
i
i

“PhDThesis” — 2013/5/12 — 22:28 — page i — #1 i
i

i
i

i
i

A Unified Framework for

Constrained Visual-Inertial

Navigation with Guaranteed

Convergence

PhD Dissertation by

Francesco Di Corato

Corso di Dottorato in Automatica Robotica e

Bioingegneria – Ciclo XXIV

Supervisors:

Dott. Lorenzo Pollini

Prof. Mario Innocenti
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Abstract

This Thesis focuses on some challenging problems in applied Com-

puter Vision: motion estimation of a vehicle by fusing measurements

coming from a low-accuracy Inertial Measurement Unit (IMU) and a

Stereo Vision System (SVS), and the robust motion estimation of an

object moving in front of a camera by using probabilistic techniques.

In the first problem, a vehicle supposed moving in an unstruc-

tured environment is considered. The vehicle is equipped with a

stereo vision system and an inertial measurements unit. For the pur-

poses of the work, unstructured environment means that no prior

knowledge is available about the scene being observed, nor about

the motion. For the goal of sensor fusion, the work relies on the

use of epipolar constraints as output maps in a loose-coupling ap-

proach of the measurements provided by the two sensor suites. This

means that the state vector does not contain any information about

the environment and associated keypoints being observed and its

dimension is kept constant along the whole estimation task. The

observability analysis is proposed in order to define the asymptotic

convergence properties of the parameter estimates and the motion

requirements for full observability of the system. It will be shown
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that the existing techniques of visual-inertial navigation that rely on

(features-based) visual constraints can be unified under such conver-

gence properties. Simulations and experimental results are summa-

rized that confirm the theoretical conclusions.

In the second problem, the motion estimation algorithm takes ad-

vantage from the knowledge of the geometry of the tracked object.

Similar problems are encountered for example in the framework of

autonomous formation flight and aerial refueling, relative localiza-

tion with respect to known objects and/or patterns, and so on. The

problem is challenged with respect to the classical literature, because

it is assumed that the system does not know a priori the association

between measurements and projections of the visible parts of the

object and reformulates the problem (usually solved via algebraic

techniques or iterative optimizations) into a stochastic nonlinear fil-

tering framework. The system is designed to be robust with respect

to outliers contamination in the data and object occlusions. The

approach is demonstrated with the problem of hand palm pose esti-

mation and motion tracking during reach-and-grasp operations and

the related results are presented.
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Chapter 1

Preface

1.1 Motivation and related works

Inertial navigation suffers from drifts due to several factors, in partic-

ular inertial sensor errors. Usually, aiding sensors like GPS, air data

sensors or Doppler velocity loggers are used to provide corrections

to the navigation system. A viable alternative to these systems is

the adoption of a vision system that estimates motion of the camera,

assumed rigidly attached to the body, given a stream of successive

images and image features tracked over time. Navigation via fu-

sion of visual and inertial data is perhaps the most straightforward

inspired-by-Nature approach, having direct evidences in daily living.

This work follows a number of other attempts present in the lit-

erature to build a combined vision-inertial navigation system. The

most relevant and recent works in the field of the vision-aided iner-

tial navigation differ mainly by the approach used to integrate the

visual measurements and the inertial mechanization equations. A

1
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family of solutions is based on the so called tight-coupling approach,

see for example [16]: each collected image feature is added to the

navigation filter state and cooperates to the estimation phase. In

general this kind of approaches ensures the best accuracy but em-

ploys a prominent software infrastructure to manage features and

estimation refinement systems, for example loop closure. On the

other hand, approaches exist that rely on loose-coupling to perform

motion estimation; some examples are [20, 4, 29, 27]. In the loosely-

coupled structure, the vision system is usually used at an higher

level, as relative pose estimator. In particular, in [20] the vision

system acts as a visual odometer [31] with the IMU used as an atti-

tude aid to correct the direction of integration of the visual odometry

module. On the other extreme [4, 41, 28], the IMU is used as the

main navigation sensor and a stereo camera pose estimation scheme

serves for mitigation of drifts. The correction step is thus made by

feeding to the filter the relative camera pose estimation between two

successive time instants, in terms of angular parametrization and

translation. In general, this approach is very simple to implement,

however its reliability totally relies on the accuracy of the pose es-

timation algorithm, for which several techniques were developed for

improving robustness, see for example [5, 24, 44, 43]. Actually, the

pseudo-measurement of camera pose between successive frames is

generally obtained via iterative nonlinear techniques and determin-

ing precisely how the image noise (assumed Gaussian with acceptable

approximation) combines in the pose estimation is practically infea-

sible. In addition, the uncertainty (the noise) related to the pose

estimation cannot be considered normally distributed, breaking the

basic assumptions of the Kalman Filtering.

2
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1.2 Visual constraints

In this work, we focus on motion estimation of a vehicle by fusing

measurements coming from an Inertial Measurement Unit (IMU) and

a Stereo Vision System (SVS). Although these are the only sensors

mentioned in the work, the approach can be easily extended to host

auxiliary measurements coming from any other kind of sensor. The

vehicle is supposed moving in an unstructured environment, meaning

that no prior knowledge is available about the scene being observed,

nor about the motion. For the goal of sensor fusion, we rely on a

implicit constraints-based loose-coupling of the measurements pro-

vided by the two sensor suites, meaning that: i) epipolar constraints

are constructed on tracked features and used as output maps; this

formulation requires the use of implicit functions to define the sys-

tem output. ii) The state vector does not contain any information

about the environment and associated keypoints being observed and

its dimension is kept constant along the whole estimation task.

1.2 Visual constraints

During the last decade, a certain number of works in the field of

loosely-coupled visual-inertial navigation went beyond the principle

of visual update based on the concept of pose and recast the problem

into a geometric framework, showing that viewing a group of static

features from multiple camera poses had the result to impose geo-

metric constraints involving all the camera poses. In this framework,

the vision module is taken at its lowest level, i.e. in terms of im-

age features. Every feature is viewed as an individual entity (taking

inspiration from the works on tight-coupling) and individually coop-

3
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erates for the update step. However the basic idea of loose-coupling

is kept, thus the state vector contains the motion parameters only.

This led to an large reduction of the computational burden and of

the estimator structure, moreover the Gaussian nature of output

noise is not altered, since image features are employed. The works

by Mourikis [27] and Diel [6] are the main two examples. The gen-

eral idea is that each feature contributes for a constraint along one

direction, leading to a fully constrained problem, when multiple fea-

tures from different viewpoints are observed. Each single constraint

is built on the image projections of the same point in space, corre-

sponding to a couple of camera poses at two different time instants,

and on the group transformation relating these two poses. In this

work we restrict our attention to the case when only opportunistic

features are observed, that is image projections of points which po-

sition in the space is unknown. The discussion will be dedicated to

the features-based visual constraints case, in which every feature is

taken per-se and has an output associated to it. With the above

assumptions, a general formulation for the single constraint can be

the following:

φ
(
gτt, y

i
τ , y

i
t

)
= 0 (1.1)

where we highlighted the group transformation gτt ∈ SE (3) relating

two different poses of the viewer in two different time instants τ

and t > τ , and the i-the image feature at the corresponding times

yiτ , y
i
t. The two principal geometric visual transformations, used for

motion estimation purposes, the epipolar constraints (see [24] and

Chapter 3) and the image-space projection of a point in space, via

4
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1.2 Visual constraints

the projective operator (see [24, 27]), fall under this class. In the

former case, the constraint is a native implicit function. In the latter

case, the transformation is written in explicit form. However it can

be rewritten in a pseudo-implicit form: given the position of a 3D

point X i
0 in space, it does suffice to define the function as [40]

φ
(
g0t, y

i
0, y

i
t

)
= yit − π

(
g0ty

i
0Z

i
0

)
= 0 (1.2)

being π the perspective projection operator and X i
0 = yi0Z

i
0. The

function φ has a certain number of properties that strictly depend

on the class the adopted function belongs to. Obviously, by means

of such properties, each class of functions has its peculiar direction

along which the constraint acts. For instance the projective operator

induces constraints that lie on the projective space RP 2 [24], while

epipolar constraints depend on transformations that lie on the Es-

sential Manifold, and will constrain the motion of the viewer along

the direction perpendicular to the epipolar plane. We will discuss

further about this manifold in Chapter 3. We will omit further

details, which were extensively analyzed in the literature, for exam-

ple [24, 40]. Here we aim at characterizing this class of problems

in terms of common convergence properties, regardless of the vi-

sual constraint adopted, provided that just opportunistic features

are used (i.e. no landmarks are available). It will be shown that,

based on such common properties, the two kinds of approaches can

be unified.

Designing an optimal filter able to process implicit measurements

falls in the realm of Implicit Filtering, that allows to use algebraic

constraint equations as output maps; this idea was already explored

in the framework of Vision-Only ego-motion estimation [39]. To the

5
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best of our knowledge, the work [6] falls in a class similar to the

one described in this Thesis, except that monocular vision is used

and simultaneous multi-frame constraints, in order to disambiguate

the scale. The authors formulate a their own version of the epipolar

constraints and employ a state covariance matrix approximation in

order to deal with multiple groups of features together; filtering is

done via Bayes’ Least Squares. The works [34, 47] the epipolar

constraints are fused with the kinematic model of an airplane and the

filtering is made by employing the same Implicit Filtering technique

as in[39] and the present Thesis. In all these three references no

observability study is presented.

1.3 Contributions of the work

One contribution of the Thesis is the analytical characterization of

the observability of the unknown motion variables, together with the

biases of inertial sensors and the gravity, for the class of constraints-

based loosely-coupled navigation problems like the one proposed.

The observability properties are ensured under a condition defined

rich enough motion, namely persistence of excitation (Section 4).

The motion requirements for motion observability are made explicit

and formalized. As already outlined, one intent of the work is

to unify the existing approaches focused on loosely-coupled visual-

inertial navigation, relying on visual constraints, under the same con-

vergence properties, even if the specific problem of employing epipo-

lar constraints is proposed throughout the work. Actually, these

approaches can be generalized under the same category, even if they

6
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1.3 Contributions of the work

look at the problem apparently from different standpoints. Moreover

the work faces the specific problem of navigation of ground vehicles

from a practical point of view and, starting from the convergence

properties, defines the countermeasures needed in order to let the

navigation algorithm work even in the motion conditions typical of

road vehicles.

Finally, in the last part of the work (Part II) a robust model-

based pose estimation scheme is presented, able to estimate the rel-

ative motion – in terms of position, attitude and velocity – of a

monocular vision system with respect to a tracked object of known

geometry. It will be assumed that some markers are placed onto

the object surface at known positions with respect to the object

reference frame. Similar problems are encountered for example in

the frameworks of autonomous formation flight and aerial refueling,

relative localization with respect to known objects and/or patterns,

and so on. The proposed algorithm reformulates the problem (usu-

ally solved via algebraic techniques or iterative optimizations) into

a stochastic nonlinear filtering framework. It will be shown that it

is robust with respect to outliers contamination of the visual data,

marker disappearing and reappearing on the image plane and marker

overlapping. The technique is able to recognize automatically less

probable measurements, ban them from estimation and the estima-

tion problem can still be solved even if a very low number of features

(that would be non sufficient for standard algebraic algorithms) is

observed. Moreover it is able to adaptively associate a given image

measurement to a certain marker or to an outlier by using prob-

abilistic techniques, thus it is totally self-contained and requires a

very rough and fast detection phase, i.e. the prior association of a

7
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certain measurement is not needed to make the algorithm work.

1.4 Organization of the Thesis

The Thesis is organized as follows. Chapter 2 introduces the models

employed for Ego-Motion estimation, in the framework of loosely-

coupled visual-inertial navigation. Starting from the modeling of

inertial navigation, a derivation of the approximated version of the

mechanization equations, written in “local” form is proposed. Fi-

nally, the models suitable for estimation of Ego-Motion are derived.

Chapter 3 addresses the formalization of the visual model employed,

in the form of implicit constraints computed on tracked features and

on the estimated system pose; the constraints, together with the lo-

cal approximation of the inertial mechanization equations, define the

full model used for estimation. Chapter 4 discusses the convergence

properties of the proposed approach; the analytical characterization

of the unobservable space in the class of constraints-based loosely-

coupled problems is then addressed. Chapter 5 introduces the al-

gorithms for fusing inertial measurements with visual constraints,

in order to solve the Ego-Motion estimation problem. The chap-

ter starts by introducing the iterative schemes for the optimal fu-

sion of measurements, in the form of visual nonlinear equality con-

straints. Thus it will show how to incorporate the visual constraints

in the state estimation problem, by using the Constrained Extended

Kalman Filter algorithm. Experimental results performed outdoor

are presented in Chapter 6. The second part of the work, exposed in

Chapter 7, is dedicated to description of the robust pose estimation

8
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1.4 Organization of the Thesis

scheme. The approach is demonstrated with the problem of hand

palm pose estimation and motion tracking during reach-and-grasp

operations and the related results are presented.
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Loosely Coupled Visual

Motion Estimation
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Chapter 2

Modeling Ego-Motion

This section introduces the models employed for Ego-Motion estima-

tion, in the framework of loosely-coupled visual-inertial navigation.

The first issue addressed is the modeling of inertial navigation, the

reference frames adopted and the basic mechanization equations. The

assumptions generally omitted in the literature of vision-aided navi-

gation are made explicit, ending up with a derivation of the approx-

imated version of the mechanization equations, written in “local”

form. Finally, the models suitable for estimation of Ego-Motion are

derived.

2.1 General framework for inertial nav-

igation

The navigation equations are a set of nonlinear differential equations

relating vehicle’s Attitude, Velocity and Position to known/measured

13



Modeling Ego-Motion

inertial quantities. In the general theory of inertial navigation, the

equations are integrated given the measurements of inertial sen-

sors, accelerometers (f bib) and gyroscopes (ωbib), which usually rep-

resent the inputs of the navigation system. The inertial mecha-

nization state variables can be defined as the angular parametriza-

tion Θ of the Direction Cosine Matrix Rn
b = Rn

b (Θ), which ro-

tates from body (b) to navigation (n) frames, the velocity vector

V n =
[
Vn Ve Vd

]T
, expressed in navigation frame, and the posi-

tion vector re =
[
ϕ λ h

]T
, composed of the latitude, longitude

and altitude of the navigation frame with respect to an Earth-fixed

frame (e). Any navigation and Earth-fixed frames can be used. In

this work we adopted the NED and ECEF reference frames [35].

Without loss of generality, we assume the body frame to be coinci-

dent with the IMU.

Following these assumptions, the continuous-time navigation equa-

tions resolved in the NED frame have the following form:

ϕ̇ =
Vn

Rm + h
(2.1)

λ̇ =
Ve

(Rn + h) cosϕ
(2.2)

ḣ = −Vd (2.3)

V̇ n = Rn
b f

b
ib − (2ωnie + ωnen) ∧ V n + γn (ϕ) (2.4)

Ṙn
b = Rn

b

(
ωbib −Rb

n ω
n
in

)
∧ (2.5)

where ωnin is usually denoted as the transport rate, which can be

computed as:

ωnin = ωnie + ωnen (2.6)

14
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2.2 Modeling local inertial navigation

that is as the summation between the NED frame angular velocity

(ωnen) and the Earth rotation rate (ωnie), projected onto the axes of

the navigation frame1. Those two terms are included into the naviga-

tion equations (2.4) also, to account for the Coriolis and centripetal

acceleration effects. The term γn (ϕ) denotes the local gravity ac-

celeration, aligned with the vertical axis of the navigation frame,

γn (ϕ) =
[

0 0 γlocal (ϕ)
]T

. Note that the navigation equations

depend on some local constants which are the Earth WGS84 Da-

tum constants, such as the local Normal (Rn) and Meridian (Rm)

Earth radii of curvature, together with ‖ωnie‖ and the local value of

the gravitational acceleration, γlocal (ϕ). Full derivation of the above

equations and the detailed descriptions of the model local constants

can be found in several textbooks and is omitted here (see, for in-

stance, [35]).

2.2 Modeling local inertial navigation

The foregoing equations (2.1)-(2.5) are written in a global form,

meaning that they are valid with a sufficient degree of accuracy ev-

erywhere on the Earth surface and for navigation tasks over long

time periods, along several (hundreds or thousands) kilometers. On

the opposite, the framework of vision-aided navigation, is usually

assumed in the literature to be a local navigation problem (see for

example [4, 16, 20]) meaning that the navigation task is performed

1The angular velocity ωnen can be defined as such velocity needed to make

the navigation frame constantly aligned with the Geodetic North-East-Down

configuration, while the body travels on the Earth surface
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Modeling Ego-Motion

with respect to a reference position (usually the starting position of

the vehicle) and the relative displacement with respect to the starting

point, over the whole video stream, is small enough. This allows to

make some approximations. Usually, however, details and drawbacks

of such approximations are generally omitted in most visual-inertial

navigation works, thus represent hidden assumptions that are not

verified for later. Here we will make them explicit for completeness.

The first approximation arises when using low-cost inertial sen-

sors, characterized by a significant level of noise in the measurements.

This allows to neglect the Earth rotation rate from equations (2.4)

and (2.5), as it can be understood by looking at Figures 2.1 and 2.2.

The figures show an inertial data set collected during an outdoor ex-

periment. The gyroscope and accelerometer streams were collected

with the IMU in a static configuration, on the top of a car with

engine on. The signals were detrended in order to isolate the noise

component. As it can be noticed, the level of noise is far beyond

the Earth-induced velocity effects: it is reasonable to think that

this would have a comparable effects on the signal integration with

the angular and velocity random walks induced by signal noise only.

When the sensors bias come into play, the Earth-induced effect would

be negligible.

16
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2.2 Modeling local inertial navigation

Figure 2.1: Comparison between gyroscope output and Earth rotation

rate. The shown Earth rotation correspond to the component with the

maximum value of the rotation vector in the NED frame, computed at the

reference latitude of 43.720677 deg.

Figure 2.2: Comparison between accelerometer output and the compo-

nent with the maximum value of the Coriolis acceleration anc = 2ωnie∧V n.

The Earth rotation vector was computed at the reference latitude of

43.720677 deg. The vehicle was supposed moving on the N-E plane, with

equal velocity in the two directions.

17



Modeling Ego-Motion

The most important assumption generally made is that the navi-

gation frame (NED) is considered not to change its orientation with

respect to the ECEF frame, during the whole navigation task. This

means that the Earth is approximated as a flat surface in the neigh-

borhood of the starting point. On the other side, this allows to

neglect the term ωnen in equations (2.4) and (2.5), being approxi-

mately null. By a formal point of view, the assumption of flat Earth

surface is equivalent to project a subspace of the global navigation

equations, relative to the ECEF position, onto a tangent space to

the manifold of Earth ellipsoid at a given point. This can be made

by choosing a specific projection map ξ : RE2 → Tr0RE2 from the

space of ellipsoidal coordinates (ϕ, λ) ∈ RE2 to the space of local

coordinates (xn, yn) ∈ Tr0RE2 in the tangent space. Tr0RE2 denotes

the tangent space to the manifold represented by the Earth ellipsoid

at the point (on the Earth surface)

ρ0 =

 Rn cosϕ0 cosλ0

Rn cosϕ0 sinλ0

Rn (1− ε2) sinϕ0

 (2.7)

corresponding to the coordinates r0 =
[
ϕ0 λ0

]T
. In the previ-

ous equation, Rn denotes the radius of the curvature normal to the

ellipsoid surface, at the tangent point ρ0, while ε is the ellipsoid ec-

centricity [35], according to the WGS84 model. Suppose now to put

the NED reference frame on the Earth surface at the location ρ0.

Two convenient differential (unnormalized) directions on the space

Tr0RE2 pointing respectively toward North and East can be easily

18
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2.2 Modeling local inertial navigation

Figure 2.3: Representation of the tangent space TpM to the 2-

dimensional manifold M at a given point p and the corresponding tangent

vector v ∈ TpM .

found to be:

dXn = Rmdϕ (2.8)

dY n = Rn cosϕ0dλ (2.9)

Thus, given a certain ECEF position re =
[
ϕ λ h

]
in the neigh-

borhood of the point r0, the position of the vehicle with respect to

the local NED reference frame can be obtained as:

T n =

[
ξ (re)

−h

]
=

 Rm (ϕ− ϕ0)

Rn cosϕ0 (λ− λ0)

−h

 (2.10)

The point r0 =
[
ϕ0 λ0

]T
is usually defined as the position of the

vehicle, in latitude and longitude, when the navigation task began

its execution (at time t0). Note the minus sign next to the vertical

19



Modeling Ego-Motion

displacement, which is useful to express such coordinate with respect

to the local reference system in the North-East-Down configuration.

Taking the derivative of equation (2.10) with respect to time, eval-

uated locally at the point r0, Equations (2.1)-(2.3) can be simply

transformed in local coordinates as:

Ṫ n = V n (2.11)

Projecting the navigation equations onto a local tangent plane,

has the additional advantage that the gravity field can be considered

constant in modulus, in the neighborhood of the reference position

r0. This allows to drop the dependence from the current latitude ϕ,

as in Equation (2.4), and to substitute the gravity acceleration term

with the constant value γn = γn (ϕ0).

According to the previous assumptions, the inertial navigation

model can be rewritten in local coordinates as:
Ṫ n = V n

V̇ n = Rn
b f

b
ib + γn = an

Ṙn
b = Rn

b ω
b
ib∧

(2.12)

2.2.1 Models for Ego-Motion estimation

The previous section showed how to localize the navigation equations

such that they can be used in approximated form in problems where

the navigation task happens in a restricted area. This was necessary

since the visual-inertial navigation problem is local by definition and

it was convenient to recall the formal connection between the classi-

cal art of inertial navigation and particular navigation problems as
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2.2 Modeling local inertial navigation

the one this work deals with. Reducing the complexity of the navi-

gation equations has the further advantage that the notation can be

simplified, by dropping the subscripts/superscripts from equations,

where the symbols are easy to disambiguate. Equation (2.12), in

particular, is written in a common reference frame, exception made

for the inertial measurements f bib, ω
b
ib, which are referred to the body

reference frame. For this reason it is convenient to introduce a more

compact notation which will be largely adopted in the rest of the

Thesis.

Notation. The remaining exposition relies on a simplified no-

tation, very common in the Computer Vision and Robotics com-

munity [30]: the generic pose (rotation Rj
i and translation T ji ) of

the frame I with respect to the frame J is denoted with the group

transformation gij =
{
Rj
i , T

j
i

}
∈ SE (3), which maps a vector ex-

pressed in the frame I, into a vector expressed in the frame J .

The sole exception is made for the pose of the body frame with

respect to the fixed navigation frame, gbn = {Rn
b , T

n}, for which

we drop the subscripts/superscripts, for cleaner notation, and it is

denoted simply as g = {R, T}. The inverse transformation is in-

dicated with the notation g−1
ij ,

{
Rj
i

T
, −Rj

i

T
T ji

}
∈ SE (3). The

action of the group transformation gjk on gij, usually denoted with

the symbol ◦, to indicate function composition, is indicated with a

simple product, i.e. gik = gjkgij , gjk ◦ gij, being by definition:

gik ,
{
Rk
jR

j
i , R

k
jT

j
i + T kj

}
. Finally the action of scaling by a certain

amount α is defined as: αgji ,
{
Rj
i , αT

j
i

}
. Finally, it is convenient

to introduce the time dependence on such transformations and vari-

ables which are not constant, in general, and are assumed to vary

over time. The transformations and variables for which the time

21



Modeling Ego-Motion

index is dropped will be considered not to change over time.

With the introduced notation, the kinematic model (2.12) can be

rewritten as: 
Ṫ (t) = v (t)

v̇ (t) = a (t)

Ṙ (t) = R (t) Ω (t)

(2.13)

This model keeps the same information as the one in equation (2.12):

T (t) , v (t) and R (T ) are respectively the position, linear velocity

and rotation matrix of the body frame with respect to the local

navigation frame. Ω (t) = ω (t)∧ is the skew symmetric matrix

of the body angular velocity ω (t) expressed in the body frame. Fi-

nally a (t) is the body acceleration expressed in the local naviga-

tion frame, which depends on the inertial acceleration sensed by

the accelerometers and on the gravity. The pose variables T (t)

and R (T ) can be put together to define the group transformation

g (t) , {R (t) , T (t)} ∈ SE (3).

The inertial measurements, linear accelerations and angular ve-

locities, can be considered as outputs of the system, rather than in-

puts, like in the classical inertial navigation practice2, see also [16].

The reason behind this is above all philosophical, in the sense that

we look at the problem from a stochastic filtering point of view [15],

thus treating the IMU outputs as measurements depending on sys-

tem states, linear accelerations in NED frame and angular velocities

in body frame. Without loss of generality, this is in line with some

2This, in turn, will simplify the proof of observability, as proven later by

Lemma 1.
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2.2 Modeling local inertial navigation

of the most recent works in visual-inertial navigation, see for exam-

ple [16]. The output model relative to the inertial measurements,

yb (t), can be thus written as:

yb (t) =

[
RT (t) (a (t) + γ)

ω (t)

]
(2.14)

In order to make the linear accelerations and angular velocities

depend on the system states, it is necessary to augment the model of

the system, with six more states, that is: three states for the system

acceleration a (t), resolved in the navigation frame and three states

for the body angular velocity ω (t). Since we assume not to have a

prior information regarding the nature of the system motion, the lo-

cal accelerations and body angular velocities can be modeled as ran-

dom walks. Moreover, we decided to follow the approach of [16, 18]

(for example) and deal with the gravity by adding three more states

to the state vector, corresponding to the gravity state variable. As

it will be clear with the observability analysis, this choice is conve-

nient in the case of non-knowledge of the initial system attitude or,

equivalently, when dealing with non calibrated IMUs. The complete
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Modeling Ego-Motion

model can be written as:



Ṫ (t) = v (t)

v̇ (t) = a (t)

ȧ (t) = ηa (t)

Ṙ (t) = R (t) Ω (t)

Ω (t) = ω (t)∧
ω̇ (t) = ηω (t)

γ̇ (t) = 0

(2.15)

yb (t) =

[
RT (t) (a (t) + γ (t)) + ba + νa (t)

ω (t) + bω + νω (t)

]
(2.16)

In this case the gravity term was written dependent on time since it

is part of the state space and thus admits a certain time evolution.

Moreover, the output model yb (t) was written with the uncertainties

affecting the inertial measurements: the variables ba, bω model the

slowly varying biases of the accelerometers and gyroscopes, respec-

tively, and νa (t) ∼ N (0, Ra) and νω (t) ∼ N (0, Rω) are zero-mean

white noises with constant variance, that model the noise in the mea-

surements. In this case, the biases are assumed known (i.e. we are

assuming a calibrated IMU). Alternatively, if the calibration param-

eters of the inertial sensors are unknown, we may choose to insert

them into the estimation process. In such a case, we get an extended

model with six more states, corresponding to the state variables of

the inertial biases:
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2.2 Modeling local inertial navigation



Ṫ (t) = v (t)

v̇ (t) = a (t)

ȧ (t) = ηa (t)

Ṙ (t) = R (t) Ω (t)

Ω (t) = ω (t)∧
ω̇ (t) = ηω (t)

γ̇ (t) = 0

ḃa (t) = 0

ḃω (t) = 0

(2.17)

yb (t) =

[
RT (t) (a (t) + γ (t)) + ba (t) + νa (t)

ω (t) + bω (t) + νω (t)

]
(2.18)
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Chapter 3

Visual measurements as

motion constraints

This section introduces the visual output model employed for con-

straining the motion of the system, by using epipolar constraints as

output maps. First, the visual constraints are treated as general non-

linear maps, a class in which other classical methods like projections

on the image plane of 3D points fall as well. The discussion will be

dedicated to the “features-based” visual constraints case, in which

every feature is taken per-se and has an output associated to it. Fi-

nally the output map used in this work is presented and formally

characterized.

3.1 Epipolar Constraints

Suppose a camera observes a 3D point P i =
[
X i Y i Zi

]T
fixed

in space from two distinct poses cτ , ct with respect to the fixed
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Visual measurements as motion constraints

reference frame in which the coordinates of the point P i are defined.

We call gcτ ct ∈ SE (3) the relative transformation between the two

poses of the camera and P i
τ and P i

t the rays from the optical center

of the camera to the point P i in the two positions cτ , ct. These two

points are related by a simple rigid motion relationship:

Figure 3.1: Graphical interpretation of the epipolar constraint. The red

circles indicate the position of the camera in two different instants.

P i
t = gcτ ctP

i
τ (3.1)

If we define the normalized coordinates of the points P i
j as yij =[

X i
j/Z

i
j Y i

j /Z
i
j 1

]T
, j = τ, t we have:

Zi
ty
i
t = gcτ ctZ

i
τy

i
τ = Rcτ ctZ

i
τy

i
τ + Tcτ ct (3.2)

Via simple algebraic manipulation, it is possible to obtain (Longuet-

Higgins [21]):

Zi
ty
i
t

T (
Tcτ ct ∧ yit

)
= 0 = Zi

τy
i
t

T
Tcτ ct ∧Rcτ cty

i
τ , Z

i
τ > 0 (3.3)
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3.1 Epipolar Constraints

Condition (3.3) has a direct interpretation: given the correspon-

dences between two points, in normalized coordinates, yiτ and yit, in

two successive images (with time t > τ), after the camera moved

by a certain transformation gcτ ct , {Rcτ ct , Tcτ ct}, the three vectors

yiτ , y
i
t and Tcτ ct are coplanar1. Points yiτ and yit are expressed in the

local coordinates of the camera at the time τ and t respectively. By

expressing the features in a common reference frame, for example in

the one corresponding to the last position, the condition highlighted

above defines the well known formulation [21]:

yit
T
Tcτ ct ∧

(
Rcτ cty

i
τ

)
= 0 (3.4)

known as epipolar constraint. The above constraint can be written

for every visible pair of points that share the same relative camera

transformation, i.e.:

yit
T
Tcτ ct ∧

(
Rcτ cty

i
τ

)
= 0,∀i = 1, . . . , N (3.5)

From now on, the constraint in equation (3.4) will be written in the

more compact notation, that is:

φ
(
gcτ ct , y

i
τ , y

i
t

)
= yit

T
Tcτ ct ∧

(
Rcτ cty

i
τ

)
= 0 (3.6)

The matrix E = Tcτ ct ∧ Rcτ ct ⊂ R
3×3 is defined as essential matrix

and it is a point of the essential manifold [21, 39], that is the

particular set

E , {E = T ∧R |T∧ ∈ so(3), R ∈ SO(3)} (3.7)

1We recall that this happens regardless of the depth of the points, since

equation (3.3) is zero ∀Ziτ .
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The complete characterization and the properties of the essential

manifold can be found in the given references and will be omitted

here for brevity. We are interested in exploiting the local parametriza-

tion of the essential manifold, in terms of rotation and translation,

i.e. the motion recovery problem.

3.1.1 Iterative solution to motion recovery:

Horn’s method revisited

When eight or more independent constraints of the form (3.4) can

be set, it is possible to characterize (up to a scale factor) the motion

of the viewer [21]. Standard methods in the literature for recover-

ing the motion parameters from a given set of point matches are

well established and they are both algebraic (the eight-point algo-

rithm [21, 24]) or iterative (see Horn [12] for instance). The last

one, in particular, recovers the motion parameters by minimizing

a certain norm of the set of epipolar constraints computed over the

observed features. In this case, there is no closed solution, unlike the

case of the eight-point algorithm, and an initial (weak) estimation

of the motion parameters is required. At the same time, the whole

set of visual features can be used in the optimization (unlikely in

the the eight-point algorithm). However, the approaches are both

developed for monocular vision and thus are affected by the scale

ambiguity. The algebraic method fixes the gauge and returns an

estimation of the translation vector which is normalized. The same

does not generally happen for the iterative schemes, unless the scale

normalization is enforced.

In case a calibrated stereo rig is available, we propose to revisit
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3.1 Epipolar Constraints

the idea by Horn and end up with an estimation scheme which is able

to recover all the nine degrees of freedom of the motion parameters.

Although this claim can be intuitive, a formal proof on disambigua-

tion of the global scale can be found in Appendix A. When a 3D

point P i fixed in space is observed by the two cameras in a calibrated

stereo configuration, from two distinct point of views, the 3D points

seen by each camera are related by rigid motion relationships. For

the left camera:

P i
l2 = gc1c2P

i
l1 (3.8)

for the right one:

P i
r2 = glrgc1c2P

i
l1 (3.9)

with obvious meaning of the symbols. It is assumed that gc1c2 ∈
SE (3) describes the relative transformation between the two poses

of the left camera. glr is the (constant and known) calibration of the

stereo pair. When a group of N points is tracked on the left and

right frames, 2N groups of constraints can be set up:

φ
(
gc1c2 , y

i
l1, y

i
l2

)
= 0 (3.10)

φ
(
glrgc1c2 , y

i
l1, y

i
r2

)
= 0, ∀i = 1, . . . , N (3.11)

As a simplified example, we considered the case when the same num-

ber of features is observed in both the left and right images. However

this usually does not happen, and will be taken into consideration in

the definition of the visual measurement model. We propose to solve

the following optimization problem, once some penalty function L
of the constraints is chosen.
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Visual measurements as motion constraints

(Tc1c2 , Rc1c2) = min
Tc1c2 ,Rc1c2

(
N∑
i=1

L
{
φ
(
gc1c2 , y

i
l1, y

i
l2

)}
+ . . .

N∑
i=1

L
{
φ
(
glrgc1c2 , y

i
l1, y

i
r2

)}) (3.12)

In general a squared 2-norm can be chosen or any robust ver-

sion [13], in the case of outlier contamination. The optimization can

then be solved via standard local gradient-based search methods.

3.2 Navigation error estimation via epipo-

lar constraints

In this work, rather than in an algebraic way, the epipolar constraints

are treated as the outputs of a suitable dynamical system, leading to

the possibility to be used in the framework of stochastic filtering [15].

This section shows how to construct a visual measurement model for

the kinematic model (2.17), starting from the definition (3.6).

With reference to real applications, image features are usually

known up to a certain error νi which can be statistically modeled

with a white zero-mean, normally distributed stochastic process,

that is

ỹi = yi + νi, νi ∼ N (0, Ry) (3.13)

Moreover, only an estimate of the relative camera motion gcτ ct is

usually available (e.g. by inertial mechanization),

ĝcτ ct = δg gcτ ct = {δRRcτ ct , Tcτ ct + δT} (3.14)
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3.2 Navigation error estimation via epipolar constraints

The term δg models the error between the true value and its esti-

mation, and we assume it to be bounded. In the context of aided

inertial navigation this is a realistic assumption, provided that suc-

cessive measurements from the aiding sensors come frequently.

When the constraint (3.6) is applied to noisy quantities, a resid-

ual appears, in order to balance the equality in equation (3.6). We

will indicate such situation with the notation:

φ
(
ĝcτ ct , ỹ

i
τ , ỹ

i
t

)
= εi 6= 0 (3.15)

Let’s suppose that, at a given time τ , a group of features yilτ ∈ Ylτ
was detected on the left image for the first time. At current time

t > τ , we select N features on the left image and M features on

the right image, among the ones detected on the two images at the

current time, according to the following rules:

Ylt=̇
{
yilt : yilt is a track of yilτ ∈ Ylτ , i = 1, . . . , N

}
(3.16)

Yrt=̇
{
yjrt : yjrt is a track of yjlτ ∈ Ylτ , j = 1, . . . ,M

}
(3.17)

Note that Yrt ⊆ Ylt ⊆ Ylτ . Once the two above sets are defined,

N +M constraints like (3.15) can be written, N for the left camera

and M ≤ N for the right one:{
φ (ĝclτ clt , y

i
lτ , ỹ

i
lt) = εil

φ
(
glrĝclτ clt , y

j
lτ , ỹ

j
rt

)
= εjr

(3.18)

Again, glr represents the (constant and known) calibration of the

stereo pair. ĝclτ clt is the estimation of the relative transformation

between the positions of the left camera at time τ and t. The choice

to consider only those features on the right image that have a corre-

spondence with the left features being tracked is arbitrary and was
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made for convenience. The only condition to be respected is Yrt 6= ∅
which is needed to disambiguate the global scale, as it will be shown

in Claim 4, Chapter 4, and in the Appendix A. Note that the nor-

malized measurements yilτ are written without the tilde hat: this

is because we assume that the initial detection of a certain group

of features defines the locations being tracked in the successive im-

ages [16]. This is equivalent to consider such location as a reference

for the future detection of the features. It is thus considered noise-

less, which, in turn, has the advantage of eliminating the need for in-

cluding correlations between feature noise in different time steps [39]

and to keep the loosely-coupled structure of the estimation2. Clearly,

this assumption has the disadvantage that we loose confidence with

the actual nature of the noise, resulting in an unavoidable bias in

the estimation. Statistically, this approximation means to consider

the reference features on average in the correct position on the im-

age plane. One could be interested in quantifying statistically the

error related to such choice. It is generally a reasonable assump-

tion to consider the visual measurements statistically independent

among them. In this case, the standard uncertainty can be used as

an indicator about the uncertainty made on averaging (also known

as standard error of the mean)3. When N features are observed, the

standard uncertainty reduces to:

SUȳ =
σ̄√
N

(3.19)

2Otherwise we should add the noise components of the reference features in

the state space, to comply with the causal estimation scheme.
3The standard uncertainty can be defined as the standard deviation of the

estimate of the sample-mean’s of a population [14].
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3.2 Navigation error estimation via epipolar constraints

where σ̄ is the sample standard deviation [14], that is the sample-

based estimate of the standard deviation of the observations set,

usually computed as:

σ̄ =

√√√√ 1

N

N∑
i=1

(yiτ − ȳiτ )2. (3.20)

and ȳiτ is the sample mean. This suggests that keeping the number of

tracked features high would reduce the overall uncertainty in motion

estimation. De facto this number can be around hundreds, like field

tests suggest.

Minimizing the epipolar residual corresponding to one constraint

like (3.18) results in constraining the motion of the camera (left or

right) along one direction, which is normal to the plane defined by

such constraint. Once M +N independent constraints are given, in

a stereo vision configuration, it is possible to constrain the motion

of the stereo system along all the 6DOFs of the motion space (cf.

Lemma 1 and Appendix A). In order to fuse the vision system with

the inertial navigation system, it is necessary to define a common

measurements vector. The epipolar constraints between the initial

and current times can be related to the motion states (position and

attitude) – equation (2.17) – as:{
φ
(
g (t)−1 g (τ) , yilτ , y

i
lt

)
= 0

φ
(
glrg (t)−1 g (τ) , yjlτ , y

j
rt

)
= 0

(3.21)

where g (·) are the body poses expressed in the navigation frame

at current time and at the time τ , when the group of features being

tracked was seen for the first time. Since we have only the estimation
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Visual measurements as motion constraints

of the transformations g (t) and g (τ) and only a measurement of

image points yilt and yjrt, equation (3.21) can be thus rewritten as:{
φ
(
ĝ (t)−1 ĝ (τ) , yilτ , ỹ

i
lt

)
= εil 6= 0

φ
(
glrĝ (t)−1 ĝ (τ) , yjlτ , ỹ

j
rt

)
= εjr 6= 0

(3.22)

Equations (3.21) and (3.22) represent a simplified formulation for

the epipolar residual since it makes the camera frame coincide with

the IMU (body) frame. Usually, the reference frames associated to

the IMU and the camera do not coincide and the epipolar residual

equation should depend on their relative position. Since we assume

that the constant transformation that maps the calibration param-

eters between the cameras and the IMU is known, we dropped such

term from the residual formulation, to simplify the notation.

The rationale behind the proposed approach is to use the constraints

(3.22) as a measure of the mismatch between estimated naviga-

tion state and the actual one, then to use this measure to cor-

rect filter state and improve navigation accuracy. To this end, a

Constrained Extended Kalman Filter is proposed in the succeeding

sections, which will make use of the foregoing visual measurement

model.
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Chapter 4

Observability Analysis

One of the contributions of this work is the full analytical charac-

terization of the unobservable space of the class of constraints-based

loosely-coupled problems where the one proposed falls. This result is

in line with the most recent works [16, 18] of tightly-coupled visual-

inertial navigation. The main contribution is summarized by the

Lemma 1, which proof can be found in Appendix A.

A very good introduction to non linear observability can be found

in [11]. In general, the role of observability analysis is to assess

the possibility to uniquely disambiguate the initial conditions of the

state movements of a dynamical system, by observing the outputs.

Determining whether state movements that, starting from different

initial conditions, return the same outputs exist or not is an essen-

tial problem in the estimation and filtering theory, since determines

the possibility for an estimator to converge to the actual value. Ob-

servability of vision-only structure-from-motion is mainly due to [2],
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where the conditions for enforcing observability were made explicit.

More recently, observability of motion from combined visual-inertial

measurements has been assessed in the framework of tightly-coupled

monocular navigation [16] and localization in a structured environ-

ment [18]. In the last case, the same results of the first work were

proved, while solving the sole problem of sensor-to-sensor self cali-

bration. The main results can be collected in some main claims.

Claim 1 (Chiuso et al. [2])

Observability can be enforced by fixing the direction of three non-

collinear points on the image plane and one depth scale. This is

equivalent to fix the global reference frame.

Fixing the global reference frame as in [2] is necessary in the

approaches that rely on estimation of motion and structure to en-

force the initial conditions R (0) = I and T (0) = 0 in the filter. This

avoids the structure to move freely along the unobservable direction,

which otherwise would have destructive effects on the estimation of

motion also.

Claim 2 (Jones and Soatto, [16])

Motion and structure are observable up to an arbitrary choice of

the Euclidean reference frame, under a condition of general motion,

provided that the global reference frame is fixed as in [2].

Claim 3 (Jones and Soatto, [16])

Scale, gravity and IMU-Camera calibration are observable as long as

the motion is general and the global reference frame is fixed as in [2].

The concept of general motion is the same of persistence of ex-

citation and it was identified with non-constant rotation along at
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4.1 The observability Lemmas

least two axis and varying acceleration, in the case of monocular

visual-inertial navigation.

One may wonder if the same conditions do apply to the problem

proposed in this work or if some differences are noticeable. Moreover,

if it is possible to unify the existing loosely-coupled approaches that

fall in the class like the one proposed, under the same convergence

properties. The reason behind the rest of the chapter is to give an

answer to this question.

4.1 The observability Lemmas

The following results were obtained by considering the model (2.17),

(2.18).

Claim 4 (Disambiguation of global scale)

The global scale α is observable, given the M+N independent stereo

epipolar constraints in Equation (3.21).

We emphasize that the difference with respect to the cited works

is that the disambiguation of the global scale is obtained by using

stereo vision: as expected, the knowledge of the relative transfor-

mation between the left and right cameras is sufficient to recover

the scale factor. The most important assumption is that there are

enough common features between the left and right frames.

One contribution of the work is the extension of the observabil-

ity results in the case of dealing with uncalibrated IMUs. Simi-

lar results were reached in [18] in the case of landmark-based and

tightly-coupled navigation, while [16] assumed the use of a calibrated
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IMU. Here we show that, in the case of constrained-based loosely-

coupled navigation from visual-inertial measurements, the recovery

of the sensitivity parameters is still feasible, under the conditions

highlighted.

Claim 5 (Observability of the gyroscope biases)

The gyroscope biases bω are observable with any kind of motion in

the combined vision-inertial configuration, provided they are added

to the filter state with trivial dynamics (null time-derivative).

Claim 6 (Observability of the accelerometer biases)

The accelerometers biases ba are observable provided that they are

added to the filter state with trivial dynamics (null time-derivative)

and the rotational motion is rich enough.

The following Lemma analytically defines the set of ambiguities

of the system (2.17), (2.18).

Lemma 1

The system (2.17)-(2.18), augmented with the (stereo) N + M con-

straints (3.21) is locally observable up to the gauge transformation [26]

ḡ =
{
R̄, T̄

}
, provided that the motion is rich enough. In particular,

by arbitrarily choosing constant R̄ ∈ SO (3) and T̄ ∈ R
3, identical

measurements are produced by:

R̃ (t) = R̄R (t) , ∀t ≥ 0

T̃ (t) = R̄T (t) + T̄ , ∀t ≥ 0

Ṽ (t) = R̄V (t) , ∀t ≥ 0

ã (t) = R̄a (t) , ∀t ≥ 0

γ̃ = R̄γ

(4.1)
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4.1 The observability Lemmas

The variables in Equation (4.1) without the hat notation, are

the true movements of the states of the system (2.17), i.e. the ones

obtained starting from the actual initial conditions. The variables

with the tilde hat are the state movements integrated starting from

different initial conditions, obtained by selecting arbitrary values of

the constant terms R̄ ∈ SO (3) and T̄ ∈ R
3. The Lemma 1 can

be easily proven by substitution of the variables with the tilde hat

in Equation (4.1) in the corresponding hat-free ones in Equations

(2.18) and (3.21) and by showing that they produce the same mea-

surements. In Appendix A a formal proof with the full derivation is

given. The interpretation of the observability up to a gauge ambi-

guity is that the motion variables, together with the local direction

of gravity, remain ambiguous up to a certain class of equivalence in

SE (3), which is intrinsic in the class of problems where only relative

information are employed and no prior knowledge about the envi-

ronment structure is available. Formally this implies the possibility

to recover the sole equivalence class where the initial condition be-

longs, not the initial condition itself (see also [24]). This is in line

with the most recent works [16, 18]. It is worth to notice that, un-

like in structure-from-motion algorithms, the approach explained in

this work automatically chooses a representative for the equivalence

class which is coincident with the filter initial conditions. This is

because, not involving structure in the estimation, all the elements

of the reference structure are fixed, which allows to anchor the initial

conditions.

The invariance results highlighted above are pretty general, and

apply to the entire class of constrained-based problems where the

global location of the observed points is not known a priori. Under
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such assumptions, the results do not depend on the visual constraint

employed, provided that an approach based on opportunistic features

is used, neither on the number of reference poses one considers into

the estimation task. In any case, at least rotation and translation

can be resolved up to an Euclidean group transformation, if no other

assumptions are made. As a gentle discussion, we can think to work

with multiple constraints as in [6] and consider for the visual update

all the features that share the current time t, but have been collected

in different times τi, thus have their own reference pose g (τi). The

i-th constraint reads:

φ
(
g (t)−1 g (τi) , y

i
τi
, yit
)

= 0 (4.2)

It is straightforward to show that infinitely many constant trans-

formations ḡ ∈ SE (3) (common among features) do exist, that

are in-between g (t) and g (τi), i.e. such that g̃ (t) = ḡg (t) and

g̃ (τi) = ḡg (τi), to which the constraint is invariant, i.e.:

φ
(
g̃ (t)−1 g̃ (τi) , y

i
τi
, yit
)

= φ
(
g (t)−1 g (τi) , y

i
τi
, yit
)

= 0, ∀ḡ ∈ SE (3)

(4.3)

This is in fact the classical gauge invariance, since ḡ represents an

arbitrary choice of the initial Euclidean reference frame.

The same problem happens when the constraints are written in form

of image-space projection of 3D points in space, i.e.

φ (·) = yit − π
(
g (t)−1 P i

0

)
= 0 (4.4)

where P i
0 is the global1 position of the point which image-space pro-

jection at the current time is the measurement yit. Excluding the

1That is resolved in the coordinates of the navigation frame.
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4.1 The observability Lemmas

case where some of the points P i
0 are landmarks (for which case the

gauge ambiguity reduces to the identity transformation) in the cases

where the global position of the points is estimated via multi-view

optimization [44] (as in [27] for example), the gauge ambiguity is

intrinsic in the estimated position of points, since it is always possi-

ble [26] to arbitrarily choose a constant transformations ḡ ∈ SE (3)

and another point P̃ i
0 such that P i

0 = ḡP̃ i
0, for which:

yit − π
(
g (t)−1 P i

0

)
= yit − π

(
g (t)−1 ḡP̃ i

0

)
(4.5)

which is, again, the classical gauge invariance, once selecting g̃ (t) =

ḡ−1g (t).

4.1.1 Dealing with gravity

An important issue is that the best estimation of the local gravity γ̃

is different from the true one, γ; it is shown that this difference is

related to the initial attitude alignment error, as the last equation

in (4.1) suggests. All the possible configurations of the local grav-

ity vector are rotated versions of the actual vector, which can be

represented as the equivalence class[
R̄γ
]
R̄∈SO(3)

(4.6)

We could be interested in estimating the initial misalignment of the

body with respect to the actual vertical direction. To do so, we just

need to extract the actual gravity vector γ from its estimation γ̃ by

factoring-out the rotational component. By performing a Singular

Value Decomposition of the local gravity γ̃, we get:

γ̃ = Uσv = Uγ (4.7)
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The orthonormal matrix U is not R̄ itself: the difference between

the two is an arbitrary rotation about the axis of the vector γ, that

is:

[U exp (γ∧) γ]U,exp(·)∈SO(3) (4.8)

This is due to the fact that the direction of gravity spans only 2

degrees of freedom, being the vector γ invariant with respect to

rotation along its direction (every rotation of the kind exp (γ∧)).

This conclusion inspired us to modify the parametrization of the

gravity in the state vector, by using two angles θγ, ψγ that span

exactly the two degrees of freedom relative to the gravity, instead

of using the three components of the gravity itself. It can be shown

that the convergence properties are not influenced by such change

of coordinates. However this can avoid numerical ill-conditioning

due to the required constant norm of the gravity vector, by using

approximated estimation methods such as Extended Kalman Filters.

4.1.2 Pushing the gauge recovery

As already specified, fixing the whole reference structure has the

only effect to select one element in the equivalence class, thus en-

forcing the filter initial conditions. Even if in general this is the best

thing we can do, some countermeasures can be taken in order to get

closer to the best result possible, in terms of reducing the ambiguity.

It should have become clear that the most important thing is the

possibility to fix some known directions where the ambiguity hap-

pens, that is between the viewer and the navigation reference frames.

One possibility which generally works is to recover the direction of

the gravity in the body reference frame, for example dealing with
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4.1 The observability Lemmas

calibrated IMUs. In this case a minimal realization is the model

(2.17) once the states corresponding to the accelerometers bias and

the gravity are removed from the system. Thus, the last equality

in equation (4.1) would read γ = R̄γ, thus forcing R̄ = exp (γ∧),

that is an arbitrary rotation along the vertical direction. Obviously

nothing can be done for the translation ambiguity, unless the initial

position of the system is known.

4.1.3 Motion requirements for observability

The formal definition of rich enough rotational motion is given in

Appendix. To the extent of the proof of the above lemma, it means

that R (t) must not be constant and rotations should happen along

at least two axes, while keeping the direction of the resulting angu-

lar velocity vector non constant. The proof shows that, given two

non-constant angular velocities ωi (t) , ωj (t) along two independent

(orthogonal) directions ~i, ~j and such that ωi (t) 6= ωj (t), every an-

gular velocity of the form:

ω (t) = ωi (t)~i+ ωj (t)~j (4.9)

ensures observability.

4.1.4 Reduced order observers for estimation with

degenerate motions

Regular motions of ground vehicles do not generally meet the mo-

tion requirements for observability given by Lemma 1: in general, the

vehicle accelerates for very short periods of time and most of the an-

gular velocity is along the vertical axis (heading changes only). This

45



Observability Analysis

was also the case of the experiments carried out. Unfortunately, the

set of angular motions along (at most) one axis does not fall into the

class of rich enough motions we identified. The observability study

proposed above suggests that in these condition the system is non

observable. In particular, the proof given in Appendix shows that

the gravity and the accelerometers biases cannot be disambiguated;

gyroscopes biases are observable in any case. Generally speaking, in

order to push model observability, some countermeasures maybe set

up: 1) use a reduced-order observer, i.e. remove the unobservable

variables from the state or 2) saturate the filter along the unobserv-

able components of the state space. The latter approach can be

implemented by fixing the unobservable states to their initial con-

ditions. In order to tell an EKF to keep a state almost fixed, it

is sufficient to use a very small value in the corresponding entries

of the state covariance matrix: this prevents the filter from moving

freely along the unobservable directions of the system. In the section

dedicated to the experimental results, an initialization procedure is

presented which allows to successfully set-up a filter able to esti-

mate the motion in the case of degenerate (more realistic) motion

conditions.
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Chapter 5

Motion estimation with

state equality constraints

This section introduces the algorithms for fusing inertial measure-

ments with visual constraints, in order to solve the Ego-Motion es-

timation problem. The chapter starts by introducing the iterative

schemes for the optimal filtering with nonlinear equality constraints.

Thus it will show how to incorporate the visual constraint with the

state estimation problem, given the inertial measurements, by using

the sub-optimal iterative schemes. Finally the Constrained Extended

Kalman Filter algorithm adopted in this work is presented.

5.1 Projection method

Several (sub-)optimal algorithms were developed in the literature for

dealing with linear and non linear equality-constrained state estima-

tion. A complete and very useful treatise can be found in [42, 37].
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Motion estimation with state equality constraints

As a gentle introduction, in the framework of optimal non linear

filtering, the issue can be viewed as solving the following problem.

Problem 1 (Constrained optimal estimation)

Given a non linear discrete-time system with state equations{
x (t+ 1) = f (x (t)) + νx (t)

y (t) = h (x (t)) + ηy (t)
(5.1)

with νx (t) ∼ N (0, Q) , ηy (t) ∼ N (0, R), determine:{
max
x

p
(
x (t)

∣∣Y t
)

s.t. φ (x (t)) = d
(5.2)

for a given function φ (x (t)) and d.

The function p () to be maximized is the posterior distribution

of the state, given the set of outputs up to the current time, Y t =

{ys, t0 ≤ s ≤ t}. It is known [15] that, being the system driven

by a Gaussian noise, the Extended Kalman Filter is the minimum

variance estimator which locally maximize the posterior distribution

p
(
x (t)

∣∣Y t
)
. However, the maximization of the posterior alone will

not, in general, satisfy the given constraint. Several solutions have

already been proposed in the literature [37] to the given motiva-

tional problem. The most general solution falls in the class of the so

called “Projection methods” , where the a-posteriori Kalman state

estimation x̂ (t)+ (i.e. the one which maximizes the given poste-

rior) is projected onto the constraint-space via classical constrained

optimization methods. The solution is [42]:

x̂p (t)+ = x̂ (t)+ +WHT
φ

(
HφWHT

φ

)−1 (
d− φ

(
x̂ (t)+)) (5.3)
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5.2 Minimum variance estimation with stochastic
constraints

for every W � 0. Hφ is the Jacobian of the constraint function with

respect to the state, computed on the unprojected estimation x̂ (t)+.

The reduction in uncertainty in the state estimation can be easily

found as:

P p
x (t)+ = Px (t)+ −WHT

φ

(
HφWHT

φ

)−1
HφPx (t)+ (5.4)

where Px (t)+ is the updated covariance matrix of the estimation

error. It can be proven [38] that: 1) x̂p (t)+ is an unbiased state

estimator for the foregoing system, given the constraint, for every

symmetric positive definite matrix W . 2) By choosing W = Px (t)+,

the projection method is equivalent to the maximum probability

constrained estimation

max
x

p
(
x (t)

∣∣Y t, φ (x (t)) = d
)

(5.5)

provided that the projected estimation and its covariance are fed

back into the estimation scheme [37]. This, in turn, corresponds

to the most popular scheme known as Measurement Augmentation

Kalman Filter [37], which treats the constraint as a perfect measure-

ment included into the measurement vector.

5.2 Minimum variance estimation with

stochastic constraints

The foregoing method is generally suitable when the constraints are

given in the form of deterministic constraints, such that the projec-

tion actually lies exactly on the constraint space. When the con-

straints take the form of stochastic functions, the optimal state es-
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Motion estimation with state equality constraints

timation is asked to weakly lie on the constraint space [3], i.e. to

minimize an error with respect to the stochastic constraint. The

solution to a similar problem (in the case of constraints in implicit

form), was called Implicit filtering [39], in the framework of vision-

only navigation on the Essential Manifold, which falls actually in

the class of stochastic Measurement Augmentation Kalman Filter.

This result can be included into the most general approach reviewed

in the previous section, showing that it is just a particular solution.

For this aim, the motivational problem 1 can be recast as:

Problem 2 (Stochastic-constrained estimation problem)

Given the system (5.1), determine:{
max
x

p
(
x (t)

∣∣Y t
)

s.t. φ (x (t) , z̃ (t)) is minimum
(5.6)

given a certain random variable z̃ (t) = z (t)+νz (t), νz (t) ∼ N (0, Rz).

The problem is well posed if we assume that for noiseless variable

z is φ (x (t) , z) = 0; in this case we will meet the property of the

epipolar constraints also. Note that now we put d = 0. Under such

condition, we have (dropping the time index for convenience):

0 = φ (x, z) = φ (x, z̃ − νz) (5.7)

A linearization of the constraint around small variations of the noise

around its mean value leads to:

0 = φ (x, z̃ − νz) ≈ φ (x, z̃) +
∂φ

∂νz
νz︸ ︷︷ ︸

ν̃φ

(5.8)
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5.2 Minimum variance estimation with stochastic
constraints

that is:

0− φ (x, z̃) ≈ ν̃φ (5.9)

where the change in the sign (eq. (5.8)) was made for convenience,

given the zero-mean characteristic of the noise. By fixing a certain

value for the state x, equation (5.9) plays the role of an innovation

term: the goal is to find such value that maximizes the posterior

p
(
x
∣∣Y t
)
, while minimizing the innovation (5.9). A possible opti-

mization objective is [15]:

min
x̂p

{(
x̂p+ − x̂+

)T
W−1

(
x̂p+ − x̂+

)
+
(
−φ
(
x̂p+, z̃

))T
R̃−1
φ

(
−φ
(
x̂p+, z̃

))}
(5.10)

where R̃φ = ∂φ
∂νz
Rz

∂φ
∂νz

T
and W � 0. The projected estimation can

be obtained in general form as:

x̂p+ =
(
W−1 +HT

φ R̃
−1
φ Hφ

)−1 (
W−1x̂+ + R̃−1

φ φ
(
x̂+, z̃

))
(5.11)

which, by using the Sherman-Morrison-Woodbury formulae, becomes:

x̂p+ = x̂+ −WHT
φ

(
HφWHT

φ + R̃φ

)−1

φ
(
x̂+, z̃

)
(5.12)

which variance is:

P p+
x = P+

x −WHT
φ

(
HφWHT

φ + R̃φ

)−1

HφP
+
x (5.13)

By using the same discussion as in [42] and putting W = P+
x , equa-

tion (5.12) is the Minimum Variance Estimator of the state x (t),
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which solves the problem 2 and (5.13) is its covariance. Again, pro-

vided that the projected estimation and its covariance are fed back

into the estimation scheme, it can be shown that equations (5.12)

and (5.13) with W = P+
x are equivalent to the solutions of:

max
x

p
(
x (t)

∣∣Y t, φ (x, z̃)
)

(5.14)

which is solved by extending the system output vector with the con-

straints and by running the Extended Kalman Filter on the extended

system.

5.3 Implementation

According to the motion and sensitivity parameters dynamics in

equations (2.17) and (2.18), given the constraints (3.22), a nonlin-

ear Kalman Filter was designed and tested, in order to solve the

problem as in equation (5.14). In this case the function φ (x, z̃) is

replaced with the set of epipolar constraints (3.22). The aim of the

filter is to estimate the state x (t) of the system, consisting of: the

navigation variables, T (t) , v (t) , a (t), the angular parametrization

of the rotation matrix R (t), the body angular velocity, ω (t), the

local gravity vector, γ (t), and the inertial sensor biases, ba, bω. In

this work, rotation matrices were parametrized using the exponen-

tial map, computed via the Rodrigues’ formulae [30]. The feature

detection and tracking module adopted in this article uses stereo

vision and the Scale Invariant Feature Transform (SIFT) algorithm

[22, 32]. The algorithm starts by acquiring a stereo images pair and

relies on the SIFT algorithm to detect, select, and match features
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5.3 Implementation

from left and right images. The stereo matching of the features is

performed by comparing the squared distance between the descrip-

tors of each feature in the two images and selecting the couple with

the lowest distance. Only those features on the right image that

have a corresponding match on the current left image are considered

valid. With the same distance-based approach it is possible to track

the features which are present in the current and reference left im-

ages. For the purpose of numerical implementation, the kinematic

equations (2.17) were time-discretized using the Euler integration

method. The base sample time was chosen coincident with the sam-

pling rate of the IMU i.e. dt = 0.01s, which is supposed to be the

fastest sample time in the estimation loop. As a simple inspection of

the visual measurement model (3.22) can tell, the visual constraints

depend on the pose of the system at the current time g (t) and on

the reference pose gref =̇g (τ), corresponding to the pose the system

had some steps back in the past, when the group of features being

tracked was seen for the first time. Although other methods are vi-

able, we decided to augment the state vector of the estimator with

the motion parameters (angular parametrization and translation) of

the reference pose, see for example [28, 4], by assigning to the new

state variable the trivial dynamics gref (t+ 1) = gref (t), since it is

not going to change over time. The resulting discrete time equations
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of the estimator are therefore:

T (t+ 1) = T (t) + v (t) dt

v (t+ 1) = v (t) + a (t) dt

a (t+ 1) = a (t) + ηa (t) dt

R (t+ 1) = exp (Ω (t) dt)R (t)

Ω (t) = ω (t)∧
ω (t+ 1) = ω (t) + ηω (t) dt

γ (t+ 1) = γ (t) + ηγ (t) dt

ba (t+ 1) = ba (t) + ηba (t) dt

bω (t+ 1) = bω (t) + ηbω (t) dt

gref (t+ 1) = gref (t)

yimu (t) =

[
RT (t) (a (t) + γ (t)) + ba (t) + νa (t)

ω (t) + bω (t) + νω (t)

]
φ
(
g (t)−1 gref (t) , yilτ , y

i
lt

)
= 0, i = 1, . . . , N (t)

φ
(
glrg (t)−1 gref (t) , yjlτ , y

j
rt

)
= 0, j = 1, . . . ,M (t)

(5.15)

Note that the number of tracked features on the left, N (t), and right,

M (t), images incorporate the time index since we expect them to

change over time.

The fundamental estimation scheme for optimally filtering mo-

tion, gravity and sensitivity parameters is based upon the stochastic

Measurement Augmented Extended Kalman Filter (also named Im-

plicit – or Essential – Filter by [39]) introduced before. Since the

inertial and visual modules run with different frequencies, when no

image measurements are available, the estimation cycle is performed

as in standard EKF, via prediction of the state vector through the

non linear system (2.17), by using the estimation of the state at the

previous time step, and correction employing the new inertial mea-
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5.3 Implementation

surements only. When a new pair of stereo images becomes available,

the constrained correction step is performed. As anticipated, this is

made by stacking the inertial measurements error vector with the

epipolar constraints computed over the tracked features on the left

and right images:

δy (t) =



ỹimu (t)−

[
R̂T (t) (â (t) + γ̂ (t)) + b̂a (t)

ω̂ (t) + b̂ω (t)

]
...

−φ
(
ĝ (t)−1 ĝref (t) , yilτ , ỹ

i
lt

)
...

−φ
(
glrĝ (t)−1 ĝref (t) , yjlτ , ỹ

j
rt

)
...


(5.16)

Then the constrained correction is performed by using the equations

below:

S (t+ 1) = H (t)P (t+ 1)−H (t)T + R̃ (t) (5.17)

K (t+ 1) = P (t+ 1)−H (t)S (t+ 1)−1 (5.18)

x̂ (t+ 1)+ = x̂ (t+ 1)− +K (t+ 1) δy (t) (5.19)

Γ (t+ 1) = I −K (t)H (t) (5.20)

P (t+ 1)+ = Γ (t+ 1)P (t+ 1)− Γ (t+ 1)T +K (t+ 1) R̃ (t)K (t+ 1)T

(5.21)

where R̃ (t) = J (t)RJ (t)T and R is the block diagonal matrix of

noise covariances of the IMU and of the image features
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R =

[
Rimu 0

0 Ry

]
(5.22)

The Jacobian matrices H (t) and J (t) are defined as:

H (t) =
[
Himu (t)T Hφ (t)T

]T
(5.23)

J (t) =

[
I6×6 0

0 Jφ (t)

]
(5.24)

(5.25)

being respectively:

Himu (t) =

[
∂yimu
∂x(t)

∣∣∣
x̂(t)

0

]
(5.26)

Hφ (t) =



...[
H i
φl,t

H i
φl,ref

]
...[

Hj
φr,t

Hj
φr,ref

]
...


(5.27)

Jφ (t) =



...
∂φ(g(t)−1gref (t),yilτ ,y

i
lt)

∂yilt

∣∣∣
ĝ(t),ĝref (t),yilτ ,ỹ

i
lt

...
∂φ(glrg(t)−1gref (t),yjlτ ,y

j
rt)

∂yjrt

∣∣∣
ĝ(t),ĝref (t),yjlτ ,ỹ

j
rt

...


(5.28)
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with i = 1, . . . , N (t), j = 1, . . . ,M (t), and

H i
φl,t

=
∂φ
(
g (t)−1 gref (t) , yilτ , y

i
lt

)
∂g (t)

∣∣∣
ĝ(t),ĝref (t),yilτ ,ỹ

i
lt

(5.29)

H i
φl,ref

=
∂φ
(
g (t)−1 gref (t) , yilτ , y

i
lt

)
∂gref (t)

∣∣∣
ĝ(t),ĝref (t),yilτ ,ỹ

i
lt

(5.30)

Hj
φr,t

=
∂φ
(
glrg (t)−1 gref (t) , yjlτ , y

j
rt

)
∂g (t)

∣∣∣
ĝ(t),ĝref (t),yjlτ ,ỹ

j
rt

(5.31)

Hj
φr,ref

=
∂φ
(
glrg (t)−1 gref (t) , yjlτ , y

j
rt

)
∂gref (t)

∣∣∣
ĝ(t),ĝref (t),yjlτ ,ỹ

j
rt

(5.32)

Discussion: keeping the estimation coherent. As already

discussed, the epipolar constraints depend on the system pose at two

different time instants: one is the reference pose, the other is the one

at the current time, when the update is performed. Every constraint

brings new information about the current time, but provides no fur-

ther information about the reference pose g (τ). This means that

the uncertainty related to this pose is not affected by a new image

acquisition and must be constant. Due to the linear approximations

needed in computing the Kalman gain, it could happen that the

state variables corresponding to the reference pose and their covari-

ances are updated by the filter. This is undesired, because it is just

an effect of the linearization (the system cannot gain observability

during linearization). Avoiding the update of the reference pose and

its covariance can be made by enforcing the null Kalman gain, that

is by zeroing the rows of the Kalman gain corresponding to the state

variable of the reference pose. This would ensure that the update

step will not affect the reference pose and the related covariance ma-

trix.
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5.4 Dealing with occlusions and new fea-

tures

The loose-coupling approach has the advantage that dealing with

occlusions, is straightforward, since it is delegated to the tracker. If

a feature temporarily disappears from the field of view, the tracker

will not find any correspondence in the database and simply the cor-

responding constraint will not be computed. Should the feature ap-

pear again, it would be used to compute the corresponding constraint

again. Figure 5.1 shows a typical example where some features be-

come occluded. The images were taken during a field experiment,

where the sensor suites were mounted on the top of a car moving in a

dynamic environment. Per each pair, the left frame is the key-frame

taken at the reference pose, while the image on the right is the cur-

rent left image. The green dots are the tracked point between the

two images. The occluded features are just not used for visual cor-

rection. Once become visible again, they are used in the estimation

filter.

A different approach must be used with features which exit from

the field of view, due to the camera motion. Usually the average

lifetime of a group of features being tracked, in terms of the number

of frames in which each feature is visible, before being lost, stands

within few tens of frames (usually 20-30 frames, based on field tests).

This, however, depends on the motion of the camera. Obviously,

when tracking/matching enough features is no more possible, due
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5.4 Dealing with occlusions and new features

Figure 5.1: An example on how the system deals with occlusions. The

time flows from top to bottom.

to camera motion, a new reference group must be selected that will

be used to anchor the future epipolar constraints. Although other

alternatives are viable [2], when a new group of reference features

must be selected, at time τ : i) we first obtain the best estimation

of the posterior p
(
x (τ)

∣∣Y τ , φi,j
)

by performing a Kalman update

step with the remaining tracked features. Then, ii) we proceed by

marginalizing the posterior distribution with respect to the state

corresponding to the refined body pose ĝ (τ)+, namely xg (τ), that
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is

p
(
xg (τ)

∣∣Y τ , φi,j
)

=

∫
p
(
x (τ)

∣∣Y τ , φi,j
)
dxg = N

(
ĝ (τ)+ , P+

ĝ(τ)ĝ(τ)

)
(5.33)

The vector xg (τ) contains the components of the state vector rela-

tive to the position and attitude state variables (i.e. the pose vari-

ables). iii) We simply substitute the old reference pose, stored in

the filter state, with this estimation of the body pose, gref ← ĝ (τ)+.

This state variable will evolve according to the null-time derivative

dynamic:

gref (t+ 1) = gref (t) (5.34)

At the same time, we clone the error covariance of the current body

pose estimation P+
ĝ(τ)ĝ(τ) in the entries corresponding to the new state

variable, i.e.

P+
τ ←

[
P+
ĝ(τ)ĝ(τ) P+

ĝ(τ)x̂(τ)

P+
x̂(τ)ĝ(τ) P+

x̂(τ)x̂(τ)

]
(5.35)

Finally, iv) we swap the group of reference features with the new

acquired one, {yilτ}. The reference pose (and its relative covariance)

is kept constant along the system evolution, according to the trivial

dynamics, as long as the reference features yilτ will be successfully

tracked in the future images. When at time τ + h a new group of

features must be acquired, we perform again a Kalman update step

with the remaining tracked features, then we marginalize and replace

the reference pose with ĝ (τ + h)+, i.e. the new body pose estima-

tion at the current time; finally we clone again the error covariance

of the current body pose estimation in the entries corresponding to

the new state variable. This is in line with a more general approach,

known as stochastic cloning [28, 4] and allows to keep track of the
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5.5 Dealing with outliers

Figure 5.2: Example of a possible matching ambiguity connected with

the use of covariant feature detectors (e.g., SIFT).

cross covariance of estimated navigation between the two time in-

stants. Obviously, given the relative nature of the measurements

employed, this technique does not prevent the filter from diverging

over time from the actual state. The problem is in fact in the pose

switching mechanism, as also specified in [2]. Before performing the

pose substitution gref ← ĝ (τ)+, the error between the actual state

and the estimated one is a random variable with mean value x̂ (τ)+

and covariance P+
x̂(τ)x̂(τ). When the pose and its covariance is stored

in the filter memory, this error cannot be corrected anymore, unless

more complex mechanisms are employed (for example loop-closure),

and the state subspace corresponding to the system pose will move

by an amount of P+
ĝ(τ)ĝ(τ). By assuming that at each pose switch,

the error with respect to the reference pose is of the same amount,

after m switches, the norm of pose estimation moved by an amount

proportional to m
∥∥∥P+

x̂(τ)x̂(τ)

∥∥∥, see also [2, 24].

5.5 Dealing with outliers

The desirable behavior of a feature detector is the capability of ex-

actly tracking the same warped image regions as they are deformed
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along changes in view points. To do so, covariant feature detectors,

such as SIFT, are designed to mod-out the effects of transformations

belonging to some group. In SIFT, the features are canonized with

respect to translation, rotation and scale, that is, the effects of these

transformations are compensated and features become invariant to

them. Canonization induces a certain amount of loss of information

in the detected features, thus ambiguities could arise. Figure 5.2

shows an example where this information loss leads to a mismatch:

the two highlighted image regions share almost the same appearance

information even if they occur in distant areas; the only difference be-

tween them is that one is the rotated version of the other. As soon as

they undergo the canonization process, involved in extracting invari-

ant features, they can be considered being at the same scene point

by the detector, leading to a mismatch. As a result, the whole set

of features collected during the acquisition, matching and tracking

phases may be affected by a certain amount of outliers. For the pur-

poses of this work, we found it convenient to recast the definition of

outliers in terms of the effect they have on the motion description. In

particular, keypoint mismatching between the left/right frames (in a

stereo vision configuration), keypoint mistracking between successive

time instants and due to features belonging to moving objects on the

scene will generate points which will move on the image plane in a

different way with respect to the good points. A robust procedure is

thus generally needed in order to guarantee a certain amount of in-

sensitivity to the set of possible deviations from the nominal model

assumptions. In this work outliers were partially rejected during

the tracking phase by using a classical RANSAC approach based

on epipolar geometry [10]. A maximum of 300 RANSAC steps per
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5.6 Simulation Environment

frame were sufficient to purge the set of image features from almost

all outlying data. A further refinement can be done during estima-

tion via simple statistics, for example by inspecting the likelihood of

the i−th constraint, given the motion prediction. Good results were

obtained by accepting for the update step those constraints which

likelihood stands within a certain threshold φth:

φ
(
ĝ (t)−1 ĝref (t) , yilτ , ỹ

i
lt

)2
Siφ (t+ 1)−1 < φth (5.36)

φ
(
glrĝ (t)−1 ĝref (t) , yjlτ , ỹ

j
rt

)2
Sjφ (t+ 1)−1 < φth (5.37)

where the matrix Siφ (t+ 1) (the same being for Sjφ (t+ 1)) is the

conditional variance of the i−th (j−th) constraint, defined as:

Siφ (t+ 1) = H i
φ (t)P (t+ 1)−H i

φ (t)
T

+ R̃i (t) (5.38)

5.6 Simulation Environment

A very large number of simulation experiments were carried out to

assess the performance of the proposed approach both in ideal and

degraded conditions, for example with partially known IMU-Camera

and stereo pair transformations, and increasing level of noise in the

inertial sensors, with different filter tuning, and along various tra-

jectories, resulting in some thousands of tests carried out in different

conditions. We present here a representative example able to gen-

eralize the results. The simulation was performed with the system

moving as it was hand-held. Total travel was about 100 meters and

200 degrees (of heading). The visual features were corrupted with a
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zero-mean random noise, with a constant standard deviation (about

1.5 pixel of maximum error). Inertial sensor characteristics were se-

lected to be those typical of low-cost MEMS Inertial Measurement

Units, very similar to the one used in the real-world experiment.

The EKF was initialized with maximum 2 degrees of attitude error,

coherently to what is normally achieved with a gravity-based coarse

alignment algorithm. The sensitivity parameters were all initialized

with zero values. A total of 4000 (different) features where collected

along the whole path and the average life-time of a reference group

of features was around 40 frames. The total final error, for the

presented simulation, was of about 0.5m, corresponding to approxi-

mately 0.5% of error over path. Figures 5.3 and 5.4 show time his-

tories of the navigation variables and estimation errors with respect

to the known (simulated) values. Note that the initial misalignment

between the actual attitude and the estimated one corresponds to

the choice of the EKF initial conditions; this initial attitude error

cannot be compensated by the filter itself due to the gauge ambi-

guity exposed before. The filter estimates R̃ (t) that is offset by R̄

(the initial attitude error in this experiment) from the actual R (t).

Analogously, the position estimation error increases proportionally

to the actual position, due to such misalignment (cf. Lemma 1). The

direction of the gravity is locally perturbed from the expected (true)

vertical direction, compatibly with the initial angular misalignment.
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5.6 Simulation Environment

Figure 5.3: Errors between true and estimated motion variables. Note

the initial misalignment between the actual attitude and the estimated one,

due to the choice of the EKF initial conditions (the almost fixed error

in the attitude estimation). This misalignment cannot be compensated

(as stated by the observability analysis) by the EKF. X-axis (roll), blue

line; Y-axis (pitch), green line; Z-axis (yaw), red line. The spikes in the

attitude error plots are due to the −π, +π change.
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Figure 5.4: Estimation of gravity and inertial biases. (a) Errors between

true and estimated inertial sensors biases. (b) Estimation of local gravity.

Note that the direction of the gravity is locally perturbed from the expected

(true) vertical direction, compatibly with the initial angular misalignment:

as a matter of fact, the continuous line is the estimated local gravity,

whereas the dashed line is the true gravity vector, rotated by using the

known initial attitude error.
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Chapter 6

Experimental results

The proposed algorithm was tested using an experimental setup in a

real dynamic environment. This section shows some sample experi-

ments performed outdoor. The first test was performed in the Uni-

versity of Pisa, Faculty of Engineering parking lot, using a wheeled

ground vehicle. A snapshot of about 80 seconds, where recognition

of the actual traveled path was easier, was extracted from a longer

recording. Total travel was of few hundreds of meters. A longer

experiment was carried out in a typical situation of a car moving

in a dynamic environment of city streets, with the presence of cars

and people moving. In this case, the driver was asked to drive as

naturally as possible.

Data were collected by using a stereo camera pair (Point Grey

Flea2) and a low-cost low-accuracy IMU, and processed off-line to

obtain an estimation of the motion variables. The IMU used for the

Test 1 was the Crossbow mNav 100CA, while Test 2 was performed

by using a newer Analog Devices IMU (ADIS16355). The two IMUs
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had comparable level of noise, while the second one ensured a better

in-run bias stability, after an initial transient due to temperature

stabilization. The tests were performed after this transient expired.

Images were taken asynchronously from IMU measurements, at an

average rate of approximately 26Hz, while the IMU recorded the

inertial measurements at a rate of 100Hz. Visual and inertial data

were successively synchronized using a common time stamp. Images

resolution was 516 × 388 pixels. The SIFT detector [22] was used

to detect and track features on the left and right images. The ex-

perimental results presented here were obtained after a coarse filter

tuning.

6.1 Algorithm Initialization

Initialization of the estimation filter deserves a particular discussion,

in order to better understand the points raised in section 4. As al-

ready specified, regular motions of ground vehicles do not generally

meet the motion requirements for observability given by Lemma 1.

In particular the gravity and the accelerometers biases cannot be

disambiguated. Given the non observability issues, in order to force

the observability of motion variables, we decided to saturate the

state corresponding to the gravity to the value γ =
[

0 0 9.81
]T

,

and to partially recover the initial misalignment by performing a

gravity-based coarse alignment of the IMU, by means of the sensed

accelerations in the static configuration. The filter was thus initial-

ized with the resulting value of the attitude and the corresponding

covariance was initialized with a very small value (typically 6 ÷ 10
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6.1 Algorithm Initialization

orders of magnitude smaller than the covariance of the noise). After

coarse alignment, the filter started with the system standing still for

the first few seconds, in order to partially estimate the accelerometer

biases. When the estimation of the biases reached a locally-optimal

value, i.e. the corresponding covariance of the estimation settled

to a local equilibrium (as Figure 6.1(a) shows), the corresponding

error covariance was saturated to a very small value and the filter

was left free to evolve normally. We called this procedure partial

auto-calibration, which performances are summarized in Figures 6.1

and 6.2. These figures refer to the first test proposed, that is the

ground vehicle in the parking lot. Figure 6.1(a) shows the covari-

ance reduction during the partial auto-calibration procedure of the

accelerometers biases in static conditions. At time 50s, the bias

estimation (as Figure 6.1(b) shows) reaches a local minimum: this

implies that the variation of the covariance is small enough (Figure

6.1(a)). Once such equilibrium is reached, the entries in the covari-

ance matrix corresponding to the biases can be saturated to a very

small value and kept constant along filter evolution. This prevents

the filter from updating the bias estimation, which, otherwise, would

result in an unconstrained walk along a subset of the unobservable

subspace.
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(a) (b)

Figure 6.1: Partial auto-calibration of the accelerometers biases. (a)

The 3σ bounds for the estimated errors of acceleration bias, during the

partial auto-calibration procedure. The shown values are 3 times the

square root of the corresponding diagonal entries of the state covariance

matrix. (b) Estimation results of the acceleration biases.

Figure 6.2: Auto-calibration of the gyroscope biases.
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6.2 Field Tests

6.2.1 Ground vehicle in parking lot

The system was kept still in the starting position, for the first 50

seconds, then motion started. Total travel was approximately 60m

and 200 degrees (of heading). Some moving objects (mainly people

and tree leaves) were visible during experiment and appeared on the

image plane. Moreover a dramatic illumination change and high

image contrast happened after the vehicle turned 180 deg of heading

to return toward the starting direction of motion. Figure 6.3 shows

some snapshots collected along the path.
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Figure 6.3: Some example images from the video sequence recorded dur-

ing experiment in the parking lot.
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6.2 Field Tests

The proposed method was compared with two pure vision-only navi-

gation approaches. The first one is a raw stereo visual odometry, ob-

tained by composing all the relative poses between couples of frames.

In the second case, the stereo visual odometry was refined via multi-

frames Sparse Bundle Adjustment [20]. The same technique of Kono-

lige [20] was used, except that the IMU was not used to correct the

attitude. For both cases, the absolute position estimation drift was

partially reduced by under-sampling the images1. In the second case

only, the Sparse Bundle Adjustment was used before switching to

the next keyframe, employing all the collected features and all the

estimated relative camera poses.

Figures 6.4 and 6.5 show the estimated path for the proposed algo-

rithm and the vision-only navigation approaches, projected on the

X-Y (North-East) and X-Z (North-Down) planes. The smoothing

effect performed by the Kalman filter on the noisy visual measure-

ments is noticeable throughout the entire time range of the exper-

iment, compared with the vision-only navigation results. Unfortu-

nately no ground truth was available during the motion; however it

is known the initial position and the approximated position of some

visited areas on the map. Based on these approximated knowledge,

it was computed that the error over path was approximately 1%.

1an average of 1 image every 20 was considered for estimating the relative

pose.
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Figure 6.4: Comparison of the reconstructed path by using the proposed

approach (Constrained EKF – blue line), raw visual odometry (RAW VO

– red-square line) and visual odometry with multi-frames sparse bundle

adjustment refinement (SBA VO – black-cross line).

Figure 6.5: Comparison of the drift on the vertical direction by using

the proposed approach (Constrained EKF – blue line), raw visual odome-

try (RAW VO – red-square line) and visual odometry with multi-frames

sparse bundle adjustment refinement (SBA VO – black-cross line).
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6.2 Field Tests

Figure 6.6: 3σ bounds for the estimated errors of navigation variables.

The shown values are 3 times the square root of the corresponding diagonal

entries of the state covariance matrix.

Figure 6.7: Number of tracked features on the right image over time.

The red lines indicate the images corresponding to a new group of refer-

ence features used to anchor the epipolar constraints along the path.

6.2.2 Challenging the test: car driving in city

During this test, the acquisition system was mounted on the top

of a car moving in a typical dynamical environment of city streets.
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The system was kept still (with the engine on) in the starting po-

sition, for the first 30 seconds, then motion started. Total travel

was approximately 1.1Km and more than 300 degrees (of heading).

The maximum average velocity reached during the test was approx-

imately 30Km/h. No loop closure technique was employed to refine

the estimation. Several moving objects, such as people, cars, tree

leaves, were visible during experiment and appeared on the image

plane. Moreover, the streets were not very regular and some sig-

nificantly rough areas were encountered during motion. Figure 6.8

shows the sensors suite mounted on the top of the car used for the ex-

periments. Figures 6.9 to 6.11 show some snapshots collected along

the path.

Figure 6.8: Navigation sensors suite mounted on the top of the car used

for city experiments.
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6.2 Field Tests

Figure 6.9: Some example images from the video sequence recorded dur-

ing the car driving in city experiment.
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Figure 6.10: Some example images from the video sequence recorded

during the car driving in city experiment.
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6.2 Field Tests

Figure 6.11: Change of the viewpoint with respect to the last image of

Figure 6.10 (previous page). Note the drastic illumination change and

contrast due to the presence of the sunlight against the camera.
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The method was compared with the ground truth given by the

GPS. Figure 6.14 shows the 2D final estimation error on the North-

East plane, with respect to the final position measured by the GPS.

The total error was obtained by computing the norm of the error

between the GPS final position P gps
end and the one estimated by the

filter, P̂ ekf
end . The error over path was thus obtained via:

εpath =

∥∥∥P gps
end − P̂

ekf
end

∥∥∥
total length

≈ 2% (6.1)

The percentage error in the final position can also be computed, that

is:

ε% =

∣∣∣∣∣∣
‖P gps

end‖ −
∥∥∥P̂ ekf

end

∥∥∥
‖P gps

end‖

∣∣∣∣∣∣ ≈ 4% (6.2)

Figure 6.12 shows the comparison between the velocity estimated

by the filter and the one computed employing GPS measurements.

The latter did not measured velocity by itself, thus the pseudo-

measurement of velocity was obtained via numerical differentiation

of the measured North-East positions. Figure 6.13 shows the esti-

mated attitude of the system during the motion. Both Figure 6.12

and 6.13 are snapshot taken from a longer sequence, where the vari-

ability of the motion was more appreciable, in particular during turns

and in the middle-final part of the motion. Figure 6.15 shows the

estimated trajectory and the ground truth projected onto a map of

the visited area.
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Figure 6.12: Comparison of estimated velocity and the velocity measured

by GPS. The GPS adopted did not compute the vehicle velocity, thus it

was obtained via numerical differentiation of the measured North-East

positions. The figure shows a snapshot taken from a longer sequence,

where the variability of velocity was appreciable. Solid lines - estimated

velocity (blue - Vnorth, green - Veast, red - Vdown); dashed line - GPS

measured velocity (blue - Vnorth, green - Veast).
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Figure 6.13: Estimated attitude of the vehicle. The figure shows a snap-

shot taken from a longer sequence, where the variability of angular motion

was appreciable. Blue - roll; green - pitch; red - yaw.
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6.2 Field Tests

Figure 6.14: Evaluation of the final error estimation in the North-East

plane, with respect to the GPS measured path.
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Experimental results

Figure 6.15: Projection of the estimated trajectory and ground truth on

the map of the visited area.
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Conclusions

We have proposed a constraints-based loose-coupling approach for

the vision aided inertial navigation problem, which makes use of

stereo vision and the epipolar geometry to constrain the motion

of the system and correct errors in navigation. The full analytical

characterization of the unobservable space of the class of constraints-

based loosely-coupled problems where the one proposed falls was pre-

sented. It was shown that the existing techniques of visual-inertial

navigation that rely on (features-based) visual constraints can be

unified under the convergence properties highlighted. We have ana-

lyzed the conditions in which the algorithm can operate in an ideal

manner, that is the motion conditions that ensure observability. The

algorithms for fusing inertial measurements with visual constraints

were presented, in order to solve the Ego-Motion estimation problem,

showing how to define, implement the algorithm and make it work.

We faced the specific problem of navigation of ground vehicles from

a practical point of view and, starting from the convergence prop-

erties, we proposed the countermeasures needed in order to let the

navigation algorithm work even in the motion conditions typical of

road vehicles, which do not meet the requirements for observability.
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Experimental results

The algorithm was tested both in simulation and with real data in

unstructured dynamic environments, demonstrating the theoretical

results.
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Chapter 7

Robust model-based pose

estimation with unknown

measurements association

This Chapter describes the robust pose estimation scheme able to es-

timate the relative motion – in terms of position, attitude and veloc-

ity – of a monocular vision system with respect to a tracked object of

known geometry. The proposed algorithm reformulates the problem

(usually solved via algebraic techniques or iterative optimizations)

into a stochastic nonlinear filtering framework. It will be shown that

it is robust with respect to outliers contamination of the visual data,

marker disappearing and reappearing on the image plane and marker

overlapping. Moreover it is able to adaptively associate a given im-

age measurement to a certain marker or to an outlier by using proba-

bilistic techniques, thus it is totally self-contained and requires a very

rough and fast detection phase. The approach is demonstrated with
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the problem of hand palm pose estimation and motion tracking during

reach-and-grasp operations and the related results are presented.

7.1 Motivation

One of the core problems in the field of applied Computer Vision

is the estimation of the pose of the vision system with respect to

the observed scene. Pose estimation is the concluding step in a

sequence of different phases: i) detection of significant features in

the scene from camera images; ii) tracking of the same set of features

between successive frames; iii) estimation of the motion of the visual

system between such frames, employing the collected features (i.e.

pose estimation). A huge number of techniques are available in the

literature, and differ each other mainly for the (most challenging)

issue of ensuring a certain level of robustness to the presence of

noise and outliers in the data.

A very particular subclass of pose estimation techniques are rela-

tive to the problems where the motion estimation is performed with

respect to objects of known shape or geometry, for example in the

framework of autonomous formation flight[33], autonomous aerial

refueling [33, 45, 25, 1], relative localization with respect to known

objects and/or patterns and so on. In these cases, the problem is

reformulated taking advantage of the known geometry of the object

being tracked. Here we concentrate on the monocular case and to the

case where some markers are placed onto object surface at specified

positions or, analogously, some regions of interest of discriminative

appearance at known positions can be extracted. In this case, the
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7.1 Motivation

Figure 7.1: Some synthetic examples of marker positioning for au-

tonomous aerial refueling and formation flight [33].

pose estimation problem is solved by recognizing the regions of in-

terest in the image and by minimizing a given cost function, with

respect to relative rotation and translation, of a certain residual

built upon such measured projections. Existing and most used ap-

proaches mainly rely on iterative optimization techniques, see for

instance [23, 9, 7], and generally do not provide information on rel-

ative velocity. In some particular cases, the pose estimation is made

by employing active markers (mainly LEDs, remotely switched by

the controller of the vision system) which improve association and

outlier rejection. One examples is the VisNav system[8], used in the

framework of autonomous aerial refueling and formation flight (see

for example [45]).

In the most general approach, passive markers are used. The

techniques of this class usually require that all the markers on the ob-

ject surface are visible along the whole video stream and do not reach

degenerate configurations (for example marker overlapping or occlu-
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Figure 7.2: A real example of camera tracking IR LEDs placed on the

back of airplane model for pose estimation in autonomous formation flight

[33].

sions). Finally, they usually require that the association between

physical markers and image measurements is known. A robust vari-

ant of the algorithm originally presented in [23] (LHM) was proposed

in [33], which employs an Integer Linear Programming optimal al-

gorithm for marker labeling, which revealed robust with respect to

marker disappearing and occlusions. In all these cases, however, the

velocity information is generally not available as the output of the

optimization problem.

This chapter proposes a novel and robust algorithm for the monoc-

ular pose estimation of an object with known geometry. The problem

is reformulated into a stochastic nonlinear filtering framework and it

is robust with respect to outliers contamination of the visual data,

marker disappearing and reappearing on the image plane and marker

overlapping. With the term “robust” we mean that the technique

is able to recognize less probable measurements and the estimation

problem can still be solved even if a very low number of features
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7.1 Motivation

(that would be non sufficient for standard algebraic algorithms) is

observed. Moreover it is able to adaptively associate a given image

measurement to a certain marker or to an outlier by using prob-

abilistic techniques, thus it is totally self-contained and requires a

very rough and fast detection phase, i.e. the prior association of a

certain measurement is not needed to make the algorithm work.
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7.2 Motion model

Figure 7.3: Schematic formalization of the pose estimation problem rel-

ative to a known geometry. The Region of Interest are represented as

circular markers placed onto object surface.

Suppose to have a rigid body moving in front of a camera. Ac-

tually, we are interested in the relative motion of the system with

respect to the camera, thus the camera can be assumed fixed in space

or moving with respect to another reference frame, which does not

change the terms of the problem. The motion of the frame σ, rigidly

fixed to the body, is modeled with respect to the camera frame c

according to the following continuous-time kinematic model:
Ṫ (t) = v (t)

v̇ (t) = ηv (t)

Ṙ (t) = R (t) Ω (t)

Ω (t) = ηω (t)∧

(7.1)

where Ω (t) is the skew symmetric matrix of the body angular ve-

locity ηω (t) expressed in the coordinates of the body σ (being ∧ the

cross-product operator), T (t) , v (t) and R (T ) are respectively the

position, linear velocity and rotation matrix of σ with respect to the
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7.2 Motion model

frame c. Finally ηv (t) and ηω (t) are zero-mean white noises with

constant variance, modeling the body linear accelerations and angu-

lar velocities as random walks. This choice is justified by the fact

that we assumed not to have any prior information regarding the

nature of the body motion. The variables T (t) and R (t) define the

group transformation g (t) , {R (t) , T (t)} ∈ SE (3), which fully

describe the 6 Degrees of Freedom localization problem of the body

σ with respect to the defined reference frame.

Suppose that some markers have been placed on the body surface;

the 3D positions of these markers with respect to the body frame is

known (Figure 7.3). Assume now to measure the (noisy) projections

of these markers on the image plane of the camera. The motion of

the body with respect to the fixed frame c can thus be described

by means of the motions of these features on the image plane. Let

Tmiσ ∈ R3 be the known position of the i−th marker, expressed in

the coordinates of the body frame σ: its projection on the image

plane can be written as:

yi (t) = π (g (t)Tmiσ) + νi (t) (7.2)

where π () : R3 → RP2 denotes the projective operator, according

to the pinhole model, and RP2 represents the projective space, see

[24]. Moreover, νi (t) is a zero-mean white noise with variance Ri,

assumed constant among features. When N markers are placed onto

the body surface, the measurement equations can thus be written as:
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y (t) =


π (g (t)Tm1σ) + ν1 (t)

π (g (t)Tm2σ) + ν2 (t)
...

π (g (t)TmNσ) + νN (t)

 (7.3)

As in all pose estimation algorithms, the rationale is to use the mea-

surements (7.3) as a measure of the pose – g (t) , {R (t) , T (t)} ∈
SE (3) – of the body with respect to the camera, then to use this

measure to estimate the relative motion variables – position, ori-

entation and velocity – between the body and the camera. The

challenge in the proposed approach is twofold: above all the marker

measurements are assumed to come in a random way, such that the

association between a measurement and a physical marker cannot

be made a priori; moreover we want the algorithm to be robust with

respect to the presence of outliers, occlusions and markers entering

and exiting from the field of view.

7.3 Robust pose estimation

7.3.1 Features detection

At this step of the problem, we assume that the parts of the image

the algorithm uses as measurements are distinctive enough, such that

a simple and fast feature detector can be employed at this stage. For

the purposes of the work, a very raw and simple detector based on

Regions Of Interests (ROIs) is sufficient. ROIs provide a comple-

mentary description of image structures in terms of regions, recom-

mended when the information to be extracted from images belong
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7.3 Robust pose estimation

to a certain and known class, which can be expressed in terms of col-

ored regions, patterns, and so on. This is the case of the proposed

problem also. The detector proceeds iteratively, by looking for those

regions of connected pixels, which histogram is as close as possible

(in the sense of Bhattacharyya similarity coefficient) to the reference

histogram. The center of the detected area is then considered the

location of the feature on the image plane. A robust ROI extraction

and tracking has proved to be difficult, in the literature, and some de-

tection ambiguities could raise. For example, the detector could fail

in some regions due to local illumination changes or shadows. The

result is the inability to detect some visible ROIs or the possibility

that the features set may be contaminated by outliers. Finally some

ROIs may disappear from the field of view due to body movements.

For these reasons, the tracking phase in passive marker-based visual

systems may be problematic and lead to an extremely tricky detec-

tion phase. Since a model of the body and some information about

its shape are available, it is convenient to reformulate the tracking

problem into a stochastic optimization problem, embedded into the

estimation task.

7.3.2 Filtering motion and pose

According to the motion parameter dynamics in Equation (7.1),

given the image-space measurements (7.3), a non-linear stochastic

estimation scheme, can be implemented to estimate the state x (t)

of the system, consisting of the motion variables, T (t) , v (t) and

the angular parametrization of the rotation matrix R (t). For the

purpose of real-time implementation, the kinematic equations (7.1)
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can be time-discretized using the Euler integration method. The

resulting discrete time equations of the estimator are:



T (t+ 1) = T (t) + v (t) dt

v (t+ 1) = v (t) + ηv (t) dt

R (t+ 1) = R (t) eΩ(t)dt

Ω (t) = ηω (t)∧
yi (t) = π (g (t)Tmiσ) + νi (t) , i ∈ V (t) ⊆ {1, 2, ..., N}

(7.4)

Note the exponential approximation used to numerically integrate

the rotation matrix. The set V (t) denotes the group of those markers

that are visible at the current time (modulo the clutters). The set is

time dependent, since the physical markers may move out of the field

of view or become occluded. Given the non linearity of the model

with respect to the state and the orientation noise terms, a certain

number of estimation schemes can be implemented, from the ones

taking inspiration from the Kalman Filter (EKF, UKF, ...), to the

particle filters and so forth. Although arguably other choices can

be made, we are not interested in estimating the whole conditional

density function of the state, as in particle evolution schemes, but

only the point estimate of the state, since we expect a unimodal

posterior density of the motion variables. All the deviations from

the nominal model assumptions (i.e. the tails of the posterior) are

considered to be due to clutters, and are ignored in the estimation

process. This fact, together with the Gaussian nature of the model

and measurements noises, motivated us to limit the discussion to

nonlinear Kalman Filtering.
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7.3 Robust pose estimation

7.3.3 Dealing with occlusions and outliers: the

association problem

When using simple detection algorithms like the one described in

Section 7.3.1, render the task of associating a-priori a projection

to a physical marker or deciding whether a given measurement is

an outlier or a valid marker projection difficult. For this reason, we

consider the outputs given by the detection algorithm, corresponding

to the image at the time t, as a random sequence of Mt measurements

yt = {y1 (t) , y2 (t) , ..., yMt (t)} of ROI candidates. In general the

condition Mt 6= N holds, which means that the sequence yt does

contain projections of visible markers and outliers. For example, a

possible situation could be the following:

y1 (t)→ marker 3

y2 (t)→ outlier

y3 (t)→ marker 5

y4 (t)→ marker 1
...

yMt (t)→ marker h, h ≤ N

(7.5)

The randomness of the measurement sequences is a fundamental is-

sue in this framework, since it implies some important consequences:

i) the associations between measurement h and marker j or with a

clutter cannot be decided a priori and has to be estimated; ii) each

sequence of measurements for each frame can be considered con-

ditionally independent from every other sequence in the past; iii)

once the current sequence of associations has been defined, it can be

considered conditionally independent from the past history of asso-
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ciations as well. A direct consequence is that predicting the order in

which markers and clutters are detected, for each image, can be very

tricky. Because of the above hypotheses, we propose a solution to

the filtering problem, while ensuring robustness, by employing prob-

abilistic techniques. To this end, we use a latent variable ai (t), for

each measurement yi (t) ∈ yt, to model the measurement-to-marker

or measurement-to-clutter association:

ai (t) =

{
0, if yi (t) is a clutter

j, if yi (t) is the projection of marker j
(7.6)

Introducing the latent variable is the same as considering the non lin-

ear model (7.3), in compact form y (t) = h (x (t)), as a conditional

measurement model over the variable ai (t). In fact, it is possible

to condition the output function over a certain value of the latent

variable: i.e. yi (t) = h
(
x (t)

∣∣ai (t) = j 6= 0
)
, with the meaning of

selecting the rows corresponding to the projection of the marker j

from the function h (x (t)). If ai (t) = 0 the output model reduces

to yi = νo, νo ∼ N (ν̄o,Σo). It is desired to find the most prob-

able value of the variable ai (t), ∀i = 1, . . . ,Mt, that is for every

measurement collected at the current time step. The association

problem can be recast as maximizing the belief that the current

measurement yi (t) ∈ yt is either the projection of a visible marker

or a clutter. Formalizing, the aim is to find the maximum of the

posterior distribution:

p
(
ai (t)

∣∣yi (t) ,y0:t−1

)
∝ p

(
yi (t)

∣∣ai (t) ,y0:t−1

)
p (ai (t)) (7.7)
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7.3 Robust pose estimation

given the current measurement yi (t) and the whole history of the

measurements up to the previous step. The previous equation was

obtained via application of Bayes’ rule. The prior p (ai (t)) is as-

sumed to be independent from the previous measurements and it is

determined by the a priori knowledge of clutter and marker associ-

ation event probabilities. Since no specific prior is generally avail-

able, one possible choice is to consider the probability of detecting

the marker j as the same of detecting the marker h 6= j, i.e. by

considering a uniform distribution for the marker association. Thus,

one way to determine such probabilities is to infer an a priori prob-

ability of the clutter event, p (ai (t) = 0), and to equally split the

complementary probability 1 − p (ai (t) = 0) among the N markers

association events, that is:

p (ai (t) = j) =
1− p (ai (t) = 0)

N
, j = 1, . . . , N (7.8)

The prior p (ai (t) = 0) is a tunable parameter and depends on the

expected number of outliers with respect to the total number of

measurements at each frame, i.e. on the relative frequency No
Mt

. Other

choices exist in the literature to solve the problem of estimating

the foregoing prior, for example Expectation-Maximization, as in

[43]. However, the explained approach showed acceptable results in

experiments with real datasets and was adopted in this work. In

the following the time index will be dropped for simplicity, when its

disambiguation is straightforward.

The density p
(
yi
∣∣ai,y0:t−1

)
in equation (7.7) is the likelihood

that the current measurement is associated to a given marker or to

a clutter. This distribution can be obtained via marginalization of
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a proper joint density:

p
(
yi
∣∣ai,y0:t−1

)
=

∫
p
(
yi
∣∣x, ai,yt−1

)
p
(
x
∣∣ai,yt−1

)
dx (7.9)

=

∫
p
(
yi
∣∣x, ai,yt−1

)
p
(
x
∣∣yt−1

)
dx (7.10)

where the last equality is obvious since the prediction of the motion

parameters of the body does not depend on the value of the associ-

ation for the current measurements set. Fixing a certain guess for

the association, ai (t) = j, j 6= 0, Equation (7.10) is the Kalman

Filter likelihood of the measurement yi (t), given the prediction of

the marker j, i.e. given the conditioning of the measurement model

over that value of the latent variable. Thus, given the predicted

state x̂− (t) and its covariance P−xx (t), computed by employing the

nonlinear state model, its transformation through the conditioned

measurement function can be obtained, as in the classical Kalman

Filtering. The mean and covariance of the predicted measurement

are calculated as:

ŷ−j = h
(
x̂− (t)

∣∣ai = j
)

(7.11)

P−yy,j = Hj (t)P−xx (t)HT
j (t) +Rj (7.12)

where ŷ−j is the predicted projection of the marker j and P−yy,j its co-

variance, and Hj (t) is the Jacobian of the function h
(
x̂− (t)

∣∣ai = j
)

computed around the predicted state variable.

The probability of the association ai = j can be thus computed

as:

p
(
ai = j

∣∣yi,y0:t−1

)
∝ N

(
yi − ŷ−j , P−yy,j

)
p (ai = j) (7.13)
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7.3 Robust pose estimation

beingN () the multivariate normal distribution of proper mean value

and covariance. The set of possible associations is discrete, thus

the (discrete) value of the association posterior distribution can be

computed by inspecting all the possible values of the associations,

that is:



p
(
ai = 0

∣∣yi,y0:t−1

)
∝ 1

RESu×RESv p (ai = 0)

p
(
ai = 1

∣∣yi,y0:t−1

)
∝ N

(
yi − ŷ−1 , P

−
yy,1

)
p (ai = 1)

...

p
(
ai = N

∣∣yi,y0:t−1

)
∝ N

(
yi − ŷ−N , P

−
yy,N

)
p (ai = N)

(7.14)

In the case of clutter association (ai = 0) the likelihood function

has been set equal to 1/ (RESu ×RESv) , where RESu × RESv is

the image resolution, meaning that a clutter can happen everywhere

in the image. This choice is usually considered valid in approaches

similar to ours, for example [36]. Selecting the maximum probability

among the ones in Equation (7.14), will give the most probable value

of the variable ai (t), corresponding to the measurement yi (t). The

association problem is solved by repeating the above procedure for

all the measurements in the set yt. In the following we determine the

conditions that must hold to perform a the Kalman correction step,

given the solution to the association problem, and how to perform

such correction.

When the equation (7.14) is applied to the entire measurement

set, the sequence of probabilities can be normalized and put into a

matrix which we call Feasible Association Matrix, of the form:
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FMt =


π10 π11 . . . π1N

π20 π21 . . . π2N

...
. . .

...

πMt0 πMt1 . . . πMtN

 (7.15)

where πij =
p

(
ai=j

∣∣yi,y0:t−1

)
∑
j p

(
ai=j

∣∣yi,y0:t−1

) , with the property πij > 0 and∑N
j=0 πij = 1.

Each row in the previous matrix contains the belief for each mea-

surement to be an outlier or the projection of each expected marker.

We can introduce some definitions.

Definition 1 (Strictly Dominant Feasible Association Matrix)

The feasible association matrix FMt =
[
πij

]
, is strictly dominant

if for each i = 1, . . . ,Mt exists one j∗ such that:

πij∗ >
∑
j 6=j∗

πij (7.16)

The foregoing condition defines a feasible association matrix for

which every measurement is univocally assigned (let’s say with a

probability of more than the 50%) to an outlier or to a marker.

Definition 2 (Non-degenerate Feasible Association Matrix)

The Feasible Association Matrix FMt =
[
πij

]
, is non-degenerate if

it is strictly dominant and

@j∗ 6= 0
∣∣∣ πhj∗ >∑

j 6=j∗
πhj, πij∗ >

∑
j 6=j∗

πij, ∀h 6= i (7.17)
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7.3 Robust pose estimation

The condition of non-degenerateness states that, while it is ex-

pected that more measurements can be classified as outliers (j∗ = 0),

two (or more) different measurements cannot be assigned to the same

marker. These two definitions are useful since when the property of

non-degenerateness is met, the Kalman Filter correction can be per-

formed employing the (estimated) visible markers and their associ-

ated image projections, factoring out the measurements classified as

outliers. However this cannot always happen and some ambiguities

could raise, which are the cases when the feasible association matrix

is degenerate, i.e. when the condition (7.17) is not met. While the

condition (7.16) alone usually holds1, as experimental tests revealed,

the multiple association case is very common and some countermea-

sures need to be taken. The next paragraph is dedicated to this

problem.

7.3.4 Solving multiple associations

It is possible that the situations where two (or more) different mea-

surements can be assigned to the same marker arise. This is the

case when, for example, two markers projections are very close each

other or when the same marker is split into two (or more) different

projections due, for instance, to illumination artifacts. The associa-

tion optimization treats the measurements in a serial fashion and the

association problem for one measurement does not take into account

the associations already solved. Thus, in the degenerate situations

highlighted, the solution to the association problem becomes am-

1Otherwise it should be hopefully possible to extract the subset of strictly

dominant rows from the matrix and work with them.
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biguous. Instead of changing the association algorithm into a more

complex one, we propose a fast and easy a posteriori algorithm which

showed very good results in tests with real data sets. In the case of

multiple associations, define the set H = {h} of all the indexes such

that:

∃j∗ 6= 0
∣∣∣ πhj∗ >∑

j 6=j∗
πhj, ∀h ∈ H (7.18)

We propose to disambiguate the association by simply taking the

maximum among all the πhj∗ , h ∈ H and associate the marker j∗

to the measurement which probability πhj∗ has the maximum value.

For all the remaining h ∈ H we force the association to an outlier:

πh0 = 1 and πhj = 0,∀j = 1, . . . , N .

7.3.5 Extended models for articulated bodies

Figure 7.4: Schematic representation of an articulated body. The Region

of Interest are represented as circular markers placed onto object surface.

The robust pose estimation algorithm explained so far can be

easily adapted to the case of articulated bodies without big effort.

In this case, the body is intended as the interconnection of a cer-

tain number of rigid bodies, which can move with respect to each
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other via the actuation of proper joint variables. The Figure 7.4

shows an example of articulated body, composed by two rigid bodies

which relative motion is actuated via a rotational joint. The vari-

able θi models the relative angular displacement of each rigid body

with respect to the one which comes before. Classical examples of

articulated bodies are robotic manipulators, the human body, the

human hand and so forth. In this case, the position of the i-th ROI

with respect to the body frame σ depends on the value of the joint

variables θi and can be determined via classical direct kinematics,

parametrized via Denavit-Hartenberg parameters [30]. If a measure-

ment of the joint parameters is not available (for example robot

manipulators employ encoders to measure joint displacements), it is

necessary to extend the state space with the joint variables too and

a possible model becomes:

Ṫ (t) = v (t)

v̇ (t) = ηv (t)

Ṙ (t) = R (t) Ω (t)

θ̇i (t) = ηθi (t)

Ω (t) = ηω (t)∧

(7.19)

The output function is still the projection of the ROIs, but now their

positions with respect to the body frame are functions of the joint

variables Θ =
[
θ1 . . . θM

]T
, obtained via direct kinematic:

yi (t) = π (g (t)Tmiσ (Θ)) + νi (t) (7.20)

In this case, the estimation loop is designed to estimate the pose

of the body reference frame with respect to the camera frame and
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the pose of the articulated body itself, that is the value of the joint

variables. Such a model, together with the robust estimation scheme

presented above, can be useful, for example, in the pose estimation of

the human hand by employing low cost sensors, instead of more ex-

pensive and cumbersome infrastructures like multi-cameras systems

or active markers.

7.4 Applications

The proposed algorithm has been experimentally tested in the case

of pose estimation of the human wrist during angular movements and

grasp operations. The person who performed the test was seated in

front of a table with the right hand placed on it. In the starting

configuration of the hand, all the fingers were fully extended and the

wrist was in a neutral position. The subject was asked to perform

some wrist movements and to reach and grasp an object located

on the table. In both the experiments, the subject paid a special

attention at not rotating the arm.

7.4.1 Experimental Setup

In order to have information about the wrist pose (position, orienta-

tion and velocity) during motion, six colored markers were positioned

on the human hand, as shown in (Figure 7.5). The markers were

made of blue paper of diameter 1.2 cm. The protocol for position-

ing markers on the hand was chosen in order to minimize artifacts,

due for example to skin movements or marker occlusion, to have the

center of the markers approximately aligned with the CoR of the
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Figure 7.5: Protocol used for markers positioning.

corresponding joints and to easily evaluate the anatomy parameters

of the wrist (relative positions of the markers), which determination

strongly affects the accuracy of the estimation. In this implemen-

tation, the hand palm is considered a non-articulated body and the

body reference frame is positioned on the marker placed on the wrist.

Markers detection is made via a very raw blob detection algorithm,

scanning the image row-wise and extracting the regions of interest

characterized by a certain minimum number of blue pixels. The

visual system used was the Asus Xtion Prolive visual sensor suite,

which is a motion sensing device consisting of an InfraRed (IR) laser

emitter, an IR camera for measuring depth information, and a RGB

camera. The chosen resolution of the RGB camera was 640 × 480.

OpenNI library has been used in order to make the Asus work on

the PC and the whole algorithm has been implemented under ROS

(Robotic Operating System) for ensuring a real-time approach. For

the proposed experiments, the depth information was used during

initialization only. In the proposed experiments the association of
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the measurements was unknown.

7.4.2 Estimation

According to the motion parameter dynamics in Equation (7.1),

given the image-space measurements (7.3) (with N = 6), a non-

linear estimation scheme was designed. The aim of the filter is to

estimate the state x (t) of the system, consisting of the motion vari-

ables, T (t) , v (t) and the angular parametrization of the rotation

matrix R (t), which reflect the pose of the hand palm with respect

to the camera frame. In this case an estimation scheme based on

the Unscented Kalman Filter [17] was selected. In particular, given

the non linearity of the kinematic model with respect to the state

and the orientation noise terms, the Augmented Unscented Kalman

Filter algorithm presented in [17] was used. The peculiarity of the

adopted estimation scheme, compared with the classical UKF ap-

proach [46], is the possibility to easily deal with non-affine noise

terms in the state/measurement model. For the remaining part,

the technique is a classical UKF as in [46]. The full algorithm can

be found in [17] and it will be omitted for brevity. It is worth

to mention how the equations of the predicted measurements and

their covariance (eq. (7.11) and (7.12)) are modified in the case of

Unscented Filtering. In this case, given the predicted state-related

Sigma-Points [17], Xx
n,t/t−1, n = 1, . . . , L, computed by employing

the nonlinear state model, their transformation through the condi-

tioned measurement function can be obtained, as in the classical

UKF:

Yj
n,t/t−1 = h

(
Xx
n,t/t−1

∣∣ai = j
)

(7.21)
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The superscript j on the transformed Sigma-Points of the output,

indicates that Y j
n,t/t−1 refers to the predicted projection of the marker

j, for which the association is being tested. The mean and covariance

of the measurement vector are calculated as:

ŷ−j =

L∑
n=0

Wn
mY

j
n,t/t−1 (7.22)

P−yy,j =

L∑
n=0

Wn
c

(
Yj
n,t/t−1 − ŷ

−
j

)(
Yj
n,t/t−1 − ŷ

−
j

)T
+R (7.23)

whereW n
c andW n

m are the weights associated to the Sigma-Points [17],

ŷ−j is the predicted projection of the marker j and P−yy,j its covari-

ance. Thus, the probability of the association ai = j (eq. (7.10))

can be computed as:

p
(
ai = j

∣∣yi,y0:t−1

)
∝ N

(
yi − ŷ−j , P−yy,j

)
p (ai = j) (7.24)

7.4.3 Filter initialization

The initialization phase is responsible of the estimation of the ini-

tial relative pose between the camera and the reference frame on

the wrist, and needs to be reasonably accurate. For this reason, the

estimation is formulated as a Least-Squares optimization problem.

During this phase, the marker are required to be visible, such that

the association between markers and measurements can be made

without effort, after the detection phase. Therefore, no probabilistic

optimization needs to be carried out. Finally, the hand must be in

neutral configuration. The measurements employed during the ini-

tialization phase are the projection of the markers on the image plane

and the measurement of their depth, relative to the camera, which
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are obtained via the available IR camera. The equation mapping the

available measurements into the estimation variables are:

[
y

z

]
=


π (g (θ)Twi)

...

eT3 (g (θ)Twi)
...

 =

[
hy (g (θ))

hz (g (θ))

]
(7.25)

ȳ = h̄ (g (θ)) (7.26)

where Twi are the position of the markers with respect to the ref-

erence frame placed on the wrist. Note that the relative transfor-

mation g (θ), between the camera and the wrist, is parametrized via

θ ∈ R
6, which encodes the unknown pose parameters (translation

and angular parametrization) to be estimated. yi and zi are respec-

tively the measured projections and depths of the markers. Finally

e3 =
[

0 0 1
]T

. The locally optimal estimation of the foregoing

transformation is found by minimizing the 2-norm cost function:

min
θ
‖ȳ − h̄ (g (θ)) ‖2 (7.27)

The linearization of the nonlinear function h̄ (g (θ)) around an initial

estimation of the pose parameter θ0, gives:

Jθ = ‖ȳ − h̄ (g (θ)) ‖2 (7.28)

≈ ‖ȳ − h̄ (g (θ0))−Hθ0 (θ − θ0) ‖2 (7.29)

= ‖ỹ −Hθ0θ‖2 (7.30)

In the previous equation, Hθ0 = ∂h̄
θ

∣∣∣
θ0

. Equation (7.30) is a well

known linear quadratic cost function, which minimum is obviously
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given by:

θ̂ = H†θ0 ỹ (7.31)

That is, expanding the solution, the optimal estimation of the rela-

tive pose between the camera and the wrist reference frames, at the

initial time, is given:

θ̂ = RHθ0 +H†θ0
(
y − h̄ (g (θ0))

)
(7.32)

where RH = H†θ0Hθ0 is the range-space projector of the matrix Hθ0 .

Figure 7.6 shows the results of the initialization phase. The initial

pose parameter is used to propagate the UKF sigma-points through

the output function (yellow dots). The weighted point average of the

sigma-points define the estimated position of the marker projections

(blue circles), after the initialization phase. The spreading of the

sigma-points are related on the confidence (initial covariance matrix)

of the initial pose parameters.

7.4.4 Pose Estimation results

This section summarizes some results of the proposed robust pose es-

timation algorithm by using measurements which association was un-

known and solved via the proposed probabilistic association method.

In the first experiment, the subject was asked to perform some

smooth angular movements of the wrist, spanning the three degrees

of freedom. This experiment is referred to as Range of Motion ex-

periment. Figures 7.7 and 7.8 show some results.

In the second test, the subject was asked to approach and grasp an

object located on the table. In this case, the goal of the estimation

task was to extract position and velocity information from the video

115



Robust model-based pose estimation with unknown
measurements association

Figure 7.6: UKF sigma-points after filter initialization (yellow dots).

The blue circles represent the estimated marker position after pose ini-

tialization.

sequence. Figure 7.9 to 7.12 are related to the latter experiment and

show the reached results. Both the test were performed in real-time

under the ROS environment.

116



i
i

“PhDThesis” — 2013/5/12 — 22:28 — page 117 — #67 i
i

i
i

i
i

7.4 Applications

Figure 7.7: Some example images from the video sequence recorded dur-

ing the range of motion experiment and the related pose estimations pro-

jected onto the X-Y plane (aligned with the desk). The blue circles (on the

hand figure - top images) are the estimated (after correction) marker po-

sitions projected onto the image space; they are connected with the marker

on the wrist via black lines. The yellow dots are the estimated (after cor-

rection) UKF sigma points, evaluated through the output function. The

bottom figures show the estimated hand pose in the 3D space. 3D marker

positions are labeled from the thumb related marker (CMC in Figure) to

little finger related marker (MCP5 in Figure).
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Figure 7.8: Estimation of the angular movements for the Range of Mo-

tion experiment.
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Figure 7.9: An example image taken during the reaching-and-grasp ex-

periment and the related position estimations projected onto the X-Y, Y-Z

and X-Z planes. The blue circles (on the hand figure - left image) are the

estimated (after correction) marker positions projected onto the image

space; they are connected with the marker on the wrist via black lines.

The yellow dots are the estimated (after correction) UKF sigma points,

evaluated through the output function. The right figures show the esti-

mated hand pose in the 3D space. 3D marker positions are labeled from

the thumb related marker (CMC in Figure) to little finger related marker

(MCP5 in Figure).
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Figure 7.10: Last image of the reaching-and-grasp experiment and the

related position estimations projected onto the X-Y, Y-Z and X-Z planes.

The blue circles (on the hand figure - left image) are the estimated (after

correction) marker positions projected onto the image space; they are con-

nected with the marker on the wrist via black lines. The yellow dots are

the estimated (after correction) UKF sigma points, evaluated through the

output function. The right figures show the estimated hand pose in the

3D space. 3D marker positions are labeled from the thumb related marker

(CMC in Figure) to little finger related marker (MCP5 in Figure).
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Figure 7.11: Full position estimation of the wrist in the reaching-and-

grasp experiment.
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Figure 7.12: Full velocity estimation of the wrist in the reaching-and-

grasp experiment.

121



Robust model-based pose estimation with unknown
measurements association

122



i
i

“PhDThesis” — 2013/5/12 — 22:28 — page 123 — #70 i
i

i
i

i
i

Part III

Closure

123





i
i

“PhDThesis” — 2013/5/12 — 22:28 — page 125 — #71 i
i

i
i

i
i

Appendix A

Proof of observability

Non-linear observability study can be made in several ways: here we

use an analytical approach [16], that is by describing the complete

set of initial conditions which render the available measurements

identical.

We look for all the initial conditions of the state variables (and as-

sociated movements of the states) that produce exactly the same

outputs. Let’s denote with a tilde hat the generic movement of the

state variables obtained starting from an initial condition which is

different from the true one. Without loss of generality we can con-

sider the reference time, which was generally called τ in the previous

sections, to correspond to the initial time, τ = 0. Moreover, we as-

sume to work in the case of non-degenerate epipolar constraints, that

is relative translation different from 0. Thus we aim at determining

all the possible values that the variables T̃ (t), ṽ (t), ã (t), R̃ (t), γ̃,

b̃ω, b̃a and the global scale α can take which render the available
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outputs identical:[
R̃T (t) (ã (t) + γ̃) + b̃a

ω̃ (t) + b̃ω

]
=

[
RT (t) (a (t) + γ) + ba

ω (t) + bω

]
(A.1)

φ
(
g̃ (t)−1 g̃ (0) , yil0, y

i
lt

)
= φ

(
g (t)−1 g (0) , yil0, y

i
lt

)
(A.2)

φ
(
glrg̃ (t)−1 g̃ (0) , yil0, y

j
rt

)
= φ

(
glrg (t)−1 g (0) , yil0, y

j
rt

)
(A.3)

Proof of Claim 4. It is known that the epipolar constraints are in-

variant under scaling transformation (ref. (3.3), i.e.:

φ
(
g (t)−1 g (0) , yil0, y

i
lt

)
= φ

(
g (t)−1 g (0) , λyil0, λy

i
lt

)
= φ

(
λ2g (t)−1 λ2g (0) , yil0, y

i
lt

)
(A.4)

Putting (A.2), (A.3) and (A.4) together and choosing α = λ2, we

get:

φ
(
g̃ (t)−1 g̃ (0) , yil0, y

i
lt

)
= φ

(
α
(
g (t)−1 g (0)

)
, yil0, y

i
lt

)
(A.5)

φ
(
glrg̃ (t)−1 g̃ (0) , yil0, y

j
rt

)
= φ

(
α
(
glrg (t)−1 g (0)

)
, yil0, y

j
rt

)
(A.6)

this holds provided that: g̃ (t)−1 g̃ (0) = α
(
g (t)−1 g (0)

)
glrg̃ (t)−1 g̃ (0) = α

(
glrg (t)−1 g (0)

) (A.7)

∀α ∈ R. The group transformation g̃ (t) that makes the first of

Equation (A.7) hold is{
g̃ (t) = αḡ (t)αg (t) ;

g̃ (0) = αḡ (0)αg (0) ;
(A.8)

126



i
i

“PhDThesis” — 2013/5/12 — 22:28 — page 127 — #72 i
i

i
i

i
i

where ḡ (·) is a suitable group transformation. We made it depending

on time since we still do not know if such transformation is time-

varying or not. The first equality in equation (A.7) becomes:

α
(
g (t)−1 ḡ (t)−1 ḡ (0) g (0)

)
= α

(
g (t)−1 g (0)

)
(A.9)

which holds ∀α and by choosing ḡ (t) = ḡ (0), which can be proven

by substitution. Thus (A.2) holds for any α and for any αḡ αg (t),

given an arbitrary (constant) ḡ.

The fact that Equation (A.9) holds for any α can be interpreted as

the classical scale ambiguity of monocular vision, as a matter of fact

we derived this result using only the epipolar constraint on left cam-

era points. Enforcement of the second group of epipolar constraints

(between left and right cameras) eliminates the scale ambiguity. In-

deed, with such conditions and Equation (A.8), the second equality

in Equation (A.7) becomes1:

glrα
(
g (t)−1 ḡ−1ḡg (0)

)
= α

(
glrg (t)−1 g (0)

)
(A.10)

which holds iff α = 1 and for every arbitrary ḡ ∈ SE (3). This

can be proven by extracting the translation component of the trans-

formations in Equation (A.10), and by showing that the condition

(A.10) simply means that:

Tlr = αTlr (A.11)

which holds iff α = 1, since glr is assumed known. The two condi-

tions highlighted so far state that 1) the scale is always recoverable,

1The scaling term α is the same for the constraints on the left and right

cameras since they share the points yil0.
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since the stereo extrinsic parameters are assumed to be known; 2)

the ambiguity ḡ (t) is actually constant, that is ḡ (t) = ḡ. This am-

biguity corresponds to the classical gauge ambiguity, related to the

choice of the initial conditions [16].

As expected, the knowledge of the relative transformation be-

tween the left and right cameras is sufficient to disambiguate the

global scale factor; however vision alone is not sufficient to render

the system locally observable. The gauge ambiguity and the sen-

sitivity parameters, together with the gravity remain unobservable.

It is possible to reduce the unobservable set by using the measure-

ments of the IMU. It is convenient to make explicit the rotational

and translational components of the unobservable group transfor-

mation g̃ (t) = ḡg (t), which will be used in the remainder of the

chapter:

R̃ (t) = R̄R (t) , ∀t ≥ 0 (A.12)

T̃ (t) = R̄T (t) + T̄ , ∀t ≥ 0 (A.13)

Proof of Claim 5. The condition in (A.1)

ω̃ (t) + b̃ω = ω (t) + bω (A.14)

is not sufficient alone to recover unique b̃ω, ω̃ (t). In fact, by choosing

ω̃ (t) = ω (t) + ω̄, ∀ constant ω̄, will make b̃ω = bω + ω̄ which is still

feasible, since bω and b̃ω are constant by means of the model.

If we proceed with the time derivative of the first and second term
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of the equality in Equation (A.12), we get:

˙̃
R (t) = R̄Ṙ (t) (A.15)

R̃ (t) ω̃ (t)∧ = R̄R (t)ω (t)∧ (A.16)

R̄R (t) ω̃ (t)∧ = R̄R (t)ω (t)∧ (A.17)

that is ω̃ (t) ≡ ω (t), which means b̃ω = bω, i.e. the angular velocity

is observable, as well as the gyroscope biases.

Proof of Lemma 1 and Claim 6. We proceed with the time deriva-

tives of the translational component in Equation (A.13) [16]:

˙̃
T (t) = ṽ (t) = R̄v (t) (A.18)

˙̃v (t) = ã (t) = R̄a (t) (A.19)

We use Equation (A.1) and substitute the found value of ã (t) =

R̄a (t) and R̃ = R̄R (t), i.e.:

RT (t) R̄T
(
R̄a (t) + γ̃

)
+ b̃a = RT (t) (a (t) + γ) + ba (A.20)

Thus

γ̃ = R̄
(
γ +R (t)

(
ba − b̃a

))
(A.21)

The terms γ̃, R̄, γ in equation (A.21) are constant; moreover b̃a and

ba are constant too, by means of the model (2.17). Thus when the

rotational motion is rich enough, the only feasible solution is b̃a = ba

in order to keep coherence into the equality. Note that the gravity

is observable up to the rotational ambiguity, which models the ini-

tial misalignment between the local and global vertical axis, which

remains unobservable.
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A similar conclusion, for the case of a tightly-coupled vision-aided

inertial navigation system, was drawn recently in the framework of

tight coupling approach [16].

Remark 1

It is important to notice, however, that extending the state space

with the gravity vector is unavoidable. The lack of such term would

have destructive effects on the overall estimation. In this case no

ambiguity would be associated to the gravity (we cannot write such

term with the tilde hat), thus(
I − R̄T

)
γ = R (t)

(
ba − b̃a

)
(A.22)

A slight uncertainty in the initial attitude, would render(
R̄T − I

)
γ = constant 6= 0 (A.23)

thus forcing

R (t)
(
ba − b̃a

)
= constant 6= 0 (A.24)

i.e.
(
ba − b̃a

)
6= 0, in order to keep the equality to hold. In particular

when the rotational motion is rich enough,
(
ba − b̃a

)
needs to vary.

The previous proof and the remark lead to the following:

Corollary 1

The gravity γ and the accelerometers biases ba are observable in the

combined vision-inertial configuration, provided that they are added

to the state with trivial dynamics (null time-derivative) and the an-

gular motion is rich enough.
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Definition of Rich enough rotational motion

The constraint in equation (A.21) provides the means to the formal

characterization of the nature of the rotational motion in order to

have the observability of the bias term ba and of the gravity term up

to the angular ambiguity R̄ ∈ SO (3). The constant nature of γ̃, R̄

and γ forces R (t)
(
ba − b̃a

)
= R (t) ∆ba to be constant too, i.e.:

Ṙ (t) ∆ba = R (t) Ω (t) ∆ba = 0 (A.25)

being Ω (t) = ω (t)∧ the skew-symmetric matrix of the body angu-

lar velocity. The derivative of the bias terms are obviously zero, for

they are constant.

Equation (A.25) holds ∀∆ba if Ω (t) = 0, that is R (t) is constant

and in this case the bias term is not observable, as expected.

For nonzero rotational velocities, (A.25) holds ∀∆ba ∈ Ker (Ω (t)),

i.e. ∆ba = 0 or every ∆ba which is aligned with the vector ω (t). It

is easy to show that this is the case of constant angular velocities,

ω (t) = ω̄, non constant angular velocity along one axis only or every

(constant/non constant) angular velocity such that the correspond-

ing direction of rotation axis is fixed.

The goal is to find the family of all possible rotational motions such

that Ker (Ω) reduces to ∆ba = 0, in the family of feasible (i.e.

constant) ba, b̃a. It is straightforward to prove that this space is

composed by those rotations that happen along at least two axes

and that keep the direction of the resulting angular velocity vector

non constant. Formally, given two non-constant angular velocities

ωi (t) , ωj (t) along two independent (orthogonal) directions ~i and ~j

and such that ωi (t) 6= ωj (t), observability is ensured by every angu-
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lar velocity belonging to the following set:

ω (t) = ωi (t)~i+ ωj (t)~j (A.26)

In this case the vector ∆ba lying along the vector ω (t) would vary,

meaning that b̃a would be non constant, missing the constraint
˙̃
ba =

0. Thus the only possible choice is b̃a − ba = 0 and the bias term is

observable.
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[5] A. Caiti, V. Calabrò, F. Di Corato, D. Meucci and A. Munafò,
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