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ABSTRACT

This thesis focuses on the design of succinct and compressed data structures for collections
of string-based data, specifically sequences of semi-structured documents in textual
format, sets of strings, and sequences of strings. The study of such collections is motivated
by a large number of applications both in theory and practice.

For textual semi-structured data, we introduce the concept of semi-index, a succinct
construction that speeds up the access to documents encoded with textual semi-structured
formats, such as JSON and XML, by storing separately a compact description of their
parse trees, hence avoiding the need to re-parse the documents every time they are read.

For string dictionaries, we describe a data structure based on a path decomposition of
the compacted trie built on the string set. The tree topology is encoded using succinct
data structures, while the node labels are compressed using a simple dictionary-based
scheme. We also describe a variant of the path-decomposed trie for scored string sets,
where each string has a score. This data structure can support efficiently top-k completion
queries, that is, given a string p and an integer k, return the k highest scored strings
among those prefixed by p.

For sequences of strings, we introduce the problem of compressed indexed sequences of
strings, that is, representing indexed sequences of strings in nearly-optimal compressed
space, both in the static and dynamic settings, while supporting supports random access,
searching, and counting operations, both for exact matches and prefix search. We present
a new data structure, the Wavelet Trie, that solves the problem by combining a Patricia
trie with a wavelet tree. The Wavelet Trie improves on the state-of-the-art compressed
data structures for sequences by supporting a dynamic alphabet and prefix queries.

Finally, we discuss the issue of the practical implementation of the succinct primitives
used throughout the thesis for the experiments. These primitives are implemented as
part of a publicly available library, Succinct, using state-of-the-art algorithms along with
some improvements.
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1 INTRODUCTION

String-based data structures lie at the core of most information retrieval, data mining,
and database applications. One large-scale example is given by modern search engines
and social networks; due to their centralized nature, these services must store, process,
and serve a continuous massive stream of user-produced data, which mostly consists
of collections of words, texts, URLs, queries, user ids, semi-structured metadata, and
relations among them. These massive amounts of data must be made available to a vast
number of users with query latencies in the order of milliseconds. At the same time,
a large part of the users’ interactions with the services is logged to be later analyzed;
mining large databases of user actions enables discovery of usage patterns that can be used
to improve the quality of the service. At the other end of the spectrum, mobile devices
ship with increasingly large databases stored in memory. For instance, rich language
models, which are basically scored string sets, are essential to provide accurate speech
and handwritten text recognition, and predictive text entry.

In all these applications, space-efficiency is crucial. In order to answer queries with
real-time latency guarantees, the data must be stored in the highest levels of the memory
hierarchy: in many cases, it is not possible to afford a single disk access, let alone a
network request. Besides, the higher the space efficiency, the more data can be stored
with the same memory budget, which is the main cost in modern systems.

Traditionally, space efficiency is obtained by careful engineering of data structures,
usually combined with general-purpose compression algorithms such as gzip. However,
classical pointer-based data structures often have unavoidable overheads, for as clever
the space optimizations might be. For example, a tree of n nodes needs Ω(log n) bits
per node to store the children pointers; as the tree grows larger, the size of the pointers
can become much larger than the data stored in the node. Regarding general-purpose
compression, most compression schemes can only be decompressed sequentially. To
apply them to data structures, it is necessary to divide the data into blocks and compress
them individually. The smaller are the blocks, the poorer is the compression ratio. On
the other hand, if the blocks are too large the cost of decompressing the whole block to
retrieve a single record becomes dominant. This is particularly inefficient when the data
access patterns are highly non-sequential.

1



2 CHAPTER 1. INTRODUCTION

The field of succinct data structures promises to solve the aforementioned issues: a
succinct data structure guarantees space bounds equal to the information-theoretic lower
bound on the space needed to store the data, plus a second-order negligible term, which
is usually called the redundancy. Still, a large set of operations can be supported with
time complexity competitive with the equivalent classical data structures. A tree of n
nodes, for example, can be stored in 2n+O(n/polylog n) = 2n+ o(n) bits [101], while
supporting in constant time a set of traversal operations even larger than a standard
representation that stores children and parent pointers in each node, which would need
Ω(n log n) bits. Similarly, a text can be compressed down to its high-order entropy plus
negligible terms, and still any character in the text can be accessed in constant time
[100, 54, 42].

This thesis focuses on the design of succinct and compressed data structures for
collections of string-based data, specifically sequences of semi-structured documents in
textual format, sets of strings, and sequences of strings. We have chosen these particular
types of data as they arise in a large number of practical scenarios, as outlined above.

Since our problems come from real-world applications, we give special attention
to the practicality of the presented data structures, without however neglecting the
theoretical guarantees. Succinct data structures have arisen mainly as a theoretical tool;
nonetheless, a large amount of recent literature has shown that in many applications
they can have performance competitive with classical data structures, while offering a
significant reduction in space. The recent interest in succinct data structures for practical
applications can be attributed to a few recent trends. First, the performance improvement
of CPUs proceeds at a much higher pace than that of memory, making it convenient
to trade more computation for fewer memory accesses. Second, 64-bit architectures are
now ubiquitous, hence if the low-level primitives used in succinct data structures are
implemented by means of broadword algorithms [76], double the bits can be processed in
roughly the same time when compared to 32-bit architectures, thus greatly improving
the efficiency. Lastly, data sizes are growing to a point where the Ω(log n) overhead of
pointer-based data structures becomes a bottleneck.

While most data structures benefit from some degree of algorithm engineering, for
succinct data structures it becomes a necessary effort, as the asymptotic gains can be easily
outweighted by the constants hidden in the big-Oh notation, with the result that the
“negligible” redundancy, for realistic data sizes, is not negligible at all! On real datasets, an
O(n) space data structure can be more space-efficient than an o(n) one, and similarly a
carefully optimized logarithmic-time algorithm can easily beat a constant-time one. For
this reason, a chapter of this thesis is devoted to the practical implementation of succinct
primitives, to investigate the impact of the theoretical ideas in a practical framework.
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1.1 THESIS ORGANIZATION

The thesis is structured as follows. After a brief review of the basic concepts and tools,
we present our contributions, which are summarized below. We then conclude the thesis
with some directions for future work and open problems.

SEMI-INDEXING TEXTUAL SEMI-STRUCTURED DATA. Semi-structured textual formats
such as XML and JSON are gaining increasing popularity for the storage of document
collections and rich logs. Their flexibility comes at the cost of having to load and parse a
document entirely even if just a small part of it needs to be accessed. For instance, in data
analytics massive collections are usually scanned sequentially, selecting a small number
of attributes from each document.

In Chapter 3 we propose a technique to attach to a raw, unparsed document (even in
compressed form) a “semi-index”: a succinct data structure that supports operations on
the document tree at speed comparable with an in-memory deserialized object.

After describing the general technique, we focus on the JSON format: our experi-
ments show that avoiding the full loading and parsing step can give speed-ups of up to 10
times for on-disk documents using a small space overhead. The contents of this chapter
are based on [97].

COMPRESSED STRING DICTIONARIES. In Chapter 4 we explore new succinct repre-
sentations of tries, based on path-decomposition trees, and experimentally evaluate the
corresponding reduction in space usage and running times, comparing with the state of
the art. We study the following applications.

(1) Compressed string dictionary: We obtain data structures that outperform other
state-of-the-art compressed dictionaries in space efficiency, while obtaining predictable
query times that are competitive with data structures usually preferred by the practition-
ers. On real-world datasets our compressed tries obtain the smallest space (except for one
dataset) and have the fastest lookup times, while retrieval times are within 20% slower
than the best known solutions.

(2) Monotone minimal perfect hash for strings: Our compressed tries perform several
times faster than other trie-based monotone perfect hash functions, while occupying
nearly the same space. On real-world datasets our tries are approximately 2–5 times faster
than previous solutions, with a space occupancy less than 10% larger.

The contents of this chapter are based on [60].

TOP-k STRING COMPLETION. In Chapter 5 we present an application of the tries
described in Chapter 4 to the problem of top-k string completion, that is, given a scored
string set, the problem of retrieving the k highest scored strings that match a given prefix.
This problem arises in several applications, such as auto-completion of search engine
queries and predictive text entry in mobile devices.
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We show that a path-decomposition strategy specifically tailored for the problem
enables fast retrieval of top-k completions, while retaining the space reduction obtained
with our compressed tries. The contents of this chapter are partly based on [65].

INDEXED SEQUENCES OF STRINGS. An indexed sequence of strings is a data structure
for storing a sequence of strings that supports random access, searching, range counting
and analytics operations, both for exact matches and prefix search. String sequences lie at
the core of column-oriented databases, log processing, and other storage and query tasks.
In these applications each string can appear several times and the order of the strings in
the sequence is relevant. The prefix structure of the strings is relevant as well: common
prefixes are sought in strings to extract interesting features from the sequence.

In Chapter 6 we introduce and study the problem of compressed indexed sequence of
strings, i.e. representing indexed sequences of strings in nearly-optimal compressed space,
both in the static and dynamic settings, while preserving provably good performance for
the supported operations.

We present a new data structure for this problem, the Wavelet Trie, which combines
the classical Patricia trie with the wavelet tree, a succinct data structure for storing com-
pressed sequences. The resulting Wavelet Trie smoothly adapts to a sequence of strings
that changes over time. It improves on the state-of-the-art compressed data structures by
supporting a dynamic alphabet (i.e. the set of distinct strings) and prefix queries, both
crucial requirements in the aforementioned applications, and on traditional indexes by
reducing space occupancy to close to the entropy of the sequence. The contents of this
chapter are based on [61].

PRACTICAL IMPLEMENTATION OF SUCCINCT DATA STRUCTURES. In Chapter 7 we
discuss our implementation of the basic static succinct primitives such as Rank/Select
bitvectors, balanced parentheses and sparse vectors, that form the basic building blocks
of the data structures presented in chapters 3, 4, and 5.

In particular, for balanced parentheses we introduce the Range-Min tree, a variation of
the Range-Min-Max tree [4, 101] which obtains faster operations times while occupying
half the space.

In this chapter we also describe the Succinct library [107], a publicly available C++
library which contains all our implementations of the aforementioned succinct primi-
tives, and discuss the engineering trade-offs and design principles made while writing
the library. This library was used in all the experimental implementations of the data
structures presented in this thesis.



2 BACKGROUND AND TOOLS

In this chapter we briefly summarize the notation, tools and techniques that we will use
throughout the thesis.

2.1 BASIC NOTATION

Given a set S, we will denote its cardinality with |S|. In order to represent ranges of
integers, we will use [n], where n is a natural number, to denote the set of the first n
natural numbers, i.e. {0, . . . , n−1}. When ambiguity can arise, we will use the alternative
notation [0, n). Note that |[n]|= |[0, n)|= n. All the logarithms will be in base 2, i.e.
log(x) = log2(x), unless otherwise specified.

2.2 SEQUENCES, STRINGS, AND BITVECTORS

Central to this thesis is the concept of sequence. In fact, it is so central that it will be given
several names, such as sequence, string, text, array, vector, list. While all mathematically
equivalent, each term has different nuances. For example, sequence is the most abstract.
Arrays and vectors will usually be made up of numbers, while a string’s elements will be
characters, for some meaningful definition of character; a text will just be a “long” string.
A list is something meant to be iterated sequentially. Furthermore, in Chapter 6 we will
make extensive use of sequences of strings; the term sequences of sequences would have been
significantly more cumbersome. For this reasons, we will use these synonims depending
on the context, trading some minimality for clarity.

A (finite) sequence of length n can be informally defined as an ordered collection of
elements s = s0, . . . , sn−1. A more formal and non-circular (although somewhat abstract)
definition can be given as follows.

DEFINITION 2.2.1 Let Σ be a finite set, |Σ|= σ , called the alphabet. Given a natural n,
a sequence s of length n drawn from Σ is a function s : [n]→Σ, defined as i 7→ si . We will
call si the i -th element of s , and |s |= n the length of s .

Contrary to most literature which uses 1-based indices, all our definitions will be
0-based; this way, arithmetic expressions involving sequence indices are usually simpler.

5
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To avoid confusion, we slightly abuse the term i -th to indicate si , so the 0-th element of a
sequence will be the first and the (n− 1)-th the last.

The set of sequences of length n drawn from Σ is usually denoted as Σn; Σ0 is the
singleton set of the empty sequence ε. Similarly, the set of strings of arbitrary length is
denoted as Σ∗ =

⋃

i∈NΣ
i . The elements of the alphabet Σ are usually called symbols.

An alternative notation for si is s[i], which can be convenient when the subscript
notation is ambiguous (for example when collections of sequences are involved). To
refer to a contiguous range of a sequence, spanning from the i -th element to the j − 1-th
element, we will use the notation s[i , j ) or s[i , j − 1], depending on which one is more
convenient. Note that s[0, |s |) = s , and |s[i , j )|= j − i .

BITVECTORS. A special case of particular importance is when Σ is {0,1}. In this case
the sequence is said to be binary, and called a bitvector. It will be represented as follows.

s = 0000111010010110000011100000111011110110

In this example, |s |= 40, s0 = 0, and s4 = 1.

STRINGS. A sequence drawn from an alphabet Σ of characters, for example from a
natural language, it will be usually called a string, and is represented as follows.

s = senselessness

In this example, |s | = 13, s1 = e, and s12 = s. For a string s we can define its prefix of
length `≤ |s | as s[0,`). We say that p is a prefix of s if and only if s[0, |p|) = p.

ARRAYS. A sequence drawn from an alphabet Σ of numbers will be usually called an
array, and is represented as follows.

s = 〈4,8,16,23,42〉

In this example, |s |= 5, s0 = 4, and s3 = 23.

SEQUENCES OF STRINGS. Lastly, a sequence S ∈ Σ∗∗ drawn from an alphabet of
strings Σ∗, which are drawn from an alphabet Σ, will be called a sequence of strings, and
represented as follows.

S= 〈foo,bar,baz,foo,baz〉

Note that in this case we use a capital S, to avoid confusion with strings that will be
denoted as s . In this example, |S|= 5, S0 = foo, and S4 = baz.
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BINARY REPRESENTATION OF SEQUENCES. In many situations it will be useful to
represent a sequence s drawn from an arbitrary alphabet Σ as a binary sequence. In order
to do so, it is sufficient to map Σ injectively to the set of binary sequences of length
dlog |Σ|e. The binary sequence a symbol maps to is called the binary encoding of the
symbol. The binary representation of s is defined as the concatenation of the binary
encodings of its symbols; its length is |s |dlog |Σ|e bits.

2.2.1 Sequence operations

We now define some operations that can be performed on sequences. In particular, as we
will see in the following sections, Rank and Select are powerful primitives that form the
cornerstone of succinct data structures.

In the following, s is an arbitrary sequence. In the examples, it will be the following
string.

s = s e n s e l e s s n e s s
0 1 2 3 4 5 6 7 8 9 10 11 12

The operations are defined as follows.

— Accesss (i) retrieves the i -th element si . For example, Accesss (2) = n.

— Ranks (c , i )with c ∈Σ returns the number of occurrences of the symbol c in s[0, i ),
i.e. those preceding position i . For example, Ranks (s, 0) = 0, Ranks (s, 1) = 1, and
Ranks (e, 5) = 2.

— Selects (c , i) returns the position of the i -th occurrence of the symbol c in s . For
example, Selects (e, 0) = 1, Selects (e, 1) = 4, and Selects (s, 0) = 0.

— Predecessors (c , i) returns the position of the rightmost occurrence of c preced-
ing or equal to i . For example, Predecessor(e, 1) = 1, Predecessor(e, 2) = 1, and
Predecessor(l, 12) = 5.

Note that Ranks (c , Selects (c , i)) = i and Selects (c ,Ranks (c , i)) = Predecessors (c , i).
When the subscript s can be omitted without ambiguity, we will use the alternative

notation Access(i), Rankc (i), Selectc (i), and Predecessorc (i).

2.3 INFORMATION-THEORETICAL LOWER BOUNDS

In order to reason about the theoretical performance of space-efficient data structures, it
will be useful to compare their space occupancy with lower bounds on the number of
bits needed to represent the data. In this section we summarize the most common lower
bounds, derived from information theory, for the combinatorial objects we will analyze,
namely sequences, subsets, and trees.
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SEQUENCES. If we do not have any prior information on the sequence s except for
its alphabet Σ and its length n, then for any encoding scheme there will be at least one
sequence that needs at least ndlog |Σ|e bits, as a simple consequence of the pigeonhole
principle. This number can then be considered as a worst-case lower bound on the space
needed to represent a sequence. Naturally, this is hardly satisfying, as it is the space taken
by the trivial binary representation. To obtain more realistic bounds, a solution is to
adopt a data-dependent measure of the compressibility of a sequence, meaning that the
measure is computed on a specific instance of the data.

A natural candidate would be the Kolmogorov complexity [82], which is defined as
the minimum length among the encodings of the Turing machines that output a given
sequence. However, it is impossible to compute such measure on a specific sequence,
making it hard to derive effective bounds.

A much more fruitful definition was given by Shannon in his seminal paper on
information theory [105]. Shannon was concerned with defining a notion of information
content of a discrete random variable X ranging on a finite set Σ, whose distribution can
be written as (pc )c∈Σ. After proposing a set of reasonable axioms, he concluded that the
only function that would satisfy those axioms was

H(X) =−
∑

c∈Σ
pc log(pc ),

which he called the entropy of X.
Given a sequence s we can define the 0th-order empirical entropy of s as

H0(s) =−
∑

c∈Σ

nc

n
log

nc

n
,

where nc is the number of occurrences of symbol c in s . If s is a binary sequence, and p is
the fraction of 1s in s , we can rewrite the entropy as H0(s ) =−p log p−(1− p) log(1− p),
which we also denote by H(p).

H0(s) can be interpreted as an estimate of H(X) assuming that the elements of s are
i.i.d. draws from the variable X; in this case, pc = nc/n are the empirical probabilities.
More importantly for our purposes, it can be shown [25] that nH0(s) is a lower bound
on the number of bits needed to encode s with an encoder that maps each symbol of Σ
to a fixed binary string, thus independently of its position in s .

Building on H0 we can define the kth-order empirical entropy Hk as follows. For
u ∈Σk , we define su as the sequence of the symbols that follow each occurrence of u in
s . Then Hk is defined as

Hk(s) =
∑

u∈Σk

|su |
n

H0(su),

and, similarly to H0, nHk(s) is a lower bound on the number of bits needed to encode
s with an encoder that can choose the encoding of a symbol based on its k-context,
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i.e. the k symbols preceding it. This notion is extremely useful in the analysis of text
compressors [86]. However, in this thesis we will mostly be concerned with H0.

SUBSETS. Let U be a set of size n, called the universe. A lower bound to the number of
bits needed to store a subset X of U of size |X|= m is the logarithm of the number of
such subsets, that isB(m, n) = dlog

� n
m

�

e.
This number is linked to the entropy by the boundB(m, n)≤ nH(m

n )+O(1), which
can be intuitively justified by noting that a subset S of m elements from an universe
of n elements can be represented as a bitvector of length n with m ones, called the
characteristic function of S.

In the following, we will implicitly make extensive use of the previous bound, as well
as the boundB(m, n)≤ m log( n

m )+O(m).

ORDINAL TREES. An ordinal tree is a rooted tree where the order of the children of
each node is specified, so that it is possible to define the i -th child of a node, for i smaller
than the node degree. The number of ordinal trees on n nodes is given by the Catalan
number Cn =

1
n+1

�2n
n

�

[58]. By using the Stirling approximation it is easy to derive the
approximation Cn ≈ 4n/(πn)3/2, which implies that logCn = 2n−Θ(log n). In other
words, asymptotically, a tree needs at least 2 bits per node to be represented.

2.4 MODEL OF COMPUTATION

In order to analyze the time complexity of algorithms, we will need an abstract model of
computation, which defines a set of elementary operations; the computational cost of an
algorithm is then the number of elementary operations performed during its execution.

The word-RAM model tries to emulate closely the operations available on a realistic
CPU. Specifically, the basic unit of memory is the word, a binary integer of w bits, and
any unit of memory can be accessed in constant time. The operations defined are the
familiar arithmetic and logical operations on words, including bitwise shift and boolean
operations, and integer multiplication and division. We will represent such operations
with the operators of the ubiquitous C programming language.

We will assume that w = Ω(log n), where n is the size of the problem. Otherwise,
the address of an arbitrary position of the input would not fit into a constant number of
memory words, hence this assumption does not result in a significant loss of generality.
Often a stronger assumption is made, namely that w = Θ(log n), i.e. the word size is
bounded by a multiple of the logarithm of the problem size. This assumption is often
called transdichotomous assumption [48], because it breaks the dichotomy between the
problem and the model of computation, tying the characteristics of the abstract machine
to the size of the problem. However, in our work we will not need this assumption.

While the word-RAM model is reasonably realistic, it does not take into account
some characteristics of a modern machine. For example, it assumes constant time access
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to any location of memory, ignoring the latency of memory transfers. Other models
of computation study the complexity of an algorithm when a non-uniform memory
hierarchy is considered by counting the memory transfers across different levels of the
hierarchy. The most prominent example is the external-memory model [113], which
models the machine as a two-level memory hierarchy, with a “fast” memory of size M
and a “slow” memory of unbounded size; the machine can transfer contiguous blocks
of size B across the two levels, and the I/O complexity of an algorithm is defined as
the number of such memory transfers (also called I/Os) throughout its execution. Also
widely used is the cache-oblivious model [49], a variation of the external-memory model
where M and B are unknown to the algorithm.

We will perform the analysis of our proposed algorithms using the word-RAM model,
following the common practice adopted for the analysis of many succinct data structures.
However, whenever necessary, we will also make informal considerations on the number
of memory transfers to explain the empirical performance.

2.5 SUCCINCT REPRESENTATIONS OF SEQUENCES

A succinct data structure is a data structure that attains a space bound equal to the
information-theoretical lower bound, plus a second-order, negligible term. At the same
time, efficient operations are supported, with time comparable or equal to classical data
structures for the same purpose. Succinct data structures were introduced by Jacobson in
his seminal paper [68], where he presented a data structure to encode a bitvector of length
n with n+O(n log log n/ log n) bits, while supporting Access and Rank operations in
constant time. The data structure was later improved by Clark [19], who showed how
to implement Select in constant time as well.

2.5.1 Fully indexable dictionaries

Jacobson’s result was later improved by Raman et al. [99], who introduced the notion of
Fully Indexable Dictionary (FID), a data structure, which we refer to as RRR, to encode
a set of m elements from an universe of size n inB(m, n)+O((n log log n)/ log n) bits.
Thanks to the correspondence mentioned above, the data structure can be used to encode
bitvectors of length n with m ones with the same space bound, while supporting Access,
Rank, and Select in constant time.

2.5.2 Elias-Fano representation

The Elias-Fano representation of monotone sequences [32, 34] is an encoding scheme to
represent a non-decreasing sequence of m integers 〈x1, · · · , xm〉 from the universe [0..n)
occupying 2m+m

 

log n
m

£

+ o(m) bits, while supporting constant-time access to the
i -th integer.
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The scheme is very simple and elegant. Let ` = blog(n/m)c. Each integer xi is
first encoded in binary into dlog ne bits, and the binary encoding is then split into the
first dlog ne− ` higher bits and the last ` lower bits. The sequence of the higher bits is
represented as a bitvector H of dm+ n/2`e bits, where for each i , if hi is the value of the
higher bits of xi , then the position hi + i of H is set to 1; H is 0 elsewhere. The lower
bits of each xi are just concatenated into a bitvector L of m` bits.

To retrieve the i -th integer we need to retrieve its higher and lower bits and concate-
nate them. The lower bits are easily retrieved from L. To retrieve the upper bits it is
sufficient to note that hi = SelectH(1, i)− i .

This data structure can be used to represent sparse bitvectors (i.e. where the number
m of ones is small with respect to the size n of the bitvector), by encoding the sequence
of the positions of the ones. Using this representation the retrieval of the the i -th integer
can be interpreted as Select1(i), and similarly it is possible to support Rank1.

2.5.3 Wavelet trees

The wavelet tree, introduced by Grossi et al. [59], is a data structure to represent se-
quences on an arbitrary alphabet Σ in compressed space, while supporting efficient
Access/Rank/Select operations. The wavelet tree reduces the problem of storing a se-
quence to the storage of a set of |Σ| − 1 bitvectors organized in a tree structure.

The alphabet is recursively partitioned into two subsets, until each subset is a sin-
gleton (hence the leaves are in one-to-one correspondence with the symbols of Σ). The
bitvector β at the root has one bit for each element of the sequence, where βi is 0/1 if
the i -th element belongs to the left/right subset of the alphabet. The sequence is then
projected on the two subsets, obtaining two subsequences, and the process is repeated on
the left and right subtrees. An example is shown in Figure 2.1.

The 0s of one node are in one-to-one correspondence with the bits of the left node,
while the 1s are in correspondence with the bits of the right node, and the correspondence
is given downwards by Rank and upwards by Select. Thanks to this mapping, it is possible
to perform Access and Rank by traversing the tree top-down, and Select by traversing it
bottom-up.

We briefly describe the Access (Rank and Select are similar): to access the i -th element,
we access the i -th bit. If it is 0 we proceed recursively on the left subtree for the position
Rank(0, i), if it is 1 we proceed on the right subtree for the position Rank(1, i). When
we reach a leaf, its symbol is the i -th element of the sequence.

By representing each bitvector β with RRR, the space is nH0(S)+ o(n log |Σ|) bits,
while operations take O(log |Σ|) time.
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abracadabra
00101010010

abaaaba
0100010

a

{a}

b

{b}

{a,b}

rcdr
1011

c

{c}

rdr
101

d

{d}

r

{r}

{d,r}

{c,d,r}

FIGURE 2.1: A wavelet tree for the string abracadabra from the alphabet {a,b,c,d,r}.
Only the bitvectors and the tree structure are actually stored, the other information is
for illustrative purposes only.

2.6 SUCCINCT REPRESENTATIONS OF TREES

In the same paper where he introduced succinct data structures for Rank and Select [68],
Jacobson described the first succinct representation of ordinal trees, called Level-order
unary degree sequence (LOUDS). A tree is encoded with LOUDS by concatenating the
unary representations of the node degrees, namely 1d0 where d is the degree, in level-
order (after adding a fake root). This yields a bitvector of 2n + 1 bits, where n is the
number of nodes, and the positions of the zeros can be put in one-to-one correspondence
with the nodes of the tree. It can be shown that, if p is the position of a node in the
bitvector using this correspondence, then the following tree traversal operations can be
reduced to sequence operations on the bitvector.

— FirstChild(p) = Select0(Rank1(p))+ 1;

— NextSibling(p) = p + 1;

— Parent(p) = Select1(Rank0(p)).

Hence, using the succinct representation of bitvectors, a tree can be encoded in
2n+ o(n) bits while supporting constant-time basic traversal operations.

2.6.1 Balanced parentheses (BP)

A more powerful succinct representation of trees was given by Munro and Raman [91]
by means of balanced parentheses sequences. A sequence of balanced parentheses (BP) is
inductively defined as follows: an empty sequence is BP; if α and β are sequences of BP,
then also (α)β is a sequence of BP, where ( and ) are called mates.

For example, the following is a sequence of BP.
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s = (()(()()))
0 1 2 3 4 5 6 7 8 9

These sequences are usually represented as bitvectors, where 1 represents ( and 0 repre-
sents ). A sequence s of 2m BP can be encoded in 2m+ o(m) bits [68, 91, 101] so that
the following operations, among others, are supported in constant time.

— FindCloses (i), for a value i such that si = (, returns the position j > i such that
s j = ) is its mate. In the example, FindCloses (0) = 9 and FindCloses (1) = 2.

— FindOpens (i), for a value i such that si = ), returns the position j < i such that
s j = ( is its mate. In the example, FindOpens (9) = 0 and FindCloses (2) = 1.

— Encloses (i), for a value i such that si = (, returns the position j < i such that
s j = ( and the pair of j and its mate enclose the pair of i and its mate. In the
example, Encloses (1) = 0 and Encloses (6) = 3.

— Ranks ((, i ) returns the pre-order index of the node corresponding to the parenthe-
sis at position i and its mate; this is just the number of open parentheses preceding
i .

— Excesss (i ) returns the difference between the number of open parentheses and that
of close parentheses in the first i + 1 positions of s . The sequence of parentheses is
balanced if and only if this value is always non-negative, and it is easy to show that
it equals 2Ranks ((, i)− i .

— ±1RMQS(i , j ) returns the leftmost position of minimal excess in the range [i , j ],
i.e. r ∈ [i , j ] such that, for any r ′ ∈ [i , j ], either ExcessS(r ) < ExcessS(r

′), or
ExcessS(r ) = ExcessS(r

′) and r ≤ r ′.

When no ambiguity is possible, we will drop the subscript s and use the alternative
notation Rank((i).

A sequence of BP implicitly represents an ordinal tree, where each node corresponds
to a pair of mates. By identifying each node with the position p of its corresponding
open parenthesis, several tree operations can be reduced to the operations defined above.

— FirstChild(p) = p + 1;

— NextSibling(p) = FindClose(p)+ 1;

— Parent(p) = Enclose(p);

— Depth(p) =Rank((p);

— SubtreeSize(p) = (FindClose(p)− p + 1)/2.

Note that the last two operations cannot be supported with the LOUDS represen-
tation. Navarro and Sadakane [101] later introduced more powerful operations on BP
sequences, which enable support for a larger set of tree operations in constant time.
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2.6.2 Depth-first unary degree sequence (DFUDS)

Another tree representation based on balanced parentheses was introduced by Benoit et al.
[9]. Called depth-first unary degree sequence (DFUDS), it is constructed by concatenating
in depth-first order the node degrees encoded in unary with parentheses, i.e. a degree d is
encoded as (d). It can be shown that by prepending an initial (, the obtained sequence
of parentheses is balanced.

By identifying each node of the tree with the position p of beginning of its degree
encoding, tree operations can be mapped to sequence operations as follows.

— Degree(p) = Select)(Rank)(p)+ 1)− p;

— Child(p, i) = FindClose(Select)(Rank)(p)+ 1)− i)+ 1;

— Parent(p) = Select)(Rank)(FindOpen(p − 1)))+ 1.

— SubtreeSize(p) = (FindClose(Enclose(p))− p)/2+ 1

Compared to the BP representation we lose the Depth operation, but we gain the
operation Child which returns the i -th child by performing a single FindClose.

0

1

2

3 4 5

6

7

8

9

10

11

12 13

14 15

16

LOUDS 10 1110 110 10 11110 1110 0 0 10 0 110 0 0 0 0 0 0 0
0 1 7 9 2 6 8 10 12 13 16 3 4 5 11 14 15

BP ( ( ( ( ) ( ) ( ) ) ( ) ) ( ( ) ) ( ( ( ) ) ( ) ( ( ) ( ) ) ( ) ) )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DFUDS ( ((() (() ((() ) ) ) ) () ) (((() () ) ) (() ) ) )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 2.2: LOUDS, BP, and DFUDS encodings of an ordinal tree.

2.6.3 Representing binary trees

We define a binary tree as a tree where each node is either an internal node which has
exactly 2 children, or a leaf. It follows immediately that a binary tree with n internal
nodes has n+ 1 leaves. An example of binary trees is given by binary compacted tries.
There is another popular definition of binary trees, used for instance in [91], where each
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node is allowed to have at most 2 children, but a distinction is made between degree-1
nodes based on whether their child is left or right. The two definitions are equivalent
if we consider the internal nodes in the first definition to be the nodes in the second
definition, and the leaves to be the absent children. Hence, a tree with 2n+ 1 nodes in the
first definition is a tree with n nodes in the second. Choosing between the two definitions
usually depends on whether the leaves have some significance for the application.

A simple way to represent a binary tree would be to see it as a ordinal tree and
encode it with BP, taking 4n + o(n) bits for a tree with 2n + 1 nodes. It is however
possible to do better: as noted in [91], binary trees with 2n+ 1 nodes can be bijectively
mapped to ordinal trees of n nodes, by considering the n internal nodes as the first-child
next-sibling representation of a tree of n nodes; operations on the binary tree can be
performed directly on the obtained tree. Such a tree can be encoded with BP, occupying
just 2n+ o(n) bits. Given a tree T we call such encoding FCNS(T).

We show here how the same representation can be obtained directly from the tree,
without the conceptual step through the first-child next-sibling mapping. This makes
reasoning about the operations considerably simpler. Furthermore, with this derivation
the leaves have an explicit correspondence with positions in the parentheses sequence.

DEFINITION 2.6.1 Let T be a binary tree. We define its Depth-First Binary Sequence
representation DFBS(T) recursively:

— If T is a leaf, then DFBS(T) = ).

— If T is a node with subtrees Tleft and Tright, then

DFBS(T) = (DFBS(Tleft)DFBS(Tright).

While in FCNS only internal nodes are mapped to (s, in this representation all the 2n+1
nodes in depth-first order are in explicit correspondence to the 2n+ 1 parentheses in the
sequence, with (s corresponding to internal nodes and )s corresponding to leaves. This
property is especially useful if satellite data need to be associated to the leaves.

The following lemma proves that the obtained sequence is isomorphic to FCNS(T).

LEMMA 2.6.2 For any binary tree T, it holds DFBS(T) = FCNS(T)).

Proof If T is a leaf, FCNS(T) is the empty sequence and DFBS(T) is the single parenthesis
), so the lemma follows trivially. Otherwise, let T1,T2, . . . ,Ti be the subtrees hanging
off the rightmost root-to-leaf path in T; then by definition

FCNS(T) = (FCNS(T1))(FCNS(T2)) . . .(FCNS(Ti )).
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By induction, we can rewrite it in the following way

FCNS(T) = (DFBS(T1)(DFBS(T2) . . .(DFBS(Ti ).

Note that T1 is just Tleft, while DFBS(Tright) = (DFBS(T2) . . .(DFBS(Ti )), where the
last ) is given by the final leaf in the rightmost root-to-leaf path. Hence

DFBS(T) = (DFBS(T1)(DFBS(T2) . . .(DFBS(Ti ))= FCNS(T))

proving the inductive step.

The above lemma implies that (DFBS(T) is a sequence of balanced parentheses. To
make the construction self-contained, we prove it directly in the following lemma. The
proof will also make clear how to perform navigational operations.

LEMMA 2.6.3 The sequence (DFBS(T) is a sequence of balanced parentheses.

Proof If T is a leaf, then (DFBS(T) = (). Otherwise, let

(DFBS(T) = ((DFBS(Tleft)DFBS(Tright).

By induction, both (DFBS(Tleft) and (DFBS(Tright) are sequences of balanced parenthe-
ses. Inserting the first into the second yields a sequence of balanced parentheses.

Note that internal nodes are of the form (DFBS(Tleft)DFBS(Tright) where Tleft and
Tright are the children. The previous lemma allows us to skip the (DFBS(Tleft) subse-
quence with a single FindClose, hence the following corollary follows immediately.

COROLLARY 2.6.1 If position i in DFBS(T) corresponds to an internal node, then
LeftChild(i) = i + 1 and RightChild(i) = FindClose(i)+ 1.

The DFBS encoding is discussed also by Jansson et al. [69], however without men-
tioning that it is possible to perform traversal operations on it. They obtain the n-bit
bound instead using a compressed version of DFUDS, which is more powerful, but also
significantly more complex. Davoodi et al. [26] note that the encoding yields a sequence
of balanced parentheses, but they do not mention the equivalence with FCNS.

Using this encoding it is also possible to generate random binary trees of a given size
in a very intuitive way: to generate a tree of size 2n+1, choose an odd number m between
1 and 2n− 1 from some distribution to be the size of the left subtree. Then recursively
generate trees of sizes m and 2n−m, obtaining the sequences α and β. The resulting
tree is (αβ. We use this technique to benchmark BP implementations in Chapter 7.
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2.7 STRING DICTIONARIES

Given a set of strings S ⊂Σ∗, a string dictionary is a data structure that stores the set S
and supports retrieval of individual strings. Specifically, we are interested in prefix-free
sets, which means that for any string s ∈S , no other string in S has s as a prefix. By
making this assumption we do not lose generality, as any string set can be made prefix-free
by adding a special character to the alphabet, called the terminator, and appending it to
every string in the set. For example, this is the approach taken in C/C++ where the
strings are null-terminated.

We define the following operations on string dictionaries.

— Lookup(s) returns a distinct integer in [|S |] for each string s ∈ S , or ⊥ if the
string is not in S ;

— Access(i) returns the string s such that Lookup(s) = i .

In other words, Lookup and Access form a bijection between S and [|S |].

2.7.1 Compacted tries

The traditionally most popular data structure to represent a string dictionary is the trie
[46]. A trie is a labeled tree whose root-to-leaf paths correspond to the strings in the
string set. We will make use of a variant of the trie known as compacted trie. A compacted
trie of a non-empty prefix-free set of strings is a tree built recursively as follows.

— The compacted trie of a single string is a node whose label is the string itself.

— Given a nonempty string set S , the root of the tree is labeled with the longest
common prefix α (possibly empty) of the strings in S .

For each character b such that the set Sb = {β|αbβ ∈ S } is nonempty, the
compacted trie built on Sb is attached to the root as a child.

The edge is labeled with the branching character b . The number of characters in
the label α is called the skip, and denoted with δ.

The compacted trie is a straightforward generalization to arbitrary alphabets of the
Patricia trie [90], which was defined on binary strings. An useful characteristic of the
Patricia trie is that each internal node has exactly two children.

For the sake of brevity, in the following we use the term trie to indicate a compacted
trie, unless otherwise specified.

2.7.2 Dynamic Patricia tries

A Patricia trie can be easily made dynamic, supporting insertion and deletion of strings.
We describe here the data structure in detail, as it will be needed in Chapter 6.
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FIGURE 2.3: Example of a compacted trie for the string set {three,trial,triangle,
triangular,trie,triple,triply}.

Each node contains two pointers to the children, one pointer to the label and one
integer for its length. For k strings, this amounts to O(kw) bits. Given this representation,
all navigational operations are trivial. The total space is O(kw)+ |L| bits, where L is the
concatenation of the labels in the compacted trie.

Insertion of a new string s splits an existing node, where the mismatch occurs, and
adds a leaf. The label of the new internal node is set to point to the label of the split node,
with the new label length (corresponding to the mismatch of s in the split node). The
split node is modified accordingly. A new label is allocated with the suffix of s starting
from the mismatch, and assigned to the new leaf node. This operation takes O(|s |) time
and the space grows by O(w) bits plus the length of the new suffix, hence maintaining
the space invariant.

When a new string is deleted, its leaf is deleted and the parent node and the other
child of the parent need to be merged. The highest node that shares the label with the
deleted leaf is found, and the label is deleted and replaced with a new string that is the
concatenation of the labels from that node up to the merged node. The pointers in the
path from the found node and the merged node are replaced accordingly. This operation
takes O(ˆ̀) where ˆ̀ is the length of the longest string in the trie, and the space invariant
is maintained.

2.8 RANGE MINIMUM QUERIES

Given a sequence A of elements drawn from a totally ordered universe, a Range Minimum
Query (RMQ) for the range [i , j ] asks for the position of the minimum element in
A[i , j ] (returning the leftmost in case of ties). The operation RMQA(i , j ) can be trivially
implemented by scanning the interval A[i , j ], but this requires O( j − i ) operations and
thus it can be as slow as O(|A|).

The problem is intimately related to the Least Common Ancestor (LCA) problem on
trees. In fact, the LCA problem can be solved by reducing it to an RMQ on a sequence
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of integers derived from the tree, while RMQ can be solved by reducing it to an LCA in
a tree derived from the sequence, called the Cartesian Tree [7].

Fischer and Heun [44] presented a solution to RMQ that uses a DFUDS representa-
tion of a tree called 2d-Min-Heap. The RMQ operation on A is then reduced to a±1RMQ
operation on the DFUDS sequence. As noted by Davoodi et al. [26], the 2d-Min-Heap is
a tree transformation of the Cartesian Tree.

Using Fischer and Heun’s data structure, it is possible to support the operation
RMQA(i , j ) in constant time, and the data structure takes 2n+ o(n) bits, without the
need to store the sequence A.
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SEMI-STRUCTURED DATA

Semi-structured data formats have enjoyed popularity in the past decade and are virtually
ubiquitous in Web technologies: extensibility and hierarchical organization—as opposed
to flat tables or files—made them the format of choice for documents, data interchange,
document databases, and configuration files.

The field of applications of semi-structured data is rapidly increasing. These formats
are making their way into the realm of storage of massive datasets. Their characteristics
of being schema-free makes them a perfect fit for the mantra “Log first, ask questions later”,
as the schema of the log records is often evolving. Natural applications are crawler logs,
query logs, user activity in social networks, to name a few.

In this domain JSON (JavaScript Object Notation, see [72]) in particular has been
gaining momentum: the format is so simple and self-evident that its formal specification
fits in a single page, and it is much less verbose than XML. In fact, both CouchDB
[22] and MongoDB [88], two of the most used ([23, 89]) modern large-scale distributed
schema-free document databases, are based on JSON, and Jaql [70] and Hive JSON SerDe
[63] implement JSON I/O for Hadoop. These systems all share the same paradigm:

(a) Data is conceptually stored as a sequence of records, where each record is repre-
sented by a single JSON document. The records may have heterogeneous schema.

(b) The records are processed in MapReduce [27] fashion: during the Map phase the
records are loaded sequentially and parsed, then the needed attributes are extracted
for the computation of the Map itself and the subsequent Reduce phase.

In part (b) the extracted data is usually a small fraction of the records actually loaded
and parsed: in logs such as the ones mentioned above, a single record can easily exceed
hundreds of kilobytes, and it has to be loaded entirely even if just a single attribute is
needed. If the data is on disk, the computation time is dominated by the I/O.

A typical way of addressing the problem of parsing documents and extracting at-
tributes is to change the data representation by switching to a binary, easily traversable
format. For instance XML has a standard binary representation, Binary XML ([11]),

21
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and more sophisticated schemes that enable more powerful traversal operations and/or
compression have been proposed in the literature (see [102]). Likewise MongoDB uses
BSON [17], a binary representation for JSON. However, switching from a textual
format to an ad-hoc binary format carries some drawbacks.

— In large-scale systems, the producer is often decoupled from the consumer, which
gets the data through append-only or immutable, possibly compressed, distributed
filesystems, so using simple self-evident standard formats is highly preferable.

— Binary data is not as easy to manually inspect, debug or process with scripting
languages as textual data.

— If input/output is textual, back-and-forth conversions are needed.

— If existing infrastructure is based on textual formats, changing the storage format
of already stored data can be extremely costly.

In fact, despite their advantages binary formats have not gained widespread adoption.
Surprisingly, even with a binary format it is not easy to support all the tree operations

without incurring a significant space overhead. For example, BSON prepends to each
element its size in bytes, enabling fast forward traversal by allowing to “skip” elements,
but accessing the i -th element of an array cannot have sublinear I/O complexity.

SEMI-INDEX. In this chapter we introduce the notion of semi-indexing to speed up the
access to the attributes of a textual semi-structured document without altering its storage
format; instead, we accompany it with a small amount of redundancy.

A semi-index is a succinct encoding of the parse tree of the document together with a
positional index that locates the nodes of the tree on the unparsed document. Navigation
of the document is achieved by navigating the succinct parse tree and parsing on the fly
just the leaf nodes that are needed, by pointing the parser at the correct location through
the positional index. This way, a small part of the document has to be accessed: the I/O
cost is greatly reduced if the documents are large, and on a slow medium such as a disk
or a compressed or encrypted filesystem. Specifically, the I/O cost is proportional to the
number of tree queries, regardless of the document size.

No explicit parsing tree is built, instead we employ a well-known balanced parenthe-
sized representation and a suitable directory built on the latter. The resulting encoding
is so small that it can be computed once and stored along with the document, without
imposing a significant overhead.

We call our approach “semi-index” because it is an index on the structure of the
document, rather than on its content: it represents a middleground between full indexing
(where the preprocessing time and space can be non-negligible because the full content is
indexed) and streaming (where data are not indexed at all).
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The main feature is that the document in its textual semi-structured format (or raw
data) is not altered in any way, and can be considered a read-only random access oracle.
The combination of raw data + semi-index can thus support the same operations as an
optimized binary format, while maintaining the advantages of keeping the raw data
unaltered.

— Backward-compatibility: Existing consumers can just ignore the semi-index and
read the raw data.

— The semi-index does not need to be built by the producer: the consumer can build
it and cache it for later use.

— The raw data does not need to be given in explicit form, provided that a random-
access primitive is given, while the semi-index is small enough that it can easily
fit in fast memory. For example a compression format with random access can be
used on the documents. We demonstrate this feature in the experimental analysis
by compressing blockwise the data with zlib.

A semi-index can be engineered in several ways depending on the format grammar
and the succinct data structures adopted for the purpose. Although the semi-indexing
scheme is general, we focus on a concrete implementation using JSON as the underlying
format for the sake of clarity.

In our experiments (Section 3.5) we show that query time is very fast, and speed-up
using the precomputed semi-index on a MapReduce-like computation ranges from 2.5
to 4 times. Using a block-compressed input file further improves the running time when
the document size is large, by trading I/O time for CPU time. This comes at the cost of a
space overhead caused by the storage of the semi-index, but on our datasets the overhead
does not exceed (and is typically much less than) around 10% of the raw data size.

When comparing against the performance of BSON, our algorithm is competitive
on some datasets and significantly better on others. Overall, raw data + semi-index is
never worse than BSON, despite the latter is an optimized binary format.

To our surprise, even if the semi-index is built on the fly right before attribute
extraction, it is faster than parsing the document: thus semi-indexing can be also thought
of as a fast parsing algorithm.

The main drawback of the semi-index is that it has a fixed additive overhead of 150–300
bytes (depending on the implementation), making it unsuitable for very small individual
documents. This overhead can be however amortized for a collection of documents. In
our experiments we follow this approach.

3.1 RELATED WORK

A similar approach for comma-separated-values files is presented in [67]. The authors
describe a database engine that skips the ordinary phase of loading the data into the
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database by performing queries directly on the flat textual files. To speed up the access
to individual fields, a (sampled) set of pointers to the corresponding locations in the
file is maintained, something similar to our positional index. This approach, however, is
suitable only for tabular data.

Virtually all the work on indexing semi-structured data focuses on XML, but most
techniques are easily adaptable to other semi-structured data formats, including JSON.
For example, AgenceXML [24] and MarkLogic[66] convert JSON documents internally
into XML documents, and Saxon [74] plans to follow the same route.

To the best of our knowledge, no work has been done on indexes on the structure
of the textual document, either for XML or other formats. Rather, most works focus
on providing indexes to support complex tree queries and queries on the content, but all
of them use an ad-hoc binary representation of the data (see [57] for a survey on XML
indexing techniques).

For the storage of XML data several approaches were proposed that simultaneously
compress XML data while supporting efficient traversal, and they usually exploit the
separation of tree structure and content (see [102] for a survey on XML storage schemes).

Some storage schemes employ succinct data structures: for example [28] uses a
succinct tree to represent the XML structure, and [40] exploits compressed non-binary
dictionaries to encode both the tree structure and the labels, while supporting subpath
search operations.

The work in [118] is the closest to ours, as it uses a balanced-parentheses succinct
tree representation of the document tree, but like the others it re-encodes the contents of
the document to a custom binary format and discards the unparsed form.

Industrial XML parsers such as Xerces2 [3] tackle the cost of materializing the full
document tree by keeping in memory only a summary of the tree structure with pointers
to the textual XML, while parsing only the elements that are needed. This technique,
known as Lazy XML parsing, needs however to scan the full document to parse the
tree structure every time the document is loaded, hence the I/O complexity is no better
than performing a full parse. Refinements of this approach such as double-lazy parsing
[35] try to overcome the problem by splitting the XML file in several fragments stored
in different files that link to each other. This however requires to alter the data, and it
is XML-specific. Besides, each fragment that is accessed has to be fully scanned. Semi-
indexing is similar to lazy parsing in that a pre-parsing is used to speed up the access to
the document, but the result of semi-index preprocessing is small enough that can be
saved along the document, while in lazy parsing the preprocessing has to be done every
time the document is loaded.

3.2 THE JSON FORMAT

Since in this chapter we will be using extensively the JSON format, we shortly summarize
its data model and syntax in this section. JSON (JavaScript Object Notation) is a small
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fragment of the Javascript syntax used to represent semi-structured data.
A JSON value can either be an atom (i.e. a string, a number, a boolean, or a null),

an object, or an array. An object is an unordered list of key/value pairs, where a key is a
string. An array is an ordered list of values (so one can ask for the i -th value in it).

A JSON document is just a value, usually an object. The following figure shows an
example of a JSON document and its components.

{

key: value
︷ ︸︸ ︷

"a"
︸︷︷︸

string

: 1
︸︷︷︸

num

,"b":{"l":[1,null
︸︷︷︸

null

]

︸ ︷︷ ︸

array

,"v":true
︸︷︷︸

bool

}

︸ ︷︷ ︸

object

}

The document tree of a JSON value is the tree where the leaf nodes are the atoms
and internal nodes are objects and arrays. The queries usually supported on the tree are
the basic traversal operations, i.e. parent and i -th child, plus labeled child for objects. We
use the Javascript notation to denote path queries, so for example in this document a is 1
and b.l[1] is null.

3.3 SEMI-INDEXING TECHNIQUE

We illustrate our technique with the JSON document shown in the example of Sec-
tion 3.2.

The most common way of handling textual semi-structured data is to parse it into
an in-memory tree where the leaf nodes contain the parsed atoms. The tree is then
queried for the requested attributes. Since the tree contains all the relevant data, the raw
document is no longer needed, as shown in the figure below.

{}

"a" 1 "b" {}

"l" []

1 null

"v" true

in-memory tree

{ "a": 1, "b": { "l": [ 1, null], "v": true}}

We would like to create a structure that allows us to navigate the document without
having to parse it. One possible approach could be to replace the values in the nodes
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of the parse tree with pointers to the first character of their corresponding phrases in
the document. This clearly requires to store also the raw data along with the resulting
“thinner” tree.

thin parse tree

{ "a": 1, "b": { "l": [ 1, null], "v": true}}

We can now navigate the parse tree, and parse just the values corresponding to the
leaves that are actually needed. Note that if the grammar is LL(1)1, we do not need to
store the node type: it suffices to look at the first character of the node to recognize the
production. So we are left with the tree data structure representing the topology of the
parse tree, and a pointer for each node to the first character of its phrase in the raw text.
This is very similar to the approach adopted by lazy parsers for XML.

Still, this requires building explicitly the parse tree every time the document is
loaded. Instead, the parse tree and pointers can be encoded using a sequence of balanced
parentheses for the first and a bitvector for the second. As we will show in Section 3.4, a
quick scan of the document is sufficient to produce the two sequences, which form the
semi-index.

(()()()(()(()())()()))

110000100100001100001100100000010000100000

{"a": 1, "b": {"l": [1, null], "v": true}}

semi-index

As we discuss in the experiments of Section 3.5, building the semi-index is much
faster than full parsing. We merely store two binary sequences, encoding each parenthesis
with a single bit, augmented with the succinct data structures needed to support the
traversal operations. Since the binary sequence with the positions is sparse, it can be
encoded in compressed format using very small space. Overall, the space needed to store

1Most semi-structured data formats are LL(1), including XML and JSON. If the grammar is not LL(1)
an additional logP bits per node may be needed, where P is the number of productions.
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the two sequences is very small, so they can be computed just once and then be stored
for future use.

This scheme can be applied to other formats. For instance, the XML semi-index
would look like the following figure.

((()()()())()(()))

10000011001000100010001010010000000000000

<entry␣id="1" cat="c">t1<b>t2</b></entry>

semi-index

Our approach is to employ a set of succinct structures to replace the functionality of
the thinner parse tree, and obtain faster construction and query time (see Section 3.5).
We can thus define the semi-index.

DEFINITION 3.3.1 A semi-index for a document D is a succinct encoding of (i) the
topology of the parse tree T of D, and (i i) the pointers that originate from each node
of T to the beginning of the corresponding phrase in D.

Let m denote the number of nodes in T. The general template to build the semi-index
using an event parser is illustrated in Algorithm 3.12. By event parser we mean a parser
that simulates a depth-first traversal of the parse tree, generating an open event when the
visit enters a node and a close event when it leaves it. (An example is the family of SAX
parsers for XML.) If the event parser uses constant working memory and is one-pass, so
does Algorithm 3.1. Thus it is possible to build the semi-index without having to build
an explicit parse tree in memory. In the pseudocode, (i) bp is the balanced parentheses
tree structure, and (i i) positions is the Elias-Fano representation of the pointers.

For the construction algorithm to be correct we need the following observation.

OBSERVATION 3.3.2 The sequence of pointers in a pre-order visit of the parse tree T
induces a non-decreasing sequence of m positions in D. In other words, the sequence of
positions of open events in an event parsing is non-decreasing.

Observation 3.3.2 allows us to use the Elias-Fano encoding, whose implementation is
referred to as EliasFanoSequence in Algorithm 3.1, for the positions.

Algorithm 3.2 shows the pseudocode for some tree operations. The operation
get_node_pos returns the position of the phrase in the document D corresponding to the
node of T represented by the parenthesis at position par_idx. Operation first_child
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ALGORITHM 3.1: Construction of semi-index using an event parser

1 def build_semi_index(s):
2 positions = EliasFanoSequence()
3 bp = BalancedParentheses()
4 for event, pos in parse_events(s):
5 if event == ’open’:
6 bp.append(1)
7 positions.append(pos)
8 elif event == ’close’:
9 bp.append(0)

ALGORITHM 3.2: Some tree operations on the semi-index

1 def get_node_pos(bp, positions, par_idx):
2 node_idx = bp.rank(node)
3 pos = positions.select(node_idx)
4 return pos
5

6 def first_child(bp, par_idx):
7 return par_idx + 1
8

9 def next_sibling(bp, par_idx):
10 next = bp.find_close(par_idx) + 1
11 if bp[next]:
12 return next
13 else:
14 return None



3.4. ENGINEERING THE JSON SEMI-INDEX 29

returns the position of the parenthesis corresponding to the first child of the current
node. Operation next_child returns the position of the next sibling (if any).

We now discuss the space usage of our encoding. As shown in our example, the
tree topology can be encoded with the balanced parentheses representation, thus taking
2m+ o(m) bits. Nodes are identified by the open parentheses, so that Rank((i ) gives the
pre-order index of node i .

The pointers can be thus encoded in pre-order by using the Elias-Fano representation,
taking another 2m + m

 

log n
m

£

+ o(m) bits. Summing the two figures leads to the
following lemma.

LEMMA 3.3.3 A semi-index of a document D of n bytes such that the parse tree T has
m nodes can be encoded in

4m+m
¡

log
n

m

¤

+ o(m) (3.1)

bits, while supporting each of the tree navigational operations in O(1) time.

The bound in (3.1) compares favorably against an explicit representation of the tree
T and its text pointers: even if space-conscious, it would require 2 node pointers plus
one text pointer, i.e. m(2 log m+ log n) bits. For example, for a reasonably sized 1MB
document with density 0.2 (1 node for each 5 bytes on average), the size of the data
structure would be 1.4MB, that is 140% of the document itself!

In our practical implementation, we use the data structures described in Chapter 7.
The overall space is approximately 5.5m + m

 

log n
m

£

bits and the operations have
O(log n) complexity. The encoding of the example above then takes 262kB, just 26.2% of
the raw document. Even in case of a pathological high density document, i.e. n = m, the
data structure would occupy 5.5m bits, i.e. an 68.7% overhead. Real-world documents,
however, have very low densities (see Section 3.5).

3.4 ENGINEERING THE JSON SEMI-INDEX

In this section we describe a semi-index specifically tailored for JSON. It slightly deviates
from the general scheme presented in Section 3.3, since it exploits the simplicity of the
JSON grammar to gain a few more desirable properties, as we will see shortly.

As in the general scheme, we associate two bitvectors to the JSON document, bp and
positions, that are built as follows.

— The structural elements of the document, i.e. the curly brackets {}, the square
brackets [], the comma , and the colon : are marked with 1 in the bitvector
positions, which is encoded with the Elias-Fano representation.

2The pseudocode is actually working Python code, but we omitted the auxiliary functions and classes
for the sake of brevity.
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— For each structural element a pair of parentheses is appended to the bp (balanced
parentheses) vector:

– Brackets { and [ open their own node (the container) and the first element of
the list, so their encoding is ((.

– Brackets } and ] close the last element of the list and their own node, so their
encoding is )).3

– Comma , closes the current element and opens the next, so its encoding is
)(.

– Colon : is treated like the comma, so key/value pairs are encoded simply as
consecutive elements.

An example of the encoding is shown below: the JSON document (top), the positions
bitvector (middle), and the bp bitvector (bottom). We implement bp as a binary sequence
where ( is encoded by 1, and ) is encoded by 0.

{"a": 1, "b": {"l": [1, null], "v": true}}
100010010000101000101010000011000010000011

(( )( )( )( (( )( (( )( )) )( )( )) ))

This encoding allows a very simple algorithm for the construction of the semi-index: a
one-pass scan of the document is sufficient, and it can be implemented in constant space
(in particular, no stack is needed). As a result, building the semi-index is extremely fast.
The pseudocode is shown in Algorithm 3.3.

Our ad-hoc encoding gives us two further features. First, each bit 1 in the bitvector
positions is in one-to-one correspondence with pairs of consecutive parentheses in bp:
there is no need to support a Rank operation to find the position in bp corresponding to
a 1 in positions, as it is sufficient to divide by 2. Second, since the positions of closing
elements (}, ], ,) are marked in positions, it is possible to locate in constant time
both endpoints of the phrase that represents a value in the JSON document, not just its
starting position.

Navigation inside a JSON document proceeds as follows. Finding a key in an object
is performed by iterating its subnodes in pairs and parsing the keys until the searched one
is found. The pseudocode for this operation can be found in object_get, Algorithm 3.4.

The query algorithm makes a number of probes to the JSON document that is linear
in the fanout of the object. This is not much of a problem since the fanout is usually

3The empty object {} and array [] have encoding (()), so they are special cases to be handled
separately in navigation.
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ALGORITHM 3.3: Construction of JSON semi-index

1 def build_semi_index(json):
2 positions = EliasFanoBitVector()
3 bp = BalancedParentheses()
4 i = 0
5 while i < len(json):
6 c = json[i]
7 if c in ’[{’:
8 positions.append(1)
9 bp.extend([1, 1])

10 elif c in ’}]’:
11 positions.append(1)
12 bp.extend([0, 0])
13 elif c in ’,:’:
14 positions.append(1)
15 bp.extend([0, 1])
16 elif c == ’"’:
17 # consume_string returns the position of
18 # the matching ’"’
19 new_i = consume_string(json, i)
20 length = new_i - i + 1
21 i = new_i
22 positions.extend([0] * length)
23 else:
24 positions.append(0)
25 i += 1
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ALGORITHM 3.4: Get position and object child by key

1 def get_pos(node):
2 pos = positions.select(node / 2)
3 pos += node % 2
4 return pos
5

6 def object_get(json, node, key):
7 # if node is odd, it is a comma, so skip it
8 node += node % 2
9 opening_pos = get_pos(node)

10 if json[opening_pos] != ’{’:
11 # not an object
12 return None
13 # empty objects are a special case
14 if json[opening_pos + 1] == ’}’:
15 return None
16

17 node = node + 1
18 node_pos = opening_pos + 1
19

20 while True:
21 if bp[node] == 0:
22 return None
23 node_close = bp.find_close(node)
24 # node position after the colon
25 val_open = node_close + 1
26 # check if current key matches
27 if parse(json, node_pos) == key:
28 return val_open
29 # otherwise skip to next key/value pair
30 val_close = bp.find_close(val_open)
31 node = val_close + 1
32 # skip the comma
33 node_pos = get_pos(node) + 1
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small. Otherwise, if it is possible to ensure that the keys are in sorted order, binary search
can be used to reduce the number of probes to the logarithm of the fanout.

Array access can be done similarly with forward iteration through FindClose, with
backwards iteration by jumping to the parenthesis closing the container and iterating
on the contents with FindOpen, or with the i th child if bp supports it. In any case, at
most 3 accesses to the JSON document are made: the I/O complexity remains constant
even if the runtime complexity may be linear, assuming that the semi-index fits in main
memory.

We remark that in the design of the engineered JSON semi-index we have chosen
simplicity over theoretical optimality. In general, other space/time/simplicity tradeoffs
can be achieved by composing together other succinct data structures chosen from the
vast repertoire in the literature, thus giving rise to a wide range of variations of the
semi-indexing framework.

3.5 EXPERIMENTAL ANALYSIS

In this section we discuss the experimental analysis of the semi-index described in
Section 3.4. The benchmark is aimed at the task of attribute extraction described in the
chapter introduction.

— Each dataset consists in a text file whose lines are JSON documents. The file is
read from disk.

— The query consists in a list of key/index paths, to define which we use the Javascript
notation. For instance given the following document

{"a": 1, "b": {"v": [2, "x"], "l": true}}

the query a,b.v[0],b.v[-1] returns [1, 2, "x"], i.e. the list of the extracted
values encoded as a JSON list. Note that, borrowing a Python convention, negative
indices count from the end of the array, so -1 is the last element.

— Each benchmark measures the time needed to run the query on each document of
the dataset and write the returned list as a line in the output file.

IMPLEMENTATION AND TESTING DETAILS. The algorithms have been implemented
in C++ and compiled with g++ 4.7. The tests were run on a dual core Intel Core 2
Duo E8400 with 6MiB L2 cache, 4GiB RAM and a 7200RPM SATA hard drive, running
Linux 3.5.0 – 64-bit. Each test was run 3 times, and the timings averaged. Before each run
the kernel page caches were dropped to ensure that all the data is read from disk. When
not performing sequential scan, the input files were memory-mapped to let the kernel
load lazily only the needed pages. For the construction of the semi-index each dataset is
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considered as a single string composed by the concatenation of all the documents, so a
single semi-index is built for each dataset and stored on a separate file. The positions in
the positional index are thus absolute in the file, not relative to each single document. For
both the Elias-Fano and balanced parentheses sequences we uses the implementations in
the Succinct library, described in Chapter 7. Note that since the publication of [97] the
experiments have been re-run with the latest version of the library and of the compiler,
resulting in improved performance.

The source code used for the experiments is available at the URL https://github.
com/ot/semi_index.

DOCUMENT COMPRESSION. To simulate the behavior on compressed file systems we
implemented a very simple block compression scheme which we call gzra (for gzipped
“random access”). The file is split into 16kB blocks which are compressed separately with
zlib and indexed by an offset table. On decompression, blocks are decompressed as they
are accessed. We keep an LRU cache of decompressed blocks (in our experiments we use
a cache of 8 blocks). The on-disk representation is not optimized—it may be possible to
shave some I/O cost by aligning the compressed blocks to the disk block boundaries.

DATASETS. The experiments were performed on a collection of datasets of different
average document size and density. On one extreme of the spectrum there are datasets
with small document size (wp_events), which should yield little or no speed-up, and
very high density (xmark), which should give a high semi-index overhead. On the other
extreme there is wp_history which has large documents and relatively small density.
Specifically:

The Wikipedia data was obtained by converting to JSON the Wikipedia dumps
[115], while we used the xmlgen tool from XMark [103] and converted the output to
JSON to generate synthetic data of very high density.

— wp_events: Each document represents the metadata of one edit on Wikipedia.

— delicious [71]: Each document represents the metadata of the links bookmarked
on Delicious in September 2009.

— openlib_authors [109]: Each document represents an author record in The
Open Library.

— wp_history: Each document contains the full history of a Wikipedia page, includ-
ing the text of each revision.

— xmark: Each document is generated using xmlgen from XMark with scale factor
chosen uniformly in the range [0.025,0.075).

https://github.com/ot/semi_index
https://github.com/ot/semi_index
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QUERIES. The queries performed on each dataset are shown in Table 3.1. We have
chosen the queries to span several depths in the document trees (the XPath dataset xmark
has deeper trees that allow for more complex queries). Some queries access negative
indices in arrays, to include the contribution of the performance of backwards array
iteration in our tests.

Dataset Queries

wp_events
id
timestamp
title

delicious
links[0].href
tags[0].term
tags[-1].term

openlib_authors name
last_modified.value

wp_history

id
title
revision[0].timestamp
revision[-1].timestamp

xmark

people.person[-1].name
regions.europe.item[0].quantity
regions.europe.item[-1].name
open_auctions.open_auction[0].current

TABLE 3.1: Queries performed on each dataset

TESTING. For each dataset we measured the time needed to perform the following tasks.

— wc: The Unix command that counts the number of lines in a file. We use it as a
baseline to measure the I/O time needed to scan sequentially the file without any
processing of the data.

— jsoncpp: Query task reading each line, and parsing it using the JSONCpp library
[73] (one of the most popular and efficient JSON C++ libraries). The requested
values are output by querying the in-memory tree structure obtained from the
parsing.

— bson: Query task using data pre-converted to BSON.
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— si_onthefly: Query task reading each line, building on the fly the semi-index,
and using it to perform the queries. Note that in this case the semi-index is not
precomputed.

— si: Query task using a precomputed semi-index from a file on disk.

— si_compr: Like si, but instead of reading from the uncompressed JSON file, the
input is read from a gzra-compressed file.

— si_build: Construction and storage to disk of the semi-index from the JSON file,
which is then used by si and si_compr.

RESULTS. We summarize the running times for the above tests in Figure 3.1 and Ta-
ble 3.3, and the space overhead in Figure 3.2 and Table 3.2, which also reports the
statistics for each file in the dataset. We now comment in some detail these experimental
findings.

A common feature on all the datasets is that the standard load-and-parse scheme using
the JSONCpp library, and implemented as jsoncpp, has the worst performance. If time
efficiency is an issue, the other methods are preferable.

BSON is a good candidate in this sense, since it uses pre-converted data, as imple-
mented in bson, and always runs faster than jsoncpp. It is interesting to compare bson
with our methods, which also run faster than jsoncpp.

Consider first the situation in which we do not use any preprocessing on the data:
when performing the queries, we replace the full parsing of the documents with an
on-the-fly construction of the semi-index, as implemented in si_onthefly. As shown in
our tests, si_onthefly performs remarkably well even if it has to load the full document,
as the semi-index construction is significantly faster than a full parsing. Compared to
bson, which uses a pre-built index, the running times are slightly larger but quite close,
and the I/O times are similar. Surprisingly, for file wp_history, si_onthefly is faster
than bson: a possible reason is that in the latter the value sizes are interleaved with the
values, causing a large I/O cost, whereas the semi-index is entirely contained in memory.

We now evaluate experimentally the benefit of using a pre-built and saved semi-index.
The running times for si_build show that the construction of the semi-index is very
fast, and mainly dominated by the I/O cost (as highlighted by the comparison with wc).

Using the pre-computed semi-index, si can query the dataset faster than bson, except
for file xmark where it is slightly slower: as we shall see, when this file is in compressed
format, the I/O time is significantly reduced. Also, on wp_history querying the last
element of an array requires bson to scan all the file (as explained in the introduction),
while si can jump straight to the correct position; overall si is 5 times faster than bson
on this dataset. Note that contrarily to bson, si require less time than wc in some cases
since it takes advantage of the semi-index to make random accesses to the file and retrieve
just the needed blocks.
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Dataset Records Average kBytes Average nodes Semi-index overhead

wp_events 1000000 0.36 24.82 8.27%
delicious 1252973 1.04 61.28 7.67%
openlib_authors 6406158 0.25 22.00 10.15%
wp_history 23000 127.27 203.87 0.33%
xmark 1000 2719.47 221221.48 10.31%

TABLE 3.2: Number of documents, average document size, average number of nodes,
and semi-index space overhead (percent with respect to average document size) for each
dataset used in the benchmark

The space overhead of the pre-built semi-index is reported in the last column of
Table 3.2 and item si_size of Figure 3.2. The semi-index takes between 8% and 10%
of the uncompressed input for all datasets except wp_history, where the overhead is
practically negligible because data is sparse.

If the overall space occupancy is an issue, we can opt for a variant of our method si, as
implemented in si_compr, where the dataset is kept compressed using the gzra format
previously discussed. Note that this format, which is a variant of gzip, requires slightly
more space but it allows for random block access to compressed data (e.g. compare items
gz_size and gzra_size in Figure 3.2). When comparing to the space required by the
binary format of bson (item bson_size in Figure 3.2), we obtain a significant saving,
where the total space occupancy of the semi-index and the compressed dataset is the sum
of the values of items gzra_size and size_size in Figure 3.2.

Regarding its time performance, si_compr is slighter slower than bson and si for
sparse files, while it performs better for dense files such as wp_history and xmark: in
the former case, the decompression cost dominates the access cost, while in the latter the
I/O cost is dominant and the reduced file size improves it (while still taking advantage of
semi-indexing). This is also why si_compr is faster than wc on some files, and obtains a
10x speed-up on wp_history over jsoncpp.

Summing up, on all the datasets si is between 2.5 and 4 times faster than jsoncpp,
while for si_compr the speed-up is between 1.5x and 10x. The graphs suggest that
compression enables better performance as the average document size increases.

3.6 MEMORY-EFFICIENT PARSING

In this section we describe an alternative application of the semi-indexing technique.
A fully deserialized document tree takes often much more memory than the serialized

document itself. Hence in case of big documents it is very likely that the textual (XML
or JSON) document fits in main memory but its deserialized version doesn’t.

Industrial parsers such as Xerces2 [3] work around this problem by loading in mem-
ory only the tree structure of the document and going back to the unparsed document
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Dataset Wall clock time (seconds)

wc jsoncpp bson si_onthefly si si_compr si_build

wp_events 3.4 13.2 (3.83) 8.0 (2.33) 9.3 (2.70) 4.2 (1.23) 9.0 (2.62) 4.9 (1.43)
delicious 11.6 38.3 (3.30) 14.0 (1.21) 20.2 (1.74) 14.6 (1.26) 19.8 (1.70) 14.7 (1.27)
openlib_authors 15.2 64.0 (4.21) 36.9 (2.43) 49.2 (3.24) 22.9 (1.51) 36.0 (2.37) 19.0 (1.25)
wp_history 26.9 45.9 (1.71) 40.4 (1.50) 31.1 (1.16) 9.6 (0.36) 4.4 (0.16) 30.4 (1.13)
xmark 24.9 127.5 (5.11) 26.4 (1.06) 32.2 (1.29) 27.6 (1.11) 14.4 (0.58) 33.4 (1.34)

TABLE 3.3: Running times for each dataset. Numbers in parentheses are the runtimes
normalized on wc time. Numbers in bold are the ones within 10% from the best
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FIGURE 3.1: Wall clock times for each dataset as listed in Table 3.3. I/O time indicates
the time the CPU waits for data from disk, while in CPU time the CPU is busy (but the
kernel may use this time to prefetch pages from disk).

file
siz

e

gz
siz

e

gzr
a

siz
e

si
siz

e

bso
n

siz
e

0

50

100

150

200

250

300

350

400

360

47
56

29

346

wp events

file
siz

e

gz
siz

e

gzr
a

siz
e

si
siz

e

bso
n

siz
e

0

200

400

600

800

1000

1200

1400

1297

186
217

99

1249

delicious

file
siz

e

gz
siz

e

gzr
a

siz
e

si
siz

e

bso
n

siz
e

0

200

400

600

800

1000

1200

1400

1600

1800

1627

194 217
165

1557

openlib authors

file
siz

e

gz
siz

e

gzr
a

siz
e

si
siz

e

bso
n

siz
e

0

500

1000

1500

2000

2500

3000 2927

446

768

9

2868

wp history

file
siz

e

gz
siz

e

gzr
a

siz
e

si
siz

e

bso
n

siz
e

0

500

1000

1500

2000

2500

3000

2719

640
751

280

2792

xmark

FIGURE 3.2: Space occupancy in MB of the file uncompressed (file_size), com-
pressed with gzip (gz_size) and compressed with gzra (gzra_size), encoded in BSON
(bson_size), and of the semi-index (si_size)



3.6. MEMORY-EFFICIENT PARSING 39

to parse the required elements. This approach however requires at least a pair of point-
ers per node, and usually much more. As shown in Section 3.3 for dense documents
a pointer-based representation of the document tree can be more expensive than the
document itself.

Since the construction of the semi-index is extremely fast, we suggest that a semi-index
can be used in place of pointer-based data structures for lazy parsing.

Figure 3.3 shows the running times for jsoncpp and si construction and querying
when the document is already in main memory, hence with no I/O involved. Note that
query times using the semi-index for in-memory documents are just 10 times slower
than by accessing a fully deserialized tree using jsoncpp. This is very reasonable, since
the query time includes the time to parse the leaf attributes once the semi-index has
identified their position in the unparsed document.

Thus the semi-index can be used as an alternative to explicit or lazy parsing in
applications where memory is a concern, for example on mobile devices.
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4 COMPRESSED STRING DICTIONARIES

Tries are widely used data structures that turn a string set into a digital search tree.
Several operations can be supported, such as mapping the strings to integers, retrieving
a string from the trie, performing prefix searches, and many others. Thanks to their
simplicity and functionality, they have enjoyed a remarkable popularity in a number of
fields—Computational Biology, Data Compression, Data Mining, Information Retrieval,
Natural Language Processing, Network Routing, Pattern Matching, Text Processing, and
Web applications, to name a few—motivating the significant effort spent in the variety of
their implementations over the last fifty years [75].

However their simplicity comes at a cost: as most tree structures, they generally suffer
poor locality of reference due to pointer-chasing. This effect is amplified when using suc-
cinct representations of tries, where performing any basic navigational operation, such as
visiting a child, requires accessing possibly several directories, usually with unpredictable
memory access patterns. Tries are particularly affected as they are unbalanced structures:
the height can be in the order of the number of strings in the set. Another issue with tries
is that space savings are achieved only by exploiting the common prefixes in the string
set, while it is not clear how to compress their nodes and their labels without incurring
an unreasonable overhead in the running time.

In this chapter, we experiment with how path decompositions of tries help on both
the above mentioned issues, inspired by the work presented in [39]. By using a centroid
path decomposition, the height is guaranteed to be logarithmic in the number of strings,
reducing dramatically the number of cache misses in a traversal; besides, for any path
decomposition the node labels can be laid out in a way that enables efficient compression
and decompression of a label in a sequential fashion.

4.1 RELATED WORK

The literature about space-efficient and cache-efficient tries is vast. Several papers address
the issue of a cache-friendly access to a set of strings supporting prefix search [1, 8, 16, 38],
but they do not deal with space issues except [8], which introduces an elegant variant of
front coding.

Other papers aiming at succinct labeled trees and compressed data structures for

41



42 CHAPTER 4. COMPRESSED STRING DICTIONARIES

strings [4, 6, 9, 12, 40, 91, 101], support powerful operations—such as substring queries—
and are very good in compressing data, but they do not exploit the memory hierarchy.
Few papers [18, 39] combine (nearly) optimal information theoretic bounds for space
occupancy with good cache efficient bounds, but no experimental analysis is performed.

More references on compressed string dictionaries can be found in [15].

4.2 STRING DICTIONARIES

In this section we describe an implementation of string dictionaries, as defined in Sec-
tion 2.7, using path-decomposed tries.

PATH DECOMPOSITION. Our string dictionaries, inspired by the approach described
in [39], are based on path decompositions of the compacted trie built on S . A path
decomposition T c of a trie T is a tree where each node in T c represents a path in T .
It is defined recursively in the following way: a root-to-leaf path in T is chosen and
represented by the root node in T c . The same procedure is applied recursively to the sub-
tries hanging off the chosen path, and the obtained trees become the children of the root,
labeled with their corresponding branching character. Note that in the above procedure
the order of the decomposed sub-tries as children of the root is arbitrary. Unlike [39], that
arranges the sub-tries in lexicographic order, we arrange them in bottom-to-top left-to-right
order; when using our succinct representation, this simplifies the traversal. Figure 4.1
shows a root-to-leaf path in T and its resulting node in T c .
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FIGURE 4.1: Path decomposition of a trie. The αi denote the labels of the trie nodes, ci
and bi the branching characters (depending on whether they are on the path or not).

There is a one-to-one correspondence between the paths of the two trees: root-to-node
paths in T c correspond to root-to-leaf paths in the trie T , hence to strings in S . This
implies also that T c has exactly |S | nodes, and that the height of T c cannot be larger
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than that of T . Different strategies in choosing the paths in the decomposition give rise
to different properties. We describe two such strategies.

— Leftmost path: Always choose the leftmost child.

— Heavy path: Always choose the heavy child, i.e. the one whose sub-trie has the most
leaves (arbitrarily breaking ties). This is the strategy adopted in [39] and borrowed
from [106].

OBSERVATION 4.2.1 If the leftmost path is used in the path decomposition, the depth-
first order of the nodes in T c is equal to the left-to-right order of their corresponding
leaves in T . Hence if T is lexicographically ordered, so is T c . We call it a lexicographic
path decomposition.

OBSERVATION 4.2.2 If the heavy path is used in the path decomposition, the height of
the resulting tree is bounded by O(log |S |). We call such a decomposition a centroid path
decomposition.

The two strategies enable a time/functionality trade-off: a lexicographic path decom-
position guarantees that the indices returned by the Lookup are in lexicographic order,
at the cost of a potentially linear height of the tree (but never higher than the trie T ). On
the other hand, if the order of the indices is irrelevant, the centroid path decomposition
gives logarithmic guarantees.1

We exploit a crucial property of path decompositions: since each node in T c corre-
sponds to a node-to-leaf path π in T , the concatenation of the labels in π corresponds
to a suffix of a string in S . To simulate a traversal of T using T c we only need to scan
sequentially character-by-character the label of each node until we find the needed child
node. Hence, any representation of the labels that supports sequential access (simpler
than random access) is sufficient. Besides being cache-friendly, as we will see in the next
section, this allows an efficient compression of the labels.

TREE REPRESENTATION. Each node v in the path-decomposed trie T c is encoded
with three sequences BPv , Bv and Lv . Figure 4.1 shows an example for the root node.

— The bitvector BPv is a run of dv open parentheses followed by a close parenthesis,
where dv is the degree of node v.

— The string Bv is the concatenation of the branching characters bi of node v,
written in reverse order, i.e. Bv = bdv

· · · b1. Note that they are in one-to-one
correspondence with the (s in BP.

1In [39] the authors show how to have lexicographic indices in a centroid path-decomposed trie, using
secondary support structures and arranging the nodes in a different order. The navigational operations
are noticeably more complex, and require more powerful primitives on the underlying succinct tree, in
particular for Access.
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— The string Lv is the label of node v. We recall that each node in T c represents a
path in T . To encode the path we augment the alphabet Σ with |Σ| − 1 special
characters, Σ′ = Σ∪ {1,2, . . . , |Σ| − 1}, and alternate the label and the branching
character of each node in the trie path with the number of sub-tries hanging off
that node, encoded with the new special characters. More precisely, if the path
in T corresponding to v is w1, c1, . . . , wk−1, ck−1, wk where wi are the trie nodes
and ci the edge labels, then L = αw1

d̃w1
c1 · · ·αwk−1

d̃wk−1
ck−1αwk

, where αwi
is the

node label of wi and d̃wi
is the special character that represents dwi

− 1 (all the

degrees in T are at least 2). We call positions in Lv where the special characters d̃wi

occur branching points. Note that Lv is drawn from the larger alphabet Σ′; we will
describe later how to encode it.

The sequences are then concatenated in depth-first order to obtain BP, B and L: if
v1, . . . , vn are the nodes ofT c in depth-first order, then BP= BPv1

· · ·BPvn
, B= Bv1

· · ·Bvn
,

and L= Lv1
· · ·Lvn

. By prepending an open parenthesis, BP represents the topology of
T c with the DFUDS encoding, hence it is possible to support fast traversal operations on
the tree. Since the labels Lv are variable-sized, to support random-access to the beginning
of each label we encode their endpoints in L using an Elias-Fano monotone sequence.
Figure 4.2 shows an example of the three sequences for both lexicographic and centroid
path decompositions on a small string set.
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FIGURE 4.2: Example of a compacted trie for the set {three,trial,triangle,
triangular,trie,triple,triply} and its lexicographic and centroid path decomposi-
tion trees. Note that the children in the path decomposition trees are in bottom-to-top
left-to-right order.
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TRIE OPERATIONS. Lookup is implemented recursively in a top-down fashion, starting
from the root. To search for the string s in node v we scan simultaneously its label Lv
and s . If the current character in the label is a special character, we add its value to an
accumulator m (initially set to zero). Otherwise, we check if the current character in the
label and the one in s match, in which case we proceed the scan with the next position in
both. If instead they mismatch, the next character in the label must be a special character
d̃ , otherwise the string s is not in S ; in this case we return ⊥ (likewise, if the string
exceeds the label). The range between the accumulator m and m+d̃ indicates the children
of v that correspond to the nodes in T branching from the prefix of s traversed up to the
mismatch. To find the child it is then sufficient to find the matching branching character
in Bv between in m and m+ d̃ . Since B is in correspondence with the open parentheses of
BP, by performing a Rank( of the current position in BP it is possible to find the starting
point of Bv in B; also, because the characters in that range are sorted, a binary search
can be performed. Again, ⊥ is returned if no matching character is found. The search
proceeds recursively in the found node with the suffix of s which starts immediately after
the mismatch, until the string is fully traversed. The index of the ) in BP corresponding
to the found node is returned, i.e. the depth-first index of that node, which can be found
with a Rank) of the current position in BP. Note that it is possible to avoid all the
Rank calls by using the standard trick of double-counting, i.e. exploiting the observation
that between any two mates there is an equal number of (s and )s; this implies that if
j = FindClose(i), then Rank)( j ) = Rank)(i) + ( j − i − 1)/2, so it is possible to keep
track of the rank during the traversal. Likewise, Rank((i) = i −Rank)(i).

Access is performed similarly but in a bottom-up fashion. The initial position in
BP is obtained by performing a Select) of the node index returned by Lookup. Then
the path is reconstructed by jumping recursively from the leaf thus found in T c to the
parent, until the root is reached. During the recursion we maintain the invariant that, at
node v, the suffix of the string to be returned corresponding to the path below v has
already been decoded. When visiting node v we know which child of v we are jumping
from; hence, we scan its label Lv from the beginning until the position corresponding to
that child is reached. The non-special characters seen during the scan are prepended to
the string to be returned, and the recursion is carried on to the parent.

TIME COMPLEXITY. For the Lookup, for each node in the traversal we perform a
sequential scan of the labels and a binary search on the branching character. If the string
has length p, we can never see more than p special characters during the scan. Hence, if
we assume constant-time FindClose in BP and Select in L, the total number of operations
is O(p + h log |Σ|).

To evaluate the cache efficiency, we can assume that the cost of sequentially scanning
a small region of memory is dominated by the access to its first element, which we count
as a random memory access. For the Lookup, the number of random memory accesses
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is bounded by O(h), where h is the height of the path decomposition tree. The Access
is symmetric except that the binary search is not needed and p ≥ h, so the number of
operations is bounded by O(p) where p is the length of the returned string. Again, the
number of random memory accesses is bounded by O(h).

LABELS ENCODING AND COMPRESSION. As previously mentioned, we need only to
scan sequentially the label of each node from the beginning, so we can use any encoding
that supports sequential scan with a constant amount of work per character. In the
uncompressed trie, as a baseline, we simply use a vbyte encoding [117]. Since most bytes
in the datasets do not exceed 127 in value, there is no noticeable space overhead. For a
less sparse alphabet, more sophisticated encodings can be used.

The freedom in choosing the encoding allows us to explore other trade-offs. We
take advantage of this to compress the labels, with an almost negligible overhead in the
operations runtime.

We adopt a simple dictionary compression scheme for the labels: we choose a static
dictionary of variable-sized words (that can be drawn from any alphabet) that will be
stored along the tree explicitly, such that the overall size of the dictionary is bounded
by a given parameter (constant) D. The node labels are then parsed into words of the
dictionary, and the words are sorted according to their frequency in the parsing: a code is
assigned to each word in decreasing order of frequency, so that more frequent words have
smaller codes. The codes are then encoded using some variable-length integer encoding;
we use vbyte to favor performance. To decompress the label, we scan the codes and for
each code we scan the word in the dictionary, hence each character requires a constant
amount of work.

We remark that the decompression algorithm is completely agnostic of how the
dictionary was chosen and how the strings are parsed. For example, domain knowledge
about the data could be exploited; in texts, the most frequent words would probably be a
good choice.

Since we are looking for a general-purpose scheme, we adopt a modified version
of the approximate Re-Pair [77] described in [21]: we initialize the dictionary to the
alphabet Σ and scan the string to find the k most frequent pairs of codes. Then, we select
all the pairs whose corresponding substrings fit in the dictionary and substitute them in
the sequence. We then iterate until the dictionary is filled (or there are no more repeated
pairs). From this we obtain simultaneously the dictionary and the parsing. To allow
the labels to be accessed independently, we take care that no pairs are formed on label
boundaries, as done in [15].

Note that while Re-Pair represents the words recursively as pairing rules, our dic-
tionary stores the words literally, thus losing some space efficiency but fulfilling our
requirement of constant amount of work per decoded character. If we used Re-Pair in-
stead, accessing a single character from a recursive rule would have had a cost dependent
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on the recursion depth.

IMPLEMENTATION NOTES. For the BP vector we use the balanced parentheses data
structure described in Section 7.3, while to delimit the labels in L we use the Elias-Fano
sequence implementation of Section 7.2.3. The search for the branching character is
replaced by a linear search, which for the cardinalities considered (few tens of distinct
symbols) is actually faster in practice. The dictionary is represented as the concatenation
of the words encoded in 16-bit characters to fit the larger alphabet Σ′ = [0,511). The
dictionary size bound D is chosen to be 216, so that the word endpoints can be encoded
in 16-bit pointers. The small size of the dictionary makes also more likely that (at least
the most frequently accessed part of) it is kept in cache.

4.3 MONOTONE MINIMAL PERFECT HASH FOR STRINGS

Minimal perfect hash functions map a set of stringsS bijectively into [0, |S |). Monotone
minimal perfect hash functions [5] (or monotone hashes) also require that the map-
ping preserves the lexicographic order of the strings (not to be confused with generic
order-preserving hashing, where the order to be preserved is arbitrary, thus incurring
a Ω(|S| log |S|) space lower bound). We remark that, as with standard minimal hash
functions, the Lookup can return any number on strings outside of S , hence the data
structure does not have to store the string set.

The hollow trie [6] is a particular instance of monotone hash. It consists of a binary
trie on S , of which only the trie topology and the skips of the internal nodes are stored,
in succinct form. To compute the hash value of a string x, a blind search is performed:
the trie is traversed matching only the branching characters (bits, in this case) of x. If
x ∈S , the leaf reached is the correct one, and its depth-first index is returned; otherwise,
it has the longest prefix match with x, useful in some applications [38].

The cost of unbalancedness for hollow tries is even larger than that for normal tries:
since the strings overΣ have to be converted to a binary alphabet, the height is potentially
multiplied by O(log |Σ|) with respect to that of a trie on Σ. The experiments in [6] show
indeed that the data structure has worse performance than the other monotone hashes
analyzed in that paper, while it is among the most space-efficient.

PATH DECOMPOSITION WITH LEXICOGRAPHIC ORDER. To tackle their unbalanced-
ness, we apply the centroid path decomposition idea to hollow tries. The construction
presented in Section 4.2 cannot be used directly, because we want to both preserve the
lexicographic ordering of the strings and guarantee the logarithmic height. However,
both the binary alphabet and the fact that we do not need the Access operation come to
the aid. First, inspired again by [39], we arrange the sub-tries in lexicographic order. This
means that the sub-tries on the left of the path are arranged top-to-bottom, and precede all
those on the right which are arranged bottom-to-top. In the path decomposition tree we
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call left children the ones corresponding to sub-tries hanging off the left side of the path
and right children the ones corresponding to those hanging on the right side. Figure 4.3
shows the new ordering.
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FIGURE 4.3: Path decomposition of a hollow trie. The δi denote the skips.

We now need a small change in the heavy path strategy: instead of breaking ties
arbitrarily, we choose the left child. We call this strategy left-biased heavy path, which
gives the following.

OBSERVATION 4.3.1 Every node-to-leaf left-biased heavy path in a binary trie ends with
a left turn. Hence, every internal node of the resulting path decomposition has at least
one right child.

Proof Suppose by contradiction that the path leaf is a right child. Then, either its left
sibling is not a leaf, in which case the path is not heavy, or it is a leaf, then the tie would
be resolved by choosing the left child.

TREE REPRESENTATION. The bitvector BP is defined as in Section 4.2. The label
associated with each node is the sequence of skips interleaved with directions taken
in the centroid path, excluding the leaf skip, as in Figure 4.3. Two aligned bitvectors
Lhigh and Llow are used to represent the labels using an encoding inspired by γ codes
[33]: the skips are incremented by one (to exclude 0 from the domain) and their binary
representations (without the leading 1) are interleaved with the path directions and
concatenated in Llow. Lhigh consists of 0 runs of length corresponding to the lengths of
the binary representations of the skips, followed by 1s, so that the endpoints of (skip,
direction) pair encodings in Llow are aligned to the 1s in Lhigh. Thus a Select directory on
Lhigh enables random access to the (skip, direction) pairs sequence. The labels of the node
are concatenated in depth-first order: the (s in BP are in one-to-one correspondence with
the (skip, direction) pairs.
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TRIE OPERATIONS. As in Section 4.2, a trie traversal is simulated on the path decom-
position tree. In the root node, the (skip, direction) pairs sequence is scanned (through
Lhigh and Llow): during the scan the number of left and right children passed by is kept;
when a mismatch in the string is found, the search proceeds in the corresponding child.
Because of the ordering of the children, if the mismatch leads to a left child the child
index is the number of left children seen in the scan, while if it leads to a right child
it is the node degrees minus the number of right children seen (because the latter are
represented from right to left). This correspondence between (skip, direction) pairs and
child nodes (represented by (s in BPv ) is shown with dashed arrows in Figure 4.3. The
search proceeds recursively until the string is fully traversed.

When the search ends, the depth-first order of the node found is not yet the number
we are looking for: all the ancestors where we turned left come before the found node
in depth-first but after it in the lexicographic order. Besides, if the found node is not a
leaf, all the strings in the left sub-tries of the corresponding path are lexicographically
smaller than the current string. It is easy to fix these issues: during the traversal we can
count the number of left turns and subtract that from the final index. To account for
the left sub-tries, using Observation 4.3.1 we can count the number of their leaves by
jumping to the first right child with a FindClose: the number of nodes skipped in the
jump is equal to the number of leaves in the left sub-tries of the node.

TIME COMPLEXITY. The running time of Lookup can be analyzed with a similar
argument to that of the Lookup of Section 4.2: during the scan there cannot be more
skips than the string length; besides, there is no binary search. Hence the number of
operations is O(min(p, h)), while the number of random memory accesses is bounded
by O(h).

IMPLEMENTATION NOTES. Since the 1s in the sequence are at most 64 bits apart, to
support Select on Lhigh we use the darray64 variant of the darray [96], described in
Section 7.2.2.

4.4 EXPERIMENTAL ANALYSIS

In this section we discuss a series of experiments we performed on both real-world and
synthetic data. We performed several tests both to collect statistics that show how our
path decompositions give an algorithmic advantage over standard tries, and to benchmark
the implementations comparing them with other practical data structures.

We provide the source code at http://github.com/ot/path_decomposed_tries
for the reader interested in further comparisons.

SETTING. The experiments were run on a 64-bit 2.53GHz Core i7 processor with 8MiB
last-level cache and 24GiB RAM, running Windows Server 2008 R2. All the C++ code

http://github.com/ot/path_decomposed_tries
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was compiled with MSVC 10, while for Java we used the Sun JVM 6.

DATASETS. The tests were run on the following datasets.

— enwiki-titles (163MiB, 8.5M strings): All the page titles from English Wikipedia.

— aol-queries (224MiB, 10.2M strings): The queries in the AOL 2006 query log
[2].

— uk-2002 (1.3GiB, 18.5M strings): The URLs of a 2002 crawl of the .uk domain
[13].

— webbase-2001 (6.6GiB, 114.3M strings): The URLs in the Stanford WebBase from
[78].

— synthetic (1.4GiB, 2.5M strings): The set of strings dic j btσ1 . . .σk where i and j
range in [0,500), t ranges in [0,10), σi are all distinct (but equal for each string)
and k = 100. The resulting tries are very unbalanced while, at the same time,
the strings are extremely compressible. Furthermore, the constant suffix σ1 . . .σk
stresses the linear search in data structures based on front coding such as HTFC,
and the redundancy is not exploited by front coding and non-compressed tries.

AVERAGE HEIGHT. Table 4.1 compares the average height of plain tries with their path
decomposition trees. In all the real-world datasets the centroid path decomposition cause
a ≈ 2-3 times reduction in height compared to the standard compacted trie. The gap
is even more dramatic in hollow tries, where the binarization of the strings causes a
blow-up in height close to log |Σ|, while the centroid path-decomposed tree height is
very small, actually much smaller than log |S |. It is interesting to note that even if the
lexicographic path decomposition is unbalanced, it still improves on the trie, due to the
higher fan-out of the internal nodes.

The synthetic dataset is a pathological case for tries, but the centroid path-decomposition
still maintains an extremely low average height.

STRING DICTIONARY DATA STRUCTURES. We compared the performance of our im-
plementations of path-decomposed tries to other data structures. Centroid and Centroid
compr. implement the centroid path-decomposed trie described in Section 4.2, in the
versions without and with labels compression. Likewise, Lex. and Lex. compr. implement
the lexicographic version.

Re-Pair and HTFC are respectively the Re-Pair and Hu-Tucker compressed Front
Coding from [15]. For HTFC we chose bucket size 8 as the best space/time trade-off.
Comparison with Front Coding is of particular interest as it is one of the data structures
generally preferred by the practitioners.
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enwiki-titles aol-queries uk-2002 webbase-2001 synthetic

Compacted trie avg. height 9.8 11.0 16.5 18.1 504.4
Lex. avg. height 8.7 9.9 14.0 15.2 503.5
Centroid avg. height 5.2 5.2 5.9 6.2 2.8

Hollow avg. height 49.7 50.8 55.3 67.3 1005.3
Centroid hollow avg. height 7.9 8.0 8.4 9.2 2.8

TABLE 4.1: Average height: for tries the average height of the leaves is considered, while
for path-decomposed tries all the nodes are considered (see the comments after Observa-
tion 4.2.2).

TX [110] is a popular open-source straightforward implementation of a (non-compacted)
trie that uses LOUDS [68] to represent the tree. We made some small changes to avoid
keeping the whole string set in memory during construction.

To measure the running times, we chose 1 million random (and randomly shuffled)
strings from each dataset for the Lookup and 1 million random indices for the Access.
Each test was averaged on 10 runs. The construction time was averaged on 3 runs.

Re-Pair, HTFC and TX do not support files bigger than 2GiB, so we could not run
the tests on webbase-2001. Furthermore, Re-Pair did not complete the construction on
synthetic in 6 hours, so we had to kill the process.

STRING DICTIONARIES RESULTS. The results of the tests can be seen in Table 4.2. On
all datasets our compressed tries obtain the smallest space, except on uk-2002 where they
come a close second. The centroid versions have also the fastest Lookup times, while
the Access time is better for Re-Pair and occasionally HTFC, whose time is although
within 20% of that of the centroid trie. TX is consistently the largest and slowest on all
the datasets.

Maybe surprisingly, the lexicographic trie is not much slower than the centroid trie
for both Lookup and Access on real-world datasets. However, on the synthetic dataset
the unbalanced tries are more than 20 times slower than the balanced ones. HTFC
exhibits a less dramatic slowdown but still in the order of 5x on lookup compared to the
centroid trie. Although this behavior does not occur on our real-world datasets, it shows
that no assumptions can be made for unbalanced tries. For example in an adversarial
environment an attacker could exploit this weakness to perform a denial of service attack.

We remark that the labels compression adds an almost negligible overhead in both
Lookup and Access, due to the extremely simple dictionary scheme, while obtaining
a very good compression. Hence unless the construction time is a concern (in which
case other dictionary selection strategies can also be explored) it is always convenient to
compress the labels.
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enwiki-titles aol-queries uk-2002 webbase-2001 synthetic
161 bps 185 bps 621 bps 497 bps 4836 bps

String dictionaries

ctps c.ratio lkp acs ctps c.ratio lkp acs ctps c.ratio lkp acs ctps c.ratio lkp acs ctps c.ratio lkp acs

Centroid compr. 6.1 32.1% 2.5 2.6 7.9 31.5% 2.7 2.7 8.5 13.6% 3.8 4.9 7.8 13.5% 4.8 5.4 13.7 0.4% 4.2 13.5
Lex. compr. 6.4 31.9% 3.2 3.1 8.0 31.2% 3.8 3.6 8.4 13.5% 5.9 6.6 8.5 13.3% 7.3 7.7 109.2 0.4% 90.9 96.3
Centroid 1.8 53.6% 2.4 2.4 2.0 55.6% 2.4 2.6 2.3 22.4% 3.4 4.2 2.2 24.3% 4.3 5.0 8.4 17.9% 5.1 13.4
Lex. 2.0 52.8% 3.1 3.2 2.2 55.0% 3.5 3.5 2.7 22.3% 5.5 6.2 2.6 24.3% 7.0 7.4 102.8 17.9% 119.8 114.6
Re-Pair [15] 60.0 41.5% 6.6 1.2 115.4 38.8% 7.3 1.3 326.4 12.4% 25.7 3.1 - - - - - - - -
HTFC [15] 0.4 43.2% 3.7 2.2 0.4 40.9% 3.8 2.2 0.9 24.4% 7.0 4.7 - - - - 5.0 19.1% 22.0 18.0
TX [110] 2.7 64.0% 9.7 9.1 3.3 69.4% 11.9 11.3 5.7 30.0% 42.1 42.0 - - - - 44.6 25.3% 284.3 275.9

Monotone hashes

ctps bps lkp ctps bps lkp ctps bps lkp ctps bps lkp ctps bps lkp

Centroid hollow 1.1 8.40 2.7 1.2 8.73 2.8 1.5 8.17 3.3 1.5 8.02 4.4 8.6 9.96 11.1
Hollow 1.3 7.72 6.8 1.3 8.05 7.2 1.7 7.48 9.3 1.7 7.33 13.9 9.5 9.02 137.1
Hollow [108] 0.9 7.66 14.6 1.0 7.99 16.6 1.1 7.42 18.5 0.9 7.27 22.4 4.3 6.77 462.7
PaCo [108] 2.6 8.85 2.4 2.9 8.91 3.1 4.7 10.65 4.3 18.4 9.99 4.9 21.3 13.37 51.1

TABLE 4.2: Experimental results. bps is bits per string, ctps is the average construction time
per string, c.ratio is the compression ratio between the data structure and the original
file sizes, lkp is the average Lookup time and acs the average Access time. All times are
expressed in microseconds. The results within 10% of the best are in bold.

MONOTONE HASH DATA STRUCTURES. For monotone hashes, we compared our data
structures with the implementations in [6]. Centroid hollow implements the centroid
path-decomposed hollow trie described in Section 4.3. Hollow is a reimplementation of
the hollow trie of [6], using a Range Min tree in place of a pioneer-based representation
and the encoding described in Section 2.6.3. Hollow (Sux) and PaCo (Sux) are two imple-
mentations from [6]; the first is the hollow trie, the second a hybrid scheme: a Partially
Compacted trie is used to partition the keys into buckets, then each bucket is hashed
with an MWHC function. Among the structures in [6], PaCo gives the best trade-off
between space and lookup time. The implementations are freely available as part of the
Sux project [108].2

To measure construction time and lookup time we adopted the same strategy as for
string dictionaries. For Sux, as suggested in [6], we performed 3 runs of lookups before
measuring the lookup time, to let the JIT warm up and optimize the generated code.

MONOTONE HASH RESULTS. Table 4.2 shows the results for monotone hashes. On all
real-world datasets the centroid hollow trie is≈ 2-3 times faster than our implementation

2To be fair we need to say that Sux is implemented in Java while our structures are implemented in
C++. However, the recent developments of the Java Virtual Machine have made the abstraction penalty
gap smaller and smaller. Low-level optimized Java (as the one in Sux) can be on par of C++ for some
tasks, and no slower than 50% with respect to C++ for most other tasks. We remark that the hollow trie
construction is actually faster in the Sux version than in ours, although the algorithm is very similar.
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of the hollow trie and≈ 5 times faster than the Sux implementation. The centroid hollow
trie is competitive with PaCo on all datasets, while taking less space and with a substan-
tially simpler construction. The synthetic dataset in particular triggers the pathological
behavior on all the unbalanced structures, with Hollow, Hollow (Sux) and PaCo being
respectively 13, 41 and 5 times slower than Centroid hollow. Such a large performance gap
suggests the same conclusion reached for string dictionaries: if predictable performance is
needed, unbalanced structures should be avoided.





5 TOP-k STRING COMPLETION

Virtually every modern application, either desktop, web, or mobile, features some
kind of auto-completion of text-entry fields. Specifically, as the user enters a string one
character at a time, the system presents k suggestions to speed up text entry, correct
spelling mistakes, and help users formulate their intent. In its basic form, the suggestions
are drawn from a static set of strings, each associated with a score. We call such a set a
scored string set.

DEFINITION 5.0.1 (SCORED STRING SET) A scored string set S , |S |= n, is a set of n
pairs (s , r ) where s ∈Σ∗ is a string drawn from an alphabet Σ and r is an integer score.

Given a prefix string, the goal is to return the k strings matching the prefix with the
highest scores. Formally, we define the problem of top-k completion as follows.

DEFINITION 5.0.2 (TOP-k COMPLETION) Given a string p ∈ Σ∗ and an integer k, a
top-k completion query in the scored string set S returns the k highest scored pairs in
Sp = {(s , r ) ∈S | p is a prefix of s} (or the whole set if |Sp |< k).

In order to cover a large part of user intents, the string set S should contain as
many strings as possible. For query auto-completion in web search engines, such set
can easily be in the order of hundreds of millions of queries. Similarly, for predictive
text entry, a database of n-grams can reach or even surpass these sizes. For this reason,
it is extremely important to represent the scored string set in as little space as possible,
while still supporting top-k completion queries efficiently. Luckily, many of the top-k
completion application scenarios exhibit special properties which we can take advantage
of to improve the space and time efficiency of the system. First, the scores associated
with the strings often exhibit a power law distribution. Thus, most of the queries have
low counts as scores that require only a few bits to encode. Second, the distribution of
the prefixes that users enter one character at a time often approximates the distribution
of the scores. In other words, in practical usages of top-k completion systems, prefixes
of entries with higher scores tend to be queried more than those associated with lower
scored entries. In fact, a common folklore optimization in practical trie implementations

55
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is to sort the children of each node by decreasing score to speed up the lookup. Third, a
large number of strings share common substrings; this makes them highly compressible.

In this chapter, we present an application of the path-decomposed trie of Chapter 4,
where we apply a score-dependent path decomposition in order to support efficient top-k
completion queries. We call this data structure Score-Decomposed Trie.

To experimentally compare this data structure against a baseline, we implemented a
simple scheme based on a lexicographic string dictionary augmented with an RMQ data
structure on the vector of the scores. We call this data structure RMQ Trie.

As we will see in Section 5.5, the Score-Decomposed Trie is both slightly smaller and
significantly faster than the RMQ Trie.

5.1 RELATED WORK

There is a vast literature on ranked retrieval, both in the classical and succinct settings.
We report here the results closest to our work.

Using classical data structures, various studies have examined the task of word/phrase
completion [87, 80, 81, 93, 111], though most do not consider datasets of more than a
million strings or explore efficient algorithms on compressed data structures. In [80],
Li et al. precompute and materialize the top-k completions of each possible word prefix
and store them with each internal node of a trie. This requires a predetermined k and
is space inefficient. Recently, Matani [87] described an index similar in principle to the
proposed RMQ Trie structure in Section 5.2, but using a suboptimal data structure to
perform RMQ. Although the system achieves sub-millisecond performance, both this
and the previous work require storing the original string set in addition to the index.

From a theoretical point of view, Bialynicka-Birula and Grossi [10] introduced the
notion of rank-sensitive data structures, and presented a generic framework to support
ranked retrieval in range-reporting data structures, such as suffix trees and tries. However,
the space overhead is superlinear, which makes it impractical for our purposes.

As the strings are often highly compressible, we would like data structures that
approach the theoretic lower bound in terms of space. In this direction, recent advances
have yielded many implementations of string dictionaries based on succinct data structure
primitives [60, 15].

Hon et al. [64] used a combination of compressed suffix arrays [62, 41] and RMQ
data structures to answer top-k document retrieval queries, which ask for the k highest-
scored documents that contain the queried pattern as a substring, in compressed space.
While this approach is strictly more powerful than top-k completion, as shown in [15],
string dictionaries based on compressed suffix arrays are significantly slower than prefix-
based data structures such as front-coding, which in turn is about as fast as compressed
tries [60]. The RMQ Trie of Section 5.2 uses a similar approach, but it is based on a trie
instead of a suffix array.
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5.2 RMQ TRIE

In this section, we describe a simple scheme to augment any sorted string dictionary data
structure with an RMQ data structure, in order to support top-k completion. We will
use it as a baseline in our experiments.

As shown in Figure 5.1, if the string set S is represented with a trie, the set Sp of
strings prefixed by p is a subtrie, hence, if the scores are arranged in DFS order in an
array R, the scores of Sp are those in an interval R[a, b]. This is true in general for any
string dictionary data structure that maps the strings in S to [0, |S |) in lexicographic
order. We call PrefixRange(p) the operation that, given p, returns the pair (a, b ), or ⊥ if
no string matches the prefix.

v

p

R
a b

FIGURE 5.1: The scores of the strings prefixed by p correspond to the interval [a, b] in
the scores vector R.

To enumerate the completions of p in ranked order, we employ a standard recursive
technique, used for example in [92, 64]. We build an RMQ data structure on top of
R using an inverted ordering, i.e. the minimum is the highest score. The index of the
first completion is then i = RMQR(a, b ). Now the index of the second completion
is the one with highest score among RMQ(a, i − 1) and RMQ(i + 1, b ), which splits
again either [a, i − 1] or [i + 1, b] into two subintervals. In general, the index of the
next completion is the highest scored RMQ among all the intervals obtained with this
recursive splitting. By maintaining the intervals in a priority queue ordered by score, it is
hence possible to find the top-k completion indices in O(k log k). We can then perform
k Access operations on the dictionary to retrieve the strings.

The space overhead of this data structure, beyond the space needed to store the trie
and the scores, is just the space needed for the RMQ data structure, which is 2n+ o(n)
bits, where n = |S |. If the trie supports PrefixRange of the prefix in time TP and Access
in time TA, the total time to retrieve the top-k completions is O(TP+ k(TA+ log k)).

The advantages of this scheme are its simplicity and modularity, since it is possible to
re-use an existing dictionary data structure without any significant modification. In our
experiments we use the lexicographic compressed trie of Chapter 4. The only change we
needed to make was to implement the operation PrefixRange.
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5.3 SCORE-DECOMPOSED TRIE

In this section, we introduce a compressed trie data structure specifically tailored to solve
the top-k completion problem. The structure is based on the succinct path-decomposed
tries described in Chapter 4, but with a different path decomposition that takes into
account the scores.
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FIGURE 5.2: On the left, trie T with the decomposition path π highlighted. On the
right, root node uπ in T c and its encoding (spaces are for clarity only). In this example
v6 is arranged after v5 because r5 > r6.

MAX-SCORE PATH DECOMPOSITION. Since each string corresponds to a leaf in T , we
can associate its score with the corresponding leaf. To define the path decomposition, we
describe the strategy used to choose the decomposition path π and to order the subtries
hanging off π as children of the root uπ. We define the max-score path decomposition as
follows. We choose the path π as the root-to-leaf path whose leaf has the highest score
(ties are broken arbitrarily). The subtries are ordered bottom-to-top, while subtries at the
same level are arranged in decreasing order of score (the score of a subtrie is defined as
the highest score in the subtrie).

To enable scored queries, we need to augment the data structure to store the scores.
Following the notation of Figure 5.2, let uπ be the root node of T c and v1, . . . , vd the
nodes hanging off the path π. We call ri the highest score in the subtrie rooted at vi (if vi
is a leaf, ri is just its corresponding score). We add ri to the label of the edge leading to
the corresponding child, such that the label becomes the pair (bi , ri ).
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FIGURE 5.3: Score-Decomposed Trie example and its encoding.

SUCCINCT TREE REPRESENTATION. To represent the Score-Decomposed Trie, we
use the same encoding described in Chapter 4; in addition, we need to store the scores
in the edges along with the branching characters. We follow the same strategy used for
the branching characters: we concatenate the ri ’s in reverse order into a sequence Ruπ

,
and then concatenate the sequences Ru for each node u into a sequence R in DFS order.
Finally, we append the root score to R. To compress the sequence R, we use the data
structures described in Section 5.4.

TOP-k COMPLETIONS ENUMERATION. The operations Lookup and Access do not
need any modification, as they do not depend on the particular path decomposition
strategy used. We now describe how to support top-k completion queries.

Because of the max-score decomposition strategy, the highest score in each subtrie is
exactly the score of the decomposition path for that subtrie. Hence if ri is the highest
score of the subtrie rooted in vi , and ui is the node in T c corresponding to that subtrie,
then ri is the score of the string corresponding to ui . This implies that for each (s , r ) in
S , if u is the node corresponding to s , then r is stored in the incoming edge of u, except
when u is the root uπ, whose score is stored separately. Another immediate consequence
of the decomposition is that the tree has the heap property: the score of each node is less
or equal to the score of its parent.

We exploit this property to retrieve the top-k completions. First, we follow the
algorithm of the Lookup operation until the prefix p is exhausted, leading to the locus
node u, that is the highest node whose corresponding string is prefixed by p. This takes
time O(|Σ||p|). By construction, this is also the highest scored completion of p, so we
can immediately report it. To find the next completions, we note that the prefix p ends at
some position i in the label Lu . Thus, all the other completions must be in the subtrees
whose roots are the children of u branching after position i . We call the set of such
children the seed set, and add them into a priority queue.

To enumerate the completions in sorted order, we extract the highest scored node
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from the priority queue, report the string corresponding to it, and add all its children to
the priority queue. For the algorithm to be correct, we need to prove that, at each point
in the enumeration, the node corresponding to the next completion is in the priority
queue. This follows from the fact that every node u corresponding to a completion must
be reached at some point, because it is a descendant of the seed set. Suppose that u is
reported after a lower-scored node u ′. This means that u was not in the priority queue
when u ′ was reported, implying that u is a descendant of u ′. But this would violate the
heap property.

The previous algorithm still has a dependency on the number of children in each
node, since all of them must be placed in the priority queue. With a slight modification
in the algorithm, this dependency can be avoided. Note that in the construction, we sort
the children branching off the same branching point in decreasing score order. Thus, we
can delay the insertion of a node into the priority queue until after all other higher-scored
nodes from the same branching point have already been extracted. For each node u,
the number of branching points in Lu is at most |Lu |. Hence, we add at most |Lu |+ 1
nodes to the priority queue: 1 for each branching point plus the next sibling, if any, of
the extracted node at its branching point. Thus, the time to return k completions is
O(l k log l k) where l is the average length of the completions returned minus the prefix
length |p|.

Note that, after the locus node is found, only k − 1 nodes need to be visited in order
to return k completions. This property makes the Score-Decomposed Trie very suitable
for succinct representations, where traversal operations constitute the bottleneck in the
overall performance.

5.4 SCORE COMPRESSION

In both the data structures described in Section 5.2 and Section 5.3 it is necessary to store
the array R of the scores, and perform random access quickly. It is crucial to effectively
compress the scores: if stored, say, as 64 bit integers, they would take more than half of
the overall space.

As noted in the introduction, many scoring functions (number of clicks/impressions,
occurrence probability, . . . ) exhibit a power law distribution. Under this assumption,
encoding the scores with γ -codes [33] (or, more in general, ζ -codes [14]) would give
nearly optimal compression, but it would not be possible to support efficient random
access to the array.

We implemented instead two different data structures for storing the scores, with
different time/space trade-offs. In the first one, which we refer to as γ -array, we juxtapose
the binary representations α1,α2, . . . of the integers (without the leading 1s) in a bitvector
L= α1α2 . . . . In another bitvector H we store a run of 0s for each αi with the same length,
followed by a 1, and prepend a 1 to the sequence, i.e. H= 10|α1|10|α2|1 . . . . To retrieve
the i -th integer it is sufficient to note that its binary representation αi is located in L



5.5. EXPERIMENTAL ANALYSIS 61

between position SelectH(i)− i and position SelectH(i + 1)− i − 1. Note also that the
space occupancy is exactly the same as if the scores were compressed with γ -codes, plus
the redundancy needed to support efficiently SelectH. To this end, in our implementation
we use the darray64 described in Section 7.2.2;

The second data structure which we call packed-blocks array, is inspired by Frame of
Reference compression [52]. The scores array is divided into blocks of length l ; within
each block j the scores are encoded with b j bits each, where b j is the minimum number of
bits sufficient to encode each value in the block. The block encodings are then juxtaposed
in a bitvector B. To retrieve the endpoints of the blocks inside B we employ a two-level
directory structure: the blocks are grouped into super-blocks of size L, and the endpoints
of each block are stored relative to the beginning of the superblock in O(log(Lw)) bits
each, where w is the size in bits of the largest representable value. The endpoints of the
superblock are then stored in O(log(nw)) bits each. To retrieve a value, the endpoints of
its block are retrieved using the directory structure; then b j is found by dividing the size
of the block by l . The overall time complexity is constant. In our implementation, we
use l = 16, L= 512, 16-bit integers for the block endpoints, and 64-bit integers for the
super-block endpoints.

5.5 EXPERIMENTAL ANALYSIS

To evaluate the performance of the Score-Decomposed Trie (sdt), and of the baseline
RMQ Trie (rt), we performed an experimental analysis on three datasets coming from
different application scenarios.

DATASETS. The tests were run on the following datasets.

— AOL: The set of queries and their impression counts from the AOL query log [2].
It consists of 10M unfiltered queries.

— Wikipedia: The set of page titles requested to Wikipedia in October 2012, and
their request counts. The dataset was obtained from the daily request logs [116].
The titles were normalized (lowercasing, whitespace normalization, removal of
trailing slashes) and only the titles with at least 5 requests were kept. This resulted
in a dataset with 27M string-score pairs.

— Unigrams: All the unigrams from the Google English One Million n-grams dataset
[56], together with the all-time occurrence counts. The size of the dataset is 3M
string-score pairs.

In each dataset we subtracted from the scores their minimum, so that the smallest
score is 0. The minimum is then added back at query time.
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TESTING DETAILS. The data structures have been implemented in C++ and compiled
with g++ 4.7. The tests were run on a dual core Intel Core 2 Duo E8400 with 6MiB L2
cache and 4GiB RAM, running Linux 3.5.0 - 64-bit. Each test was run 10 times, and the
running times averaged.

We tested the rt and sdt data structures in the gamma and packed variants, where
gamma uses a γ -array to compress the scores vector R while packed uses a packed-blocks
array.

For each dataset we sampled 1M strings with replacement according to the score
distribution, and shuffled them randomly. On each data structure, we perform a top-10
query all the prefixes of length from 1 to 20 of each sampled string, and measure the
average time per completion returned, denoted with cmpl in Table 5.2, To compare this
number to the time to Access a random string-score pair, we also sampled 1M random
indexes and measured the average Access time, denoted with acs in Table 5.2.

Dataset raw gzip sdt_packed sdt_gamma rt_packed rt_gamma
Total S R Total S R Total S R Total S R

AOL 201.8 55.9 62.4 58.4 4.1 61.0 58.4 2.6 65.5 57.9 7.6 63.2 57.9 5.3
Wikipedia 224.1 64.1 68.8 59.8 9.0 67.7 59.8 8.0 72.0 59.3 12.7 69.9 59.3 10.7
Unigrams 100.1 38.3 35.6 22.3 13.3 37.4 22.3 15.1 39.4 21.7 17.7 39.5 21.7 17.8

TABLE 5.1: Space in bits per string-score pair.

RESULTS. Table 5.1 summarizes the average bits per score-string pair. raw is the space
used to store the pairs in TAB-separated format (with the scores expressed in decimal),
gzip the space for the raw file compressed with gzip. For {sdt, rt}_{packed, gamma},
Total represents the total bits per string-score pair, which can be broken down into the
space taken by the strings S and that taken by the scores R. Note that for rt R includes
the 2.7 bits per score needed by the RMQ data structure.

The sdt variants are the smallest across all datasets, attaining space close to gzip
on AOL and Wikipedia, and even smaller on Unigrams. The rt variants are slightly
larger, due to the additional space needed by the RMQ data structure. As predicted in
Section 5.4, the γ -array obtain very good compression on all the datasets, while the
packed-blocks array is slightly larger on AOL and Wikipedia, and slightly smaller on
Unigrams. We attribute the good performance of the packed-blocks array to the fact
that the scores are arranged in DFS order, which implies that the scores of strings which
share long common prefixes are clustered in the array R. Since the scores of such strings
are likely to be in the same order of magnitude, they require approximately the same
number of bits to be represented. Hence, the waste induced by using the same number
of bits for a block of adjacent values is relatively small.

Table 5.2 summarizes the average time for the queries. As expected, sdt is significantly
faster than rt, with sdt_packed being about 4 times faster than rt_packed on AOL and
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Wikipedia, and about 6 times faster on Unigrams. Note that the average time per
completion cmpl for rt is close to that of accessing a random index in the trie, denoted
as acs. On the other hand, with sdt the completion time is significantly smaller than the
access time. As noted in Section 5.3, this is due to the fact that, after finding the node
corresponding to the queried prefix, only one node per completion has to be accessed.

Dataset sdt_packed sdt_gamma rt_packed rt_gamma
cmpl acs cmpl acs cmpl acs cmpl acs

AOL 0.8 3.0 1.0 3.0 3.5 3.3 3.6 3.5
Wikipedia 0.9 3.7 1.3 3.9 3.8 4.3 4.0 4.6
Unigrams 0.4 1.7 0.7 1.8 2.3 1.7 2.4 1.9

TABLE 5.2: Average time per found completion in microseconds on a top-10 query (cmpl),
and average time to Access a random string-score pair (acs)
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FIGURE 5.4: Time in microseconds to perform a top-10 query for different prefix lengths.

Figure 5.4 shows the average time for a top-10 query for different prefix lengths. It is
immediate to see that for rt the time decreases as the prefix length increases, because the
number of matched completions decreases as well. On the other hand, the performance
of sdt is more consistent across prefix lengths, and faster than rt in all cases.

Regarding space compression, γ -array impose a severe slowdown on sdt when
compared to the packed-blocks array, since whenever a node is traversed, one score for
each branching point in the label must be retrieved. The slowdown is less pronounced
for rt, where only the scores associated with the top-k completions are retrieved. Since
the space overhead due to the packed-blocks array is negligible compared to γ -array (and
in the case of Unigrams the overall space is even smaller), the former should be preferred
in most cases.
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5.6 FURTHER CONSIDERATIONS

In practical scenarios, auto-completion needs to support not only exact prefix matches,
but also inexact matches due to differences in casing, accents, or spelling. One way to
support case and accent insensitive match is to normalize both the dataset strings and
the input prefix into lowercase unaccented characters before computing the completions.
However, this removes the original casing and accents from the completions, which may
be important for certain languages and scenarios.

An alternative technique is to use an approximate prefix matching algorithm on the
trie, resulting in one or more candidate locus nodes. The top-k results for each of these
nodes can be merged together to return the overall top-k approximate completions. For
example, the algorithm described by Duan and Hsu [31] uses an error model learned
from a database of user spelling mistakes to perform an approximate prefix search in a
trie. Since both the RMQ Trie and the Score-Decomposed Trie support all the standard
trie traversal operations, they support any algorithm that can be implemented on a trie.

In addition, some applications need to retrieve the top-k completions according to a
dynamic score that depends on the prefix and completion. However, as the static score is
usually a prominent component of the dynamic score, an approximate solution can be
obtained by taking the top-k ′ completions with k ′ > k according to the static score and
re-ranking the completion list.



6 INDEXED SEQUENCES OF STRINGS

Storage and indexing of sequences of strings lies at the core of many problems in databases
and information retrieval. Column-oriented databases represent relations by storing
individually each column as a sequence; if each column is indexed, efficient operations on
the relations are possible. XML databases, taxonomies, and word tries are represented as
labeled trees, that can be mapped to the sequence of its labels in a specific order; indexed
operations on the sequence enable fast tree navigation. In data analytics query logs and
access logs are simply sequences of strings; aggregate queries and counting queries can
be performed efficiently with specific indexes. Textual search engines essentially reduce
to representing a text as the sequence of its words, and queries locate the occurrences of
given words in the text. Knowledge graphs and social graphs can be represented as binary
relations on the set of their entities, which are identified by strings. Even the storage of
non-string (for example, numeric) data can be often reduced to the storage of strings, as
usually the values can be binarized in a natural way.

In addition to the standard exact search and count operations, in several applications
it is necessary to support prefix-based operations. For example, in data analytics of query
logs and access logs, the accessed URLs, paths (filesystem, network, . . . ), or any kind
of hierarchical references can be stored in time order as a sequence S= 〈S0, . . . , Sn−1〉 of
strings. Common prefixes denote common domains or a common parent directories, and
sequence ranges S[i ′, i) correspond to intervals of time. In this scenario, typical queries
involve access statistics and reporting, that is, prefix-based range searching and counting
(e.g. “what has been the most accessed domain during winter vacation?”).

Another common requirement in most applications is that the sequence can change
over time, either by updates at arbitrary positions (for example, in database applications),
or by appending new strings at the end of the sequence (as in logging applications).

In this chapter we introduce and study the problem of compressed indexed sequences of
strings, i.e. representing sequences of strings in nearly optimal compressed space, both in
the static and dynamic settings, while supporting provably efficient access, search, and
count (and update, in the dynamic setting) operations.

65
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PROBLEM DEFINITION. Let S be a sequence of strings, as defined in Section 2.2. The
set of distinct strings occurring in S is denoted as Sset.

An indexed sequence of strings is a data structure for storing S that supports random ac-
cess, searching, and range counting, both for exact matches and prefix search. Specifically,
we require that the data structure supports Access, Rank, and Select on S. By composing
these three primitives it is possible to implement other powerful index operations. For
example, functionality similar to inverted lists can be easily formulated in terms of Select.
In addition, we introduce the following prefix-based versions of Rank and Select.

— RankPrefixS(p, i): return the number of strings in S[0, i) that have prefix p.

— SelectPrefixS(p, i): find the position of the i -th string in S among those that have
prefix p.

As usual, we will drop the subscript S when there is no risk of ambiguity.
Many operations can be easily formulated in terms of RankPrefix and SelectPrefix.

Other useful operations, such as distinct values reporting, and majority element, are
described in Section 6.4.

We define a dynamic version of the data structure, where the sequence S is allowed to
change over time, by introducing the following operations, for any arbitrary string s .

— InsertS(s , i): update the sequence S as S′ = 〈S0, . . . , Si−1, s , Si , . . . , Sn−1〉 by inserting
s immediately before Si , or at the end if i = |S|.

— AppendS(s): update the sequence S as S′ = 〈S0, . . . , Sn−1, s〉 by appending s at the
end. This is equivalent to InsertS(s , |S|).

— DeleteS(i ): update the sequence S as S′ = 〈S0, . . . , Si−1, Si+1, . . . , Sn−1〉 by deleting Si .

Note that the above operations are can change Sset: if a previously unseen string is
inserted or appended, Sset grows by one element; if the last occurrence of a string is
deleted, Sset shrinks by one element.

WAVELET TRIE. To support the above defined operations, we introduce a new data
structure, the Wavelet Trie. The Wavelet Trie is a generalization for string sequences
of the wavelet tree, where the tree shape is given by the Patricia trie of the string set
Sset of the sequence S. This enables efficient prefix operations and the ability to grow
or shrink Sset as values are inserted or deleted. We first present a static version of the
Wavelet Trie in Section 6.2. We then give in Section 6.3 an append-only dynamic version
of the Wavelet Trie, meaning that elements can be appended only at the end, and a fully
dynamic version.

Our time bounds are reported in Table 6.1. For a string s , let hs denote the number of
nodes traversed when looking up s in the binary Patricia Tree of Sset ∪{s}. Observe that
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hs ≤ |s | log |Σ|, where Σ is the alphabet of symbols from which s is drawn, and |s | log |Σ|
is the length in bits of s (while |s | denotes its number of symbols as usual). The cost for
the queries on the static and append-only versions of the Wavelet Trie is O(|s |+ hs ) time,
which is the same cost as searching in the binary Patricia trie, and appending s to S takes
O(|s |+ hs ) time as well. The cost of the operations for the fully dynamic version incur
a O(log n) slowdown. In both the append-only and fully-dynamic versions, there is no
need to know Sset in advance.

Query Append Insert Delete Space (in bits)

Static O(|s |+ hs ) – – – LB+o(h̃n)
Append-only O(|s |+ hs ) O(|s |+ hs ) – – LB+PT+o(h̃n)
Fully-dynamic O(|s |+ hs log n) O(|s |+ hs log n) O(|s |+ hs log n) O(|s |+ hs log n)† LB+PT+O(nH0)

TABLE 6.1: Wavelet Trie bounds. Query is the cost of Access, Rank(Prefix), Select(Prefix),
LB is the information theoretic lower bound LT+nH0, and PT the space taken by the
dynamic Patricia trie. †Deletion may take O(ˆ̀ + hs log n) time when deleting the last
occurrence of a string, where ˆ̀ is the maximum string length in Sset.

All versions are nearly optimal in space as shown in Table 6.1. In particular, the lower
bound LB(S) for storing an indexed sequence of strings can be derived from the lower
bound LT(Sset) for storing Sset given in [39] plus the zero-order entropy bound nH0(S)
for storing S as a sequence of symbols. The static version uses an additional number of
bits that is just a lower order term o(h̃n), where h̃ is the average height of the wavelet
tree (Definition 6.2.4). The append-only version only adds PT(Sset) =O(|Sset|w) bits for
keeping O(|Sset|) pointers to the dynamically allocated memory (assuming that we do
not have control on the memory allocator on the machine). The fully dynamic version
has a redundancy of O(nH0(S)) bits.

6.1 RELATED WORK

Traditionally, indexed sequences of strings are stored by representing the sequence
explicitly and indexing it using auxiliary data structures, such as B-Trees, Hash Indexes,
Bitmap Indexes. These data structures have excellent performance and both external and
cache-oblivious variants are well studied [113]. Space efficiency is however sacrificed: the
total occupancy at least double the space of the sequence alone.

In the succinct data structures literature, instead, most compressed Rank/Select
data structures assume that the alphabet from which the sequences are drawn is integer
and contiguous, i.e the alphabet is {0, . . . ,σ − 1}. Non-integer alphabets (for sequences of
strings, Sset) need to be mapped first to an integer range, as implicitly done, for example, in
[20, 40]. However, in the mapping the string structure is lost, hence no prefix operations
can be supported. Even if the mapping is lexicographic, which would allow an efficient
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implementation of RankPrefix as a two-dimensional range query [84], it is not clear
whether SelectPrefix can be supported efficiently.

In case prefix operations are not needed, dynamic variants of wavelet trees have been
presented recently [79, 55, 85]. However, they all assume that the alphabet is known a
priori, as the tree structure is static. This constraint is unacceptable in many applications,
such as database storage, because the set of values of a column (or even its cardinality) is
rarely known in advance; similarly in text indexing a new document can contain unseen
words; in URL sequences, new URLs can be created at any moment. In fact, the existence
of wavelet trees with dynamic alphabet was left as an open question in [55] and [85].
The Wavelet Trie was the first such data structure, answering positively the question.

Very recently, Navarro and Nekrich [95] introduced a dynamic compressed wavelet
tree with optimal O(log n/log log n) time operations which supports unbounded al-
phabets. Using their data structure it is possible to maintain a sequence of strings by
using a dynamic string dictionary on Sset, with an additive slowdown depending on the
dictionary data structure. However, prefix operations are not supported, and the update
time bounds are amortized, while the Wavelet Trie time bounds are worst-case.

6.2 THE WAVELET TRIE

We informally define the Wavelet Trie of a sequence of binary strings S as a wavelet tree
on S (seen as a sequence on the alphabet Σ= Sset ⊂ {0,1}∗) whose tree structure is given
by the Patricia trie of the string set Sset.

We assume that the strings are binary without loss of generality, since strings from
larger alphabets can be binarized as described in Section 2.2. Likewise, we can assume
that Sset is prefix-free; as noted in Chapter 2, any set of strings can be made prefix-free by
appending a terminator symbol to each string.

α : 0
β : 0010101

α : ε
β : 0111

α : 1 α : ε
β : 100

α : 0 α : ε

α : 00

FIGURE 6.1: The Wavelet Trie of the sequence of strings 〈0001,0011,0100,00100,
0100,00100,0100〉.

A formal definition of the Wavelet Trie can be given along the lines of the compacted
trie definition of Section 2.7.
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DEFINITION 6.2.1 Let S be a non-empty sequence of binary strings, S= 〈S0, . . . , Sn−1〉,
Si ∈ {0,1}∗, whose underlying string set Sset is prefix-free. The Wavelet Trie of S, denoted
as WT(S), is built recursively as follows.

— If the sequence is constant, i.e. Si = α for all i , the Wavelet Trie is a node labeled
with α.

— Otherwise, let α be the longest common prefix of S. For any 0 ≤ i < |S| we
can write Si = αbiγi , where bi is a single bit. For b ∈ {0,1} we can then define
two sequences Sb = 〈γi |bi = b 〉, and the bitvector β = 〈bi〉; in other words, S
is partitioned in the two subsequences depending on whether the string begins
with α0 or α1, the remaining suffixes form the two sequences S0 and S1, and the
bitvectorβ discriminates whether the suffix γi is in S0 or S1. Then the Wavelet Trie
of S is the tree whose root is labeled with α andβ, and whose children (respectively
labeled with 0 and 1) are the Wavelet Tries of the sequences S0 and S1.

An example is shown in Fig. 6.1. Leaves are labeled only with the common prefix α
while internal nodes are labeled both with α and the bitvector β.

As it can be easily seen, the Wavelet Trie is a generalization of the wavelet tree on
S: each node splits the underlying string set Sset in two subsets and a bitvector is used
to tell which elements of the sequence belong to which subset. In fact, any wavelet
tree can be seen as a Wavelet Trie through a specific mapping of the alphabet to binary
strings. For example the original balanced wavelet tree can be obtained by mapping each
element of the alphabet to a distinct string of dlogσe bits; another popular variant is the
Huffman-tree shaped wavelet tree, which can be obtained as a Wavelet Trie by mapping
each symbol to its Huffman code.

The algorithms described in [59] can be applied to the Wavelet Trie without any
modification, so we immediately obtain the following.

LEMMA 6.2.2 The Wavelet Trie supports Access, Rank, and Select operations. In par-
ticular, if hs is the number of internal nodes in the root-to-node path representing s in
WT(S), the following holds.

— Access(i ) performs O(hs ) Rank operations on the bitvectors, where s is the result-
ing string.

— Rank(s , i) performs O(hs ) Rank operations on the bitvectors.

— Select(s , i) performs O(hs ) Select operations on the bitvectors.

Since hs ≤ |s |, the number of Rank/Select operations performed on the bitvectors is
bounded by the length of the string.
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PREFIX OPERATIONS. Definition 6.2.1 implies that for any prefix p occurring in at
least one element of the sequence, the subsequence of strings prefixed by p is represented
by a subtree of WT(S).

This simple property allows us to support two new operations, RankPrefix and
SelectPrefix, as defined in the introduction. The implementation is identical to Rank and
Select, with the following modifications: if np is the node obtained by prefix-searching
p in the trie, for RankPrefix the top-down traversal stops at np ; for SelectPrefix the
bottom-up traversal starts at np . This proves the following lemma.

LEMMA 6.2.3 Let p be a prefix occurring in the sequence S. Then RankPrefix(p, i)
performs O(hp) Rank operations on the bitvectors, and SelectPrefix(p, i) performs
O(hp) Select operations on the bitvectors.

Note that, since Sset is prefix-free, Rank and Select on any string in Sset are equivalent
to RankPrefix and SelectPrefix, hence it is sufficient to implement these two operations.

AVERAGE HEIGHT. To analyze the space occupied by the Wavelet Trie, we define the
average height.

DEFINITION 6.2.4 The average height h̃ of a WT(S) is defined as h̃ = 1
n

∑n−1
i=0 hSi

.

Note that the average is taken on the sequence, not on the set of distinct values. Hence
we have h̃n ≤

∑n−1
i=0 |Si | (i.e. the total input size), but we expect h̃n�

∑n−1
i=0 |Si | in real

situations, for example if short strings are more frequent than long strings, or they have
long prefixes in common (exploiting the path compression of the Patricia trie). The
quantity h̃n is equal to the sum of the lengths of all the bitvectors β, since each string
Si contributes exactly one bit to all the internal nodes in its root-to-leaf path. Also, the
root-to-leaf paths form a prefix-free encoding for Sset, and their concatenation for each
element of S is an order-zero encoding for S, thus it cannot be smaller than the zero-order
entropy of S, as summarized in the following lemma.

LEMMA 6.2.5 Let h̃ be the average height of WT(S). Then H0(S)≤ h̃ ≤ 1
n

∑n−1
i=0 |Si |.

STATIC SUCCINCT REPRESENTATION. Our first representation of the Wavelet Trie
is static. We show how by using suitable succinct data structures the space can be made
very close to the information theoretic lower bound.

To store the Wavelet Trie we need to store its two components: the underlying
Patricia trie and the bitvectors in the internal nodes.

Since the internal nodes in the tree underlying the Patricia trie have exactly two chil-
dren, we can represent the tree topology using the DFBS representation of Section 2.6.3,
which takes 2|Sset|+ o(|Sset|) bits, while supporting traversal operations in constant time.
If we denote the number of trie edges as e = 2(|Sset| − 1), the space can be written as
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e + o(|Sset|). The e labels α of the nodes are concatenated in depth-first order in a single
bitvector L. We use the partial sum data structure of [99] to delimit the labels in L. This
addsB(e , |L|+ e)+ o(|Sset|) bits. The total space (in bits) occupied by the trie structure
is hence |L|+ e +B(e , |L|+ e)+ o(|Sset|).

We now recast the lower bound in [39] using our notation, specializing it for the case
of binary strings.

THEOREM 6.2.6 ([39]) For a prefix-free string set Sset, the information-theoretic lower
bound LT(Sset) for encoding Sset is given by LT(Sset) = |L|+ e +B(e , |L|+ e), where L is
the bitvector containing the e labels α of the nodes concatenated in depth-first order.

It follows immediately that the trie space is just the lower bound LT plus a negligible
overhead.

It remains to encode the bitvectors β. We use the RRR encoding, which takes
|β|H0(β)+ o(|β|) to compress the bitvector β and supports constant-time Rank/Select
operations. In [59] it is shown that, regardless of the shape of the tree, the sum of the
entropies of the bitvectors β’s add up to the total entropy of the sequence, nH0(S), plus
negligible terms.

With respect to the redundancy beyond nH0(S), however, we cannot assume that
|Sset|= o(n) and that the tree is balanced, as in [59] and most wavelet tree literature; in
our applications, it is well possible that |Sset|=Θ(n), so a more careful analysis is needed.
For the sake of clarity, we defer the technical lemmas to Section 6.2.1; Lemma 6.2.11
shows that in the general case the redundancy add up to o(h̃n) bits.

We concatenate the RRR encodings of the bitvectors, and use again the partial
sum structure of [99] to delimit the encodings, with an additional space occupancy of
o(h̃n). The bound is proven in Lemma 6.2.12. Overall, the set of bitvectors occupies
nH0(S)+ o(h̃n) bits.

All the operations can be supported with a trie traversal, which takes O(|s |) time,
and O(hs ) Rank/Select operations on the bitvectors. Since the bitvector operations are
constant-time, all the operations take O(|s |+hs ) time. Putting together these observations,
we obtain the following theorem.

THEOREM 6.2.7 The Wavelet Trie WT(S) of a sequence of binary strings S can be
encoded in LT(Sset) + nH0(S) + o(h̃n) bits, while supporting the operations Access,
Rank, Select, RankPrefix, and SelectPrefix on a string s in O(|s |+ hs ) time.

Note that when the tree is balanced both time and space bounds are basically equiv-
alent to those of the standard wavelet tree. We remark that the space upper bound in
Theorem 6.2.7 is just the information theoretic lower bound LB(S) = LT(Sset)+ nH0(S)
plus an overhead negligible in the input size.
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6.2.1 Multiple static bitvectors

We prove here the lemmas required for the proof of Theorem 6.2.7.

LEMMA 6.2.8 Let S be a sequence of length n on an alphabet of cardinality σ , with each
symbol of the alphabet occurring at least once. Then the following holds:

nH0(S)≥ (σ − 1) log n.

Proof The inequality is trivial when σ = 1. When there are at least two symbols, the
minimum entropy is attained when σ−1 symbols occur once and one symbol occurs the
remaining n−σ + 1 times. To show this, suppose by contradiction that the minimum
entropy is attained by a string where two symbols occur more than once, occurring
respectively a and b times. Their contribution to the entropy term is a log n

a + b log n
b .

This contribution can be written as f (a) where

f (t ) = t log
n

t
+(b + a− t ) log

n

b + a− t
,

but f (t ) has two strict minima in 1 and b + a− 1 among the positive integers, so the
entropy term can be lowered by making one of the symbol absorb all but one the
occurrences of the other, yielding a contradiction.

To prove the lemma, it is sufficient to see that the contribution to the entropy term
of the σ − 1 singleton symbols is (σ − 1) log n.

LEMMA 6.2.9 O(|Sset|) is bounded by o(h̃n).

Proof It suffices to prove that
|Sset|

h̃n
is asymptotic to 0 as n grows. By Lemma 6.2.5 and Lemma 6.2.8, and assuming |Sset| ≥ 2,

|Sset|

h̃n
≤
|Sset|

nH0(S)
≤

|Sset|
(|Sset| − 1) log n

≤
2

log n
,

which completes the proof.

LEMMA 6.2.10 The sum of the redundancy of σ RRR bitvectors of m1, . . . , mσ bits
respectively, where

∑

i mi = m, can be bounded by

O






m

log log m
σ

log m
σ

+σ






.
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Proof The redundancy of a single bitvector can be bounded by c1
mi log log mi

log mi
+ c2. Since

f (x) = x log log x
log x is concave, we can apply Jensen’s inequality:

1

σ

∑

i

�

c1

mi log log mi

log mi

+ c2

�

≤ c1

m
σ

log log m
σ

log m
σ

+ c2.

The result follows by multiplying both sides by σ .

LEMMA 6.2.11 The redundancy of the RRR bitvectors in WT(S) can be bounded by
o(h̃n).

Proof Since the bitvector lengths add up to h̃n, we can apply Lemma 6.2.10 and obtain
that the redundancy are bounded by

O









h̃n
log log h̃n

|Sset|

log h̃n
|Sset|

+ |Sset|









.

The term in |Sset| is already taken care of by Lemma 6.2.9. It suffices then to prove that

log log h̃n
|Sset|

log h̃n
|Sset|

is negligible as n grows, and because f (x) = log log x
log x is asymptotic to 0, we just need to

prove that h̃n
|Sset|

grows to infinity as n does. Using again Lemma 6.2.5 and Lemma 6.2.8
we obtain that

h̃n

|Sset|
≥

nH0(S)

|Sset|
≥
(|Sset| − 1) log n

|Sset|
≥

log n

2

thus proving the lemma.

LEMMA 6.2.12 The partial sum data structure used to delimit the RRR bitvectors in
WT(S) occupies o(h̃n) bits.

Proof By Lemma 6.2.11 the sum of the RRR encodings is nH0(S)+ o(h̃n). To encode
the |Sset| delimiters, the partial sum structure of [99] takes

|Sset| log







nH0(S)+ o(h̃n)+ |Sset|
|Sset|






+O(|Sset|)

≤ |Sset| log

�

nH0(S)

|Sset|

�

+ |Sset| log







o(h̃n)

|Sset|






+O(|Sset|).
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The third term is negligible by Lemma 6.2.9. The second just by dividing by h̃n and
noting that f (x) = log x

x is asymptotic to 0. It remains to show that the first term is o(h̃n).
Dividing by h̃n and using again Lemma 6.2.5 we obtain

|Sset| log
�

nH0(S)
|Sset|

�

h̃n
≤
|Sset| log

�

nH0(S)
|Sset|

�

nH0(S)
=

log
�

nH0(S)
|Sset|

�

nH0(S)
|Sset|

By using again that f (x) = log x
x is asymptotic to 0 and proving as in Lemma 6.2.11 that

nH0(S)
|Sset|

grows to infinity as n does, the result follows.

6.3 DYNAMIC WAVELET TRIES

In this section we show how to implement dynamic updates to the Wavelet Trie.
Standard dynamic wavelet trees [79, 55, 85] replace the bitvectors in the nodes with

dynamic bitvectors with indels, that support the insertion of deletion of bits at arbitrary
positions. Insertion in the wavelet tree at position i can be performed by inserting 0 or 1
at position i of the root, whether the leaf corresponding to the value to be inserted is
on the left or right subtree. A Rank operation is used to find the new position i ′ in the
corresponding child. The algorithm proceeds recursively until a leaf is reached. Deletion
is symmetric.

The same operations can be implemented on a Wavelet Trie. In addition, the Wavelet
Trie supports insertion of strings that do not already occur in the sequence, and deletion
of the last occurrence of a string, in both cases changing the alphabet Sset and thus the
shape of the tree. To do so we represent the underlying tree structure of the Wavelet Trie
with a dynamic Patricia trie, as described in Section 2.7.2. We summarize the properties
of a dynamic Patricia trie in the following lemma.

LEMMA 6.3.1 A dynamic Patricia trie on k binary strings occupies O(kw) + |L| bits,
where L is defined as in Theorem 6.2.6. Besides the standard traversal operations, the
followint operations are supported.

— Insertion of a new string s in O(|s |) time.

— Deletion of a string s in O(ˆ̀) time, where ˆ̀ is the length of the longest string in
the trie (including s ).

UPDATING THE BITVECTORS. Each internal node of the trie is augmented with a
bitvector β, as in the static Wavelet Trie. Inserting and deleting a string induce the
following changes on the bitvectors βs.

— Insert(s , i): If the string is not present, we insert it into the Patricia trie, causing
the split of an existing node: a new internal node and a new leaf are added. We
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initialize the bitvector in the new internal node as a constant sequence of bits b if
the split node is a b -labeled child of the new node; the length of the new bitvector
is equal to the length of the sequence represented by the split node (i.e. the number
of b bits in the parent node if the split node is a b -labeled child). The algorithm
then follows as if the string was in the trie. This operation is shown in Figure 6.2.

Now we can assume the string is in the trie. Let prefix α and bitvector β be the
labels in the root. Since the string is in the trie, it must be in the form αbγ , where
b is a bit. We insert b at position i in β and compute i ′ = Rank(b , i) in β, and
insert recursively γ in the b -labeled subtree of the root at position i ′. We proceed
until we reach a leaf.

— Delete(i ): Let β be the bitvector in the root. We first find the bit corresponding to
position i in the bitvector, b =Access(i) in β. Then we compute i ′ =Rank(b , i)
in β, and delete recursively the string at position i ′ from the b -labeled subtree. We
then delete the bit at position i from β.

We then check if the parent of the leaf node representing the string has a constant
bitvector; in this case the string deleted was the last occurrence in the sequence.
We can then delete the string from the Patricia trie, thus deleting an internal node
(whose bitvector is now constant) and a leaf.

α : ...
β : 10110...

α : γ0δ
β : 0111...

α : ...
β : 10110...

α : γ
β : 0000...

α : δ
β : 0111...

α : λ

α : ...
β : 101010...

α : γ
β : 01000...

α : δ
β : 0111...

α : λ

FIGURE 6.2: Insertion of the new string s = . . .γ1λ at position 3. An existing node
is split by adding a new internal node with a constant bitvector and a new leaf. The
corresponding bits are then inserted in the root-to-leaf path nodes.

In both cases the number of operations (Rank, Insert, Delete) on the bitvectors is
bounded by O(hs ). The operations we need to perform on the bitvectors are the standard
insertion/deletion, with one important exception: when a node is split, we need to create
a new constant bitvector of arbitrary length. We call this operation Init(b , n), which fills
an empty bitvector with n copies of the bit b . The following observation rules out for
our purposes most existing dynamic bitvector constructions.

OBSERVATION 6.3.2 If the encoding of a constant (i.e. 0n or 1n) bitvector usesω( f (n))
memory words (of size w), Init(b , n) cannot be supported in O( f (n)) time.
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Uncompressed bitvectors use Ω(n/w) words; the compressed bitvectors of [85, 55],
although they have a desirable occupancy of |β|H0(β) + o(|β|), have Ω(n log log n/
(w log n))words of redundancy. Since we aim for polylog operations, these constructions
cannot be considered as is.

We first consider the case of append-only sequences. We remark that, in the Insert
operation described above, when appending a string at the end of the sequence the bits
inserted in the bitvectors are appended at the end, so it is sufficient that the bitvectors
support an Append operation in place of a general Insert. Furthermore, Init can be
implemented simply by adding a left offset in each bitvector, which increments each
bitvector space by O(log n), and queries can be offsetted back in constant time. Using
the append-only bitvectors described in Section 6.3.1, and observing that the redundancy
can be analyzed as in Section 6.2, we can state the following theorem.

THEOREM 6.3.3 The append-only Wavelet Trie on a dynamic sequence S supports the
operations Access, Rank, Select, RankPrefix, SelectPrefix, and Append in O(|s |+ hs )
time. The total space occupancy is O(|Sset|w) + |L|+ nH0(S) + o(h̃n) bits, where L is
defined as in Theorem 6.2.6.

Using instead the fully-dynamic bitvectors of Section 6.3.2, we can state the following
theorem.

THEOREM 6.3.4 The dynamic Wavelet Trie on a dynamic sequence S supports the
operations Access, Rank, Select, RankPrefix, SelectPrefix, and Insert in O(|s |+ hs log n)
time. Delete is supported in O(|s |+ hs log n) time if s occurs more than once, otherwise
time is O(ˆ̀ + hs log n), where ˆ̀ is the length of the longest string. The total space
occupancy is O(nH0(S)+ |Sset|w)+ L bits, where L is defined as in Theorem 6.2.6.

Note that, using the compact notation defined in the introduction, the space bound in
Theorem 6.3.3 can be written as LB(S)+PT(Sset)+o(h̃n), while the one in Theorem 6.3.4
can be written as LB(S)+PT(Sset)+O(nH0).

6.3.1 Append-only bitvectors

In this section we describe an append-only bitvector with constant-time Rank/Select/
Append operations and nearly optimal space occupancy. The data structure uses RRR
as a black-box data structure, assuming only its query time and space guarantees. We
require the following decomposable property on RRR: given an input bitvector of n bits
packed into O(n/w) words of size w ≥ log n, RRR can be built in O(n′/ log n) time
for any chunk of n′ ≥ log n consecutive bits of the input bitvector, using table lookups
and the Four-Russians trick; moreover, this O(n′/ log n)-time work can be spread over
O(n′/ log n) steps, each of O(1) time, that can be interleaved with other operations not
involving the chunk at hand. This a quite mild requirement and, for this reason, it is a
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general technique that can be applied to other static compressed bitvectors other than
RRR with the same guarantees. Hence we believe that the following approach is of
independent interest.

THEOREM 6.3.5 There exists an append-only bitvector that supports Access, Rank,
Select, and Append on a bitvector β in O(1) time. The total space is nH0(β)+ o(n) bits,
where n = |β|.

Before describing the data structure and proving Theorem 6.3.5 we need to introduce
some auxiliary lemmas.

LEMMA 6.3.6 (SMALL BITVECTORS) Let β′ be a bitvector of size n′ =O(polylog(n)).
Then there exists a data structure that supports Access, Rank, Select, and Append on β′

in O(1) time, while occupying O(polylog(n)) bits.

Proof It is sufficient to store explicitly all the answers to the queries Rank and Select
in arrays of n′ elements, thus taking O(n′ log n′) = O(polylog(n)). Append can be
supported in constant time by keeping a running count of the 1s in the bitvector and the
position of the last 0 and 1, which are sufficient to compute the answers to the Rank and
Select queries for the appended bit.

LEMMA 6.3.7 (AMORTIZED CONSTANT-TIME) There exists a data structure that sup-
ports Access, Rank, and Select in O(1) time and Append in amortized O(1) time on a
bitvector β of n bits. The total space occupancy is nH0(β)+ o(n) bits.

Proof We split the input bitvector β into t smaller bitvectors Vt ,Vt−1, . . . ,V1, such that
β is equal to the concatenation Vt ·Vt−1 · · ·V1 at any time. Let ni = |Vi | ≥ 0 be the
length of Vi , and mi be the number of 1s in it, so that

∑t
i=1 mi = m and

∑t
i=1 ni = n.

Following Overmars’s logarithmic method [98], we maintain a collection of static data
structures on Vt ,Vt−1, . . . ,V1 that are periodically rebuilt.

(a) A data structure F1 as described in Lemma 6.3.6 to store β′ = V1. Space is
O(polylog(n)) bits.

(b) A collection of static data structures Ft ,Ft−1, . . . ,F2, where each Fi stores Vi using
RRR. Space occupancy is nH0(β)+ o(n) bits.

(c) Fusion Trees [47] of constant height storing the partial sums on the number
of 1s, S1i =

∑i+1
j=t m j , where S1t = 0, and symmetrically the partial sums on the

number of 0s, S0i =
∑i+1

j=t (n j −m j ), setting S1t = 0. Predecessor takes O(1) time
and construction is O(t ) time. Space occupancy is O(t log n) = o(n) bits.
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We fix r = c log n0 for a suitable constant c > 1, where n0 is the length n > 2 of
the initial input bitvector β. We keep this choice of r until Ft is reconstructed: at that
point, we set n0 to the current length of β and we update r consistently. Based on this
choice of r , we guarantee that r = Θ(log n) at any time and introduce the following
constraints: n1 ≤ r and, for every i > 1, ni is either 0 or 2i−2 r . It follows immediately
that t = Θ(log n), and hence the Fusion Trees in (c) contain O(log n) entries, thus
guaranteeing constant height.

We now discuss the query operations. Rank(b , i) and Select(b , i) are performed as
follows for a bit b ∈ {0,1}. Using the data structure in (c), we identify the corresponding
bitvector Vi along with the number Sb

i of occurrences of bit b in the preceding ones,
Vt , . . . ,Vi+1. The returned value corresponds to the index i of Fi , which we query and
combine the result with Sb

i : we output the sum of Sb
i with the result of Rank(b , i −

∑i+1
j=t ni ) query on Fi in the former case; we output Select(b , i − Sb

i ) query on Fi in the
latter. Hence, the cost is O(1) time.

It remains to show how to perform Append(b ) operation. While n1 < r we just
append the bit b to F1, which takes constant time by Lemma 6.3.6. When n1 reaches r ,
let j be the smallest index such that n j = 0. Then

∑ j−1
i=1 ni = 2 j−2 r , so we concatenate

V j−1 · · ·V1 and rename this concatenation V j (no collision since it was n j = 0). We
then rebuild F j on V j and set Fi for i < j to empty (updating n j , . . . , n1). We also
rebuild the Fusion Trees of (c), which takes an additional O(log n) time. When Ft is
rebuilt, we have that the new Vt corresponds to the whole current bitvector β, since
Vt−1, . . . ,V1 are empty. We thus set n0 := |β| and update r consequently. By observing
that each F j is rebuilt every O(n j ) Append operations and that RRR construction time
is O(n j/ log n), it follows that each Append is charged O(1/ log n) time on each F j , thus
totaling O(t/ log n) =O(1) time.

We now show how to de-amortize the bitvector of Lemma 6.3.7. In the de-amortization
we have to keep copies of some bitvectors, so the nH0 term becomes O(nH0).

LEMMA 6.3.8 There exists a data structure that supports Access, Rank, Select, and
Append in O(1) time on a bitvectorβ of n bits. The total space occupancy is O(nH0(β))+
o(n).

Proof To de-amortize the structure we follow Overmars’s classical method of partial
rebuilding [98]. The idea is to spread the construction of the RRR’s F j over the next
O(n j )Append operations, charging extra O(1) time each. We already saw in Lemma 6.3.7
that this suffices to cover all the costs. Moreover, we need to increase the speed of
construction of F j by a suitable constant factor with respect to the speed of arrival of
the Append operations, so we are guaranteed that the construction of F j is completed
before the next construction of F j is required by the argument shown in the proof of
Lemma 6.3.7. We refer the reader to [98] for a thorough discussion of the technical
details of this general technique.
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While V1 reaches its bound of r bits, we have a budget of Θ(r ) = Θ(log n) operations
that we can use to prepare the next version of the data structure. We use this budget to
perform the following operations.

(i) Identify the smallest j such that n j = 0 and start the construction of F j by creating
a proxy bitvector F̃ j which references the existing F j−1, . . . ,F1 and Fusion Trees
in (c), so that it can answer queries in O(1) time as if it was the fully built F j . When
we switch to this version of the data structure, these F j−1, . . . ,F1 become accessible
only inside F̃ j .

(ii) Build the Fusion Trees in (c) for the next reconstruction of the data structure.
Note that this would require to know the final values of the ni s and mi s when V1
is full and the reconstruction starts. Instead, we use the current values of ni and
mi : only the values for the last non-empty segment will be wrong. We can correct
the Fusion Trees by adding an additional correction value to the last non-empty
segment; applying the correction at query time has constant-time overhead.

(iii) Build a new version of the data structure which references the new Fusion Trees, the
existing bitvectors Ft , . . . ,F j+1, the proxy bitvector F̃ j and new empty bitvectors
F j−1, . . . ,F1 (hence, n j = 2 j−2 r and n j−1 = · · ·= n1 = 0).

When n1 reaches r , we can replace in constant time the data structure with the one
that we just finished rebuilding.

At each Append operation, we use an additional O(1) budget to advance the construc-
tion of the F j s from the proxies F̃ j s in a round-robin fashion. When the construction of
one F j is done, the proxy F̃ j is discarded and replaced by F j . Since, by the amortization
argument in the proof of Lemma 6.3.7, each F j is completely rebuilt by the time it has
to be set to empty (and thus used for the next reconstruction), at most one copy of
each bitvector has to be kept, thus the total space occupancy grows from nH0(β)+ o(n)
to O(nH0(β)) + o(n). Moreover, when r has to increase (and thus the ni ’s should be
updated), we proceed as in [98].

We can now use the de-amortized data structure to bootstrap a constant-time append-
only bitvector with space occupancy nH0(β)+ o(n), thus proving Theorem 6.3.5. The
idea is to split the bitvector β into uniform blocks which are independently encoded
with RRR, while the bitvector of Lemma 6.3.8 is used as a searchable partial sums data
structure1 to store the number of 0s and 1s in each block.

Proof (of Theorem 6.3.5) Let β be the input bitvector, and L=Θ(log1+ε n) be a power of
two, for any given positive constant ε > 0.

1Other dynamic data structures for searchable partial sums exist in the literature, but to the best of our
knowledge none of them is suitable for our purposes. For example, the data structure in [36] relies on the
assumptions that all the values are positive, while in our case there can be blocks with no 0s or no 1s.
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We split β into nL = bn/Lc smaller bitvectors Bi ’s, each of length L and with
m̂i 1s (0 ≤ m̂i ≤ L), plus a residual bitvector B′ of length 0 ≤ |B′| < L: at any time
β= B1 ·B2 · · ·BnL

·B′. Using this partition, we maintain the following data structures:

(i) A collection F̂1, F̂2, . . . , F̂nL
of static data structures, where each F̂i stores Bi using

RRR.

(ii) The data structure in Lemma 6.3.6 to store B′.

(iii) The data structure in Lemma 6.3.8 to store the partial sums Ŝ1i =
∑i−1

j=1 m̂ j , setting

Ŝ11 = 0. This is implemented by maintaining a bitvector that has a 1 for each position
Ŝ1i , and 0 elsewhere. Predecessor queries can be implemented by composing Rank
and Select. The bitvector has length nL+m and contains nL 1s. The partial sums
Ŝ0i =

∑i−1
j=1(L− m̂ j ) are kept symmetrically in another bitvector.

Rank(b , i ) and Select(b , i ) are implemented as follows for a bit b ∈ {0,1}. Using the
data structure in (iii), we identify the corresponding bitvector Bi in (i) or B′ in (ii) along
with the number Ŝb

i of occurrences of bit b in the preceding segments. In both cases, we
query the corresponding dictionary and combine the result with Ŝb

i . These operations
take O(1) time.

Now we focus on Append(b ). At every Append operation, we append a 0 to the one
of the bitvectors in (iii) depending on whether b is 0 or 1, thus maintaining the partial
sums invariant. This takes constant time. We guarantee that |B′| ≤ L bits: whenever
|B′|= L, we conceptually create BnL+1 := B′, still keeping its data structure in (ii); reset B′

to be empty, creating the corresponding data structure in (ii); append a 1 to the bitvectors
in (iii). We start building a new static compressed data structure F̂nL+1 for BnL+1 using
RRR in O(L/ log n) steps of O(1) time each. During the construction of F̂nL+1 the old
B′ is still valid, so it can be used to answer the queries. As soon as the construction
is completed, in O(L/ log n) time, the old B′ can be discarded and queries can be now
handled by F̂nL+1. Meanwhile the new appended bits are handled in the new B′, in O(1)
time each, using its new instance of (ii). By suitably tuning the speed of the operations,
we can guarantee that by the time the new reset B′ has reached L/2 (appended) bits, the
above O(L) steps have been completed for F̂nL+1. Hence, the total cost of Append is just
O(1) time in the worst case.

To complete our proof, we have to discuss what happens when we have to double
L := 2× L. This is a standard task known as global rebuilding [98]. We rebuild RRR
for the concatenation of B1 and B2, and deallocate the latter two after the construction;
we then continue with RRR on the concatenation of B3 and B4, and deallocate them
after the construction, and so on. Meanwhile, we build a copy (iii)’ of the data structure
in (iii) for the new parameter 2× L, following an incremental approach. At any time, we
only have (iii)’ and F̂2i−1, F̂2i duplicated. The implementation of Rank and Select needs a
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minor modification to deal with the already rebuilt segments. The global rebuilding is
completed before we need again to double the value of L.

We now perform the space analysis. As for (i), we have to add up the space taken
by F̂1, . . . , F̂nL

plus that taken by the one being rebuilt using F̂2i−1, F̂2i . This sum can be
upper bounded by

∑nL
i=1(B(mi , L)+ o(L))+O(L) =H0(β)+ o(n). The space for (ii) is

O(polylog(n)) = o(n). Finally, the occupancy of the S1i partial sums in (iii) isB(nL, nL+
m)+ o(nL+m) =O(nL log(1+m/nL)) =O(n log n/L) = o(n) bits, since the bitvector
has length nL+m and contains nL 1s. The analysis is symmetric for the S0i partial sums,
and for the copies in (iii)’.

6.3.2 Fully dynamic bitvectors

We introduce a new dynamic bitvector construction which, although the entropy term
has a constant greater than 1, supports logarithmic-time Init and Insert/Delete, thus it is
suitable for the dynamic Wavelet Trie.

DEFINITION 6.3.9 A Dynamic Bitvector with Indels and Initialization is a data struc-
ture that maintains a sequence of bits (b1, . . . , bn) ∈ {0,1}∗ and supports the standard
Access/Rank/Select operations plus the following.

— Init(b , n) initializes the sequence to a run of n copies of the bit b .

— Insert(b , i) inserts the bit b immediately before bi .

— Delete(i) deletes bi from the sequence.

To support both insertion/deletion and initialization in logarithmic time we adapt
the dynamic bitvector presented in Section 3.4 of [85]; in the paper, the bitvector is
compressed using Gap Encoding, i.e. the bitvector 0g010g11 . . . is encoded as the sequence
of gaps g0, g1, . . . , and the gaps are encoded using Elias delta code [33]. The resulting bit
stream is split in chunks of Θ(log n) (without breaking the codes) and a self-balancing
binary search tree is built on the chunks, with partial counts in all the nodes. Chunks
are split and merged upon insertions and deletions to maintain the chunk size invariant,
and the tree rebalanced.

Because of gap encoding, the space has a linear dependence on the number of 1s, hence
by Observation 6.3.2 it is not suitable for our purposes. We make a simple modification
that enables an efficient Init: in place of gap encoding and delta codes we use RLE and
Elias gamma codes [33], as the authors of [45] do in their practical dictionaries. RLE
encodes the bitvector 0r01r10r21r3 . . . with the sequence of runs r0, r1, r2, r3, . . . . The runs
are encoded with Elias gamma codes. Init(b , n) can be trivially supported by creating
a tree with a single leaf node, and encoding a run of n bits b in the node, which can
be done in time O(log n). In [37] it is proven the space of this encoding is bounded by
O(nH0), but even if the coefficient of the entropy term is not 1 as in RRR bitvectors, the



82 CHAPTER 6. INDEXED SEQUENCES OF STRINGS

experimental analysis performed in [45] shows that RLE bitvectors perform extremely
well in practice. The rest of the data structure is left unchanged; we refer to [85] for the
details.

THEOREM 6.3.10 The dynamic RLE+γ bitvector supports the operations Access, Rank,
Select, Insert, Delete, and Init on a bitvector β in O(log n) time. The total space occu-
pancy is O(nH0(β)+ log n) bits.

6.4 OTHER QUERY ALGORITHMS

In this section we describe range query algorithms on the Wavelet Trie that can be
useful in particular in database applications and analytics. We note that the algorithms
for distinct values in range and range majority element are similar to the report and
range quantile algorithms presented in [50]; we restate them here for completeness,
extending them to prefix operations. In the following we denote with Cop the cost of
Access/Rank/Select on the bitvectors; Cop is O(1) for static and append-only bitvectors,
and O(log n) for fully dynamic bitvectors.

SEQUENTIAL ACCESS. Suppose we want to enumerate all the strings in the range
[l , r ), i.e. S[l , r ). We could do it with r − l calls to Access, but accessing each string Si
would cost O(|Si |+ hSi

Cop). We show instead how to enumerate the values of a range
by enumerating the bits of each bitvector: suppose we have an iterator on root bitvector
for the range [l , r ). Then if the current bit is 0, the next value is the next value given by
the left subtree, while if it is 1 the next value is the next value of the right subtree. We
proceed recursively by keeping an iterator on all the bitvectors of the internal nodes we
traverse during the enumeration.

When we traverse an internal node for the first time, we perform a Rank to find
the initial point, and create an iterator. Next time we traverse it, we just advance the
iterator. Note that both RRR bitvectors and RLE bitvectors can support iterators with
O(1) advance to the next bit.

By using iterators instead of performing a Rank each time we traverse a node, a
single Rank is needed for each traversed node, hence to extract the i -th string it takes
O(|Si |+

1
r−l

∑

s∈S[l ,r )set
hsCop) amortized time.

If S[l , r )set, that is the set of distinct strings occurring in S[l , r ), is large, then the
actual time is smaller due to shared nodes in the paths. In fact, in the extreme case
when the whole string set occurs in the range, the bound becomes O(|Si |+

1
r−l |Sset|Cop)

amortized time.

DISTINCT VALUES IN RANGE. Another useful query is the enumeration of the distinct
values in the range [l , r ), which we called S[l , r )set. Note that for each node the distinct
values of the subsequence represented by the node are just the distinct values of the left
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subtree plus the distinct values of the right subtree in the corresponding ranges. Hence,
starting at the root, we compute the number of 0s in the range [l , r ) with two calls
to Rank. If there are no 0s we just enumerate the distinct elements of the right child
in the range [Rank(1, l ),Rank(1, r )). If there are no 1s, we proceed symmetrically. If
there are both 0s and 1s, the distinct values are the union of the distinct values of the
left child in the range [Rank(0, l ),Rank(0, r )) and those of the right child in the range
[Rank(1, l ),Rank(1, r )). Since we only traverse nodes that lead to values that are in the
range, the total running time is O(

∑

s∈S[l ,r )set
(|s |+ hsCop)), which is the same time as

accessing the values, if we knew their positions. As a byproduct, we also get the number
of occurrences of each value in the range.

We can stop early in the traversal, hence enumerating the distinct prefixes that satisfy
some property. For example in an URL access log we can find efficiently the distinct
hostnames in a given time range.

RANGE MAJORITY ELEMENT. The previous algorithm can be modified to check if
there is a majority element in the range (i.e. one element that occurs more than r−l

2 times
in [l , r )), and, if there is such an element, find it. Start at the root, and count the number
of 0s and 1s in the range. If a bit b occurs more than r−l

2 times (note that there can be at
most one) proceed recursively on the b -labeled subtree, otherwise there is no majority
element in the range.

The total running time is O(hCop), where h is the height of the Wavelet Trie. In case
of success, if the string found is s , the running time is just O(hsCop). As for the distinct
values, this can be applied to prefixes as well by stopping the traversal when the prefix
we found until that point satisfies some property.

A similar algorithm can be used as an heuristic to find all the values that occur in
the range at least t times, by proceeding as in the enumeration of distinct elements
but discarding the branches whose bit has less than t occurrences in the parent. While
no theoretical guarantees can be given, this heuristic should perform very well with
power-law distributions and high values of t , which are the cases of interest in most data
analytics applications.

6.5 PROBABILISTICALLY BALANCED DYNAMIC WAVELET TREES

In this section we show how to use the Wavelet Trie to maintain a dynamic wavelet tree
on a sequence from a bounded alphabet with operations that with high probability do
not depend on the universe size.

A compelling example is given by numeric data: to represent with a wavelet tree a
sequence of integers, say in {0, . . . , 264− 1}, if the tree structure is static it must cover
the whole universe, even if the sequence only contains integers from a much smaller
subset. Similarly, a text sequence in Unicode typically contains few hundreds of distinct
characters, far fewer than the ≈ 217 (and growing) defined in the standard.
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Formally, we wish to maintain a sequence of symbols S= 〈S0, . . . , Sn−1〉 drawn from
an alphabet Σ ⊆ U = {0, . . . , u − 1}, where we call U the universe and Σ the working
alphabet, with Σ typically much smaller than U and not known a priori. We want to
support the standard Access, Rank, Select, Insert, and Delete but we are willing to give
up RankPrefix and SelectPrefix, which would not be useful anyway for non-string data.

We can immediately use the Wavelet Trie on S, by mapping injectively the values
of U to strings of length dlog ue. This supports all the required operations with a space
bound that depends only logarithmically in u, but the height of the resulting trie could
be as much as log u, while a balanced tree would require only log |Σ|.

To maintain a balanced tree without having to deal with complex rotations we employ
a simple randomized technique that will yield a balanced tree with high probability. The
main idea is to randomly permute the universe U with an easily computable permutation,
such that the probability that the alphabet Σwill produce an unbalanced trie is negligible.

To this end we use the hashing technique described in [29]. We map the universe U
onto itself by the function ha(x) = ax (mod 2dlog ue) where a is chosen at random among
the odd integers in [1,2dlog ue − 1] when the data structure is initialized. Note that ha
is a bijection, with the inverse given by h−1(x) = a−1x (mod 2dlog ue). The result of the
hash function is considered as a binary string of dlog ue bits written LSB-to-MSB, and
operations on the wavelet tree are defined by composition of the hash function with
operations on the Wavelet Trie; in other words, the values are hashed and inserted in a
Wavelet Trie, and when retrieved the hash inverse is applied.

To prove that the resulting trie is balanced we use the following lemma from [29].

LEMMA 6.5.1 ([29]) Let Σ⊆U be any subset of the universe, and `= d(α+ 2) log |Σ|e
so that `≤ dlog ue. Then the following holds

Prob
�

∀x, y ∈Σ ha(x) 6≡ ha(y) (mod 2`)
�

≥ 1− |Σ|−α

where the probability is on the choice of a.

In our case, the lemma implies that with very high probability the hashes of the
values in Σ are distinguished by the first ` bits, where ` is logarithmic in |Σ|. The trie on
the hashes cannot be taller than `, hence it is balanced. The space occupancy is that of the
Wavelet Trie built on the hashes. We can bound |L|, the length of the concatenation of
trie labels in Theorem 6.2.6, by the total sum of the lengths of the hashes, hence proving
the following theorem.

THEOREM 6.5.2 The randomized wavelet tree on a dynamic sequence S= 〈S0, . . . , Sn−1〉
where Si ∈Σ⊆U= {0, . . . , u − 1} supports the operations Access, Rank, Select, Insert,
and Delete in time O(log u+h log n), where h ≤ (α+2) log |Σ|with probability 1−|Σ|−α
(and h ≤ dlog ue in the worst case).

The total space occupancy is O(nH0(S)+ |Σ|w)+ |Σ| log u bits.



7 PRACTICAL IMPLEMENTATION OF

SUCCINCT DATA STRUCTURES

In this chapter we describe the implementation details of the succinct primitives used in
the experiments of the previous chapters. As noted in Chapter 1, a thorough engineering
of is essential to obtain good performance for succinct data structures. We keep two main
goals in mind: (i) reduce as much as possible the actual space requirements on realistic
data sizes, and (ii) guarantee fast query times.

With respect to point (i), the o(n) redundancy typical of most succinct data structures
actually dominates the space occupancy in practical implementations. For example, as
shown by Vigna [112], because of the large constants hidden in the asymptotic nota-
tion, the classical Jacobson-Clark constant-time Rank/Select o(n)-space data structure
becomes competitive in space with O(n)-space solutions only when n is larger than 2100,
a data size that is completely unrealistic even in the foreseeable future.

Regarding point (ii), because of the complex memory management of modern CPUs
and operating systems, as the data sizes grow large the actual behaviour of the machine
diverges significantly from the model of computation. We demonstrate this with the
following toy problem. We fill an array A with n random 32-bit integers, fix a constant
K, and define the following algorithm.

1 function TOY(i)
2 j ← i
3 for k in [0,K) do
4 j ← A[hash( j )mod n]
5 return j

The algorithm is clearly constant-time in most computational models, as the loop
only performs K iterations. Since each iteration depends on the hashed value of the result
of the previous one, the CPU cannot predict the access pattern to A. This toy problem
mimicks the memory access patterns of many algorithms on succinct data structures,
which use several look-up tables and directories with unpredictable access patterns.

We implemented it in C++ using a fast hash function [114] which does not use
multiplication, division, or lookup tables, so that it affects the running time as little as

85



86 CHAPTER 7. PRACTICAL IMPLEMENTATION OF SUCCINCT DATA STRUCTURES

possible, and measured the average time of invoking TOY(i) for i running from 0 to 20
millions, for several values of K and n. The tests were run on an Intel i7-2600 3.4Ghz
CPU with 8MiB of last-level cache and 16GiB of RAM, running Linux 3.2.0 – 64bit.
Results are shown in Figure 7.1.
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FIGURE 7.1: Average TOY time in nanoseconds for increasing values of K and n.

It is possible to see a small increase in running time as the array A does not fit anymore
into L1/L2 cache, that is for log n > 16, and a large slowdown when the array does stops
fitting into L3 (last-level) cache, that is for log n > 21. After that, the behavior turns
into noticeably super-constant, and actually closer to logarithmic. The effect is more
visible as K grows. As explained by González et al. [53], this can be mainly attributed
to the translation of virtual memory addresses to physical addresses, performed by the
operating system kernel. Even if this translation layer can be skipped, the memory access
times in modern CPUs are still highly non-uniform [30].

In light of these considerations, an O(1)-time algorithm may not necessarily be faster
than, say, an O(log n)-time one, when n is limited by the memory available on an actual
machine. Likewise, an o(n)-space data structure be not be more space-efficient than
an O(n)-space one. Hence, in our implementations we adopted an empirical approach,
building and improving on the state of the art of engineered succinct data structures.

7.1 THE Succinct LIBRARY

We implemented the data structures described in this chapter as part of the Succinct C++
library [107]. The library is available with a permissive license, in the hope that it will be
useful both in research and applications. While similar in functionality to other existing
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C++ libraries such as libcds [83], SDSL [104], and Sux[108], we made some radically
different architectural choices, which we describe below.

MULTI-PLATFORM SUPPORT. The library is tested under Linux, Mac OS X, and
Microsoft Windows, compiled with gcc, clang and MSVC.

MEMORY MAPPING. As in most static data structures libraries, all the data structures
in Succinct can be serialized to disk. However, as opposed to libcds, SDSL, and Sux,
deserialization is performed by memory mapping the data structure, rather than loading
it into memory.

While being slightly less flexible, memory mapping has several advantages over
loading. For example, for short-running processes it is often not necessary to load the
full data structure in memory; instead the kernel will load only the relevant pages. If
such pages were accessed recently, they are likely to be still in the kernel’s page cache,
thus making the startup even faster. If several processes access the same structure, the
memory pages that hold it are shared among all the processes; with loading, instead, each
process keeps its own private copy of the data. Lastly, if the system runs out of memory,
it can just un-map unused pages; with loading, it has to swap them to disk, thus increasing
the I/O pressure.

For convenience we implemented a mini-framework for serialization/memory map-
ping which uses template metaprogramming to describe recursively a data structure by
implementing a single function that lists the members of a class. The mini-framework
then automatically implements serialization and mapping functions, together with profil-
ing functions to print out a breakdown of the space occupied by the various components
of an instance of a class, which is extremely useful when optimizing the data structures.

TEMPLATES OVER POLYMORPHISM. We chose to avoid dynamic polymorphism and
make extensive use of C++ templates instead. This allowed us to write idiomatic and
modular C++ code without the overhead of virtual functions. Manual inspection of the
generated code confirmed that, thanks to the ability to inline functions, there is virtually
no abstraction penalty on all the compilers we tested the code on.

64-BIT SUPPORT. Like Sux and parts of SDSL, Succinct is designed to take advantage
of 64-bit architectures, which allow us to use efficient broadword algorithms [76] to
speed up several operations on memory words. Another advantage is that the data
structures are not limited to 232 elements or less like 32-bit based implementations, a
crucial requirement for large datasets, which are the ones that benefit the most from
succinct data structures. We also make use of CPU instructions that are not exposed to
C++ but are widely available, such as those to retrieve the MSB and LSB of a word, or
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to reverse its bytes. While all these operations can all be implemented with broadword
algorithms, the specialized instructions are faster.

7.2 BITVECTORS

Succinct implements uncompressed bitvectors as packed arrays of 64-bit words in the class
bit_vector. The operations supported are the basic ones, such as Access and iteration.
Additional classes build on bit_vector to support more powerful operations.

7.2.1 Supporting Rank and Select

To support Rank we implemented the rank9 data structure [112] in the rs_bit_vector
class. rank9 divides the bitvector into blocks of 64 bits, and into super-blocks of 512 bits.
The block ranks relative to the super-blocks then fit into 9 bits, thus all the block ranks
for a super-block can be fitted in a 64-bit integers. The in-block rank can be computer by
population count of a word, which is implemented using a broadword algorithm [76].
The absolute super-block ranks are stored as plain 64-bit words, and are interleaved with
the words representing the block ranks, so that a Rank operation incurs only 2 cache
misses, one to retrieve the super-block and the block rank, and one to retrieve the block
in the bitvector.

To support Select1 we use a single-level variation of hinted binary search [112]. We
store the position of every 1024th 1 in the bitvector; every other 1 will be between two
sampled 1s, so we can perform a binary search on the super-block ranks that span the
range of the two sampled 1s. Once the super-block is found, the block can be found using
a broadword search in the word of the block ranks, and then a select-in-word broadword
algorithm is used. While the binary search can require O(log n) operations, for non-
pathological bitvectors the range of superblocks that spans two consecutive sampled 1s is
very small. Even for pathological bitvectors, in our experiments the slowdown is almost
negligible. An array of sampled 0 positions can be used similarly to support Select0.

The space overhead for rank9 is given by the two 64-bit words for the block and
super-block ranks per 512-bit super-block, thus it is 25%. The hints for Select add an
overhead that depends on the density, and can be as high as 6.25% for a bitvector that
contains only 1s, but it is generally much lower.

7.2.2 Supporting Select only

When there is no need to support Rank, Select can be supported with a simpler data
structure described in [96], where it is called darray. We implement the same data
structure but with larger block sizes, as we can take advantage of 64-bit operations. A
similar data structure is called simple in [112]. The classes in Succinct are called darray1
for Select1 and darray0 for Select0.
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As in the previous section, we only describe the data structure to support Select1.
Support for Select0 is symmetric. For clarity, our notation slightly deviates from [96].

The bitvector B is first divided into super-blocks of variable length, whose endpoints
are located at every L1-th occurrence of a 1 (so that each super-block, possibly except the
last, contains exactly L1 ones). For each super-block we distinguish two cases, depending
on whether the super-block length is smaller or larger than a fixed number T. In the
first case (dense super-block), the positions of the 1s relative to the super-block can be
expressed in dlogTe bits, so we further divide the super-block into blocks with L2 1s each,
and store the position of the first 1 of each block in dlogTe bits into a block inventory
array. In the second case (sparse super-block), we write explicitly all the positions of
the 1s into an overflow array. For each super-block, we also write a pointer to either its
starting position in B if it is dense, or to its overflow array into a super-block inventory if
it is sparse.

To perform a Select1(i) we first look up the bi/L1c-th pointer in the super-block
inventory, and check whether the super-block is dense or sparse. In the first case we look
up in the block inventory the position of the first one if i ’s block, and scan the block
using broadword operations to find the i -th 1. If the block is sparse, we just look up its
position in the overflow array.

In our implementation we use L1 = 1024, L2 = 32, and T= 216, so that we can use
16-bit integers for the block inventory. For the super-block inventory and the overflow
array we use 64-bit integers. The space overhead is dominated by the block inventory, as
both the overflow array and the super-block inventory occupy negligible space. With
the constants above, each 1 has a 0.5 bit overhead, so the total overhead is slightly above
d · 50%, where d is the density of the bitvector.

A slight variation is implemented in the class darray64. This data structure assumes
that the maximum distance between two consecutive 1s is 64. In this case we can tune
the constants so that 64L1 ≤T; in this case the overflow array is not needed. Specifically,
we use the same L1 = 1024 as in the darray, but since the bitvector is expected to be
dense we use a value of L2 = 64. The space overhead is thus roughly half of darray.

The darray64 is used in Chapter 4 to store the bitvector H in the hollow tries, and
in Chapter 5 to implement the γ -array. In both cases it is guaranteed that the 1s are at
most 64 bits apart.

7.2.3 Elias-Fano encoding

We use the Elias-Fano encoding to represent sparse bitvectors in the class elias_fano.
The scheme is very simple to implement, and efficient practical implementations are
described in [62, 96, 112]. In [96] the data structure is called sarray.

The class is a straigtforward implementation of the data structure as described in
Section 2.5.2, where we use darray1 for H to support SelectH.
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7.3 BALANCED PARENTHESES

To support FindClose, FindOpen, Enclose, and ±1RMQ on a balanced parentheses
sequence we use a variation of the Range Min-Max tree [101, 4] in the class bp_vector.
This data structure has O(n) redundancy and O(log n) time operations, but as shown
in [4] it is very space-efficient in practice and competitive in time with constant-time
implementations.

The Range Min-Max tree is a data structure on {−1,0,+1} sequences that supports
a forward search operation FwdSearch(i , x): given a position i and a value x, return the
leftmost position j > i such that the sum of the values in the sequence in the interval
[i , j ] is equal to x.

The application to balanced parentheses is straightforward: if the sequence takes
value +1 on open parentheses on −1 on close parentheses, the cumulative sum of the
sequence at position i is the excess. Then, FindClose(i) = FwdSearch(i , 0)− 1. In other
words, it is the leftmost position j following i such that between i and j there is the
same number of open and close parentheses.

Backward search is defined symmetrically, returning the rightmost position j pre-
ceding i such that the sum of the values in the interval [ j , i] is equal to x; it can
be used likewise to implement FindOpen(i) as BwdSearch(i + 1,0) and Enclose(i) as
BwdSearch(i ,−1).

The data structure is defined as follows: the sequence is divided into blocks of the
same size; for each block k are stored the minimum mk and the maximum Mk of the
cumulative sum of the sequence (for balanced parentheses, the excess) within the block.
A tree is formed over the blocks, which become the leaves, and each node stores the
minimum and the maximum cumulative sum among the leaves of its subtree.

To perform the forward search we define the target value y as the cumulative sum of
the sequence at i , plus x; the result of the forward search is of the leftmost occurrence
of the target value y following i in the sequence of the cumulative sums. To find its
position we traverse the tree to find the first block k following i where the value x plus
the cumulative sum of the sequence at i is between mk and Mk . Since the sequence has
values in {−1,0,+1}, the block k contains all the intermediate values between mk and
Mk , and so it must contain y. A linear search is then performed within the block.

The operation±1RMQ(i , j ) can also be implemented using the Range Min-Max tree.
By traversing the tree it is possible to find the block with minimum excess among those
between i and j that do not contain either i or j . Then a linear search is used to find the
minimum in the block containing i , in the one containing j , and in that found by the
tree search. The minimum among the three is returned.
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7.3.1 The Range Min tree

The Range Min-Max tree search works for arbitrary values of x. However, to implement
FindClose, FindOpen, and Enclose it is sufficient to support nonpositive values of x.
In this case, we can simplify the data structure obtaining smaller space occupancy and
better performance. We apply the following modifications, and call the resulting data
structure Range Min tree.

HALVING THE TREE SPACE OCCUPANCY. We discard the maxima in the tree nodes,
and store only the minima. The block search in the tree then returns the leftmost block
whose minimum is smaller than y. The following lemma guarantees that the forward
search is correct. A symmetric argument holds for the backward search.

LEMMA 7.3.1 Let j = FwdSearch(i , x) for x ≤ 0. Then the Range Min tree block search
finds the block that contains j .

Proof Since x ≤ 0 and the sequence has values in {−1,0,+1}, the values of the cumulative
sums following i and preceding j must be all greater than the cumulative sum at j . Hence
the leftmost block k that has minimum smaller than y must also contain y.

The implementation of ±1RMQ described above works without any modification,
as it only needs the block minima.

Discarding the node maxima effectively halves the space occupancy of the tree,
compared to the Range Min-Max tree. Although we expected that the reduction in space
would also be beneficial for cache locality, the experiments did not show any measurable
improvement in query times.

BROADWORD IN-BLOCK SEARCH. The in-block forward and backward search perfor-
mance is crucial as it is the inner loop of the search. In practical implementations [4, 104]
it is usually performed byte-by-byte with a lookup table that contains the solution for
each possible combination of byte and excess (hence 256∗8= 2048 bytes). This algorithm,
which we will call Lookup/Loop in the following, involves many branches and accesses
to a fairly big lookup tables for each byte. Suppose, instead, that we know which byte
contains the closing parenthesis; we can then use the lookup table only on that byte.

To find that byte we can use the same trick as in the Range Min tree: the first byte
with min-excess smaller than the target excess must contain the closing parenthesis. This
byte can be found by using a pre-computed lookup table with the min-excess of every
possible byte (hence 256 bytes), and checking all the bytes in the word with a loop, while
updating the current excess at each loop iteration by using a second lookup table. We
call this algorithm RangeMin/Loop.

The above algorithm still involves some hard to predict branches inside the loop.
To get rid of them, we use a hybrid lookup table/broadword approach, which we call
RangeMin/Broadword.
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We divide the block into machine words. For each word w we compute the word
m8 where the i -th byte contains the min-excess of the i -th byte in w with inverted
sign, so that it is non-negative, by using the same pre-computed lookup table used in
RangeMin/Loop. At the same time we compute the byte counts c8 of w, where the i -th
byte contains the number of 1s in the i -th byte of w, using a broadword algorithm [76].

Using the equality Excess(i) = 2 ·Rank((i)− i we can easily compute the excess for
each byte of w: if ew is the excess at the starting position of w, the word e8 whose i -th
byte contains the excess of the i -th byte of w can be obtained through the following
formula:1

e8 = (ew +((2 ∗ c8− 0x...08080808) << 8)) ∗ 0x...01010101.

Now we have all we need: the closing parenthesis is in the byte where the excess
function crosses the target excess, in other words in the byte whose excess added to the
min-excess is smaller than the target. Hence we are looking for the first byte position in
which e8 is smaller than m8 (recall that the bytes in m8 are negated). This can be done
using the ≤8 operation described in [76] to compute a mask l8 = e8 ≤8 m8, where the
i -th byte is 1 if and only if the i -th byte of e8 is smaller than the i -th byte of m8. If the l8
is zero, the word does not contain the closing parenthesis; otherwise, an LSB operation
quickly returns the index of the byte containing the solution. The same algorithm can
be applied symmetrically for the FindOpen.

Overall, for 64-bit words we perform 8 lookups from a very small table, a few tens
of arithmetic operations and one single branch (to check whether the word contains
the solution or not). In the following section we show that RangeMin/Broadword is
significantly faster than Lookup/Loop.

IMPLEMENTATION DETAILS. We build our Range Min tree implementation on top
of rs_bit_vector, so that we can support Excess in constant time by using Rank. We
use blocks of 256 bits, and group them blocks into super-blocks of 32 blocks. We store
the block excess minima relative to the super-block. On the super-blocks we build a
complete implicit binary tree, storing the absolute block minima. Since the super-blocks
contain 8192 parentheses, we can use signed 16-bit integers to store the relative excess
minima, while we use 32-bit integers to store the absolute excess minima, thus limiting
the excess in the range [−232, 232− 1], however this limitation can be removed by using
64-bit integers, for a relatively small space overhead. We use RangeMin/Broadword for
the in-word FindClose and FindOpen, and a linear scan using 8-bit lookup tables for the
in-block ±1RMQ.

1A subtlety is needed here to prove that the search is correct: the excess can be negative, hence the carry
in the subtraction corrupts the bytes after the first byte that contains the zero. However, this means that
the word contains the solution, and the closing parenthesis is in the byte that precedes the one where the
sampled excess becomes negative.
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7.3.2 Experimental analysis

We evaluated the performance of our Range-Min tree implementation with different
variations of the in-block search, and against other Range Min-Max tree implementations.
To this end, we generated a set of random binary trees of several sizes, encoded with the
DFBS representation described in Section 2.6.3, and measured the average FindClose
time while performing random root-to-leaf traversals, to mimick typical visit operations.
Both the random trees and the random path directions are equal across benchmarks of
different implementations. Each result is averaged over 20 runs on different random trees,
and the lengths of the random paths sum up to 10 millions per run.

We benchmarked our implementations of Lookup/Loop, RangeMin/Loop and
RangeMin/Broadword, the implementation of [4], which we refer to as ACNS, and the
implementation of [104], which we refer to as SDSL. The experiments were run on an
Intel Core i5 1.6Ghz running Mac OS X Lion, compiled with the stock compiler GCC
4.2.1. The results are shown in Figure 7.2 and Table 7.1.

Redundancy Average FindClose time (ns)
log n 12 14 16 18 20 22 24 26 28 30

SDSL [104] 42% 261 341 460 562 624 690 733 785 846 893
ACNS [4] 15% 161 212 277 335 371 416 437 477 529 576

Lookup/Loop 32% 152 186 216 250 272 301 319 345 377 407
RangeMin/Loop 32% 145 178 201 224 236 256 267 290 323 353
RangeMin/Broadword 32% 128 150 171 190 201 218 230 248 276 309

TABLE 7.1: Average space redundancy and FindClose time in nanoseconds for different
implementations. Each implementation was tested on sequences of different lengths,
with log n being the logarithm of the sequence length.

On the longest sequences, RangeMin/Loop is ∼ 20% faster than Lookup/Loop,
while RangeMin/Broadword is ∼ 15% faster than RangeMin/Loop. Overall, RangeM-
in/Broadword is∼ 30% faster than RangeMin/Loop. We also tested our implementations
with newer versions of GCC and MSVC, and found out that the performance difference
between RangeMin/Loop and RangeMin/Broadword vanishes, still being 20% to 30%
faster than Lookup/Loop, due to better optimizations. This suggests that the choice
between RangeMin/Loop and RangeMin/Broadword should depend on the particular
compiler/architecture combination, with RangeMin/Broadword being a safe default.

When compared with other implementations, our implementation with RangeM-
in/Broadword is both faster and smaller than SDSL, and faster than ACNS, while
occupying more space. It should be noted, however, that the difference in space is en-
tirely caused by the data structure used to support Rank (and thus Excess): while ACNS
uses an implementation with an 8% overhead, we use the broadword data structure
of [112], which has a 25% overhead. If we account for this, the space used by the two
implementations for supporting BP operations is roughly the same.
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FIGURE 7.2: Average FindClose time in nanoseconds for increasing sequence length.

7.4 RANGE MINIMUM QUERIES

To support Range Minimum Queries we use the 2d-Min-Heap described by Fischer and
Heun [44], which, as noted by Davoodi et al. [26], is an alternative representation of the
Cartesian tree. In Succinct, the class is called cartesian_tree, and it supports sequences
of values with any arbitrary ordering function.

As in [44], we build the DFUDS representation of the 2d-Min-Heap in the bitvector
U, which we store in a bp_vector to support FindOpen and ±1RMQ.

The RMQ of i and j can then be reduced to the RMQ on the excess sequence E of
U, denoted as ±1RMQ, with the following algorithm. The indices are slightly different
from [44] because all our primitives are 0-based.

LEMMA 7.4.1 ([44, SECTION 5.1]) The following algorithm, where all the operations
are performed on U, returns RMQ(i , j ).

1 x ← Select)(i + 1)
2 y ← Select)( j + 1)
3 w ←±1RMQ(x, y)
4 if Rank)(FindOpen(w − 1)) = i + 1 then
5 return i
6 else
7 return Rank)(w − 1)

Our implementation differs at line 4 in Lemma 7.4.1, which checks whether the node
at position x is the parent of w − 1. We replace it with the following line.

4 if Excess(Select)(i)+ 1)≤ Excess(w) then
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Since, in our implementation, Select is significantly faster than FindOpen, the whole
algorithm speeds up by 10–20% with this change. The following lemma proves that the
two conditions are equivalent.

LEMMA 7.4.2 In the algorithm described in Lemma 7.4.1, Excess(Select)(i) + 1) ≤
Excess(w) if and only if the node at w − 1 in U is a child of the node at Select)(i + 1).

Proof Let t = Select)(i ) and x = Select)(i + 1). If the node at w− 1 is a child of the node
at x, then its mate z is between t and x as shown below:

)
t
( · · ·(

z
· · ·()

x
· · · · · · · · · )

w−1

If follows that Excess(t + 1) ≤ Excess(z); since Excess(z) = Excess(w), we obtain
Excess(t + 1)≤ Excess(w).

Conversely, suppose Excess(t + 1)≤ Excess(w). Since w =±1RMQ(x, y), it holds
Excess(w) < Excess(x). Hence there must be a position z such that t + 1 ≤ z < x and
Excess(z) = Excess(w). To prove that z is the mate of w − 1, it suffices to note that the
excess between z + 1 and w − 1 is strictly greater than Excess(w), again because w is the
leftmost excess minimum in the range [x, y].

7.4.1 Experimental analysis

We compared our implementation of RMQ against two other publicly available imple-
mentations. The first is Fischer’s constant-time succinct scheme [43], which divides the
sequence A into a two-level block structure and computes and stores the cartesian tree
of each block. Using this structure, the search is narrowed down to 5 positions of A,
which are accessed explicitly to find the overall minimum. For this reason, the RMQ
algorithm needs random access to the sequence A. The second implementation is the
SDSL [104] implementation of the succinct RMQ scheme described by Fischer and Gog
[51], which uses a succinct encoding of the cartesian tree and a new operation, called
rr_enclose, which is implemented using a Range Min-Max tree. According to [51], this
data structure is both more space-efficient and faster than the original implementation of
the Fischer and Heun’s succinct 2d-Min-Heap [44]. Unlike the first data structure, and
like our implementation, the SDSL implementation does not need to access the sequence
A, which can be discarded after construction.

To perform the experiments we generated arrays of increasing lengths filled with
random integers from the interval [0,1024), performed 10M random RMQ queries, and
averaged the running time. All the code was compiled with g++ 4.7. The tests were run
on a dual core Intel Core 2 Duo E8400 with 6MiB L2 cache and 4GiB RAM, running
Linux 3.5.0 - 64-bit. Each test was run 10 times, and the running times averaged. The
results are shown in Figure 7.3 and Table 7.2.
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Bits per value Average RMQ time (ns)
log n 10 12 14 16 18 20 22 24 26 28

Fischer O(1) [43] 6.6† 80 104 119 128 139 165 415 596 761 901
SDSL [104] 2.5 834 1476 2267 2523 2796 2887 2960 3088 3765 4273
Succinct 2.7 270 331 394 466 536 599 641 718 1213 1654

TABLE 7.2: Average space per value in bits and RMQ time in nanoseconds for different
implementations. † The succinct scheme of Fischer also needs to store the sequence A.
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FIGURE 7.3: Average RMQ time in nanoseconds for increasing sequence length.

Fischer’s constant-time scheme is overall the fastest, about 2 times faster than Succinct,
but it is also the one with the largest overhead, at 6.6 bits per element, plus the space to
store A. The implementation requires to store A as an explicit integer array (specifically,
32-bit integers); if A was stored in compressed form, the cost to random-access the 5
values of A during the RMQ query would add up in the query time. SDSL and our
implementation obtain very similar space overheads, with Succinct slightly larger due to
the rank9 data structure. However, Succinct is 3 times faster than SDSL.

The plot in Figure 7.3 shows that the CPU cache has a very large effect on the running
time. While Fischer’s scheme is theoretically constant-time, it exhibits a logarithmic-time
behavior once the sequence A does not fit anymore in cache, which happens at about
log n = 20. Succinct shows a logarithmic behavior across all data sizes, with a jump in
the constant as the sequence length passes log n = 24; the cut point is higher than the
constant-time implementation because of the higher space efficiency of the succinct
2d-Min-Heap compared to the explicit storage of the array A. SDSL has significantly
worse performance than both the others, and it seems to have two cut points, one at
log n = 14 and one at log n = 24, probably due to the use of large lookup tables.



8 OPEN PROBLEMS AND FUTURE DIRECTIONS

We conclude this thesis by presenting some future directions of research, which we
believe to be the most promising and interesting.

MORE POWERFUL SEMI-INDEXES. The semi-index presented in Chapter 3 supports tree
traversal operations similar to those supported by standard pointer-based representations.
However, in many applications more powerful search operations are needed, from
simple sub-path searches to full regular expressions on trees. There is a vast literature,
for example, on XML indexing (see references in [57]), but the existing indexes are
not space-efficient. Compressed data structures for labeled trees [40] support sub-path
queries, but, as discussed in the chapter, they require to change the representation of the
data. An interesting development would be to augment the semi-index with succinct
indexes on the content of the documents in order to support powerful search operations,
for example by indexing the object keys, while maintaining its space-efficiency.

EXTERNAL-MEMORY COMPRESSED DICTIONARIES. The centroid path-decomposed
tries described in Chapter 4 have shown very good performance in the experiments
in internal memory, thanks to their O(log n) height. In an external memory scenario,
however, the height is still far from the optimal O(logB n). Ferragina et al. [39] presented
a cache-oblivious succinct data structure to store a set of strings, but unlike our tries the
labels are not compressed, and the data structure does not seem to be practical for realistic
data sizes without a significant algorithm engineering effort. An efficient implementation
of an external-memory or cache oblivious compressed trie with provable performance
guarantees would be of very high practical interest. An I/O-efficient construction algo-
rithm would also be useful in this scenario, as both the intermediate data and the final
data structure are unlikely to fit into main memory.

BETTER LABEL COMPRESSION IN TRIES. While the label compression described in
Chapter 4 works reasonably well in practice, it is non-optimal: the Re-Pair algorithm
[77] optimizes for an objective function that does not take into account the size of
the dictionary, but only the number of rules generated; furthermore, it is a greedy
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non-optimal algorithm even for the original objective function. For these reasons, we
believe that the compression ratio can be improved significantly without changing the
data structure, just using an optimal algorithm for the computation of the dictionary
and of the parsing. However it is not clear whether this problem is tractable, even in an
approximate fashion.

DYNAMIC COMPRESSED DICTIONARIES. In many applications of string dictionaries
it is necessary to update the dictionary, by inserting or deleting strings. However, we
are not aware of any succinct dynamic string dictionary. It is natural to ask whether our
compressed tries can be made dynamic without a significant overhead in time and space.

Another interesting development would be a data structure for top-k completions
where the string set is fixed but the scores can change over time, which is a realistic
scenario in many applications.

PRACTICAL IMPLEMENTATION OF WAVELET TRIES. Wavelet trees have proven very
effective in practical applications, and several efficient implementations have been pro-
posed (see Navarro [94] for a survey). The static Wavelet Trie described in Chapter 6
is a straightforward extension, and it should be easy to implement and very practical.
However, we expect that the main applications of Wavelet Tries arise in dynamic settings;
in this scenario, an efficient implementation of dynamic compressed bitvectors would be
necessary. Unfortunately, we are not aware of any practical implementation of dynamic
Rank/Select bitvectors, either append-only or fully-dynamic. Engineering efficient dy-
namic compressed bitvectors is thus an extremely promising line of research, which
would have direct application in several other scenarios as well, such as construction of
BWT and FM-indexes in compressed working space [79, 55, 85].

BETTER BOUNDS FOR WAVELET TRIES. Navarro and Nekrich [95] recently introduced
a dynamic wavelet tree on integer alphabets with optimal O(log n/log log n) operations,
although amortized for the update operations, and optimal space bounds. Even on
balanced Wavelet Tries, this is better by a factor of O(log |Σ| log log n), although the
Wavelet Trie bounds are worst-case. It is possible to extend their wavelet tree to sequences
of strings by using a dynamic mapping between strings and integers, but it is not clear
whether RankPrefix and SelectPrefix can be supported efficiently. It is thus natural to
ask whether it is possible to obtain a Wavelet Trie with worst-case bounds closer to
O(log n/ log log n), while still supporting prefix operations.

EXTERNAL-MEMORY WAVELET TRIES. A natural application of Wavelet Tries is to
store table columns in a relational database scenario. In these applications it is usually
necessary to store the data structure on disk, which makes the Wavelet Trie unsuitable
because of both the unbalancedness of the structure and the number of random memory



99

accesses made by the dynamic bitvectors, which is O(log n) regardless of the disk block
size. Hence, an important open question is whether it is possible to design a data structure
that supports all the operations supported by the Wavelet Trie, with better time bounds
in the external memory or cache oblivious models.
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