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 To identify proteins that regulate CCN2 activity, we carried out GAL4-based yeast two-hybrid 

screening using a cDNA library derived from a chondrocytic cell line, HCS-2/8. CCN2/CTGF and 

CCN3/NOV polypeptides were picked up as CCN2-binding proteins, and CCN2-CCN2 and 

CCN2-CCN3 binding domains were identified. Direct binding between CCN2 and CCN3 was 

confirmed by coimmunoprecipitation in vitro and in vivo and surface plasmon resonance, and the 

calculated dissociation constant (Kd) was 1.17×10-9 M between CCN2 and CCN2, and 1.95×10-9 M 

between CCN2 and CCN3. Ectopically overexpressed GFP-CCN2 and Halo-CCN3 in COS7 

co-localized, as determined by direct fluorescence analysis. We present evidence that CCN2-CCN3 

interactions modulated CCN2 activity such as enhancement of aggrecan and col2a1 expression. 

Curiously, CCN2 enhanced, whereas CCN3 inhibited, the expression of aggrecan and col2a1 mRNA 

in HCS-2/8 cells; and the combined treatment with CCN2 and CCN3 abolished the inhibitory effect 

by CCN3. These effects were neutralized with an antibody against the VWC domain of CCN2 

(11H3). This antibody diminished the binding between CCN2 and CCN2, but enhanced that between 

CCN3 and CCN2. Our results suggest that CCN2 could form homotypic and heterotypic dimers with 

CCN2 and CCN3, respectively. Strengthening the binding between CCN2 and CCN3 with the 11H3 

antibody had an enhancing effect on aggrecan expression in chondrocytes, suggesting that CCN2 

had an antagonizing effect by binding to CCN3. 
 

 

 

Introduction 

CCN family protein 2/connective tissue growth factor (CCN2) is a major member of the CCN 

family of proteins, which consists of CCN1/Cyr61, CCN2/CTGF, CCN3/NOV, CCN4/WISP-1, 

CCN5/WISP-2/CTGF-L, and CCN6/WISP-3. CCN2 is expressed in various types of cells, such as 

fibroblasts, endothelial cells, vascular smooth muscle cells, osteoblasts, and chondrocytes [1-7]. 

Among those cell types, CCN2 is strongly expressed in growth-plate cartilage, especially in 

hypertrophic chondrocytes [1,4,5,7] during the developmental stages, and shows multiple cellular 

functions such as stimulation of cartilage-specific extracellular matrix (ECMs) synthesis as well as  

chondrocyte proliferation and maturation [1]. In CCN2 null mutant mice, bone formation is inhibited 

due to impairment of both chondrogenesis and growth-plate angiogenesis [8], which leads to 

neonatal respiratory failure and death within minutes of birth, thus indicating the essential role of 

CCN2 in developing chondrocytes. Other experiments also demonstrated that CCN2 is involved in 

the early cell-condensation step during the ectopic digit formation [9]. However, the ectopic 

overexpression in soft tissues is linked to various types of fibrosis, because of its strong enhancing 

effects on the production of extracellular matrices [1-4]. 

CCN2 consists of 4 modules, i.e., insulin-like growth factor binding protein-like (IGFBP), von 
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Willebrand factor type C (VWC), thrombospondin type 1 repeats (TSP-1), and C-terminal cystine 

knot (CT); and each of these modules has different binding partners and seems to regulate the 

multiple functions of CCN2 [1]. The CT domain of CCN2 interacts directly with fibronectin and 

enhances cell adhesion of chondrocytes through binding to integrin α5β1 [10]. This domain also 

binds to integrin α5β1 to promote adhesion and migration of pancreatic stellate cells [11]. 

Furthermore, it induces adhesion of hepatic cells by direct binding to the integrin receptor αvβ3 and 

to heparan sulfate proteoglycan through its C-terminal heparin-binding domain [12]. There are also 

reports indicating that CCN2 signaling occurs through low-density lipoprotein receptor-related 

protein-1 (LRP-1) [13-15]. Other studies show that CCN2 directly binds to bone morphogenetic 

protein-4 (BMP-4) and transforming growth factor-β (TGF-β) through its VWC module and 

prevents or enhances their binding to their own receptors [16]. Moreover, CCN2 binds vascular 

endothelial growth factor (VEGF) and inhibits its angiogenic effect [17]. There also is a report 

showing that CCN2 binds to aggrecan, which is a major marker of differentiated phenotype of 

chondrocytes, through its N-terminal IGFBP and VWC modules and that this binding may be related 

to the CCN2-enhanced production and secretion of aggrecan by chondrocytes [18]. 

In order to identify additional extracellular or cell-surface targets for CCN2 that may be involved 

in the regulatory functions of CCN2 in chondrocytes, we searched for CCN2-binding proteins by 

using the yeast two-hybrid screening assay. A cDNA library derived from human 

chondrosarcoma-derived chondrocytic cell line HCS-2/8 was screened for products binding to CCN2, 

since this cell line has a differentiated phenotype similar to that of normal chondrocytes in terms of 

aggrecan and cartilage collagen secretion and integrin expression profiles [19]. We found CCN2 and 

CCN3 as binding partners of CCN2, indicating that CCN2 forms homotypic and heterotypic dimers 

with CCN2 and CCN3, respectively. 

CCN3, also a CCN family protein, is highly expressed in the nervous system, blood vessels, and 

musculoskeletal system as well as in pre- and early hypertrophic chondrocytes and osteoblasts 

[1,20,21]. The functions of CCN3 protein among these different tissues are not yet well defined.  

Although CCN3 was originally described as being antiproliferative [22] and its expression 

associated with differentiation and growth arrest in Wilm's tumor [23], chondrosarcomas [24], and 

rhabdomyosarcomas [25], more recent data correlate CCN3 with an increased proliferative index of 

3T3 fibroblasts [26] and prostate tissue samples [27]. Both CCN2 and CCN3 are expressed in the 

early hypertrophic to pre-hypertrophic zone of the growth plate in cartilage; and CCN2 enhances the 

expression of ECMs components, whereas CCN3 suppresses it in cultured growth plate 

chondrocytes [20]. 

There seems to be some correlation between CCN2 and CCN3; however, the functional and 

physiological interaction between these 2 proteins had not been elucidated at all. In the present study, 

we show for the first time that (1) CCN2 bound to CCN2 through its IGFBP, VWC, and CT domains, 
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but not TSP-1 domain, and to CCN3 only via its VWC and CT domains; and (2) CCN2 rescued 

chondrocytes from CCN3-induced suppression of aggrecan and col2a1 expression. Inhibition of 

CCN2-CCN2 binding suppressed the expression of aggrecan, whereas promotion of CCN2-CCN3 

binding enhanced it. 
 

 

Results 

 

Identification of CCN2 and CCN3 as CCN2 dimerization partners 

Using yeast two-hybrid screening to search for proteins that directly interacted with full-length 

CCN2 (amino acid residues 27-349), we obtained several clones from a HCS-2/8 human 

chondrocytic cell cDNA library that encoded CCN2 and CCN3, indicating homotypic and 

heterotypic dimerization of CCN2. To confirm direct interactions between CCN2 and CCN2 or 

between CCN2 and CCN3, we used several methods. First, to identify the CCN2 interaction sites in 

CCN2 or CCN3, full-length, N-terminal, C-terminal, and individual domains of CCN2 or CCN3 

were expressed in AH109 yeast cells as GAL4-transactivation domain (GAL4-AD)-fusion proteins, 

whereas full-length CCN2 was co-expressed as a GAL4-DNA binding domain (GAL4-BD)-fusion 

protein (Fig.1 A). Interactions between CCN2 or CCN3 fragments and full-length CCN2 were 

monitored as growth of yeast transformants in selection media (SD/-Ade, -His, -Leu, -Trp). 

Self-interaction with full-length CCN2 was observed after co-transformation with CCN2 vectors 

expressing IGFBP, VWC, and/or CT, but not when the TSP-1 domain alone was tested. Interaction 

with CCN3 fragments was seen with vectors expressing the VWC or CT domain, but not with those 

expressing the IGFBP or TSP-1 domain (Fig.1 A). 

The difference in binding strength between full-length CCN2 (CCN2full) and IGFBP domain of 

CCN2 (CCN2I), and between CCN2full and IGFBP domain of CCN3 (CCN3I), was estimated by 

measuring the β-galactosidase activity of the reporter gene in yeast expressing full-length CCN2 

(GAL-BD/CCN2full), standardizing it to the protein concentration, and comparing it with the 

β-galactosidase activity obtained after co-transformation with the pGADT7 empty vector (mock, 

Fig.1 B). CCN2I showed almost the same strength of binding to CCN2full as CCN2full, whereas the 

binding of CCN3I to CCN2full was significantly lower than that of CCN3full or CCN2I to CCN2full 

(Fig.1 B). These results indicate that among the 4 domains in CCN2, the IGFBP, VWC, and CT 

domains exhibited direct homotypic interaction with CCN2, whereas only the VWC and CT domains 

of CCN3 showed direct interaction with full-length CCN2. 

 

CCN2 directly interacts with CCN2 and CCN3 in vitro. 

For in vitro pull-down experiments using glutathione-Sepharose resin, recombinant His6-tagged 
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CCN2 (His-CCN2) and GST-fused CCN3 (GST-CCN3) were prepared as E.coli cell lysates. 

Immunoblotting of the precipitates with anti-His and anti-GST antibody largely confirmed the yeast 

two-hybrid assay results (Fig.2 A): His-CCN2 was effectively pulled down in the presence of 

GST-CCN3. We further confirmed the binding between CCN2 and CCN2 or between CCN3 and 

CCN2 by performing a solid-phase binding assay (Fig.2 B). Purified CCN2 or GST-CCN3 was  

immobilized on the plates, and increased amounts of biotinylated recombinant CCN2 (rCCN2) were 

used for binding. Biotinylated rCCN2 bound to immobilized rCCN2 or GST-CCN3 in a 

dose-dependent manner (Fig.2 B). Finally, the dissociation constant of CCN2 to CCN2 or to CCN3 

was determined by using surface plasmon resonance (SPR) analysis (Fig.2 C). rCCN2 protein was 

immobilized on a sensor tip as a ligand and rCCN2 and rCCN3 were used as analytes at 

concentrations of 4, 8, 16, 32, and 64 nM. Calculated from sensorgram analysis, the Kd value was  

1.17x10-9 M for the CCN2-CCN2 interaction and 1.95×10-9 M for the CCN2-CCN3 one (Fig.2 C). 

These data indicate that CCN2 underwent a homotypic interaction and a heterotypic one with CCN3 

with a similar binding affinity.  

 

Endogenous CCN2 and CCN3 interact and co-localize in chondrocytic HCS-2/8 cells. 

To investigate the endogenous interaction between CCN2 and CCN3, we coimmunoprecipitated 

endogenous CCN2 with CCN3 from HCS-2/8 cell lysates using anti CCN2 antibody. CCN3 was 

effectively immunoprecipitated with an anti-CCN2 antibody (Fig.3 A), but not with control IgG.. 

Indirect immunostaining of endogenous CCN2 (red) and CCN3 (green) with spcific antibodies 

showed subcellular colocalization inside of the permeabilized cells with TritonX-100 and on cell 

surface without permeabilization treatment (Fig.3 B). 

 

Ectopically overexpressed CCN2 and CCN3 interact and co-localize in COS7 cells. 

To confirm the interaction between CCN2 and CCN3 in vivo, we co-expressed GFP-fused CCN2 

and Halo-tagged CCN3 in COS7 cells. GFP or GFP-CCN2 was immunoprecipitated with anti-GFP 

antibody from cell lysates with binding proteins, and the precipitated proteins were analyzed by 

using anti-Halo antibody. Halo-CCN3 (arrow in lane 8 of Fig.4 A) was pulled down effectively only 

after co-expression with GFP-CCN2 (Fig.4 A). The subcellular localization of GFP-CCN2 and 

Halo-CCN3 largely overlapped when the cells were directly analyzed by GFP (green) fluorescence 

and the fluorescence (red) from the dye binding to Halo (Fig.4 B). 

 

CCN2 and CCN3 cooperatively regulate gene expression of cartilagenous matrix genes in 

HCS-2/8 cells. 

CCN2 enhances aggrecan and col2a1 expression in chondrocytes. To elucidate the role of CCN3 

interaction with CCN2 on this activity of CCN2 in chondrocytes, we treated cells of the 
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chondrocytic cell line HCS-2/8 with CCN2 and/or CCN3, and then monitored the expression of the 

aggrecan and col2a1 mRNA after 12 h (aggrecan) or 24 h (col2a1) by real-time PCR. The addition 

of rCCN2 (1.25 nM) enhanced mRNA expression of aggrecan and col2a1 by approximately 20%, 

whereas the addition of rCCN3 (1.25 nM) inhibited it by around 15%. The combination of rCCN2 

and rCCN3 abolished the repression caused by rCCN3 (Fig.5 A), and this abolishment occurred in a 

CCN2 dose-dependent manner (Fig.5 B). Similar results were obtained in the mouse primary 

chondrocytes isolated from rib cartilage (data not shown). These data suggest that CCN2 and CCN3 

cooperatively regulated the gene expression of extracellular matrices such as aggrecan and col2a1 

mRNA in chondrocytes. 

 

Addition of 11H3 changes aggrecan gene expression of HCS-2/8 cells treated with CCN2 and/or 

CCN3  

To modify the binding between CCN2 and CCN2 or between CCN2 and CCN3, we prepared 

several antibodies against the VWC domain of CCN2. One of the antibodies, 11H3, modulated the 

binding strength between CCN2-CCN2 and between CCN2-CCN3. In solid-phase binding studies 

using biotinylated CCN2 and immobilized CCN2 or GST-CCN3, the addition of 11H3 reduced  the 

binding of CCN2 to CCN2, but accelerated that  to GST-CCN3 (Fig.5 A). Furthermore, HCS-2/8 

cells were treated with rCCN2 (1.25 nM) and/or rCCN3 (0.625 nM) in the presence of mouse IgG or 

11H3 antibody, and gene expression of aggrecan was monitored 12 h later.  The addition of 11H3 

antibody to CCN2-treated HCS-2/8 cells cancelled the enhanced expression of the aggrecan gene, 

whereas the 11H3 antibody further enhanced the gene expression in the presence of CCN3 with or 

without CCN2 (Fig.5 B). These results suggest that when CCN2 formed  heterotypic dimers with 

CCN3, these dimers show rescuing the inhibited effect of aggrecan expression by CCN3 in 

chondrocytes. Those interactions could modulate CCN2 activity such as enhancement of aggrecan 

expression. 

 

 

Discussion 

 

CCN2 is a secreted protein and accumulates at the cell surface, binding various extracellular 

matrix components such as aggrecan [18] and fibronectin [10]. CCN2 also interacts with several 

growth factors including IGF [28], TGF-β, and BMP-4 [16] and thereby modulates their activities. 

Among the CCN family members, CCN3 acts as a negative regulator of CCN2 in the fibrotic 

pathway of model of renal disease [29,30]; and the addition of recombinant CCN3 slightly decreases 

the expression of extracellular matrix genes in the growth-plate chondrocytes, in contrast to CCN2, 

which strongly up-regulates those genes [20]. Furthermore, CCN2 down-regulates CCN3 expression 
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in growth-plate chondrocytes [20]. In epiphyseal chondrocytes, however, CCN3 promotes the 

expression of matrix genes and stabilizes the phenotype of articular cartilage [31]. Here we show for 

the first time homotypic and heterotypic interactions of CCN2 with itself and CCN3, respectively, 

and provide evidence that homotypic and heterotypic dimers of CCN2 may regulate the production 

of chondrocytic extracellular matrices in a different manner. 

A previous study indicated that the CT domain of CCN3 interacted weakly with full length CCN3 

and CCN2 in their yeast two-hybrid study [32]. In our present study, not only the CT domain of 

CCN3, but also the VWC domain had the ability to bind to full-length CCN2. Furthermore, the 

specificity of the homotypic and heterotypic interactions of CCN2 was substantiated by the yeast 

two-hybrid assay performed to determine the binding domain in CCN2 and CCN3. CCN2 

self-dimerized through its IGFBP, VWC, and CT domains; whereas only VWC and CT domains, but 

not the IGFBP domain of CCN3 bound to full-length CCN2. The homotypic dimerization sites of 

CCN2 to CCN2 were different from the heterotypic dimerization sites for the binding of CCN2 to 

CCN3. Our data suggest that this difference in binding sites between CCN2-CCN3 and 

CCN2-CCN2 may be also used as a molecular system for recognition of different cellular surface 

binding partners such as fibronectin [10], fibulin [32], integrins [33], and aggrecan [18]. 

Specific CCN2-CCN2 and CCN2-CCN3 interactions were confirmed by performing several 

binding assays in vitro and in vivo, including in vitro pull-down assays, solid-phase binding assays, 

and SPR analysis. The relative binding strengths of these domains to CCN2 was also confirmed by 

measuring the β-galactosidase reporter gene activity in the yeast two-hybrid assay. Interestingly, the 

binding strength of homotypic and heterotypic bindings of CCN2 measured by SPR analysis was 

very similar, indicating that the binding partner of CCN2 would be dependent on the expression 

levels of CCN2 and CCN3 in the specific tissues. 

Further evidence for interactions between CCN2 and CCN3 was obtained from 

immunofluorescence and co-immunopreciptation experiments. Not only in the case of endogenous 

CCN2 and CCN3 in chondorcytic cell line, HCS-2/8, but also in the case of ectopically 

overexpressed GFP-CCN2 and Halo-CCN3 in COS7 cells, CCN2 and CCN3 were 

co-immunoprecipitated and the subcellular localization of these proteins largely overlapped (Fig. 3 

and 4), confirming that CCN2 and CCN3 interacted in vitro and in vivo. A recent report on CCN 

family members demonstrated the possibility that CCN5 may regulate by acting as a transcriptional 

factor [34], and our yeast two-hybrid screening identified several intracellular proteins [Hoshijima et 

al, unpublished data]. Those interactions may have important roles for cellular functions. 

The physiological effects of homomeric and heteromeric interaction between CCN2 and CCN2, 

and CCN2 and CCN3 on the production of extracellular matrix of chondrocytes were monitored in 

human chondrocytic cell line, HCS-2/8 by performing real-time PCR, since CCN2 is an enhancer of 

aggrecan and col2a1 gene expression in chondrocytes [1,8]. In contrast, CCN3 down-regulates the  
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expression of extracellular matrix genes in growth-plate chondrocytes [20], TGF-β-stimulated Col1 

promoter activity in a renal fibrosis model [29], and BMP-2-induced osteocalcin production through 

inhibition of the Notch signaling cascade [35]. On the other hand, CCN3 enhances matrix production 

in articular chondrocytes [31], and stimulates BMP-4 gene expression and bone mineralization in 

osteoblasts [36]. According to our results, however, CCN2 enhanced, whereas CCN3 

down-regulated, aggrecan expression. This down-regulation was partially reversed by CCN2 

treatment. CCN2 dose-dependently increased the amount of aggrecan and col2a1 gene expression 

that was down-regulated by CCN3. To modify the binding between CCN2 and CCN3, we used 

antibody 11H3, raised against the VWC domain of CCN2, which antibody attenuated the binding 

between CCN2 and CCN2, but accelerated the binding between CCN2 and CCN3 as measured by 

the immobilization binding assay. The addition of 11H3 antibody antagonized CCN2-induced 

aggrecan expression, whereas it further enhanced that in the case of combined treatment with CCN2 

and CCN3, indicating that the interaction between CCN2 and CCN3 stimulated aggrecan expression 

in HCS-2/8 cells. Interestingly, 11H3 also accelerated aggrecan gene expression in CCN3-treated 

HCS-2/8 cells, suggesting the existence of endogenous CCN2 in HCS-2/8 cells. This is the first 

demonstration of homotypic CCN2 and heterotypic CCN2-CCN3 interactions and the data suggest 

that CCN2 seems to act as a negative regulator of CCN3. This could explain the varied effect of 

CCN3, since the activity of CCN3 largely depends on CCN2. 

Our results indicate that it is the IGFBP domains of CCN2 and CCN3 that make the difference 

between the homotypic or heterotypic complex formation. CCN2 interacts with many extracellular 

signaling molecules; e.g., it binds to TGF-β, TGF-βRI and II [37], BMP-2 [38], and BMP-4 [16].  

Furthermore, CCN2 modulates Wnt signal pathways [39], as well as the activity of a Wnt inhibitory 

protein (Wif-1) [40]. CCN3 may also have a role in the modulation of those signaling pathways by 

interacting with CCN2, but the mechanisms remain to be elucidated. 

In CCN2-deficient mice, which show incomplete endochondral ossification, the expression level 

of CCN3 is strongly enhanced [20]. Two different lines of CCN3-deficient mice were developed. 

One of them, the novdel3-/- mutant mice, which produce no full-length CCN3 protein and express 

CCN3 without its VWC domain at a barely detectable level, shows abnormal skeletal and cardiac 

development [41]. The other line, which is completely CCN3 null mice, show enhanced neointimal 

thickening compared with the wild type, confirming that CCN3 suppresses angiogenesis and fibrosis. 

These results indicate that CCN2 and CCN3 seem to mutually regulate their activities and expression 

levels. However, in our experiments the expression level of CCN2 did not alter after addition of 

CCN2 or CCN3 in HCS-2/8 cells (data not shown). Since HCS-2/8 cells produce higher level of 

CCN2 compare to primary chondrocytes, further addition of CCN2 may not have effect on the 

expression level of CCN3. Regulatory mechanism of CCN2 and CCN3 gene expression is currently 

being elucidated. 
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Experimental Procedures 

 

Yeast two-hybrid cDNA library screening 

Yeast two-hybrid cDNA library screening was performed as described previously [10,18]. Briefly, 

full-length CCN2 cDNA was expressed as a GAL4BD (GAL4 DNA-binding domain)-fusion protein. 

cDNA library genes from HCS-2/8 cells were expressed as GAL4AD (GAL4 transactivation 

domain)-fusion proteins for a two-hybrid assay in yeast AH109 cells, and the cells were screened on 

selection medium [SD/-Ade/-His/-Leu/-Trp (synthetic dropout medium lacking Ade, His, Leu and 

Trp)]. Positive clones were analyzed by DNA sequencing. For analysis of the CCN2 or CCN3  

domain binding to full-length CCN2, expression plasmids of full-length CCN2, which were 

expressed as GAL4BD-fusion proteins, and CCN2 or CCN3 cDNA fragments, which were  

expressed as a GAL4AD-fusion protein, were used to transform yeast cells. The binding was 

monitored by growth in SD/-Ade/-His/-Leu/-Trp selection medium. The primers used for 

amplification of full-length and truncated forms of ccn2 and ccn3 were the following: CCN2full 

(27-349), 5’-ATCCGAATTCCAGAACTGCAGCGGGCCGTGCCGGTGCCCG-3’ and 

5’-ATACGGATCCCTCATGCCATGTCTCCGTACATCTTCCTGT-3’; CCN2IGFBP (27-101): 

5’-ATCCGAATTCCAGAACTGCAGCGGGCCGTGCCGGTGCCCG-3’ and 

5’-ATACGGATCCGAGCACCATCTTTGGCGGTGCACACGCCGA-3’; CCN2VWC (94-198): 

5’-ATCCGAATTCGTGTGCACCGCCAAAGATGGTGCTCCCTGC-3’ and 

5’-ATACGGATCCAGTTGGCTCTAATCATAGTTGGGTCTGGGC-3’; CCN2TSP (193-258): 

5’-ATCCGAATTCACTATGATTAGAGCCAACTGCCTGGTCCAGA-3’ and 

5’-ATACGGATCCGGATGCACTTTTTGCCCTTCTTAATGTTCT-3’; CCN2CT (249-349): 

5’-ATCCGAATTCAACATTAAGAAGGGCAAAAAGTGCATCCGT-3’ and 

5’-ATACGGATCCCTCATGCCATGTCTCCGTACATCTTCCTGT-3’.  CCN3full (32-357): 

5’-ATCCGAATTCACTCAGCGCTGCCCTCCCCAGTG-3’ and 

5’-ATACGGATCCCATTTTCCCTCTGGTAGTCTTCAGC-3’; CCN3IGFBP (32-108): 

5’-ATCCGAATTCACTCAGCGCTGCCCTCCCCAGTG-3’ and 

5’-ATACGGATCCATCTCCCTCTACCGCCGTGCAGATG-3’; CCN3VWC (106-192): 

5’-ATCCGAATTCGAGGGAGATAACTGTGTGTTCGATG-3’ and 

5’-ATACGGATCCTTCTGGCCTGTAAGCTGCAAGGGTAAG-3’; CCN3TSP (185-256): 

5’-ATCCGAATTCACCCTTGCAGCTTACAGGCCAGAAG-3’ and 

5’-ATACGGATCCTGGCTGCTCTGGCTCTTGTTCACAG-3’; CCN3CT (253-357): 

5’-ATCCGAATTCCCAGAGCAGCCAACAGATAAGAAAG-3’ and 

5’-ATACGGATCCCATTTTCCCTCTGGTAGTCTTCAGC-3’. 
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β-galactosidase assays 

To confirm the binding specificity of CCN2 and CCN3 peptides, we re-transformed a pGADT7 

vector expressing full-length cnn2 (pGBKT7/ccn2full) in the AH109 yeast strain together with the 

pGADT7 vector expressing either full-length ccn2 or ccn3 or their IGFBP domain (pGADT7/ccn2full, 

ccn2I, ccn3full or ccn3I). The empty pGBKT7 vector was also used for re-transformation together 

with the same series of CCN2 or CCN3 truncations as a control. All double transformants were 

cultured in SD/-Trp/-Leu selection medium, equal numbers of cells were collected, and cellular 

proteins were prepared by 3 cycles of freezing and thawing in yeast Z buffer (0.1 M Na-phosphate, 

pH7.0, 20 mM KCl, 1 mM MgSO4). To measure the binding strength between full- length CCN2 and 

either full-length or truncated forms of CCN2 or CCN3, we measured the β-galactosidase activity of 

the reporter gene was measured [42], standardized it to the protein concentration, and subtracted the 

β-galactosidase activity obtained after co-transformation of the pGADT7 empty vector with the 

same series of polypeptides. 

 

Expression and purification of GST-CCN3 and rhCCN2 

For preparation of purified recombinant GST-CCN3 protein, the ccn3 gene was amplified without 

its signal peptide by PCR with primers 5’-ATACGGATCCACTCAGCGCTGCCCTCCCCAGTG-3’ 

and 5’-ATCCGAATTCTTACATTTTCCCTCTGGTAGTCTTC-3’, and subcloned into the 

pGEX-2TK vector (GE Healthcare), which carries a GST-tag at its BamHI/EcoRI sites. The 

recombinant plasmid was sequenced to ensure the absence of mutations. BL21(DE3)pLysS 

Escherichia coli cells (Novagen) were then transfected with the plasmid for expression of 

recombinant proteins. The expressed GST-CCN3 protein was purified with Glutathione-Sepharose 

4B agarose (GE Healthcare) as described previously [43]. The purified protein was dialyzed against 

phosphate-buffered saline (PBS). In some experiments, rCCN3 (Abnova) was used. Preparation and 

purification of CCN2 carrying a His6-tag were performed as described previously [18]. In some 

experiments, rhCCN2 (BioVendor Laboratory Medicine) was used. 

 

In vitro binding assay 

E.coli expressing rhCCN2 or GST-CCN3 were harvested and sonicated in co-immunoprecipitation 

(co-IP) buffer [20 mM Tris/HCl (pH 8.0), 25 mM NaCl, 1mM MgCl2, 1 mM EGTA, 1% Triton 

X-100, 1 mM DTT and 1 mM PMSF]. After removal of cell debris, both cell lysates were mixed at 

4°C to form CCN2-CCN3 complex. The complexes were then incubated with Glutathione-Sepharose 

4B for 1 h at 4°C. The beads were subsequently washed with co-IP buffer with 10% glycerol, after 

which the bead-protein complexes were subjected to SDS-PAGE and analyzed by Western blotting 

using an anti-His tag antibody (BETHYL) and GST-tag antibody (GE Healthcare). 
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Solid-phase binding assay and antibody against CCN2 

Wells of an ELISA plate were coated with 100 μl of 500 ng/ml recombinant CCN2 (BioVendor 

Laboratory Medicine) or GST-CCN3 in 50 mM NaHCO3 buffer (pH 9.6) at 4°C overnight, and 

blocked with 200 μl of binding buffer [50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 2% BSA, 0.05% 

Tween20] for 3 h at 37°C. Biotinylated CCN2 with or without 11H3 antibody was added to the wells 

in a total volume of 100 μl of binding buffer and incubated for 6 h at 37°C. Next, the wells were 

washed with binding buffer and then incubated with 100 μl of streptavidin-HRP (R&D Systems, 

MN). Bound HRP was monitored by using a TMD peroxidase substrate kit (Bio-Rad, CA). As 

control experiments, wells were coated with BSA or GST. The mouse monoclonal antibody used in 

these experiments was raised against the VWC domain of CCN2 and  kindly supplied by Dr. Y. 

Seto (Nippon Flour Mills Co., Ltd., Japan). 

 

Surface plasmon resonance analysis (BIAcore) 

Binding of CCN2 to CCN2 or CCN3 was analyzed by surface plasmon resonance with the 

BIAcore X instrument (GE Healthcare). rhCCN2 (1.25 μg) was immobilized on a C1 sensor chip by 

amine coupling according to the manufacturer’s instructions. The amount of immobilized CCN2 was 

in the range of 5000-7000 resonance units (RU). Binding studies were performed in HBS-P 

[Hepes-buffered saline containing surfactant P: 10 mM Hepes/HCl, 150 mM NaCl and 0.005% 

surfactant P-20 (pH 7.5) at 25°C] with analyte concentrations of 4, 8, 16, 32, and 64 nM. The 

dissociation constant (Kd) values were calculated by using BIA evaluation software version 4.1 (GE 

Healthcare) as previously reported [18]. 

 

Expression vectors 

pEGFP/ccn2 vector expressing CCN2 protein with green fluorescent protein at the C-terminus of 

CCN2 was prepared by amplification of ccn2 cDNA with signal peptide by using primers 

5’-CTTCGAATTCCCATGACCGCCAGTATGGGCCCCGTC-3’ and 

5’-CGGTGGATCCCGTGCCATGTCTCCGTACATCTTCCTGTA-3’, and insertion into EcoRI and 

BamHI sites of the pEGFP-N1 vector. pFlag-CMV/ccn3-halo expressing CCN3 protein with a 

Halo-tag at the C-terminus of CCN3 was prepared by amplification of ccn3 cDNA with signal 

peptide by using primers 5’-ATCCAAGCTTATGCAGAGTGTGCAGAGCAC-3’ and 

5’-ATACGAATTCATTTTCCCTCTGGTAGTCTTC-3’ and by amplication of halo with primers 

5’-ATACGAATTCAATGGCAGAAATCGGTACTGG-3’ and 

5’-ATACGGATCCTTAGCCGGAAATCTCGAGCGTC-3’ and pFN21AB3946, which expresses 

Sox9-Halo protein [44], as a template. The PCR fragments were cloned into the pFlag-CMV-2 vector 

at HindIII/EcoRI/BamHI sites. 
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Cell culture and RNA extraction 

COS7 monkey kidney cells and HCS-2/8 human chondrosarcoma-derived chondrocytic cells [45] 

were maintained in Dullbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS) as described before [42,46]. In some experiments, total RNA was isolated from 

HCS-2/8 cells by using a RNeasy Mini Kit according to the manufacturer’s instructions (Qiagen, 

Hilden, Germany) after the cells had been treated with the desired factors. 

 

In vivo binding assay 

COS7 cells were co-transfected with pEGFP/ccn2 and pFlag-CMV/ccn3-halo by use of Fugene 6 

reagent (Roche, Basel, Switzerland) according to the manufacturer's instructions and incubated for 

24 hours. The co-transfected COS7 cells or HCS-2/8 cells were then harvested in lysis buffer [50 

mM Tris/HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, and 0.5% protease inhibitor cocktail 

(Sigma)] and incubated with anti-GFP antibody (Roche) or anti-CCN2 antibody AF660 (R&D) or 

normal control IgG (Sigma). The complex including GFP-CCN2 or endogenous CCN2 was 

precipitated by use of HaloLink™ Resin (Promega) or Protein G Sepharose™ (GE Healthcare). 

After the precipitated proteins had been washed with wash buffer [50 mM Tris/HCl (pH 7.4), 150 

mM NaCl, and 0.1% Triton X-100], they were analyzed by Western blotting using an anti-Halo 

antibody (Promega) or anti-CCN3 antibody. 

 

Fluorescence imaging  

COS7 cells transiently transfected with different expression vectors were treated with the 

fluorescent ligand TMR, which recognize Halo-Tag (Promega), for 15 min at 37°C. After having 

been washed with DMEM, the cells were fixed with 4% formaldehyde/PBS for 15 min at room 

temperature; and Halo-tagged proteins and GFP-tagged proteins were directly monitored by 

fluorescence microscopy using an IX70 Microscope (Olympus Corporation, Japan). The images 

were analyzed with Axiovision software (Zeiss, Oberkochen, Germany).   

 

Indirect Immunofluorescence and Fluorescence Deconvolution Microscopy 

HCS-2/8 cells were first fixed with 3.7% formaldehyde/PBS for 15 min at room temperature. The 

cells were then either permeabilized with 0.25% TritonX-100/PBS or without permeabilization for 8 

min and blocked with 5% skim milk/PBS for 1 h and incubated with primary antibodies for 90 min 

at room temperature. After washing, the cells were incubated with secondary antibodies. Images 

were obtained with an Olympus fluorescence microscope. 

 

Reverse transcription and quantitative real-time PCR 
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For quantification of mRNA expression levels, 0.5 μg of total RNA of each sample was 

reverse-transcribed with avian myeloblastosis virus (AMV) reverse transcriptase (Takara Bio, Japan) 

at 42°C for 60 min. Quantitative real-time PCR reaction using SYBR Green Realtime PCR Master 

Mix (Toyobo, Japan) was done with StepOnePlus (Applied Biosystems, USA). Primer sequences 

used for aggrecan were 5’-GAGGAGAGAACTGGAGAAG-3’ and 

5’-GCCGATAGTGGAATACAAC-3’; and those for col2a1 5’-TGGTCCTGGCATCGACATG-3’ 

and 5’-GGCTGCGGATGCTCTCAAT-3’; and those for gapdh, 

5’-CAATGACCCCTTCATTGACC-3’ and 5’-GACAAGCTTCCCGTTCTCAG-3’. 
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Figure legends 

 

Fig. 1 Interaction between CCN2 and CCN2 and between CCN2 and CCN3.   

(A) Vector constructs of CCN2 expressed as a GAL4-DNA binding domain (BD)-fusion protein and 

those of CCN2 fragments or CCN3 fragments expressed as GAL4-transactivation domain 

(AD)-fusion proteins for use in the two-hybrid assay in yeast AH109. Numbers are positions of 

amino acids from the start codon. Growth test of yeast transformants for self-interaction between 

CCN2 and CCN2 (upper panel) and for CCN2 and CCN3 fragments (lower panel) in selection media 

(SD/-Ade, -His, -Leu, -Trp). GAL4-DNA AD-fusion fragments cloned into the pGADT7 expression 

vector were co-expressed with GAL4-DNA BD/CCN2full, which was encoded by pGBKT7/ccn2full 

(ccn2full), or pGBKT7 (mock). Cell growth was observed to be strong in transformants containing 

CCN2full with most of the CCN2 and CCN3 fusion proteins except for CCN2T, CCN3I, and CCN3T. 

(B) The binding between CCN2 and CCN3 fragments was monitored by performing the 

β-galactosidase reporter gene activity in yeast. Full-length CCN2 and CCN2full or CCN3full showed 

increased binding activity compared to the empty expression vector. Full-length CCN2 bound to the 

IGFBP domain of CCN2 and full-length CCN3, but not to the IGFBP domain of CCN3. 

 

Fig. 2 Direct interaction between rCCN2 and rCCN3 in vitro. 

(A) Western blot analysis of recombinant His-fused CCN2 (His-CCN2) binding to recombinant 

GST-fused CCN3 (GST-CCN3) after immunoprecipitation with anti-His. The cell lysates of E. coli 

expressing  His-CCN2 were collected and incubated on ice for 10 min with or without the cell 

lysates of E.coli expressing GST-CCN3. Then, pull-down was performed with glutathione-Sepharose 

beads at 4°C. The beads were washed, and the bound complexes were subjected to SDS-PAGE and  

Western blotting with anti-His antibody. Representative results for total cell lysate (input) and 

treatment without GST-CCN3 (-) and with GST-CCN3 (+) are shown. The arrows indicate the signal 

for His-CCN2 and GST-CCN3. (B) Solid-phase binding between biotinylated CCN2 and 

immobilized CCN2 (left) or GST-CCN3 (right). Microplate wells coated with 0.5 μg/ml of BSA or 

recombinant CCN2 or GST or GST-CCN3 were incubated with biotinylated recombinant CCN2 

(rCCN2) at the concentrations indicated. Binding of biotinylated rCCN2 was quantified by 

performing a colorimetric assay at Abs655 using streptavidin-HRP. (C) rCCN2 protein was 

immobilized on a sensor tip C1 as a ligand, and rCCN2 (left) and rCCN3 (right) were used as 

analytes at the concentration of 4, 8, 16, 32 and 64 nM in HBS-P. The sensorgrams were corrected 

for non-specific binding to the reference cell (non-treated). From sensorgram analysis the 

CCN2-CCN2 and CCN2-CCN3 dissociation constants were calculated to be Kd≒1.17×10-9 and Kd

≒1.95×10-9 M, respectively. [Resonance Units] 

 



CCN2-interaction to CCN3 in chondrocytes 

 19

Fig. 3 Expression and subcellular localization of endogenous CCN2 and CCN3 proteins in 

chondrocytic HCS-2/8 cells. (A) An immunoprecipitation (IP) of endogenous CCN2-CCN3 

complex from HCS-2/8 cell lysates by using CCN3 antibody or normal IgG, were detected by 

anti-CCN2 antibody and anti-CCN3 antibody. Ten percent of total input proteins and 

immunoprecipitated proteins were loaded onto SDS-PAGE gels and electrophoresed. Endogenous 

CCN3 was effectively pulled down by anti-CCN2 antibody compared to the control IgG. (B) 

Subcellular localization of endogenous CCN2 and CCN3 were detected by indirect 

immunofluorescence with each specific antibody on HCS-2/8 cell surface and inside of the cells 

when the cells were permeabilized by TritonX-100. Images were analyzed by fluorescence 

microscopy. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). Scale bars, 20 μm. 

 

Fig. 4 Expression, subcellular localization, and interaction of CCN2 and CCN3 proteins in 

COS7 cells. 

(A) Overexpressed GFP-fused CCN2 and binding proteins were precipitated from COS7 cell lysates 

by using GFP antibody. Among the precipitated CCN2-binding proteins, Halo-fused CCN3 was 

detected by using anti-Halo antibody. Ten percent of total input proteins and proteins 

immunoprecipitated with anti-GFP antibody were loaded onto SDS-PAGE gels and electrophoresed. 

In the presence of GFP-fused CCN2, Halo-fused CCN3 was pulled down effectively by anti-GFP 

antibody as compared with the control. (B) Subcellular localization of CCN2 and CCN3. GFP-fused 

CCN2 and Halo-fused CCN3 were detected by their fluorescence in living COS7 cells. GFP-fused 

CCN2 and Halo-fused CCN3, but not the other indicated combinations show co-localization in the 

cell. Scale bars, 20 μm. 

 

Fig. 5 CCN2 and CCN3 cooperatively regulate gene expression of aggrecan and col2a1 mRNA 

in HCS-2/8 cells.  

After 12 h (aggrecan) or 24 h (col2a1) treatment of chondrocytic HCS-2/8 cells with rCCN2 and/or 

rCCN3, gene expression of aggrecan or col2a1 was monitored by real-time PCR. (A, B) The 

addition of rCCN2 enhanced the expression of aggrecan and col2a1 mRNA, whereas the addition of 

rCCN3 inhibited it. The combination of rCCN2 and rCCN3 abolished the expression of aggrecan 

and col2a1 repressed by rCCN3 (rCCN2: 1.25 nM, rCCN3: 1.25 nM). (C, D) Addition of rCCN2 in 

conjunction with rCCN3 of a fixed concentration (rCCN3: 0.625 nM) abolished the repression of 

aggrecan and col2a1 mRNA by rCCN3 in rCCN2 dose-dependent manner. Aggrecan gene 

expression (A and C) was determined by the mean±SD value of triplicate samples. Similar results 

were obtained three times. Col2a1 gene expression (B and D) was determined by the mean±SD of 9 

samples from three times different experiments performed in triplicate. 
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Fig. 6 Modulation of CCN2-CCN3 binding by anti-CCN2 antibody (11H3) changes the 

aggrecan gene expression in HCS-2/8 cells.  

(A) Solid-phase binding analysis between biotinylated CCN2 and immobilized CCN2 (left) or 

GST-CCN3 (right). The addition of 11H3 antibody partially abolished the binding of CCN2 to CCN2 

(left), but accelerated the binding to GST-CCN3 (right). (B) HCS-2/8 cells were treated with rCCN2 

(1.25 nM) and/or rCCN3 (0.625 nM) in the presence of mouse IgG or 11H3 antibody, and gene 

expression of aggrecan was monitored by real-time PCR 12 h later. The addition of 11H3 antibody 

to CCN2-treated HCS-2/8 cells cancelled the enhanced expression of the aggrecan gene, whereas  

the 11H3 antibody further enhanced gene expression in the presence of CCN3 with or without CCN2, 

suggesting that enhanced binding of CCN2 and CCN3 led to stronger stimulation of aggrecan 

expression. Data are presented as the mean±SD of triplicate samples. 
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