ;X =⇒ f Q/X =⇒ f P → Q

f → E X =⇒ f P → Q/X =⇒ tP

X =⇒ f P → Q/X =⇒ f Q

f ¬ I X =⇒ tP/X =⇒ f ¬P

f ¬ E X =⇒ f ¬P/X =⇒ tP

tP as “the piece of information ‘P is true’ belongs to the current state
of information” and f P as “the piece of information ‘P is false’ belongs
to the current state of information”?

The rule RA, though closely related to the Principle of Bivalence,
at first sight does not seem to be subject to the same criticism. We
may find it acceptable that, if a new piece of information ϕ is added
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to our information state, represented by the X in the antecedent of
the premises, and is thereafter discovered to be inconsistent with it,
then we are entitled to say that the conjugate of ϕ is “implicitly”
contained in our current information state (under the assumption that
the latter is consistent). Even the operational rules seem to survive
the criticism we addressed before to their truth-table counterparts.
Consider, for example, the rule t∨E. It says that, whenever (i) the
piece of information “P ∨Q is true” belongs to our current information
state S, and (ii.a) expanding S with the new piece of information “P
is true” or (ii.b) expanding S with the new piece of information “Q is
true”, leads in either case to a state of information that “contains” a
piece of information ϕ, then we are entitled to say that ϕ is “implic-
itly” contained in the current information state, by the very meaning
of the logical word “∨”. This may be intuitively acceptable provided
one makes the non-trivial assumption that it is always possible, from
a state of information containing “P ∨ Q is true”, to reach both a
state of information containing “P is true” and a state of information
containing “Q is true”. Under this assumption, the rule explains part
of the meaning of ∨ by considering “virtual” information states which
may be reachable from the current one, though being definitely richer
than it. However, in both such virtual information states there is a
piece of information which is not contained in the current information
state, in any possible sense of the word “contained”. A similar comment
also applies to the RA rule and to all the “discharge rules” of the
natural deduction system presented in Table I, as well as of any known
(single-conclusioned) natural deduction system.

Our discussion in this section suggests that the meaning of the log-
ical operators may be somehow overdefined by the standard intelim
rules. Is their typical appeal to virtual information really necessary? Is
it not possible to assign them a shallower meaning by means of intelim
rules that involve only the current information state, with no need for
a virtual tour of its potential expansions?

6. A fourth sense of “analytical”: no virtual information

In his proof of Proposition 4 in the the first book of the Elements, the
so-called “first congruence theorem on triangles”, Euclid makes use of
a method of proof which is sometimes called “superposition”. Although
Euclid’s use of this method is not entirely obvious, according to many
interpreters it consisted in actually moving one triangle over the other
so as to cover it through a continuous motion. Now, it has been correctly
observed that such a method would not be applicable to two triangles
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which are a mirror image of each other without moving one of them
outside the plane. So, this method of proof would not be available if
one, like the inhabitants of Abbott’s Flatland, had no conception of
a tridimensional space. The information carried by the conclusion is
actually contained in the information carried by the premises only for
the inhabitants of our familiar tridimensional space. Flatlandians have
to make a special effort to go (temporarily) beyond what is given to
them, namely beyond their bidimensional universe, in order to “see”
that the conclusion is contained in the premises. They have to travel
through a space that, for them, is entirely “virtual”. Although this
can be perfectly conceived and achieved, the reasoning involved could
hardly be described as “analytical”. Rather than being merely “explica-
tive”, it appears to be considerably “augmentative” (see footnote 8)
exactly in Kant’s sense. We argue that a similar augmentative process
is involved when the natural deduction rules that make use of virtual
information, namely those which are usually called “discharge rules”,
are applied. The reasoning agent who applies these rules has to make
an effort to go (temporarily) beyond the information which is actually
given to her, use some “virtual” information and then come back. This
stepping out and in again of the given informational space is what
makes the informativeness of classical propositional logic so invisible
and yet present.

All this strongly suggests a fourth sense in which a logical inference
can be “analytical”. We shall call it the strict informational sense.
An inference is analytical in a strict informational sense (or strictly
analytical, for short) when the conclusion can be deduced from the
premises without making use of any virtual information, i.e. when every
sentence occurring in the proof belongs implicitly to any information
state containing the information carried by the premises. Clearly, none
of the discharge rules of typical natural deduction systems are analytical
in this strict informational sense. In the context of formal deduction
systems based on sequents of signed formulas, such as the one presented
in Table I, this precisely means that no inference step is allowed in
which the antecedent of some of the premises contains a signed formula
which is not deducible from the signed formulas in the antecedent of
the conclusion. In our example, the rules which turn out not to be
analytical in the strict informational sense, and which we therefore call
“augmentative”, are exactly RA, t∨E, t →E and f ∧E.
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7. The informational meaning of the logical operators

How can we adjust the system in Table I so as to make it analytical in
the strict informational sense? Just removing the augmentative rules
from the system would not be a satisfactory solution. For the result
would not be a logical system in any acceptable sense of the word, even
if it would still satisfy Tarski’s definition of a consequence relation.20

First, observe that the removal of RA makes the introduction and
the elimination rules logically independent of each other, that is, the
introduction rules can no longer be derived from the elimination rules,
nor can the latter be derived from the former. As a result, the further
removal of t∨E, of t →E and of f ∧E would leave the meaning of ∨, →
and ∧ only partially defined, so we could no longer claim that the rules
provide a definition of the meaning of the logical operators. Second,
the resulting system would be extremely weak. It would prevent us
from deducing conclusions that are intuitively contained in the premises
even in the strict informational sense introduced above. For instance,
consider a typical disjunctive syllogism in which, from the information
that a disjunction is true and one of the two disjuncts is false, we deduce
that the other disjunct is true. This basic inference principle would no
longer be derivable in such a truncated system. Intuitively, however,
it is a strictly analytical inference principle, because we do not need
any virtual information to establish that the conclusion is contained in
the premises. This is a kind of reasoning “by exclusion” which may be
explained in terms of virtual information, but may as well be directly
regarded as part of the definition of ∨. The corresponding sequent rules,
namely:

X =⇒ tP ∨Q X =⇒ f P

X =⇒ tQ
and

X =⇒ tP ∨Q X =⇒ f Q

X =⇒ tP

are analytical in the strict informational sense explained above and
could replace the augmentative rule t∨E. The same holds true for the
familiar modus ponens and modus tollens — allowing us, respectively,
to deduce tQ from tP → Q and tP , and f P from tP → Q and
f Q — which could not be derived in the truncated system. Again, the
corresponding sequent rules, namely:

X =⇒ tP → Q X =⇒ tP

X =⇒ tQ
and

X =⇒ tP → Q X =⇒ f Q

X =⇒ f P

are analytical in the strict informational sense and could directly be
taken as contributing to the definition of →, replacing the augmentative

20 See fn. 10 above.
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rule t →E. Similarly, the strictly analytical rules:

X =⇒ f P ∧Q X =⇒ tP

X =⇒ f Q
and

X =⇒ f P ∧Q X =⇒ tQ

X =⇒ f P

could replace the augmentative rule f ∧E.
If the augmentative operational rules of Table I are put through

such a “slimming” process and the augmentative structural rule RA
is removed, the result is a streamlined natural deduction system with
no virtual information (no “discharge rules”), which is summarized in
Table II.

Observe that:
1. all the rules are intuitively sound under the informational inter-

pretation of the signs t and f discussed above;
2. the system contains both introduction and elimination rules for

each logical operator;
3. the elimination rules cannot be derived from the introduction

rules, but can be justified by them in terms of Prawitz’s inversion
principle;21 indeed, though they are not the strongest elimination rules
that can be so justified, it can be shown that they are the strongest ones
which are strictly analytical, i.e. analytical in the strict informational
sense.

The intelim system presented in Table II, therefore, is the strongest
intelim system that can be expressed in terms of rules that are analyt-
ical in the strict informational sense. In accordance with the natural
deduction tradition, we may take its operational rules as defining “a”
meaning of the logical operators, which is clearly weaker than their
classical meaning. It is expressed in terms of central notions of infor-
mational (rather than metaphysical) nature, via the reinterpretation
of the signs t and f discussed above, and we may therefore call it the
informational meaning of the logical operators.

Note that, since there are no discharge rules, the sequent notation
becomes completely unnecessary. In fact, a more straightforward and
concise presentation of this logical system is given by means of intelim
rules with signed formulas, rather than sequents of signed formulas, as
premises and conclusions (see Tables III and IV). In the two-premise
elimination rules, we call major premise the one containing the logical
operator, and minor premise the other one. An intelim sequence based
on a set of signed formulasX is a sequence ϕ1, . . . , ϕn of signed formulas
such that each element ϕi of the sequence is either (i) an element of X,
or (ii) exemplifies the conclusion of one of the intelim rules in Tables III

21 On this point see (D’Agostino, 2005) which contains a discussion of these natural
deduction rules in their unsigned version.
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Table II. A system of intelim rules which are all analytical in the strict
informational sense.

R X =⇒ ϕ provided that ϕ ∈ X

W X =⇒ ϕ /X ′ =⇒ ϕ provided that X ⊆ X ′

t∧ I X =⇒ tP ;X =⇒ tQ/X =⇒ tP ∧Q

t∧ E X =⇒ tP ∧Q/X =⇒ tP

X =⇒ tP ∧Q/X =⇒ tQ

t∨ I X =⇒ tP/X =⇒ tP ∨Q

X =⇒ tQ/X =⇒ tP ∨Q

t∨ E X =⇒ tP ∨Q;X =⇒ f P/X =⇒ tQ

X =⇒ tP ∨Q;X =⇒ f P/X =⇒ tQ

t → I X =⇒ f P/X =⇒ tP → Q

X =⇒ tQ/X =⇒ tP → Q

t → E X =⇒ tP → Q;X =⇒ tP/X =⇒ tQ

X =⇒ tP → Q;X =⇒ f Q/X =⇒ f P

t¬ I X =⇒ f P/X =⇒ t¬P

t¬ E X =⇒ t¬P/X =⇒ f P

f ∧ I X =⇒ f P/X =⇒ f P ∧Q

X =⇒ f Q/X =⇒ f P ∧Q

f ∧ E X =⇒ f P ∧Q;X =⇒ tP/X =⇒ f Q

X =⇒ f P ∧Q;X =⇒ tQ/X =⇒ f P

f ∨ I X =⇒ f P ;X =⇒ f Q/X =⇒ f P ∨Q

f ∨ E X =⇒ f P ∨Q/X =⇒ f P

X =⇒ f P ∨Q/X =⇒ f Q

f → I X =⇒ tP ;X =⇒ f Q/X =⇒ f P → Q

f → E X =⇒ f P → Q/X =⇒ tP

X =⇒ f P → Q/X =⇒ f Q

f ¬ I X =⇒ tP/X =⇒ f ¬P

f ¬ E X =⇒ f ¬P/X =⇒ tP
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Table III. Introduction rules for signed sentences.

f P

tP → Q
t →I1

tQ

tP → Q
t →I2

tP
f Q

f P → Q
f →I

tP

tP ∨Q
t∨I1

tQ

tP ∨Q
t∨I2

f P
f Q

f P ∨Q
f ∨I

tP
tQ

tP ∧Q
t∧I

f P

f P ∧Q
f ∧I1

f Q

f P ∧Q
f ∧I2

tP

f ¬P
f ¬I

f P

t¬P
t¬I

Table IV. Elimination rules for signed sentences.

tP → Q
tP

tQ
t →E1

tP → Q
f Q

f P
t →E2

f P → Q

tP
f →E1

f P → Q

f Q
f →E2

tP ∨Q
f P

tQ
t∨E1

tP ∨Q
f Q

tP
t∨E2

f P ∨Q

f P
f ∨E1

f P ∨Q

f Q
f ∨E2

tP ∧Q

tP
t∧E1

tP ∧Q

tQ
t∧E2

f P ∧Q
tP

f Q
f ∧E1

f P ∧Q
tQ

f P
f ∧E2

f ¬P

tP
f ¬E

t¬P

f P
t¬E

and IV whose premises are exemplified by previous elements of the
sequence. An intelim sequence is closed if it contains both tP and f P
for some formula P , otherwise it is open. It can be easily shown that
every closed intelim sequence can be extended to an atomically closed
one, i.e. one that contains both tP and f P for some atomic formula
P . An intelim deduction of a signed formula ϕ from the set of signed
formulasX is an intelim sequence based onX ending with ϕ. An intelim
deduction of an unsigned formula P from the set of unsigned formulas
Γ is an intelim deduction of tP from {tQ | Q ∈ Γ}. We say that a
signed formula ϕ is intelim-deducible from a set of signed formulas X,
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if there is an intelim deduction of ϕ from X. We also say that P is
intelim-deducible from Γ, and write Γ ⊢ P , if tP is intelim-deducible
from {tQ | Q ∈ Γ}. Finally, an intelim refutation of a set of formulas Γ
is a closed intelim sequence π for {tQ | Q ∈ Γ}. When such a π exists,
we say that Γ is intelim inconsistent and write Γ ⊢. Clearly, Γ ⊢ if and
only if, for some sentence P , both Γ ⊢ P and Γ ⊢ ¬P .

It can be easily checked that this intelim system is equivalent to
the one in Table II, in the sense that it justifies exactly the same
deductions.22

This system is considerably weaker than classical logic. No inference
which relies on “virtual information”, and is therefore non-analytic in
the sense discussed in Section 6, can be justified by means of its rules.

EXAMPLE 1. P ∨ Q,P → R,Q → R 6⊢ R. Here no elimination
rule can be applied to the premises. On the other hand, introduction
rules can (always) be applied, but here they would lead us astray, since
they would introduce formulas which are not subformulas either of the
premises or of the conclusion. A rigorous argument, showing that the
inference cannot be justified by the intelim rules only, requires the sub-
formula theorem discussed in Section 8.

However, the resulting logic validates all the inferences that do not
require virtual information and is still strong enough to perform a good
deal of ordinary deductive reasoning. For example, the intelim sequence
in Table V is a deduction of V from the premises

{¬U ∨ S,U, S → (R ∨ ¬U),¬(Q ∧R), P → Q,¬P → T, T ∧R→ V }.

We seem, therefore, to have found a good candidate for a solution
to our Problem 2: we have a “sensible” semantics for the logical op-
erators which (i) is weaker than classical semantics (ii) is based on
informational notions, and (iii) justifies exactly those inferences that
are “analytical” in the strict informational sense, that is, which do
not require any appeal to virtual information. The underlying idea is
that the use of virtual information in the rules which define the logical
operators is responsible for the intractability of their classical meaning:
this meaning cannot be fully “explicated” without an “augmentative”
process that, when iterated, may force us to venture out into virtual
information states which go considerably beyond the ones that are
“given” in the premises.

This idea is fully confirmed by the technical results discussed in the
next section. As we shall see, unlike their classical meaning, what we

22 The structural rules R and W of Table II are built into the notions of “intelim
sequence” and “intelim deduction”.
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Table V. An example of intelim deduction.

1 t¬U ∨ S premise
2 tU premise
3 tS → (R ∨ ¬U) premise
4 t¬(Q ∧ R) premise
5 tP → Q premise
6 t¬P → T premise
7 tT ∧ R→ V premise
8 f ¬U from 2 by f ¬I
9 tS from 1 and 2 by t∨E1
10 tR ∨ ¬U from 3 and 9 by t →E1
11 tR from 10 and 8 by t∨E2
12 f Q ∧ R from 4 by t¬E
13 f Q from 12 and 11 by f ∧E2
14 f P from 5 and 13 by t →E2
15 t¬P from 14 by t¬I
16 tT from 6 and 16 by t →E1
17 tT ∧ R from 11 and 16 by t∧I
18 tV from 7 and 17 by t →E1

have called “the informational meaning of the logical operators” is a
tractable notion, which complies with all our requirements: (i) intelim
deducibility enjoys the subformula property (all its valid inferences can
be justified by means of deductions which are analytical in the syntactic
sense, in accordance with our requirement (4)) and (ii) there is a feasi-
ble decision procedure to establish whether a given conclusion follows
from given premises. All inferences are justified by “explication” of the
informational meaning of the logical operators and such explication can
be carried out in practice.

REMARK 1. It can be easily verified that the relation of intelim de-
ducibility is a logic in Tarski’s sense (see footnote. 10). However, this
logic has no tautologies. This is hardly surprising, since a tautology is a
sentence P which is “deducible from the empty set”, i.e. from the empty
information state, and therefore its deduction must make essential use
of virtual information, which prevents it from being analytical in the
strict informational sense.23 Of course, some tautologies are easy to
prove despite the argument being not strictly analytical: the distinction

23 It is somehow odd that the absence of tautologies in a logical system is perceived
as something in need of justification. Logicians are so acquainted with the technical
notion of tautology that sometimes they fail to recognize that it is the latter, if
ever, that may need justification in the light of ordinary deductive practice (which
makes no use of tautologies). However, it is worth remarking that, in this respect,
intelim deducibility is in good company: Belnap’s four-valued logic ((Belnap Jr.,
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tractable/intractable does not apply to single examples but to infinite
classes of examples and the relation ∅ ⊢ P is (most likely) intractable.
On the other hand, despite its tractability, the notion of intelim de-
ducibility is sufficient to solve a good deal of interesting problems that
may look “difficult” at first sight, but are in fact easily solved via a
systematic procedure.

REMARK 2. A stronger (if still sub-classical) deducibility relation
could be defined as follows: Γ ⊢ P if and only if Γ ∪ {¬P} is intelim
inconsistent. For instance, returning to Example 1, R would become
intelim deducibile from P∨Q,P → R and Q→ R, since the set obtained
by adding ¬R to the premises is intelim inconsistent (as the reader can
easily check). However, such a stronger deducibility relation would fail
to satisfy the Transitivity property, since it may well be that Γ ∪ {¬P}
and Γ ∪ {P,¬Q} are both intelim inconsistent, but Γ ∪ {¬Q} is not.
On the other hand, this stronger definition may still be preferred if one
thinks, unlike Tarski (see footnote 10), that Transitivity is not a nec-
essary requirement for a logical system. It is not difficult to check that
even the stronger definition is weaker than classical logic. For example,
the classical inference P ∨ (Q ∧ R) ⊢ (P ∨ Q) ∧ (P ∨ R) cannot be
justified, for the set {P ∨ (Q ∧R),¬((P ∨Q) ∧ (P ∨R)) is not intelim
inconsistent. In the context of this paper we are interested in transitive
deducibility relations and, therefore, shall stick to the weaker definition
of ⊢.

8. Subformula property and tractability

The consequence relation of Classical Propositional Logic is closed un-
der the ex-falso quodlibet condition:

(Ex-Falso) If Γ ⊢, then Γ ⊢ Q for every Q.

It is easy to verify that intelim deducibility is also closed under the (Ex-
Falso) condition. To see this, it is sufficient to note that the following
sequence of signed formulas is an intelim deduction of Q from {P,¬P}:

1 tP premise
2 t¬P premise
3 tP ∨Q from 1 by t∨I1
4 f P from 2 by t¬E
5 tQ from 3 and 4 by t∨E1

1976; Belnap Jr., 1977)) is another well-known (and not unrelated) example of a
logical system which does not give rise to tautologies.
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A deduction like the one above looks “odd”, in that it makes essential
use of both tP and f P as if “P is true” and “P is false” could belong to
the same information state and so, in some sense, violates the Principle
of Non-Contradiction. One could reasonably claim that if we discover
that our information state is inconsistent we should do something to
remove the inconsistency and not trust any conclusion which can be
obtained by using information which is explicitly inconsistent.

Say that a signed formula ψ occurring in an intelim deduction π of
P from Γ is redundant if ψ 6= tP and ψ is not used as a premise of
any application of an intelim rule in π. Call non-redundant reduction
of π the intelim deduction of P from Γ obtained from π by removing
the redundant signed formulas. Then, we say that an intelim deduction
of P from Γ is regular if its non-redundant reduction is open, and
irregular otherwise. In other words, irregular deductions of P from Γ
are deductions in which information which is explicitly inconsistent
and recognized as such has been used to obtain a given conclusion.
(Observe that whether a given intelim sequence is closed can be verified
in polynomial time, and so it is feasible to recognize when a deduction is
irregular.) The idea is that irregular deductions do not inform us that
the conclusion “follows” from the premises, if not in a Pickwickian
(classical) sense, but only that our premises are inconsistent. If we
restrict ourselves to regular deductions, the ex-falso quodlibet principle
no longer holds.

The following proposition states a basic normalization theorem for
intelim deductions (the length |π| of a K-intelim sequence π is defined
as the total number of symbols occurring in π):

PROPOSITION 1. Let Γ be a finite set of formulas. Then:

1. every regular intelim deduction π of P from Γ can be transformed
into an intelim deduction π′ of P from Γ such that (i) π′ enjoys
the subformula property, and (ii) |π′| ≤ |π|;

2. every intelim refutation π of Γ can be transformed into an intelim
refutation π′ of Γ such that (i) π′ enjoys the subformula property,
and (ii) |π′| ≤ |π|.

The above proposition suggests that irregular intelim deductions may
not be normalizable. And this is indeed the case, as shown by the
intelim deduction of Q from {P,¬P} given above, which cannot be
reduced to one with the subformula property. So, in general, intelim
deducibility does not enjoy the subformula property. However, one can
reasonably claim that normalization fails exactly when it should, that
is when we have already obtained a closed intelim sequence (which can
be verified in polynomial time), and try to use two signed formulas of
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the form tP and f P (possibly together with other signed formulas in
the sequence) to obtain a certain “conclusion” from them. In such a
case, it seems far more sensible to take the closed intelim sequence
as a refutation of the initial premises. Unlike irregular deductions,
according to our Proposition 1, refutations are always normalizable.24

Observe also that Proposition 1 marks a clear distinction from normal-
ization theorems that can be proved for full classical (or intuitionistic)
logic, where normal proofs may be longer, and sometimes exponentially
longer, than non-normal ones (the same holds true for cut-free proofs
versus cut-based proofs in the sequent calculus).

REMARK 3. Observe that, since intelim deducibily satisfies the (ex-
falso) condition, P is intelim deducible from Γ if and only if either Γ is
intelim inconsistent, or there is a regular intelim deduction of P from
Γ. Moreover, Proposition 1 ensures that in either case we can restrict
our attention to intelim sequences with the subformula property.

This remark immediately suggests a decision procedure for intelim de-
ducibility: in order to establish whether P is intelim deducible from a
finite set of sentences Γ we can (i) apply the intelim rules in all possible
ways starting from {tQ | Q ∈ Γ} and restricting our attention to
applications which preserve the subformula property; (ii) if the resulting
intelim sequence is closed or contains tP , then P is intelim deducible
from Γ, otherwise it is not.

We are now in a position to state our main result:

PROPOSITION 2. Intelim deducibility is a tractable problem. Whether
a formula P is intelim deducible from a finite set Γ of formulas can be
decided in polynomial (quadratic) time.

A feasible decision procedure is outlined in the Appendix.

9. The informational meaning of the logical operators

revisited

In Section 4, we argued that the standard necessary and sufficient con-
ditions that provide the equally standard truth-conditional definition
of the meaning of the logical operators in classical propositional logic
fail when the central notions of (classical) truth and falsity are replaced
with central notions of informational nature, such as “‘P is true’ belongs

24 If we add a proof rule corresponding to the ex-falso quodlibet principle, such as
ϕ;ϕ/ψ as a new structural rule, and modify the deducibility relation accordingly,
then the subformula property holds in general.
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to the information state S” and “‘P is false’ belongs to the information
state S”. Just as in Section 7 we showed how the intelim approach to
the semantics of the logical operators can be adjusted to find a solution
to our Problem 2, in this section we make the same attempt with the
truth-conditional approach.

Let us consider a standard propositional language L, identified with
the set of all its well-formed sentences, and let us recall that a valuation
is a mapping of L into {0, 1}. (Sometimes we shall speak of a valuation
of a set of sentences ∆, to mean a mapping of ∆ into {0, 1}.) If we apply
to the values 0 and 1 the informational reading recalled in the previous
paragraph, a valuation describes an information state, v(P ) = 0 means
that the piece of information “P is false” belongs to the information
state in question and v(P ) = 1 means that the piece of information
“P is true” belongs to the information state in question. However, if
they have to describe information states, rather than possible worlds,
such valuations are usually partial : in a given information state some
sentences may be assigned neither 1 nor 0, reflecting our ignorance
about their truth-value.

In this valuation-based approach, the intended meaning of the logical
operators is usually specified by defining, within the set of all possible
valuations, those which are admissible, i.e. those that comply with
this intended meaning. Admissible valuations are usually defined by
specifying a set of closure conditions that a valuation should satisfy.
The usual conditions for the Boolean operators are the following:

C1 v(P ) = 1 if and only if v(¬P ) = 0;

C2 v(P ∧Q) = 1 if and only if v(P ) = 1 and v(Q) = 1;

C3 v(P ∨Q) = 1 if and only if v(P ) = 1 or v(Q) = 1;

C4 v(P → Q) = 1 if and only if v(P ) = 0 or v(Q) = 1.

C5 v(P ) = 0 if and only if v(¬P ) = 1;

C6 v(P ∧Q) = 0 if and only if v(P ) = 0 or v(Q) = 0;

C7 v(P ∨Q) = 0 if and only if v(P ) = 0 and v(Q) = 0;

C8 v(P → Q) = 0 if and only if v(P ) = 1 and v(Q) = 0.

A valuation satisfying the above conditions is said to be saturated. More
specifically, we say that a valuation v is upward saturated, if v satisfies
the above conditions in the “only-if” direction, and downward saturated
if it satisfies them in the “if” direction. A Boolean valuation is a satu-
rated valuation that satisfies the additional condition of being total, i.e.
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defined for all sentences. Observe that, for total valuations, conditions
C5–C8 are redundant, in that they can be derived from conditions
C1–C4. According to the standard view, the intended meaning of the
classical logical operators is fixed by accepting only Boolean valuations
as admissible. Moving from their classical to their informational mean-
ing, not only must the requirement of total valuations be dropped, but
also (as already argued in Section 4) some of the saturation properties
become obviously unsound.

In particular, when represented as valuations, information states
are not downward saturated. That P ∨ Q is assigned the value 1 by
a valuation v representing an information state does not imply that
either P is assigned 1 or Q is assigned 1. Similarly, if P ∧Q is assigned
0, this does not imply that either P is assigned 0 or Q is assigned
0. In this context, therefore, admissible valuations cannot be specified
by means of necessary and sufficient conditions such as C1–C8. All
we can do is specify a set of constraints, which restrict the domain of
all possible valuations to those which are compliant with the intended
(informational) meaning of the logical operators, without requiring that
these constraints have the form of necessary and sufficient conditions.

Let us call locale of a formula P , and denote it by L(P ), the set
containing P itself and its immediate subformulas. We now propose to
define the informational meaning of a logical operator ♯ by determining
which valuations of L(P ) are not admissible for a formula P containing
♯ as the main operator. This is a negative way of defining this meaning.
It allows us to detect valuations that are immediately forbidden to
any agent who “understands” this meaning, without requiring her to
engage in any complex task involving “augmentative” reasoning, i.e. the
consideration of virtual information (see Section 6 above). For instance
a valuation such that v(P ∨ Q) = 1, v(P ) = 0 and v(Q) = 0 would
clearly be inadmissible and therefore taken as part of the definition of
“∨”.

These constraints are summarized in Table VI, where each line rep-
resents a minimal non-admissible valuation (the asterisk means that
the corresponding informational value of the sentence may indifferently
be true, false or undefined). A valuation v is admissible if, for every
formula P , v does not contain any valuation of L(P ) that is ruled
out by the accepted constraints expressing the informational meaning
of the main operator of P . We shall denote by A the domain of all
admissible valuations. Admissible valuations are partially ordered by
the usual approximation relation ⊑ defined as follows: v ⊑ w (read “w
is a refinement of v” or “v is an approximation of w”) if and only if w
agrees with v on all the formulas for which v is defined. Being a partial
function, a partial valuation is a set of pairs of the form 〈P, i〉, where
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Table VI. The informational meaning of the logical operators explained by
means of constraints on informational valuations. Each line represents a
minimal non-admissible valuation.

¬P P

1 1
0 0

P ∨Q P Q

1 0 0
0 1 ∗
0 ∗ 1

P ∧Q P Q

1 0 ∗
1 ∗ 0
0 1 1

P → Q P Q

1 1 0
0 ∗ 1
0 0 ∗

P is a sentence in the given language and i is equal to 0 or 1. Each of
these pairs can be thought of as a “piece of information” and the partial
valuation itself as an attempt to put together such pieces of information
in a way which is consistent with the intended meaning of the logical
operators. The partial ordering ⊑ is a meet-semilattice ordering with
a bottom element equal to ∅, the valuation which is undefined for all
formulas of the language. It fails to be a lattice because the join of two
admissible valuations may be inadmissible.

10. Shallow information states

Let us now investigate how our suggestion — that the informational
meaning of the logical operators could be defined through a suitable set
of constraints on valuations, rather than through the usual necessary
and sufficient conditions — works in practice to characterize the set of
inferences that are justified only by virtue of this meaning. In fact, Kant
suggested that analytical judgements are recognized as true not only by
virtue of the meaning of the relevant words (once it has been properly
explicated), but also by virtue of the principle of non-contradiction.25

Here, we make the analogous suggestion that analytical inferences (in
the strict sense investigated in this paper) are recognized as valid not
only by virtue of the meaning of the logical words (as explicated by the
appropriate constraints on admissible valuations), but also by virtue of
a general consistency principle, which is as immediate to apply as the
principle of non-contradiction. Let us first illustrate how this principle
works in a typical example.

Consider a valuation v such that v(P∨Q) = 1 and v(P ) = 0, while P
and Q are both undefined. We can legitimately say that the value of Q

25 See Section IV of the introduction to the Critique of Pure Reason
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in this valuation is implicitly determined by the values of P ∨Q and P
and by our understanding of the meaning of ∨ based on the constraints
specified in Table VI. For, there is no admissible refinement of v such
that v(Q) = 0, since such a refinement would fail to satisfy one of the
constraints that define the meaning of “∨”. In other words, any assign-
ment other than 1 would be immediately recognized as inconsistent
by any agent that understands ∨ via the specified constraints. Notice
that checking whether a possible refinement of a valuation regarding
a specific formula Q is admissible is a task that can be performed in
linear time on the basis of local information. It involves only checking
all the locales in which Q is embedded. If assigning a certain value to
Q violates one of the constraints, which are specified in terms of the
locales of formulas, then the valuation is not admissible.

Hence, if we understand the meaning of ∨, we are able to detect
immediately that Q cannot be assigned, consistently with this meaning,
the value 0, given that P ∨Q has been assigned the value 1 and P the
value 0. In such a situation, we can say that the information concerning
the value of Q is implicitly contained in our information state — in
particular, in that portion of it concerning the locale of P∨Q— because
the intended meaning of ∨ leaves us no option about this value. This
is comparable, interestingly, to what happens in those easy steps of
the sudoku game where the figure to be inserted in a given empty
cell is dictated by the figures already inserted in the cells belonging to
the regions into which the empty cell is contained.26 This is the most
basic consistency principle by means of which logical inference can be
justified analytically, that is, by virtue of the informational meaning of
the logical operators as specified by the constraints in Table VI.

The time has come to revisit Hintikka’s intuition (see Section 2).
Like Hintikka, we shall also distinguish between increasing levels of
informational depth, except that our distinctions apply to propositional
logic. The deepest possible level coincides with Carnap and Bar-Hillel’s
semantic information and is a kind of potential information, which is
intractable and not increased by deductive inference. By way of con-
trast, the most basic level, “shallow information”, is tractable and is
increased by deductive inference.

26 A “region” in the classic version of the sudoku game is either a column, or a
row or one of the four sub-squares into which the main square is divided. In our
context, a “region” is simply the locale of a formula.
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Given a valuation v, let us say that a piece of information27 〈P, i〉,
with i ∈ {0, 1}, is implicitly contained in v at depth 0 if the comple-
mentary piece of information 〈P, |1− i|〉 is immediately ruled out solely
by virtue of the meaning of the logical operators. If adding the piece
of information 〈P, 1〉 (〈P, 0〉) to a valuation v makes it non-admissible,
i.e. violates one of the constraints specifying the intended meaning of
the main logical operator of P , then its complement 〈P, 0〉 (〈P, 1〉) is
implicitly contained in v at depth 0. A minimal requirement on an
information state is that it is closed under such implicit information of
depth 0, i.e. the kind of information that immediately follows from the
meaning constraints. We call information state of depth 0 or shallow
information state an admissible valuation v that is closed under the
following condition (recall that A is the set of admissible valuations):

(D0) For every formula P ∈ L :

v ∪ {〈P, i〉} 6∈ A =⇒ 〈P, |1 − i|〉 ∈ v.

In other words, if a piece of information is implicitly contained at depth
0 in a valuation v, then it must be explicitly contained in v. The proof
of the following proposition is left to the reader.

PROPOSITION 3. A shallow information state is a Boolean valuation
if and only if it contains a total valuation of all the atomic formulas
of the language.

So, Boolean valuations can be seen as shallow information states that
are closed under a Principle of Omniscience, the informational coun-
terpart of the classical Principle of Bivalence:

For every information state v and every atomic sentence P , either
P is true in v or P is false in v.

EXAMPLE 2. Consider an admissible valuation v such that

1. v(P ∨Q) = 1

2. v(P ) = 0

27 Let us say that a piece of information 〈P, i〉, with i ∈ {0, 1}, is “correct” when
the real truth value of P is i and “incorrect” otherwise. Strictly speaking, “informa-
tion” can only be correct, “incorrect information” being in fact misinformation or
disinformation. This point is not merely linguistic but conceptual, for it is crucial in
order to understand the solution of the Bar-Hillel-Carnap Paradox. In this context,
however, we are using “information” as synonymous with “content”, which can be
correct, and hence qualify as information, or incorrect, and hence qualify as mis- or
disinformation.
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3. v(Q→ R) = 1

4. v(Q→ S) = 1

5. v(¬T → ¬(R ∧ S)) = 1

6. v(T ∧ U) = 0.

We show that v′(U) = 0 for every information state of depth 0 that
contains v, i.e. for every admissible valuation closed under D0 which
contains v. From (i) and (ii), by the constraints on ∨, it follows that
v′ ∪ {〈Q, 0〉} would be non-admissible. So, by D0:

7. v′(Q) = 1.

Then, from (vii) and (iii) it follows that v′ ∪ {〈R, 0〉} would be non-
admissible by the meaming constraints on →. Hence, by D0 again:

8. v′(R) = 1.

The remaining steps of the argument are similar and can be summarized
as follows:

9. v′(S) = 1, by (iv), (vii), the meaning constraints on → and D0.

10. v′(R∧S) = 1, by (viii), (ix), the meaning constraints on ∧ and D0.

11. v′(¬(R ∧ S)) = 0, by (x), the meaning constraints on ¬ and D0.

12. v′(¬T ) = 0, by (v), (xi), the meaning constraints on → and D0.

13. v′(T ) = 1, by (xii), the meaning constraints on ¬ and D0.

14. v′(U) = 0, by (vi), (xiii), the meaning constraints on ∧ and D0.

Intuitively, a shallow or 0-depth information state represents the total
information that a reasoner holds either explicitly, or implicitly on the
basis of the intended meaning of the logical operators and of the basic
consistency principle expressed by the closure condition D0.

Let us now say that P is a 0-depth logical consequence of Γ, and
write, Γ 0 P if v(P ) = 1 for every shallow information state v such
that v(Q) = 1 for all Q ∈ Γ. We also write Γ 0 when there exists
no shallow information state v such that v(Q) = 1 for all Q ∈ Γ. In
this case, we say that Γ is inconsistent at depth 0. The reader can
easily check that all the rules of the intelim system of Tables III and
IV are such that the conclusion is a 0-depth logical consequence of the
premises. This implies that the following soundness theorem holds true:
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PROPOSITION 4. For every finite set Γ of sentences and every sen-
tence P , if there is an intelim deduction of P from Γ, then Γ 0

P .

The proof is left to the reader.
As for the completeness of the intelim system, there is a technical

point which must be taken care of. It follows from the principle D0

above that in every shallow information state such that v(P ∨ P ) = 1,
it must hold true that v(P ) = 1. Similarly, in every shallow information
state such that v(P ∧ P ) = 0 it must hold true that v(P ) = 0. So, the
value of P is by all means dictated, in both cases, by the value of
P ∨ P (P ∧ P ) and by the intended meaning of ∨ (∧) as specified by
the meaning constraints. However, our intelim rules do not allow us, as
they stand, to infer tP from tP∨P , or f P from f P∧P , unless we make
use of virtual information. This technical problem can be addressed in
two different ways:

1. we pre-process all formulas and replace every occurrence of P ∨ P ,
respectively P ∧ P , with P ;

2. we introduce two new ad hoc elimination rules of the form tP ∨
P/tP and f P ∧ P/f P , claiming that they descend immediately
from the very meaning of ∨ and ∧, with no need for assuming
virtual information.28

Both solutions appear quite reasonable, though not terribly elegant.
The first one requires restrictions on the language that do not under-
mine its expressive power. The second solution requires the addition of
ad hoc rules that somehow spoil the harmony of the intelim approach,
but are, on the other hand, perfectly justified by the aim of extracting
all the information that can possibly be obtained on the sole basis of
the meaning of the logical operators, without any appeal to virtual
information. A more elegant solution would consist in recognizing that
the traditional approach, based on standard inference rules, is perhaps
not ideal to represent the flow of logical information, and revert to a
less traditional approach based on logical networks, along the lines
suggested in the Appendix. While this suggestion will be properly
developed in a subsequent work, in the next proposition we assume
that either of the two solutions outlined above has been adopted, and
the notion of intelim deduction has been modified in the obvious way.
Under this assumption, it can be shown that the following completeness
theorem also holds true:

28 This solution is the same as the one adopted in (Finger and Gabbay, 2006) in
response to a similar problem arising in their investigations into tractable subsystems
of classical propositional logic.
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PROPOSITION 5. For every finite set Γ of sentences and every sen-
tence P , Γ 0 P implies that there is an intelim deduction of P from
Γ.

This completeness theorem brings us to our proposed solution to Prob-
lem 1. Let the shallow information content SI(P ) of a sentence P be
defined as the lattice meet of all the shallow information states v such
that v(P ) = 1, that is:

SI(P ) =
l

{v | v(P ) = 1},

where v ranges over the set of all shallow information states.
Then, we have that P is intelim deducible from Γ if and only if

the shallow information content of P is “contained” (in the sense of
the approximation relation ⊑) into the shallow information content
of (the conjunction of the sentences in) Γ. Since intelim deducibility
is tractable (see Proposition 2 above), inferences that are analytical
in the informational sense, according to this definition of information
content, can also be recognized as valid by means of a feasible deci-
sion procedure. Moreover, such inferences are exactly those that are
analytical in the semantic sense (requirement (3)), once the meaning
of the logical operators is taken to be their informational meaning,
discussed in Sections 7 and 9. Finally, such inferences are exactly those
that are analytical in the fourth sense, “the strict informational sense”
introduced in Section 6, which constitutes the central idea on which
our whole approach is based.

11. Synthetical reasoning in Classical Propositional Logic

While the conditions concerning the meaning of the logical operators
must be given once and for all, the consistency principles concerning
the treatment of implicit information naturally admit of a gradual
approach. We do not need to require that all implicit information is
brought to light in one step, as if our computational resources were
unlimited and the notion of information state insensitive to realis-
tic computational limitations. Implicit information is, metaphorically,
information that is “buried” under what one explicitly knows, and dif-
ferent kinds of information states may be considered, depending on how
deeply rational agents — with their limited resources — are allowed to
“dig” in order to bring it to light.

As far as shallow information states are concerned, we do not have
far to dig in order to bring out the implicit information. This is literally
on the surface, and hence any agent can pick it up. Consider, on the
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other hand, a valuation v such that v(P ∨Q) = 1, v(P → R) = 1 and
v(Q → R) = 1, while P,Q and R are all undefined. In this case too
one may legitimately hold that the value of R (namely 1) is implicitly
determined by the values of the other sentences. However, in order to
“see” this, one has to dig a bit deeper. For one must reason along the
following lines: although P is not defined in v, any refinement v′ of v
in which P is defined must be such that either v′(P ) = 0 or v′(P ) = 1.
In both cases, the value of R is immediately determined in v′ by the
constraints on the meaning of the logical operators and the consistency
principle D0. However, we need to consider the possible refinements
v′ of v in which P is defined, that is, we need to expand our initial
information state with respect to the sentence P . Hence, although the
value of R is still implicitly determined by that of the “surrounding”
sentences, bringing out this implicit information requires considering
virtual information, that is, “visiting” virtual valuations that are more
defined than the original one.

Our suggestion is that one can naturally define information states
of different depth, depending on (i) the allowed methods for digging up
implicit information and (ii) their computational cost. But then, the
informational interpretation of logical consequence gives rise to differ-
ent deducibility relations, depending on the depth of the information
states that are used to determine whether the relation holds for a set of
premises Γ and a proposed conclusion P , that is depending on the depth
at which the use of virtual information can be recursively allowed. In
this respect, there are several options. We shall briefly describe one of
the most interesting, which allows for the characterization of a hierarchy
of tractable logical systems converging to classical propositional logic.

Given two (admissible) valuations v and v′, say that v′ is a refine-
ment of v on P if (i) v ⊑ v′ and (ii) P is defined in v′. Now, we call
information state of depth 0 a shallow information state as defined in
Section 10. Then, for every k ∈ N+, we call information state of depth k
an admissible valuation v that is closed under the following condition:

(Dk) For every formula Q ∈ L, if the following condition holds true:

– there exists an atomic formula P such that v′(Q) = i (with
i = 0, 1) for every information state v′ of depth k−1 which
is a refinement of v on P ,

then v(Q) = i.

This definition permits the use of atomic virtual information (namely,
the atomic sentence P ) up to a fixed depth. Then, for every k ∈ N we
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can say that P is a k-depth logical consequence of Γ, and write Γ k P ,
if v(P ) = 1 for every information state v of depth k such that v(Q) = 1
for all Q ∈ Γ. We also write Γ k when there exists no information
state v of depth k such that v(Q) = 1 for all Q ∈ Γ. In this case, we say
that Γ is inconsistent at depth k. Observe that, by definition, k⊆k+1

for all k ∈ N, and it is not difficult to show that the inclusion is proper,
that is, k+1 is strictly more powerful than k.

The notion of intelim deducibility, defined in Section 7, can now be
seen as the first level of a corresponding hierarchy, namely as intelim
deducibility of depth 0 (⊢0). For every k ∈ N+, an intelim sequence of
depth k based on a set of signed formulas X is a sequence ϕ1, . . . , ϕn

of signed formulas such that each element ϕi of the sequence either
(i) is an element of X, or (ii) is intelim deducible at depth k − 1
from both ϕ1, . . . , ϕi−1, tP and ϕ1, . . . , ϕi−1, f P for some atomic P .
(The general structure of a k-depth intelim sequence is illustrated in
Figure 1, together with an example of an intelim sequence of depth 1.)
The generalization to depth k of the other notions defined in Section 7
can be obtained in the obvious way. We write Γ ⊢k P when P is intelim
deducibile from Γ at depth k and Γ ⊢k when Γ is intelim inconsistent
at depth k. Note that, by definition, ⊢k⊆⊢k+1. Again, ⊢k+1 is strictly
more powerful than ⊢k.

We can show that, for every k ∈ N, Γ k P if and only if Γ ⊢k P .
Moreover, each relation ⊢k is a logical system in Tarski’s sense, that
is, it satisfies the following conditions:

(Reflexivity) P ⊢k P, for all P

(Monotonicity) If Γ ⊢k P, then Γ, Q ⊢k P, for all Q

(Cut) If Γ ⊢k P, and Γ, P ⊢k Q, then Γ ⊢k Q

Finally, every logic in this hierarchy admits of a polynomial time deci-
sion procedure:

PROPOSITION 6. Intelim deducibility of depth k is a tractable prob-
lem for every fixed natural number k. Whether a formula P is intelim
deducible at depth k from a finite set Γ of formulas can be decided in
polynomial time (O(n2k+2)).

The decision procedure can be worked out from the decision procedure
for depth-0 intelim-deducibility sketched in the proof of Proposition 2
provided in the Appendix. The details of such a procedure and the proof
of the upper bound will be given in a subsequent paper. As the above
proposition shows, the upper bound on the complexity of the decision
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X

tP1

...
ϕm+1

f P1

...
ϕm+1

ϕm+1

...
ϕm+i

tPi+1

...
ϕm+i+1

f Pi+1

...
ϕm+i+1

ϕm+i+1

...
ϕm+n

tP ∨Q
tP ∨ (Q→ S)
t¬P ∨R
t¬P ∨ (R→ S)

tP
f ¬P
tR
tR→ S
tS

f P
tQ
tQ→ S
tS

tS

(a) (b)

Figure 1. Figure (a) illustrates the general structure of an intelim sequence of depth
k based on X = ϕ1, . . . , ϕm. Each box leading to ϕm+j (with j = 1, . . . , n) contains
an intelim sequence of depth k − 1 based on ϕ1, . . . , ϕm+j−1 plus the “virtual
information” tPj or f Pj , with Pj atomic. If ϕm+j is intelim deducibile at depth
k−1 from the signed sentences which precede it, the virtual information concerning
Pj is not needed, and so there is only one intelim sequence of depth k − 1 leading
to ϕm+j . Figure (b) provides an example of an intelim sequence of depth 1.

procedures grows with k. The limit ∞ of this infinite sequence of
logical systems, for which the upper bound is exponential, is classical
propositional logic.

Although quite independently of the main problem addressed in this
paper — the informativeness of classical propositional logic — the idea
of approximating full classical propositional logic via a sequence of
“parameterized” tractable subsystems has received considerable atten-
tion in the field of automated deduction. See, for instance, (Cadoli and
Schaerf, 1992), (Dalal, 1996), (Dalal, 1998), (Crawford and Ethering-
ton, 1998). More recently Marcelo Finger (in collaboration with Renata
Wasserman and Dov Gabbay) has devoted a series of papers to a sys-
tematic investigation of this problem; see, e.g., (Finger, 2004a), (Finger,
2004b), (Finger and Wasserman, 2004) and (Finger and Gabbay, 2006).
The last paper addresses the problem by limiting the use of a rule
corresponding to the principle of bivalence — or, equivalently, to the
classical cut rule — in the context of a sequent-based presentation of
the system KE ((D’Agostino and Mondadori, 1994)) whose operational
rules consist of the elimination rules illustrated in Table IV. (A sugges-
tion in this sense can be found in (D’Agostino and Mondadori, 1994,
Prop. 5.6); see also (D’Agostino, 1999, Prop. 46).) This approach could
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therefore be usefully compared to the one proposed here. However, both
the basis of the approximation process and the approximation method
are quite different, and a detailed technical comparison would go largely
beyond the scope of the present paper.29

12. Conclusion

Solving the scandal of deduction was never going to be easy. The reader
who has kindly followed us up to this point may be reminded that we
have been able to devise a strategy that we believe to be more successful
than others proposed before because we have been able to rely on many
previous efforts, on recent results in theoretical computer science and
on equally recent insights in the philosophy of information.

By way of conclusion, it might be worth highlighting that our solu-
tions of the Bar-Hillel-Carnap Paradox and of the Scandal of Deduction
are both based on a fundamental re-adjustment of the sort of resources
to which an ideal investigator may be allowed to help herself.

29 We just mention a few points which mark the main differences between our
approach and others that can be found in the literature:

1. Unlike (Dalal, 1996), (Dalal, 1998), (Crawford and Etherington, 1998), our
approach works for full classical propositional logic, without requiring preliminary
translation into any normal form.

2. Each approximation k satisfies the Transitivity principle, while none of the
approximations in (Dalal, 1996), (Dalal, 1998), (Crawford and Etherington, 1998),
(Finger, 2004a), (Finger, 2004b), (Finger and Wasserman, 2004), (Finger and Gab-
bay, 2006) does. So, each k can be legitimately considered as a logic (see footnote
10 above) on its own, as opposed to a mere approximation.

3. The basic logic 0 is closed under both elimination and introduction rules and
so provides a full characterization of the logical operators. One can therefore claim
that the classical meaning of the logical operators is defined once and for all by the
basic logic, although this definition is different from the one adopted in the Gentzen
tradition. The approximating logics differ from each other only in their use of atomic
virtual information. By way of contrast, in (Finger and Gabbay, 2006) part of the
classical meaning of the logical operators (the part which justifies the introduction
rules) is missing in the basic logic and is retrieved only through the approximation
process. As a consequence, their use of the classical principle of bivalence (alias the
classical cut rule), which roughly speaking corresponds to our “virtual information”,
cannot be restricted to atomic formulas.

4. In our approach there is no fixed upper bound on the number of times in which
virtual information can be introduced, or on the number of distinct formulas which
can be used in this role. The fixed upper bound is only on the depth at which the
recursive use of atomic virtual information is allowed. This is a general and uniform
structural principle concerning our computational limitations and does not depend
on some more or less arbitrary restriction on the formulas to be used as virtual
information.
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In the case of the Paradox, more is available than was previously
expected. This “more” comes in the form of a strongly semantic con-
ception of information as encapsulating truthfulness. If our investigator
cannot use this strong notion of information, she is inevitably caught
in the paradox.

In the case of the Scandal, we have argued that the problem was
caused by the very natural and understandable oversight that too much
was being allowed. This “too much” comes in the form of “virtual
information”. Allow the investigator to rely on it, and she will never be
able to explain why and in what way logic might be informative after
all.

In short, our twofold proposal may be summarised by saying that a
more balanced, informational diet (more truth, less virtual information)
can resolve both the Paradox and the Scandal. The headache is in the
details.

Appendix

Proof of Proposition 1. An occurrence of a signed formula ϕ is a detour
in a K -intelim deduction π if it is at the same time the conclusion
of an application of an introduction rule and the major premise of
an application of an elimination rule. Then, we can show that if π is
a regular K -intelim deduction of P from Γ, π can be shortened to a
K -intelim deduction of P from Γ that contains no detours.

We can assume without loss of generality that π is non-redundant.
Suppose π contains a detour, say an occurrence of TP ∨Q. Then this
must be at the same time the conclusion of an introduction and the
major premise of an elimination. Suppose the premise of the intro-
duction is tP (tQ); if the conclusion of the elimination is also tP
(tQ), than the latter is clearly redundant and can be removed from
the deduction; if the conclusion of the elimination is tQ (tP ), π must
contain also f P (f Q). So π is closed and therefore is not a regular
deduction of P from Γ. So, the detour can always be eliminated and
the resulting sequence is always shorter. Now, say that a signed formula
ϕ = s Q, with s ∈ {t , f }, is spurious if Q is not a subformula of some
formula in Γ or of P . Suppose ψ is a spurious formula of maximum
complexity occurring in a K -intelim deduction π of P from Γ. Then,
ψ can occur in π only as a result of a detour. Since detours can be
eliminated from deductions, we eventually obtain a deduction without
spurious formulas. The formal proof is by induction on 〈k, n〉, where k
is the maximum complexity of the spurious formulas occurring in π and
n is the number of spurious formulas of complexity k. So, regular K -
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intelim deductions enjoy the subformula property. A similar argument
shows that K -intelim refutations enjoy the subformula property.

Proof of Proposition 2. Proposition 1 implies that, when deciding
whether Γ 0 P we can restrict our attention to intelim deductions
satisfying the subformula property without loss of deductive power.
We now sketch a tractable decision procedure for intelim-deducibility
which exploits the subformula property.

Given a finite set of formulas Γ, let Γ∗ be the set of all subformulas
of formulas in Γ. It is easy to check that the size of this set is linear in
the size of (the total number of symbols occurring in) Γ. Let G(Γ) be
the subformula graph for Γ, that is the oriented graph 〈V,E〉 such that
V = Γ∗ and 〈P,R〉 ∈ E if and only if P is an immediate subformula of
R. Given a node P in G(Γ), we call neighbours of P all the nodes R such
that 〈P,R〉 ∈ E (upper neighbours) or 〈R,P 〉 ∈ E (lower neighbours).

A partial information graph for Γ is a pair G = 〈G(Γ), λ〉, where λ is
a partial function mapping nodes of G(Γ) into {0, 1}. We shall say that
a node P is labelled when λ(P ) is defined, and unlabelled otherwise.
Intuitively, λ(P ) = 1 means “we hold the information that P is true”
and λ(P ) = 0 means “we hold the information that P is false”. So, the
interpretation of a node P labelled with 1 is the same as that of the
signed formula tP . Similarly, the interpretation of a node P labelled
with 0 is the same as that of the signed formula f P . Therefore, we
shall say that labelled nodes represent the associated signed formulas.
On the other hand, when λ(P ) is undefined, this means that we do not
hold any information about the truth-value of P .

In what follows we describe a procedure to update the labelling func-
tion λ so as to extract all the implicit information of depth 0 contained
in the graph. This procedure, that we call “UPDATE” is based on
two sub-procedures, “INTELIM-UP” and “INTELIM-DOWN”, that
are called by UPDATE as modules.

Procedure: INTELIM-UP(P )
When applied to a formula P for which the labelling function λ is
defined, the procedure visits each upper neighbour R of P exactly once
and either locally updates λ in accordance with the intelim rules or
halts when the required updating is ruled out by the conditions on
admissible valuations.

Require: λ(P ) is defined
1: repeat

2: pick up a yet unvisited upper neighbour R of P
3: if λ(P ) = 1 then

4: if R is of the form P ∨Q (or Q ∨ P ) then
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5: if λ(R) is undefined then

6: update λ by setting λ(R) = 1
7: else if λ(R) = 0 then

8: STOP: λ is not admissible
9: else

10: do nothing
11: end if

12: end if

13: if R is of the form P ∧Q (or Q ∧ P ) then

14: if λ(R) is undefined and λ(Q) = 1 then

15: update λ by setting λ(R) = 1
16: else if λ(R) = 0 and λ(Q) is undefined then

17: update λ by setting λ(Q) = 0
18: else if λ(R) = 0 and λ(Q) = 1 then

19: STOP: λ is not admissible
20: else

21: do nothing
22: end if

23: end if

24: if R is of the form P → Q then

25: if λ(R) is undefined and λ(Q) = 0 then

26: update λ by setting λ(R) = 0
27: else if λ(R) = 1 and λ(Q) is undefined then

28: update λ by setting λ(Q) = 1
29: else if λ(R) = 1 and λ(Q) = 0 then

30: STOP: λ is not admissible
31: else

32: do nothing
33: end if

34: end if

35: if R is of the form Q→ P then

36: if λ(R) is undefined then

37: update λ by setting λ(R) = 1
38: else if λ(R) = 0 then

39: STOP: λ is not admissible
40: else

41: do nothing
42: end if

43: end if

44: if R is of the form ¬P then

45: if λ(R) is undefined then

46: update λ by setting λ(R) = 0
47: else if λ(R) = 1 then
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48: STOP: λ is not admissible
49: else

50: do nothing
51: end if

52: end if

53: else if λ(P ) = 0 then

54: if R is of the form P ∨Q (or Q ∨ P ) then

55: if λ(R) is undefined and λ(Q) = 0 then

56: update λ by setting λ(R) = 0
57: else if λ(R) = 1 and λ(Q) is undefined then

58: update λ by setting λ(Q) = 1
59: else if λ(R) = 1 and λ(Q) = 0 then

60: STOP: λ is not admissible
61: else

62: do nothing
63: end if

64: end if

65: if R is of the form P ∧Q (or Q ∧ P ) then

66: if λ(R) is undefined then

67: update λ by setting λ(R) = 0
68: else if λ(R) = 1 then

69: STOP: λ is not admissible
70: else

71: do nothing
72: end if

73: end if

74: if R is of the form P → Q then

75: if λ(R) is undefined then

76: update λ by setting λ(R) = 1
77: else if λ(R) = 0 then

78: STOP: λ is not admissible
79: else

80: do nothing
81: end if

82: end if

83: if R is of the form Q→ P then

84: if λ(R) is undefined and λ(Q) = 1 then

85: update λ by setting λ(R) = 0
86: else if λ(R) = 1 and λ(Q) is undefined then

87: update λ by setting λ(Q) = 0
88: else if λ(R) = 1 and λ(Q) = 1 then

89: STOP: λ is not admissible
90: else
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91: do nothing
92: end if

93: end if

94: if R is of the form ¬P then

95: if λ(R) is undefined then

96: update λ by setting λ(R) = 1
97: else if λ(R) = 0 then

98: STOP: λ is not admissible
99: else

100: do nothing
101: end if

102: end if

103: end if

104: mark R as visited
105: until All upper neighbours of P have been visited once

Procedure: INTELIM-DOWN(P )
When applied to a formula P for which the labelling function λ is
defined, the procedure visits each lower neighbour R of P exactly once
and either updates λ in accordance with the intelim rules or halts when
the required updating is ruled out by the conditions on admissible
valuations.

Require: λ(P ) is defined
1: repeat

2: pick up a yet unvisited lower neighbour R of P
3: if λ(P ) = 1 then

4: if P is of the form Q ∨R (or R ∨Q) then

5: if λ(R) is undefined and λ(Q) = 0 then

6: update λ by setting λ(R) = 1
7: else if λ(R) = 0 and λ(Q) is undefined then

8: update λ by setting λ(Q) = 1
9: else if λ(R) = 0 and λ(Q) = 0 then

10: STOP: λ is not admissible
11: else

12: do nothing
13: end if

14: end if

15: if P is of the form Q ∧R (or R ∧Q) then

16: if λ(R) is undefined then

17: update λ by setting λ(R) = 1
18: else if λ(R) = 0 then

19: STOP: λ is not admissible
20: else
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21: do nothing
22: end if

23: end if

24: if P is of the form Q→ R then

25: if λ(R) is undefined and λ(Q) = 1 then

26: update λ by setting λ(R) = 1
27: else if λ(R) = 0 and λ(Q) is undefined then

28: update λ by setting λ(Q) = 0
29: else if λ(R) = 0 and λ(Q) = 1 then

30: STOP: λ is not admissible
31: else

32: do nothing
33: end if

34: end if

35: if P is of the form R→ Q then

36: if λ(R) = 1 and λ(Q) is undefined then

37: update λ by setting λ(Q) = 1
38: else if λ(R) is undefined and λ(Q) = 0 then

39: update λ by setting λ(R) = 0
40: else if λ(R) = 1 and λ(Q) = 0 then

41: STOP: λ is not admissible
42: else

43: do nothing
44: end if

45: end if

46: if P is of the form ¬R then

47: if λ(R) is undefined then

48: update λ by setting λ(R) = 0
49: else if λ(R) = 1 then

50: STOP: λ is not admissible
51: else

52: do nothing
53: end if

54: end if

55: else if λ(P ) = 0 then

56: if P is of the form Q ∨R (or R ∨Q) then

57: if λ(R) is undefined then

58: update λ by setting λ(R) = 0
59: else if λ(R) = 1 then

60: STOP: λ is not admissible
61: else

62: do nothing
63: end if
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64: end if

65: if P is of the form Q ∧R (or R ∧Q) then

66: if λ(R) is undefined and λ(Q) = 1 then

67: update λ by setting λ(R) = 0
68: else if λ(R) = 1 and λ(Q) is undefined then

69: update λ by setting λ(Q) = 0
70: else if λ(R) = 1 and λ(Q) = 1 then

71: STOP: λ is not admissible
72: else

73: do nothing
74: end if

75: end if

76: if P is of the form Q→ R then

77: if λ(R) is undefined then

78: update λ by setting λ(R) = 0
79: else if λ(R) = 1 then

80: STOP: λ is not admissible
81: else

82: do nothing
83: end if

84: end if

85: if P is of the form R→ Q then

86: if λ(R) is undefined then

87: update λ by setting λ(R) = 1
88: else if λ(R) = 0 then

89: STOP: λ is not admissible
90: else

91: do nothing
92: end if

93: end if

94: if P is of the form ¬R then

95: if λ(R) is undefined then

96: update λ by setting λ(R) = 1
97: else if λ(R) = 0 then

98: STOP: λ is not admissible
99: else

100: do nothing
101: end if

102: end if

103: else

104: do nothing
105: end if

106: mark R as visited
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107: until All lower neighbours of P have been visited once

The sub-procedures INTELIM-UP and INTELIM-DOWN are called
by the main procedure UPDATE described below.

Say that a partial information graph for Γ is saturated if its labelling
function λ represents a valuation of Γ∗ which is closed under condition
D0 of section 10, that is, a shallow information state restricted to the
formulas in Γ∗. Observe that this is equivalent to saying that the λ
function is closed under the intelim rules, once the application of an
intelim rule is defined in the obvious way: if a partial information graph
contains labelled nodes that represent the premises of a rule application
whose conclusion is a signed formula s P (with s = t or f ) such that
P is in Γ∗, then λ(P ) = 1 if s = t and λ(P ) = 0 if s = f .

Procedure: UPDATE(G)
When applied to a partial information graph G, this procedure visits
each labelled node exactly once and and runs the INTELIM-UP and
INTELIM-DOWN sub-procedures on it. It outputs the (unique) satu-
rated refinement of the initial graph or halts if no saturated refinement
exists.

repeat

pick up a yet unvisited labelled node P
apply both INTELIM-UP and INTELIM-DOWN to P
if both procedures terminate with an admissible λ then

mark P as visited
else

STOP: the initial graph represents an inconsistent set of signed
formulas

end if

until all labelled nodes have been visited once

Figure 2 shows the initial intelim graph for the set of signed formulas:

{tP ∨Q, tP → R ∧ S, tQ→ ¬(T ∧ ¬S), t¬S},

while the final graph returned by the UPDATE procedure is shown in
Figure 3 The steps of the UPDATE procedure can be immediately read
as applications of intelim rules and, therefore, as producing an intelim
sequence based on the set of signed formulas {tQ | Q ∈ Γ}. It is simple
to show that the final output graph is saturated (or, equivalently, closed
under the intelim rules) and, therefore, the sequence associated with
it contains all possible applications of intelim rules, starting from the
initial set of signed formulas, whose conclusions have the form s Q with
Q a subformula of P or of some formula in Γ. Given the subformula
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P → R ∧ S : 1 Q→ ¬(T ∧ ¬S) : 1

P ∨Q : 1 ¬(T ∧ ¬S) :?

R ∧ S :? T ∧ ¬S :?

¬S : 1 ¬T :?

P :? Q :? R :? S :? T :?

Figure 2. Initial intelim graph.

P → R ∧ S : 1 Q→ ¬(T ∧ ¬S) : 1

P ∨Q : 1 ¬(T ∧ ¬S) : 1

R ∧ S : 0 T ∧ ¬S : 0

¬S : 1 ¬T : 1

P : 0 Q : 1 R :? S : 0 T : 0

Figure 3. Output of the UPDATE procedure run on the initial graph represented
in Figure 2.

property of intelim deductions (Proposition 1) this is all we need. We
sketch the proof in one case and leave the rest to the reader.

Suppose that the final output graph contains nodes P and P ∨ Q
such that λ(P ) = 0 and λ(P ∨ Q) = 1; then it must be the case
that λ(Q) = 1. To establish this fact one can reason as follows. Since
both P and P ∨ Q are labelled, they must have been visited by the
UPDATE procedure. Suppose that P was visited before P ∨ Q and
that λ was yet undefined for P ∨Q at the time P was visited, so that
the relevant instruction of the INTELIM-UP procedure (lines 57–58)
could not be applied and λ was not updated on Q. However, at the time
in which P ∨ Q is visited by the UPDATE procedure, the conditions
of the relevant instruction of INTELIM-DOWN (lines 5–6 modulo the
obvious substitutions of variables) are met, and therefore λ can be
updated by setting λ(Q) = 1. On the other hand, suppose that P ∨Q
was visited before P and λ(P ) was yet undefined at that time, so that
the relevant instruction of the INTELIM-DOWN procedure (lines 5-6
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modulo the obvious substitutions of variables) could not be applied
and λ was not updated on Q. As before, at the time in which P is
visited, the conditions for the relevant instruction of the INTELIM-UP
procedure (lines 57–58) are met and, therefore, λ can be updated by
setting λ(Q) = 1. All the remaining cases are similar.

Now, in order to establish whether Γ 0 P it is sufficient to perform
the following steps:

1: construct a partial information graph for Γ ∪ {P}, that is a graph
G = 〈G(Γ ∪ {P}), λ〉, such that λ(Q) = 1 for all Q ∈ Γ and left
undefined everywhere else;

2: run the UPDATE procedure on G;
3: if the resulting λ is not admissible or λ(P ) = 1 in the output graph

then

4: Γ ⊢0 P
5: else

6: Γ 6⊢0 P .
7: end if

As for the complexity of this decision procedure, observe that the size
of the subformula graph for Γ ∪ {P} is O(n) where n is the size (=
the number of symbols) of Γ∪ {P}. Hence, the first step requires time
O(n2). The second step involves, for every node P of G, visiting all
the neighbours of P exactly once and applying the relevant intelim
rule where applicable; since there are at most n neighbours for each
node, and a fixed number of basic instructions to execute to apply the
relevant intelim rules, the whole procedure runs in O(n2) steps.

Proof of Proposition 5. Given a finite set of sentences Γ we construct
an infinite intelim sequence based on {tQ | Q ∈ Γ} as follows. Suppose
Γ = {Q1, . . . , Qm} and consider an arbitrary enumeration of all the
sentences of the language L. Now, let π0 = t (Q1), . . . , t (Qm), and let
πk+1 = πk, sR, where R is the first sentence the enumeration of L such
that (i) sR is the conclusion of an application of an intelim rule to
signed sentences in πk and (ii) sR is not already in πk. Finally, let
π =

⋃
∞

i=0 πi. Observe that, if there is no intelim deduction of P from
Γ, then (i) π must be open (since if π is closed, then it contains a finite
subsequence which is still a closed intelim sequence based on the same
initial set of signed sentences) and (ii) tP cannot be in π (otherwise, π
would contain a finite subsequence which is an intelim deduction of P
from Γ). Consider then the partial function v from L into {0, 1} defined
as follows:

1. v(Q) = 1 if and only if tQ is in π;

2. v(Q) = 0 if and only if f Q is in π;
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3. v(Q) is undefined otherwise.

It is not difficult to check that v is a shallow information state that
verifies all the sentences in Γ and does not verify Q.
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