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Summary 

Esmolol has neuroprotective effects in the acute phase of ischemia, although esmolol 

does not affect the duration of ischemic depolarization.
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Abstract 

Background: Neuroprotective effects of esmolol in laboratory and clinical settings have 

been reported. The present study was designed to quantitatively evaluate the 

neuroprotective effects of esmolol by using logistic regression curves and extracellular 

potentials.  

Methods: In forty-two gerbils, bilateral occlusion of common carotid arteries was 

performed for 3, 5, or 7 min (n=7 in each group). In treated animals, esmolol (200 

µg/kg/min) was administered for 90 min from 30 min before the onset of ischemia. 

Direct current potentials were measured in bilateral CA1 regions, in which histological 

evaluation was performed 5 days later. Relations of neuronal damage with ischemic 

duration and duration of ischemic depolarization were determined by logistic regression 

curves. 

Results: There was no significant difference in onset time between the two groups 

(control group vs. esmolol group: 1.65±0.46 min vs. 1.68±0.45 min, P=0.76), and 

significant differences in durations of ischemic depolarization were not observed with 

any ischemic duration. However, logistic regression curves indicated that esmolol has a 

neuroprotective effect from 2.95 to 7.66 minutes of ischemic depolarization (P<0.05), 

and esmolol prolonged the duration of ischemic depolarization causing 50% neuronal 
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damage from 4.97 to 6.34 minutes (P<0.05). Logistic regression curves also indicated 

that esmolol has a neuroprotective effect from 3.77 to 7.74 minutes of ischemic duration 

(P<0.05), and esmolol prolonged the ischemic duration causing 50% neuronal damage 

from 4.26 to 4.91 minutes (P<0.05). 

Conclusion: Esmolol has neuroprotective effects in the acute phase of ischemia by a 

mechanism other than shortening the duration of ischemic depolarization. 
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esmolol; β-adrenoceptor; ischemic depolarization; neuroprotective effect; brain 
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Introduction 

It has been reported that β-adrenoceptor antagonists had neuroprotective effects in 

experimental models including reduction in infarct size and attenuation of histological 

outcomes.1-7 In a clinical setting, it has also been reported that the β-adrenoceptor had 

neuroprotective effects such as reduction in the incidence of postoperative neurologic 

complications after cardiac surgery8 and attenuation of the severity of stroke in ischemic 

stroke patients.9 

In previous studies, the neuroprotective effects of β-adrenoceptor antagonists 

have been evaluated in various experimental models and with various ischemic 

durations. However, it is difficult to compare the results of various experiments or 

neuroprotective effects of other drugs. Therefore, quantitative evaluation of the 

neuroprotective effect is important. However, to the best of our knowledge, quantitative 

evaluation of the neuroprotective effects of β-adrenoceptor antagonists has not been 

performed. 

When neuronal cells lose membrane potential due to cerebral ischemia, 

intracellular calcium concentration is increased up to 300 times of the control level,10 

and this increase in calcium concentration triggers secondary neuronal damage. Since 

ischemic depolarization triggers cascades of neuronal damage, the duration of ischemic 
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depolarization is strongly correlated with the degree of neuronal damage.11 However, 

effects of β-adrenoceptor antagonists on duration of ischemic depolarization have not 

been evaluated. 

The purpose of the present study was to quantitatively evaluate the 

neuroprotective effects of a β-adrenoceptor antagonist during the acute phase of brain 

ischemia. We used esmolol because it is rapidly metabolized and it is suitable for 

observing the effects of a β-adrenoceptor antagonist in the acute phase of cerebral 

ischemia. We induced ischemia of different durations (3, 5, and 7 min) in gerbils and 

observed the degree of damage of hippocampal CA1 pyramidal neurons. Then the 

correlation between ischemic duration and neuronal damage was depicted by use of 

logistic regression curves (probit curves), and the ischemic duration that would induce 

50% neuronal damage was obtained. At the same time, ischemic depolarization in the 

hippocampal CA1 region was observed. The effect of esmolol on duration of ischemic 

depolarization was then evaluated by extracellular recording in the CA1 region. 

 

Materials and Methods  

Animals 

Forty-five male Mongolian gerbils (SLC, Hamamatsu, Japan), weighing 64.5 ± 
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5.5 g, were used. The animals had free access to water and were fed ad libitum before 

the experiments. All experiments were performed in accordance with the National 

Institutes of Health Animal Care Guidelines and were approved by the Animal Research 

Control Committee of Okayama University Medical School. 

 

Direct current (DC) potential and histological outcome 

All animals were anesthetized before surgery with halothane (1%–2%) in 30% 

oxygen and 70% nitrogen under spontaneous respiration. Polyethylene catheters 

(PE-10) were inserted into the right femoral artery for continuous monitoring of mean 

arterial blood pressure (mABP) and blood sampling and into the right femoral vein for 

administration of saline or esmolol. Arterial blood samples were obtained 20 minutes 

after administration of saline or esmolol. Arterial blood gas, glucose, and hemoglobin 

were analyzed (i-STAT 300F, i-STAT Corporation, East Windsor, NJ, USA). 

The bilateral common carotid arteries were exposed, and a ring (silicon tube, 0.5 

mm in diameter) was loosely placed around each artery. After securing the head in a 

stereotaxic apparatus (Narishige, Tokyo, Japan), a reference electrode was placed in the 

left ear and a laser Doppler flow probe (FLO-C1, Omegawave, Tokyo, Japan) was 

placed on the right parietal cortex to continuously monitor regional cerebral blood flow 
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(CBF). Rate of change in CBF was utilized because it has been reported that a 

laser-Doppler flow meter only provides accurate information on changes in CBF.12 

Two burr holes were made in bilateral temporal bones just above the CA1 regions 

of the bilateral hippocampus in accordance with the brain atlas (2 mm caudal to the 

bregma, 1.5 mm bilateral from the sagittal line)13. Two borosilicate glass electrodes (tip 

diameter, <5 μm; filled with physiological saline) were then placed for measurement of 

DC potentials (MEZ-8300, Nihon Kohden, Tokyo, Japan) 1 mm below the cortical 

surface in the vertical direction through the burr holes by using a stereotaxic apparatus. 

After surgery, the halothane concentration was reduced to 1%. 

The 42 animals were randomly assigned to either a saline-administered group 

(control group, n = 21) or esmolol-administered group (esmolol group, n = 21). Another 

three animals were assigned to a sham group (no ischemia). In the esmolol group, 

esmolol was administered at the rate of 200 µg/kg/min (0.4 ml/hr) for 90 minutes. 

Forebrain ischemia was initiated 30 minutes after the start of continuous infusion. In the 

control group and sham group, an equivalent amount of saline was administered. In both 

groups, 1% halothane administration was continued until closure of the incision. 

In the control group and esmolol group, forebrain ischemia was initiated by 

bilateral occlusion of the common carotid arteries for a predetermined duration (3, 5, or 
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7 minutes, n = 7 for each duration in each group). Initiation of ischemia and reperfusion 

were confirmed by a sudden decrease and rapid increase in CBF, respectively. Changes 

in DC potentials and CBF were recorded with the use of an analog/digital system 

(PowerLab, ADInstruments, Sydney, NSW, Australia). Changes in DC potentials were 

assessed by measuring onset time (from the initiation of ischemia to sudden negative 

shift of DC potentials) and duration of ischemic depolarization (from sudden negative 

shift of DC potentials to 80% recovery from maximal DC deflection) (Figure 1). 

Brain surface temperature was maintained at 37.0 ± 0.5°C with a gentle flow (1.6 

ml/min to 3.0 ml/min) of warmed saline (38.0 ± 0.5°C) into a polyethylene cylinder (5 

mm in height, 13 mm in inner diameter) that had been placed on the skull surface. 

Rectal temperature was maintained at 37.0 ± 0.5°C using a heated-water blanket and 

infrared lamp. These temperatures were continuously measured and controlled from 30 

minutes prior to the initiation of ischemia until 90 minutes after initiation of reperfusion 

to avoid the influence of temperature on ischemia because it had been previously 

reported that any chance of neuronal death induced by post-ischemic hyperthermia 

could be eliminated by maintaining normothermia for a duration of 85 min after 

initiation of reperfusion14. 

After a 5-day survival period, all animals were anesthetized with 4% of halothane 
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in oxygen and perfused with heparinized physiologic saline (20 U/ml) and 4% 

formaldehyde with buffer solution (pH 7.4). At the cortical surface, needle tracks were 

made with a 27-gauge needle using blue ink through the burr holes before enucleating 

the brains, because we confirmed that the cortical surface did not shift after 5 days of 

ischemia by identifying cortical arteries and veins through the burr holes in a pilot 

study. 

After brain removal and paraffin-embedding, tissue including the bilateral 

hippocampal CA1 regions (area marked with blue ink) was sectioned coronally (5 μm in 

thickness). The sections were stained with hematoxylin and eosin. The areas in which 

DC potential had been recorded were enlarged to 400-power magnification, and the 

numbers of both damaged and intact pyramidal neurons in bilateral hippocampal CA1 

regions were counted (visual field: 340 × 230 µm). In the current study, pyramidal 

neurons showing aggregated chromatin in the nucleus, shrinkage, or eosinophilic 

staining in the cytoplasm were defined as damaged neurons. The number of injured 

pyramidal neurons in the bilateral hippocampal CA1 regions was counted by an 

observer who was blinded to this study. The percentages of neuronal damage in the two 

groups were calculated as damaged neurons/total neurons × 100 in the visual field. 
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Statistical analysis 

Values are expressed as means ± SD.  

Parameters for arterial blood gas, glucose, hemoglobin and ischemic 

depolarization were analyzed by Student’s t-test. The changes in CBF, mABP and heart 

rate were analyzed by two-way analysis of variance (ANOVA). Scheffé’s F test was 

used as a post hoc test if the results of ANOVA were significant. Parameters for 

neuronal damage were analyzed by the Mann-Whitney U-test. In all statistical tests, a 

level of P < 0.05 was considered to be significant.  

Dose–reaction curves for evaluating acute drug toxicity in toxicology are usually 

expressed by the use of probit curves. In the current study, the relationships of neuronal 

damage with ischemic duration and duration of ischemic depolarization were 

determined by logistic regression curves (probit curves) as dose–reaction curves. 

Ischemic duration or duration of ischemic depolarization was represented on the x-axis 

and neuronal damage was represented on the y-axis. These regression curves were 

drawn by using data analysis software (Microcal Origin 8; Microcal Software, 

Northampton, MA, USA). A probit curve, which expresses the probability of 

occurrence, is used to search for the median lethal dose in toxicology. Therefore, in this 

study, ischemic durations and durations of ischemic depolarization necessary for 
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causing 50% neuronal damage in both groups were determined from logistic regression 

curves. 

 

Results 

As shown in Table 1, we obtained physiological values before administration 

of esmolol (baseline), immediately before initiation of brain ischemia, during ischemia, 

and 10 min after reperfusion. Arterial blood samples were obtained 20 min after 

administration of saline or esmolol and 10 min before initiation of ischemia. Although 

heart rate was significantly decreased following administration of esmolol before 

initiation of ischemia (esmolol vs. control, P < 0.001; baseline vs. before initiation of 

brain ischemia, P < 0.001) and after reperfusion (esmolol vs. control, P < 0.001; 

baseline vs. after reperfusion, P < 0.001), there were no statistically significant 

differences in other parameters between the control group and esmolol group. 

The variables of DC potential in each experimental group are summarized in 

Table 2. No significant difference in onset time between the two groups was observed, 

and there was no significant difference in duration of ischemic depolarization between 

the two groups with any ischemic duration. 
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The variables of neuronal damage are also shown in Table 2. The percentage of 

neuronal damage with 5 min of ischemia was significantly improved in the esmolol 

group (58.9 ± 25.4%) compared with that in the control group (80.8 ±15.3%) (P = 0.01). 

The percentages of neuronal damage with 3 and 7 min of ischemia were not 

significantly different in the two groups. 

As can be seen in Figure 2, logistic regression curves showed significant 

correlations between ischemic time and percentages of damaged neurons (control: 

r2=0.86, P<0.001; esmolol: r2=0.80, P<0.001). The 95% confidence intervals did not 

overlap from 3.77 to 7.74 min of ischemic duration. Ischemic durations necessary for 

causing 50% neuronal damage in the control and esmolol groups were estimated to be 

4.26 min (95% CI, 4.01 - 4.48 min) and 4.91 min (95% CI, 4.65 - 5.16 min), 

respectively. 

As can be seen in Figure 3, other logistic regression curves showed significant 

correlations between duration of ischemic depolarization and percentages of damaged 

neurons (control: r2=0.66, P<0.001; esmolol: r2=0.79, P<0.001). The 95% confidence 

intervals did not overlap from 2.95 to 7.66 min of duration of ischemic depolarization. 

Durations of ischemic depolarization necessary for causing 50% neuronal damage in the 

control and esmolol groups were estimated to be 4.97 min (95% CI, 4.01 - 4.48 min) 
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and 6.34 min (95% CI, 4.65 - 5.16 min), respectively. 

 

Discussion 

As shown in Table 2, administration of esmolol suppressed the percentage of 

neuronal damage in the hippocampal CA1 region with 5 min of ischemia. However, the 

percentages of neuronal damage with 3 and 7 min of ischemia were not different 

between the two groups. Therefore, if ischemia of only one intensity had been induced, 

there is a possibility that the difference in the effects of esmolol during cerebral 

ischemia would have been overlooked. These results indicated that significant 

neuroprotective effects were elicited with a limited range of ischemic intervals. 

As can be seen in Fig 2, the 95% confidence intervals did not overlap from 

3.77 to 7.74 min of ischemic duration between regression curves of the esmolol group 

and control group, indicating that esmolol significantly reduced neuronal damage during 

this period of ischemia. In addition, administration of esmolol prolonged durations of 

ischemia necessary for causing 50% neuronal damage by 0.65 minutes. Propofol and 

thiopental prolonged ischemic durations necessary for causing 50% neuronal damage by 

1.4 min and 3.3 min, respectively, in the same experimental model.15 These results 

suggested that the neuroprotective effect of esmolol tends to be weaker than the effects 
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of such agents. 

In the current study, esmolol reduced neuronal damage in the hippocampal 

CA1 region. In previous studies, it has been shown that β-adrenoceptor antagonists had 

neuroprotective effects in both clinical and experimental settings. In a clinical setting, 

use of β-adrenoceptor antagonists was associated with a substantial reduction in the 

incidence of postoperative neurologic complications during cardiac surgery8 and less 

severe stroke in cerebrovascular disease.9 In animal models, Little et al.1 reported in 

1982 that propranolol reduced infarct size in a rat model of focal ischemia. Atenolol, a 

selective β1-adrenoceptor antagonist, had a neuroprotective effect after permanent focal 

cerebral ischemia in rats.6 In addition, esmolol and landiolol, short-acting 

β1-adrenoceptor antagonists, have neuroprotective effects after transient focal cerebral 

ischemia and global ischemia in rats.3-5,7 From these reports, it is believed that 

β-adrenoceptor antagonists have neuroprotective effects. However, previous studies 

used β-adrenoceptor antagonists with long half-lives (T1/2: propranolol, 3.2 h16; 

atenolol, 6.06 h17) or long administration time (24 h ~ 6 days3-5, 7) in use of short-acting 

β-adrenoceptor antagonists (T1/2: esmolol, 9.19 min18; landiolol, 3.05 min19). To the 

best of our knowledge, neuroprotective effects of β-adrenoceptor antagonists in the 

acute phase of brain ischemia have not been evaluated. Therefore, this is the first study 
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showing the neuroprotective effects of a short-acting β-adrenoceptor antagonist 

administered in a peri-ischemic period (from 30 min before to 60 min after the initiation 

of brain ischemia). 

After the loss of membrane potential, intracellular calcium concentration 

increases by 300 fold,10 resulting in secondary neuronal damage. Increasing intracellular 

calcium activates many enzymes such as endonuclease, protease, and phospholipase,20 

leading to induction of apoptosis,20 collapse of cytoskeletal elements,20,21  and 

accumulation of arachidonic acid.22 Because the loss of membrane potential triggers a 

cascade of neuronal damage, ischemic depolarization is one of the important factors for 

determining the degree of neuronal damage in brain ischemia.11 From the aspect of 

ischemic depolarization, the mechanism of neuroprotection can be divided into two 

major categories.15 The first mechanism is reduction in duration of ischemic 

depolarization. As shown in Table 2, durations of ischemic depolarization with ischemic 

times of 3, 5 and 7 min were almost the same in the control and esmolol groups. This 

result indicates that esmolol does not affect the duration of ischemic depolarization; that 

is, the first mechanism is not the mechanism underlying the neuroprotective effect of 

esmolol. 

The second mechanism is suppression of neuronal injury during or after 
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ischemic depolarization by inhibiting cascades for neuronal damage such as calcium 

influx and extracellular glutamate accumulation. The relations between duration of 

ischemic depolarization and neuronal damage are shown in Figure 3. Esmolol 

significantly prolonged the duration of ischemic depolarization necessary for causing 

50% neuronal damage from 4.97 minutes to 6.34 minutes. This result indicated that the 

neuroprotective effect of esmolol is likely to be elicited by the second mechanism 

because esmolol was administered in only a peri-ischemic period. 

Although the aim of this study was not to clarify the second mechanism 

underlying the neuroprotective effects of esmolol, some mechanisms are considered. It 

is well known that β-adrenergic stimulation activates adenylate cyclase, resulting in 

increased cyclic adenosine monophosphate (cAMP). cAMP activates protein kinase A 

(PKA).23,24 PKA increases calcium influx by phosphorylation of the voltage-dependent 

calcium channel,23,25,26 ryanodine receptor,27,28 and Na/Ca exchanger.29 

Beta-adrenoceptor antagonists attenuate calcium influx by suppressing these receptors. 

24,29-32 Moreover, β-adrenoceptor antagonists suppress the increase in extracellular 

glutamate level,7,33 because cAMP facilitates glutamate release33 and decreases 

glutamate uptake.34 

In the current study, esmolol was administered at the rate of 200 µg/kg/min. 
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Heart rate was decreased by 23% and mean arterial blood pressure (mABP) was not 

decreased significantly compared with the baseline. In many studies, administration of 

esmolol to human subjects at the rate of 100 ~ 200 µg/kg/min, which is the clinical dose 

in humans, decreased heart rate by 10 ~ 25%.35-38 At that dose, blood pressure was 

mildly decreased in some cases35,38 and was not decreased in other cases.36,37 

Voltz-Zang et al. showed from the dose response curve that esmolol decrease blood 

pressure in a dose-dependent manner.39 Administration of esmolol at high doses (500 ~ 

750 µg/kg/min) to humans greatly decreased blood pressure.40 Since the dose of esmolol 

used in the current study decreased heart rate moderately without suppressing mABP, 

we considered this dose to be close to the clinical dose. 

There were some limitations in this study. First, cardiovascular effects of 

β-adrenoceptor antagonists might influence neuroprotective effects of β-adrenoceptor 

antagonists. In this study, we used a forebrain ischemic model. During the experiment, 

gerbils maintained mABP, and mABP and CBF were not significantly different between 

the control and esmolol groups (Table 1). It is therefore thought that esmolol has 

neuroprotective effects independent of improvement in cardiovascular function. Second, 

since total numbers of neurons with 5 and 7 min of ischemia were smaller than those in 

the sham group, there was a possibility that the total number of neurons was 
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underestimated. The percentage of damaged pyramidal cells in the hippocampal CA1 

region was assessed at 5 days after ischemia. Since it has been reported that histological 

damage is completed within 4 days after ischemia41 and since phagocytic cells had 

accumulated at 7 days after ischemia,42 it was expected that the number of damaged 

neurons could be counted at 5 days after ischemia. We assumed that one of the reasons 

for the decrease in total number of neurons is related to brain edema. In support of this 

notion, the area of the hippocampus (including CA1, CA2 and CA3 regions) was 

increased by 7% in the group with 7 min of ischemia compared to that in the sham 

group (data not shown). Since not only the total number of neurons but also the number 

of damaged neurons would be decreased, it is thought that the ratio of neuronal damage 

was not greatly affected though the total number of neurons decreased. Third, in this 

study, the percentage of damaged pyramidal cells in the hippocampal CA1 region was 

assessed at 5 days after ischemia. The neurological effect and long-term effect of 

esmolol on brain ischemia were unclear in this study. 

In summary, we quantitatively evaluated the neuroprotective effects of esmolol 

at a clinical dose using logistic regression curves. Logistic regression curves indicated 

that esmolol significantly reduced neuronal damage during the period of ischemia from 

3.77 to 7.74 min and prolonged ischemic duration necessary for causing 50% neuronal 
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damage by 0.65 min. The onset of ischemic depolarization and duration of ischemic 

depolarization were not affected by esmolol in three different durations of ischemia. 

Other logistic regression curves indicated that severity of neuronal damage with 

identical duration of ischemic depolarization was significantly attenuated by esmolol 

compared with the control during the period of ischemic depolarization from 2.95 to 

7.66 min. Therefore, it is thought that decreasing neuronal injury by inhibiting cascades 

for neuronal damage during and after ischemic depolarization is one of the mechanisms 

underlying the neuroprotective effects of esmolol. 
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Table 1. Physiological values 

control group  esmolol group 

PaCO2 (mmHg)     42.4 ± 3.6 42.1 ± 2.2 

PaO2 (mmHg)     131 ±17  132 ± 9 

HCO3 (mmol/l)     24.1 ± 1.8 24.0 ± 1.5 

Blood glucose (mg/dl)    142 ± 24  136 ± 19 

Hemoglobin (g/dl)     15.2 ± 1.0 15.0 ± 0.7 

Mean arterial blood pressure (mmHg) 

Baseline     79.9 ± 11.5   83.6 ± 8.1 

Before initiation of brain ischemia   79.0 ± 13.5  79.7 ± 8.9 

During ischemia    118 ± 11.1†  118 ±10.5† 

10 min after reperfusion    80.3 ± 9.1  77.9 ± 6.1 

Heart rate (bpm) 

Baseline     321 ± 77  329 ± 63 

Before initiation of brain ischemia   309 ± 77  249 ± 40 *† 

During ischemia    218 ± 44†  211 ± 35† 

10 min after reperfusion    344 ± 69  264 ± 37*† 

 



%changes in CBF (%) 

Baseline     100  100 

Before initiation of brain ischemia   103 ± 11  101 ± 9 

During ischemia    7.6 ± 2.4† 7.5 ± 5.1† 

10 min after reperfusion    103 ± 31  105 ± 36 

Values are expressed as means ± SD.   

Arterial blood samples were obtained 20 min after administration of saline/esmolol. 

Baseline = before administration of saline/esmolol 

PaCO2 = arterial carbon dioxide tension; PaO2 = arterial oxygen tension; HCO3 = hydrogen 

carbonate ions; CBF = cerebral blood flow 

 

* P<0.05 compared with control group  

† P<0.05 compared with baseline 

 

 

 

 

 



 

Table 2. Variables of DC potential and neuronal damage 

control group  esmolol group 

Onset time (min)   1.65 ± 0.46  1.68 ± 0.45 

Duration of ischemic depolarization (min) 

3 minutes of ischemia  3.31 ± 0.60  3.60 ± 0.86 

5 minutes of ischemia  6.40 ± 0.84  6.46 ± 0.81 

7 minutes of ischemia  9.52 ± 2.07  9.39 ± 1.46 

Neuronal damage (%) (total number of neurons in the visual field)  

0 minutes of ischemia (sham) 1.1 ± 1.0 (79.7 ± 5.0) 

3 minutes of ischemia  12.9 ± 8.3 (81.6 ± 7.9) 9.8 ± 9.9 (79.2 ± 6.4) 

5 minutes of ischemia  80.8 ± 15.3 (67.7 ± 12.0) 58.9 ± 25.4* (74.0 ± 12.0) 

7 minutes of ischemia  97.2 ± 2.1 (70.1 ± 8.0) 93.1 ± 9.6 (66.5 ± 8.2)  

Values are presented as means ± SD. 

 * P< 0.05 compared with the control group. 

 

 

 



 

Figure 1. Onset time: from initiation of ischemia to sudden negative shift of DC potentials. Duration 

of ischemic depolarization: from sudden negative shift of DC potentials to 80% recovery from 

maximal DC deflection. 

 



 

Figure 2. Relationships between ischemic duration and percentage of damaged neurons in all 

experimental animals. Circles, percentage of damaged neurons in the control group; triangles, those 

in the esmolol group. Logistic regression curves show close relationships between ischemic duration 

and neuronal damage (control group, line A: r2 = 0.86, P < 0.001; esmolol group, line B: r2 = 0.80, P 

< 0.001). The 95% confidence intervals (shaded areas) did not overlap from 3.77 to 7.74 min of 

ischemic duration (*). Ischemic durations necessary for causing 50% neuronal damage in the control 

group and esmolol group were 4.26 min and 4.91 min, respectively. 

 



 

Figure 3. Relationships between duration of ischemic depolarization and percentages of damaged 

neurons. Percentages of damaged neurons in the control group are shown by circles and those in the 

esmolol group are shown by triangles. Logistic regression curves show close relationships between 

ischemic duration and neuronal damage (control group, line A: r2 = 0.66, P < 0.001; esmolol group, 

line B: r2 = 0.79, P < 0.001). The 95% confidence intervals (shaded areas) did not overlap from 2.95 

to 7.66 min of duration of ischemic depolarization (*). Durations of ischemic depolarization 

necessary for causing 50% neuronal damage in the control group and esmolol group were 4.97 min 

and 6.34 min, respectively. 
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