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Sommario

I sistemi wireless dei prossimi anni sono tenuti a fornire trasmissioni caratterizzate da

data rate e affidabilità sempre maggiori per sostenere la sempre più crescente richiesta di

applicazioni e servizi eterogenei. Inoltre, tali requisiti devono essere soddisfatti nel difficile

ambiente di propagazione rappresentato dal canale wireless, e devono far fronte alla scarsità

dello spettro radio disponibile. Per tali sistemi, la tecnica di modulazione multiportante

nota come orthogonal frequency division multiplexing (OFDM) è emersa come tecnologia

chiave a livello fisico grazie alla sua elevata efficienza spettrale, struttura di ricetrasmissione

piuttosto semplice e robustezza al fenomeno di multipath fading.

In tale contesto, questa tesi indaga nuove tecniche adattative in cui le risorse e parametri

di trasmissione sono adattati in base alle informazioni sullo stato di canale al fine di fornire

una consegna affidabile ed efficiente di pacchetti dati su canali selettivi in frequenza. Queste

tecniche, note in letteratura come link resource adaptation (LRA) e resource allocation

(RA), sono proposte in combinazione con un numero di funzionalità avanzate come l’efficiente

tecnica di codifica di canale chiamata bit interleaved coded modulation (BICM) e meccanismi

di hybrid automatic repeat request (HARQ). Diversamente dalla maggior parte dei problemi

di LRA e RA considerati nella letteratura, questa tesi si basa sul goodput come figura di

merito, definito come il numero di bit di informazione consegnati in pacchetti senza errori

per unità di tempo. Quest’ultimo rappresenta, infatti, una metrica adeguata per dare un

quadro attendibile delle effettive prestazioni del collegamento caratterizzato da modulazione

e codifici pratici, trasmissioni a pacchetto e meccanismi di HARQ.

In dettaglio, i contributi principali della tesi sono: la derivazione di una strategia di LRA che

assegna modulazione, tasso di codifica e potenza ad un sistema BIC-OFDM cognitivo; un

nuovo metodo di predizione delle prestazioni, che sfrutta la metodologia di effective signal-

to-noise ratio (SNR), per sistemi BIC-OFDM impieganti protocolli di HARQ con packet

combining; un algoritmo di LRA che seleziona la migliore distribuzione dei bit e tasso di

codifica per sistemi BIC-OFDM; uno schema equo di RA che assegna potenza, ordine di

modulazione, tasso di codifica e sottoportanti agli utenti sul downlink di un sistema BIC

orthogonal frequency division multiple access (OFDMA) col fine di ottimizzare le prestazioni

dell’utente avente il valore più basso di goodput.





Abstract

Future wireless systems are expected to provide even more high data rates and reliable

communications to support the ever increasing demand of heterogeneous applications and

services. Furthermore, these strict requirements must be satisfied in the harsh environment

of the wireless propagation channel, and must cope with the scarcity of the available radio

spectrum. For such systems, the multicarrier modulation technique known as orthogonal

frequency division multiplexing (OFDM) emerged as the key technology at the physical layer

thanks to its high spectral efficiency, rather simple transceiver structure and robustness to

multipath fading.

Within this context, this thesis investigates novel adaptive techniques where the transmission

resources and parameters are adapted according to the channel state information in order to

provide reliable and efficient data packet delivering over frequency selective channels. These

techniques, known in the literature as link resource adaptation (LRA) and resource allocation

(RA), are proposed in combination with a number of advanced features such as the efficient

channel coding technique represented by the bit interleaved coded modulation (BICM) and

hybrid automatic repeat request (HARQ) mechanisms. Differently from the majority of LRA

and RA problems considered in the literature, this thesis focuses on the goodput figure of

merit, defined as the number of information bits delivered in error-free packets per unit of

time. The latter represents in fact an adequate metric to give a reliable picture of the actual

link performance, when features such as practical modulation and coding, packet oriented

transmissions and HARQ mechanisms are employed.

In detail, the main contributions of the thesis are: the derivation of a LRA strategy that

assigns modulation, coding rate and power to a cognitive BIC-OFDM system; a novel

performance prediction method, which exploits the effective signal-to-noise ratio (SNR)

methodology, for BIC-OFDM systems featuring HARQ protocols with packet combing; a

LRA algorithm that selects the best bit loading distribution and coding rate for BIC-OFDM

systems; a fair RA scheme that assigns power, modulation order, coding rate and subcarriers

to users on the downlink of a BIC orthogonal frequency division multiple access (OFDMA)

system to maximize the performance of the user having the lowest goodput value.
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Chapter 1

Introduction

In the last years, wireless communication systems have been playing a starring role in

everyday life, affecting the social behaviors as well as the working habits of millions

of people. Not surprisingly, wireless communication is the fastest growing segment

of the communication industry. Many examples of this pervasive phenomenon can

be daily experienced. Business users equipped with smartphones can access every

time the Internet exploiting either the cellular network or available Wi-Fi hot spots

in order to check emails, control bank accounts, public transport time schedule, and

so on. Private users have the possibility to share photos, videos, check the latest news

and their accounts on social forums. Moreover, such a rapid diffusion is experienced

not only by cellular devices but also by computer laptops and tablets, that combine

the portability of the cellular phones with the higher performance and multitasking

possibility typical of computers. ITU statistics [1] report that in 2011 the number

of mobile subscribers reached the 86% of the worldwide population whereas in 2009

the market sales of laptops overcame the ones of desktop PC and a sale of over 230

millions of notebooks is foreseen for the year 2013. With such an ever increasing

demand of multimedia services in every place at every time, next generation wireless

systems, i.e., the advanced fourth generation (4G) and the fifth generation (5G), are

required to supply even more high data rates and reliable communications, facing

several obstacles such as the efficient utilization of the transmission resources and the

harsh propagation conditions of the wireless environment.



2 Introduction

1.1 Wireless systems evolution

The first generation of cellular systems (1G), such as Advanced Mobile Phone System

(AMPS) in the United States and the Total Access Communication System (TACS) in

Europe and Japan, was commercially available in late 1970s and early 1980s [2]. These

systems were based on an analog technology and supported voice only services. In

particular, frequency modulation (FM) over the 800-900 MHz band was employed for

voice transmission and frequency division multiple access (FDMA) was the technique

adopted to share the medium. In practice, a portion of the electromagnetic spectrum

was entirely and exclusively allocated to a certain user for whole call duration.

The second generation, such as GSM (Global System for Mobile Communications) [3],

entered the market in early 1990s and it was based on a digital technology, where the

users data were divided in frames and transmitted in specified and exclusive use

time slots (time division multiple access technique, or TDMA for short), combined

with FDMA. Thanks to the digital technology, the 2G offered lower device costs

with respect to the 1G and a greater spectral efficiency. Moreover, its evolution

for supporting packet-based communications, i.e., the General Packet Radio Service

(GPRS), allowed the possibility to exploit services as e-mails and web browsing. These

seemingly little improvements led to the success of the cellular devices, obtaining in

2001 more than 500 millions of subscribers.

The ever increasing demand of multimedia application called for a new generation

of cellular networks, the 3G, such as Universal Mobile Telecommunications System

(UMTS) [4], [5] in Europe and cdma2000 [6] in U.S.A., able to manage the growing

number of users offering higher data rates and improved quality of service. These

systems were based on a combined FDMA/CDMA (code division multiple access)

technique, where bunch of signals were assigned to different subbands and the ones

sharing the same subband were distinguished by quasi-orthogonal spreading codes.

For the first time, the radio resource management was no more static, offering the

possibility of variable bit rate depending on the application, of supporting asymmetric

services in downlink and uplink and of assigning bandwidth on demand, increasing in

this way the spectral efficiency of the overall system.

A few years after the 1G entered the market, also the wireless networks make their

debut but with a different vision. The exchanged information is in fact based on
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data packets, that is, streams of bits coming from a digitized analog signal or directly

from a digital source that are eventually grouped into packets. The first commercial

devices for the wireless local area networks (WLAN) were introduced in 1985. Though,

they had high prices and low performance, due to limitations on the employed trans-

mission power since, operating over the ISM band, they couldn’t interfere with the

primary services operating over the same band. A new interest and, consequently,

a great diffusion of this technology, occurred at the beginning of 2000s towed by

the increasing requests of multimedia services and applications. Several standards

were developed according to the application type and required coverage. The most

popular is probably the IEEE 802.11 WLAN standard family. The IEEE 802.11a [7]

and 802.11g [8] standards, operating over the 5 GHz and 2.4 GHz respectively, are

based on multicarrier modulation, in particular, on the orthogonal frequency division

multiplexing (OFDM). The IEEE802.11g in particular reach up to 54 Mbps. The

IEEE 802.11b [9] employs direct-sequence spread spectrum techniques and reaches

11 Mbps. The coverage is up to 1 km in line of sight and the topology can be

a star network with a centralized access point or an ad-hoc network. The natural

extension of the WLAN is a broadband network able to cover wide areas, such as the

wireless metropolitan area networks (WMAN) [10], which relies on the orthogonal

frequency division multiple access (OFDMA) technology. Many other standards can

be cited such as the family of IEEE 802.15 standards [11], for personal area networks,

that includes, for instance, Ultrawideband [12] technology for high-speed and short

distance communications.

1.2 Next generation wireless systems

As apparent, up to the early 2000s, the communication industry was very fragmented.

On the one hand, the cellular networks, mainly oriented to voice communications,

and thus characterized by relatively low data rate and high bit error rate probability,

but also by strict delay requirements, a huge total coverage area and mobility. On

the other hand, the wireless networks characterized by high data rates and more

reliable communications, therefore suitable for application such as data transfer or

video streaming, but lower coverage and difficult roaming.

Driven by the ever increasing demand of heterogeneous multimedia applications,

which range from voice to data transfer, from real time video to web browsing,
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next generation wireless systems, i.e., the advanced 4G and 5G, bring an end to this

fragmentation, trying to provide even more high data rates, reliable communications,

improved quality of service, enhanced coverage and mobility, integrating and improv-

ing the points of strength of these different technologies, as depicted in Fig. 1.1.

The original vision of the so-called 4G [13] was the achievement of at least 100

Figure 1.1: Wireless systems evolution.

Mbps peak rates in full-mobility wide area coverage and 1 Gbps in low-mobility

local area coverage services, the possibility to connect everywhere and every time

(ubiquitous systems), a very smooth global roaming among different systems and an

entirely IP-based communication applying packet switching method. Finally, multiple

wireless air interfaces should be integrated in a single common platform, exploiting

the solution offered by the open wireless architecture [14], where the majority of

transceiver functions are executed as a software. The 5G, first proposed in [15],

pushes even more forward the 4G vision, adding key concepts such as, among the

others, cooperative relays, cognitive radio networks and a user-centric more than a

service-centric approach [16].

Currently, 4G networks either actually use enhanced 3G technologies or offer only a

minimal implementation of 4G technologies [13]. The 3G networks that have been

extended to 4G are wideband code division multiple access (W-CDMA), which is

likely to be phased out, its evolution into high speed dowlink packet access (HSDPA)

and WiMAX [17], based on OFDM technology with multiple-input multiple output
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(MIMO) antenna configuration, capable of obtaining downlink peak data rates up

to 75 Mbps. In WiMAX, the coverage can reach up to 50 km, allowing users to

get broadband connectivity in non line-of-sight conditions. IEEE 802.16e (Mobile

WiMAX), designed to fill the gap between WLAN and high mobility cellular wide

area networks, comes with enhanced quality of service (QoS) and mobility up to 120

km/h. Finally, other implementations of 4G networks are long term evolution (LTE)

and LTE Advanced [13], [17], which are considered to have the most promising future.

These standards are still based on MIMO-OFDM technology and offer peak rates up

to 100 Mbps in downlink, reduced latency (less than 10 ms) other than flexibility and

scalability in deployment.

Even if these existing technologies do not meet all the envisaged requirements, many

related advances are likely to affect how 4G and even futuristic 5G networks will

be designed. For instance, excluding the W-CDMA, all the other standards employ

OFDM as physical layer technology, which is in fact considered as the basis of future

generation wireless systems.

1.3 Focus of the thesis

One of the major challenges of the future wireless systems is how to guarantee the

stringent services requirements in the harsh environment represented by the wireless

communication channel. First of all, the transmitted signals are received after being

scattered, reflected and diffracted by the surrounding objects. The receiver therefore

observes multiple delayed and attenuated copies of the original signal, that can con-

structively or destructively combine introducing large variations on the overall signal

strength. Moreover, the relative motion between transmitter and receiver makes

the channel characteristics randomly vary during time. Another limiting factor is

represented by the availability of the radio spectrum. The latter is in fact a very

precious resource that is assigned by local government to companies at very high

prices. The damage caused by this assignment policy is manifold. First of all,

only the biggest companies are able to purchase it, creating an oligopoly that hurts

competition and therefore innovation and technology development. Furthermore, the

fixed allocation of radio spectrum lead sometimes to its underutilization in a certain

location and/or at a certain time, as shown in Fig. 1.2 where the spectrum activity

over the North America TV bands is depicted, and other times can be insufficient to
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offer the required QoS.

Figure 1.2: Spectrum activity in North America TV bands.

Thus, the efficient utilization of the available resources in the limited spectrum is

a key point for future wireless systems. For this reason, this thesis studies adaptive

transmission techniques, in order to face the above mentioned obstacles and obtain a

reliable and fast communication satisfying the required QoS over the constrained set

of transmission resources. The OFDM technology in combination with a number of

advanced features, that will be the focus of the dissertation, can provide reliable and

efficient data packet transmissions over harsh fading channels.

The OFDM modulation is a multicarrier communication technique that allows to

efficiently and reliably transmit data over a radio channel, even in multipath envi-

ronment. The information data is transmitted over a large number of narrowband

carriers, or subcarriers. These are closely and equally spaced in a way that they

are orthogonal to each other, so that there is not interference between them. The

result is a very high spectral efficiency, simple equalization and a fast implementation

via fast Fourier transform (FFT). Moreover, OFDM technology is extremely flexible

and thus able to adapt to the current channel condition and service requirements.

This signaling technique can be efficiently combined with error correcting codes,

exploiting for instance the Bit-Interleaved Coded Modulation (BICM) approach [18],

that improves code diversity and avoids the need for the complicated and somewhat

less flexible design typical of coded modulation.

As outlined above, the radio link quality significantly varies during time due to

frequency-selective fading. A static set-up of the transmission parameters (e.g. mod-
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ulation order, coding rate, power) can lead to very poor system performance when the

channel conditions are bad or, on the contrary, to a waste of the transmission resources

when the channel conditions are good. Link resource adaptation (LRA) [19], [20] is

therefore a fundamental aspect for future wireless systems since it deals with how

to efficiently set the transmission parameters of a radio link to handle variations of

the radio link quality. In 3G systems, for instance, dynamic transmit-power control

has been used, where the allocated power is dynamically adjusted according to the

link quality to guarantee a constant data rate (which is a desirable property for voice

services). For packet-data traffic, a more appealing property is simply to transmit

with the highest possible rate. This can be obtained by means of dynamic rate

control, where, in practice, the data rate is controlled by adapting the modulation

order and coding rate to the actual channel conditions. Intuitively, the better the

channel quality, the higher the modulation orders and code rates employed. For this

reason, this link adaptation technique is also referred to as adaptive modulation and

coding (AMC) [19].

A further help to the link resource adaptation is given by the advanced retrans-

mission scheme known ase hybrid automatic repeat request (HARQ) with soft com-

bining [21], [22]. With this mechanism, the erroneously received copies of a certain

packet, detected via cyclic redundancy check (CRC), are stored at the receiver, which

in turn requires a new transmission of the same packet. The transmitter sends then a

novel coded copy and the receiver combines the bit-level soft metrics of the latter with

the ones of the previous stored copies. The combined metrics result therefore more

reliable improving probability of successfully decoding. Moreover the transmitter can

decide to send the same set of coded bits representing the original message (Chase

Combining case) or a different subset (Incremental Redundancy case), trading off in

this way reliability and spectral efficiency.

OFDM can also be adopted as a multiplexing technique or multiple-access scheme,

with different subsets of the overall set of available subcarriers used to communicate

with different mobile terminals. In this case, the term OFDMA is also often used and

Channel-Dependent Scheduling stems as a powerful paradigm to perform dynamic

allocation of the available radio resources [20], [23], such as subcarriers, power, coding

rate and bits, to all the users. The basic idea is to take advantage of the rapid and

random variations of the frequency-selective fading channel experienced by each user.

This principle is usually called multiuser diversity.
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In this scenario, information-theoretic performance limits, which rely on ideal as-

sumptions like Gaussian inputs and infinite length codebooks, can be inadequate to

give a reliable picture of the actual link performance when practical modulation and

coding are applied. For this reason, the thesis will focus on a metric based the number

of information bits delivered in error-free packets per unit of time [24], or goodput (GP)

for short. This figure of merit is in fact capable of exploiting all the above mentioned

features such as packet-oriented transmission, ARQ mechanism as well as the effect

of practical modulation and coding schemes. Finally, since the above mentioned

LRA problems can be represented as constrained optimization problems, where the

objective function, i.e., the performance metric, is optimized over the constrained

set of the transmission parameters, it is required an effective way to predict the

system performance, accounting for both the channel state information (CSI) and

the information relevant to the transmitted-signal mode choice (i.e. modulation size,

coding rate, etc.). Specifically, for the OFDM system under analysis, where the

frequency selective channel makes the signal-to-noise ratio (SNR) level largely vary

across the subcarriers, the powerful link performance prediction approach given by

the effective SNR (ESNR) methodology [25], [26] is exploited.

1.4 Organization of the thesis and major contribu-

tions

The dissertation is organized as follows.

Chapter 2 presents a technical background on the BIC-OFDM system under analysis.

A brief description of the radio access model is first given and then an overview

of the key features of the BIC-OFDM system is reported. Finally, the chapter

summarizes the main link performance prediction techniques, that is, how to predict

the performance of the system when a certain setting of transmission parameters is

employed for a given status of the channel.

Chapter 3 first introduces the rationale of the GP figure of merit. Then, the GP

metric is derived resorting to the renewal reward theory. Finally, it is introduced

the concept of inter-round GP optimization as an effective method to adapt the

transmission parameters of the BIC-OFDM system at each ARQ protocol round.

Chapter 4 focuses on the LRA problem aimed at maximizing the goodput for cog-
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nitive BIC-OFDM systems. According to the cognitive paradigm, the BIC-OFDM

system can transmit over the same frequencies assigned to the licensed users, as

long as the interference caused to the latter is kept below a prescribed threshold.

Particular emphasis is thus given to the power allocation (PA) problem. First, it is

demonstrated that it is a convex optimization problem and, accordingly, it is solved

with conventional numerical methods. Then, in order to circumvent several drawbacks

typical of these methods, such as slow convergence and need for parameters tuning, a

novel PA framework, called successive set reduction (SSR), is proposed resorting to the

Quasi Variational Inequality (QVI) theory and its optimality condition is analytically

derived. Based on this PA algorithm, an AMC scheme is eventually derived. The

chapter ends with simulation results showing the effectiveness of the proposed SSR-

based AMC algorithm. The GP improvements over non-adaptive LRA techniques are

indeed highlighted, besides a remarkable complexity reduction compared to conven-

tional numerical methods.

Chapter 5 investigates the impact of the HARQ mechanism with soft combining on

the performance of the BIC-OFDM system. First, a novel link performance prediction

approach for such a system is proposed based on the effective SNR methodology.

Capitalizing on this novel prediction method, tagged as aggregate effective SNR

mapping technique, or αESM for short, a link adaptation strategy, that at each

round of the HARQ protocol sets the transmission parameters to maximize the

GP, is derived. Thanks to the novel αESM technique, the link adaptation strat-

egy exploits the information offered by the HARQ feedback channel about the past

failed transmissions along with the information on the actual channel conditions. In

particular, two different cases of level of knowledge about the actual channel state are

considered. When the only channel statistics are available at the transmitter side,

the LRA consists of an AMC algorithm. Conversely, when the instantaneous channel

conditions are perfectly known at the transmitter side, the proposed LRA algorithm

is further refined deriving a bit-loading procedure that assigns different modulation

orders across the subcarriers. Finally, experimental results obtained by simulation

over a realistic wireless scenario show the improvements of the proposed LRA based

on the αSNR technique over the case where only information on the actual channel

state are taken into account.

Chapter 6 investigates the downlink of a BIC-OFDMA base station and, in par-

ticular, the problem of how to assign the radio resources to each user served by
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the base station. The chapter begins with an overview of the main approaches

usually adopted for resource allocation. Then, the fairness criterion is introduced

as solution to the unbalanced treatment of the users when typical rate-adaptive and

margin-adaptive optimization criterions are employed. Hence the resource allocation

problem aimed at maximizing the performance of the user with the minimum GP, also

called max-min problem, is stated. In particular, the proposed algorithm that solves

the max-min problem returns the power, subcarrier, modulation order and coding

rate allocation for each user. Each of these allocation problems is investigated, with

particular focus on the subcarrier allocation problem. Detailed performance analysis

providing guidelines for the algorithm implementation in typical wireless scenario is

finally presented. Simulation results show the effectiveness of the proposed approach,

highlighting the improvement on the minimum GP value as well as QoS satisfaction.



Chapter 2

Overview of the BIC-OFDM

system

In this chapter, the technical background that constitutes the basis of the dissertation

is given. In particular, Sections 2.1 and 2.2 describe the radio access model and

the BIC-OFDM system characteristics, respectively, while Sect. 2.3 focuses on link

performance prediction techniques for multicarrier systems.

2.1 Packet oriented radio access model

In future wireless systems circuit-switching networks will make way to a packet

oriented communication. For this reason, the fundamental piece of information to

be transmitted over the radio interface is identified in the packet [27]. Since it is

expected that transport of Internet protocol (IP) packets will dominate the traffic

in wireless systems, a packet will typically correspond to an IP packet. However,

it could also correspond to other kinds of information to be communicated over the

radio interface, including, e.g., Layer 3 control signaling. Thus, in order to obtain a

flexible and simple design avoiding increased cost in development and operation, a

key characteristic of the radio-access framework is that all types of information to be

transported over the radio interface are processed in a more or less identical way as

follows [27]:

1) the packet processing, that includes channel coding and the retransmission protocol;

2) the frame processing, that includes different multiplexing and modulation steps and

maps to the basic physical resource. Assuming OFDM-based transmission, the basic
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physical resource can be expressed as a unit in the time/frequency grid.

Figure 2.1: Simplified radio access model.

This model is depicted in Fig. 2.1, along with the scheduler, a cross-layer entity that

makes decisions taking into account the QoS requirements, as well as the instanta-

neous radio-channel conditions (channel-dependent scheduling). The goal of resource

allocation/link resource adaptation is in fact to achieve a high “benefit” for the users

on the one hand, while making efficient use of the limited resources of the wireless

link on the other hand [28].
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In detail, the packet processing, that acts on top of the frame processing, provides

powerful means to handle varying packet sizes and changing channel conditions,

integrating packets handling, retransmissions, and channel coding in one functional

block. It relies on the following key design guideline allowing an efficient cross-layer

approach: “packets must be kept as integral units as far down in the protocol stack

as possible”. Accordingly, there is a one-to-one mapping of packets (e.g., IP packets

or control messages), previously stored in queues, to retransmission units of the radio

link control (RLC) protocol, also denoted as RLC protocol data units (RLC-PDUs).

Each of them consists of an header, a payload and a cyclic redundancy check (CRC)

field. Then, one RLC-PDU is mapped to exactly one forward error correction (FEC)

block, i.e., once again a one-to-one mapping. Thus, the receiver can decode each

packet (or RLC-PDU) independently. Finally, the output of the FEC block can be

punctured, producing variable-sized fragments, named RLC fragments. This feature

can be efficiently combined with the error control mechanism represented by the ARQ

mechanism or the HARQ mechanism, to adapt to different channel conditions. One or

more RLC fragments of a single user are then grouped to form a MAC PDU, together

with MAC PDUs of other users in case of multiple users packets queues. These data

are then handed over to the frame processing module. It is evident how link resource

adaptation strategies suit very well to be adopted with this design, since the latter

optimizes the delivery of packets and not the reception of parts thereof.

In the following Sect. 2.2, a detailed description of the processing at the MAC and

physical layers is given for a single user case. The multi-user case will be described

later on in Sect. 6.2.

2.1.1 Hybrid automatic repeat request

ARQ is a powerful mechanism that controls the transmission errors in order to deliver

error-free data to the users. In its simplest form, the stop-and-wait (SW) [21] scheme,

the transmitter sends a packet (i.e., an RLC-PDU) and waits for the reception, on the

feedback channel, of an acknowledgment (ACK) or a non-acknowledgment (NACK)

before transmitting the following packet. The correct reception of the packet is

detected via CRC. In particular, upon the reception of an ACK a novel packet is

transmitted, contrariwise, the same packet is transmitted if a NACK is received.

This mechanism requires minimum overhead but wastes a lot of resource in that
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the system remains idle until the reception of the feedback. The selective repeat

(SR) [29] protocol continuously transmits packets and performs retransmissions only

for the erroneously received ones. Hence it would be the most efficient protocol, but

a receiver should have an infinite buffer so that a transmitter can keep sending data

all the time while retransmitting erroneous ones. Thus, in practice, multiple channel

SW protocols are adopted [30], [31], where a certain number of parallel SW logical

channels over a single link is employed, so that the transmission can be considered

continuous. As depicted in Fig. 2.2, when the round trip time (i.e. maximum time

allowed to receive an ACK/NACK) is less than 8 transmission time interval, that is

the temporal slot assigned to the generic logical channel to transmit the RLC-PDU,

then a multiple-channel SW with 8 logical channels allows the transmission to be

considered continuous.

Figure 2.2: Example of multiple-channel ARQ with 8 logical channels.

In poor channel conditions, the only ARQ mechanism suffers of a great loss of

throughput since the error rate is high. For this reason, in nowadays systems the

ARQ mechanism is practically always combined with the FEC scheme, which helps

in increasing the reliability of the message. Such an approach, which is also called

HARQ [21], basically transmits a message after being processed by the CRC block and

the FEC encoder. If after the decoding and CRC evaluation the message is received

in error, the transmitter sends again the message encoding it with an amount of
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redundancy that depends on the particular scheme employed [21], [22]. As detailed

in the radio access processing described above, we will rely on this combined error

detection and error correction scheme and will refer to it as ARQ for simplicity. The

amount of redundancy sent at each transmission is determined by the particular LRA

strategy employed, as it will be clear in the following. A further improvement is

offered when the receiver stores the received copies relevant to the same packet and

combines them to create a packet that is more reliable than its constituent parts.

This mechanism is called HARQ with soft combining [20] and will be analyzed in

Chapter 5.

2.2 BIC-OFDM system description

Transmitter structure

This section describes the BIC-OFDM system based on the packet and frame process-

ing outlined in Sect. 2.1 and transmitting over a band B composed of N subcarriers

belonging to the set Ds
∆
= {1, · · · , N}. The equivalent system model is depicted in

Fig. 2.3

Each packet, identified by a RLC-PDU made of Nu = Nh + Np + NCRC bits, i.e.,

including the header, the payload and the CRC sections, of size Nh, Np and NCRC,

respectively, is sent to the receiver within L attempts, that is, the maximum number

of ARQ protocol rounds (PRs). At the generic PR ℓ, each RLC-PDU is processed in

two steps.

In the first, called packet processing step, the RLC-PDU is input to the channel en-

coder whose coding rate r(ℓ) is chosen in the set of punctured ratesDr
∆
= {r0, · · · , rmax},

where r0 is the mother code rate and rmax the minimum code rate. The resulting

block consists of N
(ℓ)
c = Nu/r

(ℓ) coded binary symbols (CBS), which are eventually

randomly interleaved according to the BICM model.

In the frame processing that follows, the coded information is mapped onto the

physical resources available in the time-frequency grid. The bit-level interleaver,

along with the labeling map µ, maps the sequence of CBS {b(ℓ)k }
N(ℓ)

c

k=1 into a sequence

of quadrature amplitude modulation (QAM) symbols {x(ℓ)j,n}, where j denotes the

OFDM symbol within the OFDM frame, with 1 ≤ j ≤ Nofdm, and n identifies the

subcarrier index, with 1 ≤ n ≤ N . In detail, dropping for the sake of notation

the dependence on the OFDM symbol index j, the interleaved sequence of CBS is
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Figure 2.3: BIC-OFDM system model.

broken into subsequences of m
(ℓ)
n bits each, which are Gray mapped onto the unit-

energy symbols x
(ℓ)
n ∈ 2m

(ℓ)
n -QAM constellation, with m

(ℓ)
n ∈ Dm = {2, 4, · · · ,mmax}.

This means that the index k of the CBS b
(ℓ)
k is one-to-one mapped into a set of two

coordinates (nk, ik), that is, b
(ℓ)
k occupies the ikth position within the label of the

2m
(ℓ)
n -QAM symbol sent on the nkth subcarrier.

The modulation symbols are re-arranged into the vector x(ℓ) ∆
=
[
x
(ℓ)
1 , · · · , x(ℓ)N

]T
and

allocated over the N available subcarriers along with a certain amount of power

p(ℓ) = [p
(ℓ)
1 , · · · , p(ℓ)N ]T, where p

(ℓ)
n denotes the power load over the nth subcarrier,

and satisfying

N∑
n=1

p(ℓ)n ≤ P, (2.1)

with P the available power in transmission.

The resulting vector is padded with Nv = Nfft − N symbols equal to zero in corre-

spondence of the Nv virtual subcarriers, undergoes Nfft-sized inverse discrete Fourier
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transform (IDFT) processing and the cyclic prefix (CP) insertion in order to mit-

igate the interblock interference (IBI) and the digital-to-analog conversion. Then,

the obtained signal is up-converted at carrier frequency fc and transmitted over a

frequency-selective channel.

Receiver structure

In a mobile-radio scenario, signals experience several degradation factors due to re-

flection, diffraction, scattering and, in general, to any obstacle that obstructs the line

of sight (LOS) between the transmitter and the receiver. This phenomenon is called

multipath fading and results in the reception of multiple versions of the transmitted

signal, each of them characterized by its attenuation, phase and delay. Moreover,

another significant effect is the time variation in the structure of the medium. As

a result, the characteristics of the paths experienced by the transmitted signal can

vary during time [2]. Statistical models for the channel impulse response of a fading

multipath channel have been described in details in literature over the past years.

Since its out of the scope of this work to provide a description of such models, we

refer to some excellent references on this field such as [32], recalling here simply the

adopted model. Since the coherence time Tc of the channel is much greater than the

OFDM symbol duration Ts, the channel is affected by slowly-fading and the multipath

parameters may be regarded as approximately invariant over many signaling intervals

or for all the entire packet transmission. This model is called block-fading frequency-

selective channel and, accordingly, the channel impulse response can be expressed

as

c(τ) =

Npt∑
n=1

cnδ(τ − τn), (2.2)

where Npt denotes the channel length and cn and τn the complex-valued channel

coefficient and delay relevant to the nth path. Even if all these parameters are random

variables (RVs), the statistical models typically adopted for their characterization

assume Npt and τn fixed, whereas cn are considered uncorrelated complex-valued

Gaussian RVs. In particular, the variance of each coefficient cn and the values of Npt

and τn are given by a power-delay profile of the model chosen. In the following, we

will refer to the ITU multipath fading models as specified in [33].

At the receiver, the signal is fed to the analog-to-digital converter, the IBI is elimi-

nated removing the CP and the resulting signal samples, after serial-to-parallel (S/P)
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conversion, are input to the discrete Fourier transform (DFT) block. Thanks to the

effect of the cyclic prefix that makes the channel look like circular convolution instead

of linear convolution, the model of the signal samples at the output of the DFT block

results

z(ℓ)n =

√
p
(ℓ)
n x(ℓ)n h(ℓ)n + w(ℓ)

n , ∀n ∈ Ds (2.3)

i.e., the overall OFDM transmission can be viewed as N parallel and non-interfering

transmissions, where h
(ℓ)
n is the complex-valued channel coefficient on subcarrier n,

that is obtained as the nth coefficient of the DFT of the channel response (2.2)

encompassing also the transmitter and receiver filters, and w
(ℓ)
n ∈ CN (0, σ

(w)
ℓ,n

2
) is the

circular-symmetric complex-Gaussian random variable with standard deviation σ
(w)
ℓ,n ,

denoting the thermal noise sample on subcarrier n. The instantaneous post processing

SNR values are then defined as

γ(ℓ)n
∆
= p(ℓ)n

|h(ℓ)n |2

σ
(w)
ℓ,n

2 , ∀n ∈ Ds (2.4)

and, upon collecting them into the post-processing SNR diagonal matrix

Υ(ℓ) ∆
=


γ
(ℓ)
1 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 γ
(ℓ)
N

 , (2.5)

the input-output relationship of the BIC-OFDM system described above can be

equivalently expressed as

z(ℓ) =
(
Υ(ℓ)

) 1
2

x(ℓ) +w(ℓ), (2.6)

where now w(ℓ) ∆
= [w

(ℓ)
1 , · · · , w(ℓ)

N ]T is the noise vector with w
(ℓ)
n ∈ CN (0, 1).

Finally, the receiver performs the soft metric evaluation, followed by de-interleaving

and decoding. In particular, the soft metric at the input of the decoder, identified by

the log-likelihood ratio (LLR) of the kth coded binary symbol, is expressed by

Λ
(ℓ)
k = log

∑
x̃∈χ(ℓ)

b′
k

(ik,nk) p
(
z
(ℓ)
nk |x

(ℓ)
nk = x̃,Υ(ℓ)

)
∑
x̃∈χ(ℓ)

bk

(ik,nk) p
(
z
(ℓ)
nk |x

(ℓ)
nk = x̃,Υ(ℓ)

) (2.7)
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where

p
(
z(ℓ)nk
|x(ℓ)nk

= x̃,Υ(ℓ)
)
∝ exp

(
−
∣∣∣∣z(ℓ)nk

−
√
γ
(ℓ)
nk x̃

∣∣∣∣2
)

(2.8)

is the Gaussian-shaped probability density function (p.d.f.) of the received sample

value, conditioned on the transmitted symbol x̃ and on Υ(ℓ), χ
(i,n)
a represents the

subset of all the symbols belonging to the modulation adopted on the nth subcarrier

whose ith label bit is equal to a and b
′

k denotes the complement of bit bk.

2.2.1 Error probability analysis

Under ideal interleaving assumption, the BICM channel of the system described in

Sect. 2.2 behaves like a binary input output symmetric (BIOS) channel [18]. Accord-

ingly, dropping wl.g. the dependence on the PR index ℓ, the packet error rate (PER)

of linear binary codes over BIOS channel can be computed exploiting the union-bound

as

PER ≤
Nc∑

d=dfree

ω(d)PEP(d) (2.9)

where PEP(d) is the pairwise error probability of two codewords originating from the

same state of the trellis of the BICM decoder and merging after d steps, ω(d) is the

weight of all error events at Hamming distance d and dfree is the minimum distance

between two codewords.

Thus, the PER performance can be obtained estimating the PEP of the system. Since

in a BIOS channel each bit depends only on its corresponding channel output [18], [34],

for the system described above employing the bit log-likelihood metrics at the decoder

input the PEP in (2.9) can be written as

PEP(d) = Pr

{
d∑
k=1

Λk > 0

}
= Pr {Θ > 0} , (2.10)

where we defined Θ
∆
=
∑d
k=1 Λk, with Λk expressed by (2.7). It is well known that

the probability of a random variable can be evaluated through its moment generating

function (MGF) [35], so that, introducing

MΘ (s)
∆
= EΘ {exp (sΘ)} = [MΛ (s)]

d
, (2.11)
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as the MGF of the RV Θ, where

MΛ(s)
∆
= E

{
esΛ
}

(2.12)

is the MGF of the i.i.d. RV Λk, the PEP can be numerically evaluated exploiting the

following integral1 [35]- [36]

PEP(d) =
1

2πȷ

∫ σ+ȷ∞

σ−ȷ∞
MΘ (s)

ds

s
=

1

2πȷ

∫ σ+ȷ∞

σ−ȷ∞
[MΛ (s)]

d ds

s
. (2.13)

2.3 Link performance prediction techniques

The system described in Sect. 2.2 has several transmission parameters, e.g., mod-

ulation order (per subcarrier), coding rate, power per subcarrier, that should be

properly set in order to obtain the best possible performance. This is done solv-

ing a constrained optimization problem where the objective function, representing

the performance metric of the system, is optimized over the constrained set of the

transmission parameters. To this end, it is required an effective way to predict the

system performance accounting for both the CSI and the information relevant to the

transmitted-signal mode choice (i.e. modulation size, coding rate, etc.). Moreover,

there should be also take into account information coming from different techniques

that further improve the transmission such as the effect of the multiple antennas

scheme or the effect of the HARQ mechanism. Finally, the prediction model needs

to be not only accurate but also simple, in order to make feasible the constrained

optimization problem.

A simple approach to predict the performance, for example in terms of PER, is to

consider to ratio between the number of erroneous packets by the total number of

received packets during a given observation window. Though, such an estimator

assumes clearly slow-varying channel and takes many packets to converge. On the

contrary, predicting the future channel state information and deriving from that a

PER estimate, leads to a more accurate evaluation and faster convergence. However

in multi-carrier systems, such as OFDM, wherein the frequency selective channel

introduces large SNR variation across the subcarriers, the above approach would

1In (2.13), σ is any real number which ensures that the contour path lies in the region of

convergence.
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imply to obtain the performance of all the possible transmission modes through full

link-level simulations. This approach is practically unfeasible. The basic idea is to

have a simple link quality model limited to the additive white Gaussian noise (AWGN)

channel performance.

The latter concept is well represented by the link performance evaluation method

called effective SNR mapping (ESM) [37]. The objective of this method is to find a

compression function that maps a sequence of varying SNRs across the subcarriers

to a single value that, in turn, is strongly correlated with the actual PER. The basic

principle of ESM is to be able to go from an instantaneous channel state, such as the

instantaneous SNR for each subcarrier in case of OFDM, to a corresponding PER,

through a compressed value called effective SNR. This scalar value represents the SNR

of an equivalent system over AWGN channel, whose PER performance can be simply

evaluated (e.g., computed off-line and stored into a look-up table (LUT) or according

to analytical models such as in [38]). Depending on the way the compressing function

is derived, several ESM techniques have been proposed so far [39].

• The exponential ESM (EESM) [40] exploits an exponential function to obtain

a rather simple but effective evaluation of link PER performance but only for

the case of binary signalling. For high order modulations it is necessary a fine

tuning factor for adjusting the PER estimate and reaching good accuracy for

each modulation and coding scheme.

• The capacity ESM [26], [41], yields an optimistic estimate of the real PER

function of a link channel realization, since the actual information between

transmitter and receiver on every subcarrier is upper bounded by the concerning

capacity expression [39].

• The last solution makes up for this coarse approximation using a mutual infor-

mation approach and so it is referred to as mutual information ESM (MIESM)

[42], [43]. Differently from the other ones, it includes two separate models, one

for the modulation and the other for the coding, thereby providing good predic-

tion performance for the mixed-modulation as well. Therefore, such a separate

modulation and coding model makes radio resources management like power

allocation and rate adaptation very convenient, as done in [44]. Unfortunately,

a closed expression for calculating the mutual information doe not exist, so a

polynomial approximation is essential, as proposed in [43].
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Finally, a novel ESM technique is represented by the model whose compression

function is based on the cumulant moment generating function (CMGF) of the bit

level log-likelihood metrics (2.7) at the input of the soft decoder [45]. This method,

called κESM for short, offers several significant features compared with existing ESM

techniques, such as:

i) improved accuracy performance compared with the conventional EESM method;

ii) separation of the modulation and coding models, thus making configurations using

mixed modulation among subcarriers easy to manage;

iii) the use of a tuning factor (required for turbo codes) to offer even improved

accuracy that is independent of the modulation format adopted on each subcarrier;

iv) similar accuracy (or even better for multi-level QAM modulations) as the MIESM

method, while offering (unlike the MIESM) a modulation model with a convex and

simple closed-form mapping function.

Thus, in the reminder of this thesis, wherever required, we will rely on the κESM

model as link performance prediction method and, therefore, before proceeding fur-

ther, its structure is briefly recalled in the following section.

2.3.1 The κESM model

The κESMmethod offers an accurate yet manageable PER prediction scheme for BIC-

OFDM transmission links over frequency-selective channels relying on an accurate

evaluation of the PEP figure of merit in (2.9) through the statistical description of

the BIC log-likelihood metrics.

According to the route originally pursued in [34], the numerical evaluation of PEP in

(2.13) can be simply approximated as the tail probability

PEP(d) ≃ Q
(√
−2dκΛ(ŝ)

)
, (2.14)

where Q(x)
∆
= 1√

2π

∫∞
x

exp(−t2/2)dt,

κΛ(s)
∆
= logMΛ(s) (2.15)

is the CMGF of the LLR metrics Λk, 1 ≤ k ≤ Nc, relevant to a sequence of Nc

received CBS, MΛ is the MGF defined in (2.11) and ŝ is the so-called saddlepoint,

that, in the case of BIOS channels with MAP metric, is ŝ = 1/2 as shown in [36].
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The MGF (2.12) can be evaluated as show in Appendix A.2, so that (2.15) computed

at the saddlepoint turns out

κΛ (ŝ) ≃ log

 1∑N
n=1mn

N∑
n=1

√
2mn/2∑
µ=1

ψmn(µ)

2mn−1
· e−

γn(µ·d(min)
mn )

2

4

 , (2.16)

where d
(min)
mn is the minimum Euclidean distance between the symbols of the 2mn -

QAM constellation adopted on the nth subcarrier and ψmn(µ) defines the number of

symbols at distance µd
(min)
mn from the nearest neighbor in the complementary subset

of the constellation.

It can be noted that equation (2.14) corresponds to the PEP of an equivalent system

with binary modulation (BPSK) that experiences a simple AWGN channel with SNR

γ̂
∆
= −κΛ(ŝ). (2.17)

This observation is exactly the principle described in Sect. 2.3 on which the link

performance prediction methods based on the ESM rely. Thus, the performance

of the BIC-OFDM system characterized by the post-processing SNRs matrix Υ are

estimated evaluating the performance of the equivalent binary system over AWGN

channel characterized by the SNR γ̂, i.e.,

PER(Υ) ≃ ΨAWGN(γ̂), (2.18)

where ΨAWGN is the PER of the equivalent system over AWGN channel.

In conclusion, the κESM approach is described by the scheme in Fig. 2.4, where, as

stated before, the division of the modulation and coding models is well evident. In

Figure 2.4: κESM quality model structure.
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fact, it is first evaluated the ESNR as

γ̂
∆
= − log

(
1∑N

n=1mn

N∑
n=1

Ωn

)
, (2.19)

where

Ωn
∆
=

√
2mn/2∑
µ=1

ψmn
(µ)

2mn−1
· e−

γn(µ·d(min)
mn )

2

4 . (2.20)

As apparent for (2.19)-(2.20), γ̂, given the post-processing SNRs Υ, only depends

on the modulation order adopted over each subcarrier and, besides, it is a convex

function of the power allocation coefficients pn, which are contained in γn via (2.4).

Then γ̂ is mapped into the PER value either entering into a LUT, where the values

of the PER for all the considered coding rates are stored, or evaluating the PER via

analytical models. In the latter case, it is worth noting that, in the region of interest,

the PER function Ψr, with 0 ≤ Ψr ≤ 1, is monotonically decreasing, analytic and

convex (i.e. Ψ′
r < 0, Ψ′′

r > 0 ), which is consistent with observations, e.g., in [38], [46]

and [47]. Finally, an optimization factor is required for turbo codes, as shown in [48],

here neglected w.l.g. for the sake of notation.



Chapter 3

The goodput criterion

3.1 Rationale of the goodput criterion

Link resource adaptation strategies can be essentially described as constrained op-

timization problems. In fact, the optimization variables, i.e., the transmission pa-

rameters, must optimize a certain objective function, that describes the performance

of the system, according to the available information and satisfy at the same time

constraints on the required QoS. The output of this problem represents the setting

of parameters to adopt during the transmission. An effective LRA strategy should

be able to take into account, in a cross-layer manner, not only information on the

status of the wireless channel but also information coming from the upper layers such

as, recalling for instance some features of the systems in Sect. 2.1, the use of HARQ

protocols. Moreover, for these systems, denoted by discrete constellations, state-of-

the-art codes, ARQ mechanism, packet-oriented transmissions and so on, information-

theoretic performance limits, which rely on ideal assumptions like Gaussian inputs and

infinite length codebooks, can reveal inadequate to give a reliable picture of the actual

link performance [49], [50].

To this end, a significative cross-layer optimization criterion is represented by the

goodput, i.e., the number of data bits delivered in error-free packets per unit of time,

or, offered layer 3 data rate. The goodput approach allows to obtain a trade-off

between data rate and link reliability. In fact, in order to deliver a packet, the higher

the data rate, the shorter the transmission time in one transmission attempt, but,

more likely, the transmission will fail, thus engendering retransmissions. On the other

hand, the more robust the transmission strategy, the more likely the packet will be

delivered successfully within the retry limit, however, with less efficiency. Thus, a link



26 The goodput criterion

adaptation strategy that maximizes the goodput optimally trades-off the probability

that the packet will be delivered successfully and the shortest possible transmission

time.

Therefore, in the following, we will focus on the expected goodput (EGP) figure of

merit, defined as the ratio of the expected delivered data payload and the expected

transmission time. Many works in literature focused on this metric. Authors in [24],

for instance, adapt the pair modulation order and coding rate to the EGP for 802.11a

systems, based on a simple table-driven approach. Though, the wireless channel status

along the retransmission in the EGP formulation is coarsely approximated by a two-

states discrete time Markov chain. The channel variation is in fact evaluated switching

between these two states, called good and bad, according to transition probabilities

that depend on different wireless channel variation patterns. In [29] and [51], authors

focus on the EGP metric considering systems with Viterbi decoding based on hard-

decision. In particular, [51] propose using a maximum expected goodput criterion for

multiuser diversity scheduling, whereas [29] addresses the problem of how to allocate

bits and power among a set of parallel subchannels. The packet error rate to estimate

the expected transmission time is then evaluated as a function of the average bit

error rate, implicitly assuming a constant wireless channel through the entire packet

delivering period. In [45], the power allocation problem for a BIC-OFDM system with

soft-Viterbi decoding based on the bit level log-likelihood metrics is addressed. The

optimization is aimed at maximizing the EGP, derived under the mild assumption of

large retry limit.

All these works show that the performance of a communication system can be im-

proved if the synergy between different layers is exploited, motivating the adoption

of the goodput as figure of merit. Thus, in the next section, in order to shed lights

on some typical assumptions done for the EGP formulation, we first resort to the

renewal reward theory to obtain a general analytical expression of the EGP and then

introduce the concept of inter-round optimization approach.
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3.2 Expected goodput derivation

3.2.1 Equivalent BIC-OFDM model

In this section, we evaluate the EGP for the system described in Sect. 2.2. To

this end, let us refer to the block diagram depicted in Fig. 3.1, representing an

equivalent model of the above mentioned ARQ-based system. In this model we

Figure 3.1: Equivalent model for the ARQ BIC-OFDM system.

denoted as H
∆
= diag

{
H(1),H(2), · · · ,H(L)

}
, where H(ℓ) ∆

= diag
{
[h

(ℓ)
1 , · · · , h(ℓ)N ]

}
,

and X
∆
= diag

{
X(1),X(2), · · · ,X(L)

}
, where X(ℓ) ∆

= diag
{
[x

(ℓ)
1 , · · · , x(ℓ)N ]

}
, the block

diagonal matrices containing the channel realizations that could be experienced by

the link during L transmissions and the relevant transmitted symbols throughout the

L PRs, respectively1.

In the ideal and fictitious case of non-causal perfect knowledge of the channel gains

evolution, the matrix H is available at the CSI input of the transmitter in Fig. 3.1,

thus enabling the joint adaptation of the transmission parameters to compute X over

the L PRs. Unfortunately, such a joint optimization, though attractive, is clearly

impracticable, due to the impossibility to reliably predict the whole matrix H at the

beginning of each RLC-PDU transmission.

Thus, an effective approach usually adopted in literature, inspired by [24] and adopted

for instance also in [29]- [48], is to adapt the transmission parameters to the EGP,

1If the total number of PRs required for transmitting a given RLC-PDU is L∗ < L, then Xℓ = 0,

for L∗ < ℓ ≤ L.
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defined as the ratio between the data payload to be delivered and the expected

transmission time relying. In particular, we introduce the concept of a per-round

optimization approach, that can be well understood looking at the equivalent model

in Fig. 3.1. This procedure enables the adaptation of the transmission parameters over

each branch of the equivalent model in Fig. 3.1, making use of only the instantaneous

channel state information currently available and accounting for the time already

spent in the previous transmission attempts.

3.2.2 Metric derivation

Based on this premise, let us define the metric at the generic round ℓ, i.e., at the ℓth

branch of the equivalent model in Fig. 3.1. To this end, we will resort to the renewal

theory [52], first introduced in [53] to analyze throughput performance of a system

in presence of ARQ protocols, under the mild assumptions of error and delay free

feedback channel and infinite buffer length.

Before proceeding further, it is worth noting that the ℓth branch of the equivalent

system corresponds to a system with L−ℓ+1 PRs still available and where ℓ−1 packet
transmissions previously failed. For such a system, let define a renewal event as the

event in which the system stops transmitting the current packet either because an

ACK is received or because the PR limit L− ℓ is reached. The holding time between

two consecutive occurrences of the renewal event, or inter-arrival time, is described

as a sequence of i.i.d. RVs2 {S(ℓ)
1 , S

(ℓ)
2 , · · · }.

A packet transmission employing transmission parameters τ (ℓ) ∆
= {p(ℓ),φ(ℓ)}, with

φ(ℓ) ∆
= {m(ℓ), r(ℓ)}, takes places in

Tu(φ
(ℓ)) =

N
(ℓ)
c TB

r(ℓ)
N∑
n=1

mn
(ℓ)

(3.1)

seconds, where TB is the OFDM symbol duration, in seconds. Accordingly, the ith

holding time can be written as

S
(ℓ)
i = Tf (ℓ− 1) +

ℓi∑
j=ℓ

Tu(φ
(j)), (3.2)

2It is worth noting that this in not a restrictive assumption. In fact, recalling the block-fading

channel in the system model in Sect. 2.2, the channel remains the same during a packet transmission

but independently changes between either different packets or transmitted copies of the same packet.
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where the first term on the right hand side (RHS) is the time elapsed over the previous

ℓ − 1 failed transmissions, which is a known quantity at the ℓth branch, whereas

ℓ ≤ ℓi ≤ L− ℓ is a RV depending on the number of packet transmissions after which

the renewal event happened. A renewal process is then defined as

X
(ℓ)
t

∆
= sup

ν
{ν : J (ℓ)

ν < t}, (3.3)

that is, the number of renewal events occurred by time t ≥ 0, with

J (ℓ)
ν

∆
=

ν∑
i=1

S
(ℓ)
i (3.4)

the time required for ν renewal events to happen.

Besides, let {Z(ℓ)
1 , Z

(ℓ)
2 , · · · } be a sequence of random rewards associated with the

renewal events {S(ℓ)
1 , S

(ℓ)
2 , · · · }. In particular, since we are interested in correctly

receiving the Np information bits out of the N
(ℓ)
c transmitted ones, Z

(ℓ)
i = Np/B

if the renewal is due to a successful decoding, where B denotes the overall OFDM

bandwidth, otherwise Zi = 0.

Before proceeding further, let us introduce Ak as the event of receiving an ACK at

round k, Āk as the event of receiving a NACK at round k and Rk as the event of

having a renewal event after round k. Accordingly, the probability of Rk is

Pr{Rk}
∆
= Pr{Ā1, · · · , Āk−1,Ak}, (3.5)

and, since a renewal event always happens when the retry limit L is reached,

Pr(RL) = 1−
L−1∑
k=1

Pr(Rk). (3.6)

On the other hand, defining Nk as the event of not receiving ACKs in k attempts,

with 1 ≤ k ≤ L, the more manageable probability Pr(Nk) can be introduced,

Pr(Nk)
∆
= Pr{Ā1, · · · , Āk} = 1−

k∑
j=1

Pr(Rj). (3.7)

It easily follows that

Pr(Rk) = Pr(Nk−1)− Pr(Nk) (3.8)
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with Pr(N0)
∆
= 1 and the outage probability, i.e., the probability of having unsuccess-

ful decoding within the retry limit L, results

Pout(L)
∆
= Pr{Ā1, · · · , ĀL} = Pr(NL). (3.9)

Denoting Y
(ℓ)
t =

X
(ℓ)
t∑
i=1

Z
(ℓ)
i the reward earned in X

(ℓ)
t renewal events, from the renewal

theory the following theorem holds.

Theorem 3.1 (Renewal Reward Theorem, [52]) For a renewal process where Z
(ℓ)
j

is the reward earned at each renewal event X
(ℓ)
j , the reward function Y

(ℓ)
t

∆
=
X

(ℓ)
t∑
i=1

Z
(ℓ)
i

satisfies

lim
t→∞

1

t
E{Y (ℓ)

t } =
E{Z(ℓ)

1 }
E{S(ℓ)

1 }
. (3.10)

Remark. Theorem 3.1 states that the accumulated reward over time is equivalent to

the ratio between the expected reward and the expected time for a renewal event to

happen.

3.2.3 Inter-round EGP optimization approach

Capitalizing on Theorem 3.1, the EGP over the generic branch ℓ can be evaluated

as follows. Defining with PER(τ (ℓ)|H(j)) the packet error probability when channel

H(j) is experienced and transmission parameters set τ (ℓ) is employed, we get that

E{Z(ℓ)
1 } =

Np

B
{1− Pout(L− ℓ)} (3.11)

with

Pout(L− ℓ) =
L∏
j=ℓ

EH(j)

{
PER(τ (j)|H(j))

}
, (3.12)

and

E{S(ℓ)
1 } = Tf (ℓ− 1) +

L∑
j=ℓ

Tu(φ
(j)) Pr(Nj−1), (3.13)

where

Pr(Nj) =
j∏

k=0

EH(k)

{
PER(τ (k)|H(k))

}
(3.14)
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denotes the probability of having an unsuccessful decoding up to round j, with

PER(τ (0)|H(0))
∆
= 1. After substituting equations (3.11)-(3.14) into (3.10), we obtain

that the goodput is

η(ℓ)(τ (ℓ)) =
Np

B

1− PER(τ (ℓ)|H(ℓ))
L∏

j=ℓ+1

EH(j){PER(τ (j)|H(j))}

Tf({φ(i)}ℓ−1
i=1) + Tu(φ(ℓ)) + TD({τ (j),H(j)}Lj=ℓ)

, (3.15)

where Tf({φ(i)}ℓ−1
i=1) represents the time spent in the previous ℓ − 1 failed attempts

and

TD({τ (j),H
(j)
}Lj=ℓ) =



PER(τ (ℓ)|H(ℓ))·

(
Tu(φ

(ℓ+1)) +
L∑

k=ℓ+2

Tu(φ
(k))·

k−1∏
j=ℓ+1

EH(j){PER(τ (j)|H(j))}

)
if ℓ ≤ L− 2

Tu(φ
(L))PER(τ (L−1)|H(L−1)) if ℓ = L− 1

0 if ℓ = L

(3.16)

is the expected delivering time.

This formulation requires however the knowledge of the channel’s p.d.f. for all the

possible scenarios, which is a problematic assumption in most cases of interest. Thus,

we propose a modified version of the EGP metric, obtained by substituting the

expectation on the future channel conditions with the current channel status, i.e.,

replacing EH(j)

{
PER(τ (j)|H(j))

}
, ℓ < j ≤ L, with PER(τ (ℓ)|H(ℓ)). Accordingly, at

each PR, the setting of the transmission parameters τ (ℓ) is the one maximizing the

EGP metric

ζ(ℓ)(τ (ℓ))
∆
=
Np

B

1−
(
PER(τ (ℓ)|H(ℓ))

)L−ℓ+1

Tf({φ(i)}ℓ−1
i=1) + Tu(φ(ℓ))

∑L
k=ℓ

(
PER(τ (ℓ)|H(ℓ))

)k−ℓ . (3.17)

Let us note that the objective function (3.17) is equivalent to the EGP we would have

assuming that the packet experiences the current channel conditions H(ℓ) throughout

its possible future retransmissions, i.e., long term static channel assumption. As

anticipated in Sect. 3.2.1, this assumption, which is usually adopted in these cases,

see for instance [29], [45], allows to obtain a manageable metric to optimize over the

available set of transmission parameters. Moreover, as it will be shown in the follow-

ing, simulation results carried over a realistic wireless scenario justify this approach
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showing that the actual goodput is very close to the EGP.

Thus, in conclusion, the EGP (3.17) is evaluated at each PR according to the avail-

able current CSI and this per-round optimization is performed until the packet is

successfully received, or the PR limit L reached.



Chapter 4

LRA for cognitive

BIC-OFDM systems

Cognitive radio networks have recently been gaining an ever increasing interest as

an effective way to tackle the problem of resource scarcity and inefficiency in the

frequency spectrum utilization [54]. Frequency-agile cognitive radios (CRs) [55], [56],

employed by unlicensed users, or secondary users (SUs), are the key to this novel radio

access paradigm. Such devices adapt their parameters to transmit over segments of

spectrum actually owned by licensed users, or primary users (PUs), without causing

harmful interference to the latter [57], [58]. In this Chapter, the LRA problem aimed

at maximizing the GP of a cognitive BIC-OFDM system is tackled and optimally

solved. In particular, the optimal PA strategy is first found through the Lagrangian

dual decomposition method. Then, in order to circumvent the drawbacks of con-

ventional numerical methods, a novel iterative yet simple PA algorithm is proposed,

whose optimality conditions are analytically demonstrated resorting to the QVI the-

ory. Based on this PA algorithm, an AMC scheme is eventually derived, and the

improvements in GP performance are finally highlighted simulating a realistic wireless

scenario.

4.1 Dynamic spectrum access

Dynamic spectrum access (DSA) can be defined [59], [60] as a mechanism to adjust

the spectrum resource usage in a near-real-time manner in response to the changing

environment and objective (e.g. available channel and type of applications), changes
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of radio state (e.g. transmission mode, battery status, and location), and changes

in environment and external constraints (e.g. radio propagation, operational policy).

Furthermore, the unlicensed (i.e., secondary) user spectrum access may encounter

incumbent licensed (i.e., primary) users that possess different transmission character-

istics. To counter these challenges and operate in a manner that is transparent to the

incumbent primary users, the radio must adapt to the varying spectrum operating

conditions [61]. Therefore, based on the spectrum sensing information obtained after

querying a geo-location database or sensing the radio environment [62], spectrum

access schemes have to be designed to efficiently use the radio resource. The main

objective of dynamic spectrum allocation is to maximize the QoS performance (e.g.,

throughput, goodput, packet error rate, etc.) of secondary users while minimizing

interference to primary service [63].

In order to address the above issues, a considerable effort has been devoted on

optimizing the performance of the secondary link while guaranteeing coexistence with

the primary network. In [64], OFDM and multi-antennas are exploited to achieve a

trade-off between the benefits of spatial multiplexing for SU transmissions and the

interference level caused at the PU receivers. In [65], the optimal solution for the

power allocation (PA) problem across the OFDM bandwidth is derived by maximizing

the secondary link capacity, under limitations on the out-of-band interference to PUs

operating on adjacent bands. It also proposes a low-complexity suboptimal approach,

called step-ladder (SL) PA, based on the principle that more power shall be loaded

on the subcarriers farther from the PU bands. In [66], the same problem is suitably

extended so as to take into account for the constraints about the in-band interference

and the available transmit power. Resource allocation schemes in OFDMA cognitive

radio networks are considered in [67] and [68], wherein the sum rate maximization

problem is addressed for the single and multi-cell case, respectively.

In the sequel of this chapter, we propose a novel framework that allows to adapt the

transmission parameters of a secondary BIC-OFDM system in order to optimize its

goodput, satisfying at the same time the constraints on the interference caused to

the PUs. In particular, it is first analyzed the PA problem which is shown to be a

convex optimization problem [69]. However, in order to circumvent the drawbacks of

conventional numerical methods [70], such as slow convergence and need for parameter
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tuning, used to solve these kind of problems, we turn to the QVI theory [71], [72].

The latter allows to derive a novel PA framework, referred to as SSR, wherein the

constrained PA problem is split into elementary subproblems and whose equivalence

with the original PA problem is analytically proven. Finally, a simple AMC scheme

coupled with the SSR PA is formalized.

4.2 BIC-OFDM cognitive radio scenario

4.2.1 The underlay and interweave paradigms

The scenario under analysis consists of a BIC-OFDM radio link between a secondary

transmitter (STx) and its receiver (SRx). Secondary users use the same frequency

bands of primary users according to several techniques which depend on the amount

of available side information. In practice, due to severe restrictions on the imple-

mentation complexity, detailed information such as channel gains or codebooks and

messages of PUs will be unlikely available at the STx, which shall instead rely on

limited side information only [57]. Thus, coexistence among PUs and SUs is basically

ensured by the underlay and interweave paradigm1 [57], [58], here briefly recalled.

In the underlay paradigm, SUs are allowed to transmit at the same time over the

same bands (referred to as grey spaces) used by PUs, called underlay PUs (UPUs), as

long as the in-band interference caused to them is kept below a certain threshold which

depends on the requested PUs QoS. Clearly, since interference is path-loss dependent,

some bands could be forbidden for SUs when they are very close either to PUs or to

other SUs that are already using those portions of spectrum [57]. As consequence, it

is reasonable to assume, as in [66], that each PU settles an “interference-free” zone

of radius R around itself, wherein any SU transmission is interdicted. This allows

PUs to protect themselves from too close SUs, which have to operate so that the

interference level caused on the edge of each zone is below a given threshold.

The second co-existence scenario refers to the case in which a PU band is present

in the close vicinity or adjacent to the SU’s one, i.e., PUs and SUs are co-located in

the same area with side-by-side bands. Here, SUs have to ensure that their out-of-

band (OOB) emissions cause a limited interference to the PUs, called interweave PUs

1Note that in literature there are different definitions of these paradigms. We refer to the definition

given, e.g., in [57] that is different from the one given, for example, in [68].
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(IPUs), operating in adjacent bands.

Therefore, adopting the model proposed in [66], the cognitive scenario accounting

for both paradigms is described as in Fig. 4.1. The STx transmits over QU bands in

the set BUPU
∆
= {B1, · · · , BQU

} used also by QU UPUs. Contiguous to these bands,

there are QI bands belonging to the setWIPU
∆
= {W1, · · · ,WQI

}, where QI IPUs are

exclusively transmitting. Thus, the overall bandwidth is Btot
∆
=
∑QI

i=1Wi+
∑QU

u=1Bu,

where secondary transmission occurs over B
∆
=
∑QU

u=1Bu.

Figure 4.1: Spectrum activity

4.2.2 Power constraints evaluation

Recalling the BIC-OFDM system model in Sect. 2.2 and the underlay and interweave

paradigms described above, it follows that a few constraints arise, at each PR ℓ, that

limit the PA distribution p(ℓ) ∆
= [p

(ℓ)
1 , · · · , p(ℓ)N ]T that the STx is allowed to allocate

over the N available subcarriers.

First, it is recalled constraint (2.1) on the total power that the STx can spend over

the subcarriers, that is

f0(p
(ℓ))

∆
=

N∑
n=1

p(ℓ)n − P ≤ 0. (4.1)

Then, the in-band interference brought by the STx to the QU UPUs described in

Sect. 4.2.1 yields

fu(p
(ℓ))

∆
=

∑
n:ϕ(n)=u

p(ℓ)n − T (U)
u ≤ 0, 1 ≤ u ≤ QU , (4.2)
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where ϕ(n) = u is an indicator function denoting that subcarrier n used by the

STx belongs to the subband Bu ∈ BUPU and T
(U)
u is the maximum interference (or

interference temperature) allowed at the edge of the uth zone scaled by the path loss

originated by the STx.

Finally, we focus on the out-of-band interference that can be found within the IPU

bands Wi ∈ WIPU, 1 ≤ i ≤ QI , due to the signal transmitted by the STx. Denoting

with Pi(f) its power spectral density function, the set of feasible PA coefficients p(ℓ)

have to be constrained in order to satisfy [66]

fQU+i(p
(ℓ))

∆
=

N∑
n=1

Ki,np
(ℓ)
n − T

(I)
i ≤ 0, 1 ≤ i ≤ QI , (4.3)

where

Ki,n
∆
=

∆fn,i+
Wi
2∫

∆fn,i−
Wi
2

Pi(f)df, (4.4)

∆fn,i is the frequency distance between the nth subcarrier and the center of the ith

IPU band, and T
(I)
i is the allowed interference level over that subband, normalized

by the path loss of the link STx-ith IPU receiver.

4.3 LRA problem formulation

This section focuses on the formulation of the optimization problem whose solution

provides a proper setting of transmission parameters, namely, power distribution

across the active subcarriers, modulation order and coding rate for the BIC-OFDM

system in the cognitive context described in Sect. 4.2.1.

As outlined in Sect. 3.2.3, we will resort to a per-round optimization, where, at each

round, the EGP metric is optimized over the set of possible transmission parameters.

In particular, considering perfect CSI at the transmitter and uniform bit loading, i.e.,

m
(ℓ)
n = m(ℓ) ∀n ∈ Ds, where Ds is the set of subcarriers, the parameters to be set at

each PR ℓ are the pair modulation order and coding rate, identified by transmission

mode (TM) φ(ℓ) ∆
= {m(ℓ), r(ℓ)}, and the power allocation vector p(ℓ).

To this end, let us point out the following observations. Recalling the EGP expression

(3.17), it can be noted that the packet error probability PER(φ(ℓ),p(ℓ)|H(ℓ)), where

H(ℓ) = diag{[h(ℓ)1 , · · · , h(ℓ)N ]} collects the channel coefficients at round ℓ, can be



38 LRA for cognitive BIC-OFDM systems

efficiently evaluated by the ESM technique given by the κESM method described

in Sect. 2.3.1. Based on (2.18), we thus get

PER(φ(ℓ),p(ℓ)|H(ℓ)) = Ψr(ℓ)
(
γ̂(ℓ)(φ(ℓ),p(ℓ))

)
, (4.5)

where Ψr(ℓ)
(
γ̂(ℓ)(φ(ℓ),p(ℓ))

)
is the packet error rate of the equivalent BPSK sys-

tem employing coding rate r(ℓ) over an AWGN channel denoted by SNR γ̂(ℓ) =

γ̂(ℓ)(φ(ℓ),p(ℓ)), evaluated as in (2.19)-(2.20)2.

Therefore, upon plugging (4.5) into (3.17), the EGP metric at the ℓth round results

ζ(φ(ℓ),p(ℓ)) =
Np

B

1−
[
Ψr(ℓ)

(
γ̂(φ(ℓ),p(ℓ))

)]L−ℓ+1

Tf + Tu(φ(ℓ))
L∑
k=ℓ

[
Ψr(ℓ)

(
γ̂(φ(ℓ),p(ℓ))

)]k−ℓ . (4.6)

From now on, w.l.g., the dependence on the PR ℓ will be dropped for the sake of

readability. Finally, we are left to the EGP optimization problem (EGP-OP), as

stated in the sequel.

EGP-OP. The LRA problem, consisting in finding the TM φ and the power vector

p which maximize, at each PR, the EGP (4.6) subject to the available power and

interference constraints, can be written as

(φ∗,p∗) = argmax
(φ,p)

{ζ(φ,p)}

s.t. p ≽ 0 (4.7.a)

f(p) ≼ 0 (4.7.b)

φ ∈ Dφ (4.7.c)

, (4.7)

where f(p)
∆
= [f0(p), · · · , fQU+QI

(p)]T is the (QU + QI + 1)-sized vector including

the constraints (4.1)-(4.3) and Dφ is the set of allowed transmission modes.

The structure of the EGP-OP (a mixed integer problem) allows to optimally decouple

the problem in two parts. First, the optimal PA p∗(φ0) for a given TM φ0 is found,

then a simple exhaustive search is done over the finite-size set of the possible TMs to

find the pair {p∗(φ∗
0),φ

∗
0} corresponding to the highest EGP value. These issues will

be addressed in the following sections.

2Let us recall that the ESNR γ̂, as described in Sect. 2.3.1, depends on φ(ℓ) only via the

modulation oder.
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4.4 Optimal power allocation

In this section, the PA problem for EGP optimization, based on (4.7), is formulated

and then solved via the well-known dual decomposition method.

4.4.1 Formulation of the PA problem

In order to find the optimal PA distribution p∗ ∆
= [p∗1, · · · , p∗N ]T solving (4.7) for a

given TM φ = φ0, let us adopt the following simplification, as done in [45]. Since

in the evaluation of the ESNR (2.19), ψmn(1) > ψmn(µ) for µ > 1, let us limit the

summation in (2.20) to µ = 1 for simplicity3, or equivalently, drop the terms relevant

to the symbols in the complementary subset at distance greater than d
(min)
mn . Moreover,

for the sake of notation, let rewrite the coefficients of (2.20) as αn
∆
= ψmn(1)/2

mn−1

and ρn
∆
= 4/

(
d
(min)
mn

)2
. Then, the following proposition can be stated.

Prop. 4.1 For a given TM φ = φ0, the optimal PA p∗ satisfies

p∗ = argmax
p

ζ(φ0,p) = argmin
p

ψ(φ0,p) (4.8)

where

ψ(φ0,p)
∆
=

N∑
n=1

αne
− pn

ρn (4.9)

is the argument of the logarithm of the κESM γ̂ defined in (2.20), limited to µ = 1,

that results a convex function of the PA vector p.

Proof In order to prove (4.8), let us note that now the only variable is the power

p that appears in (4.6) only in the packet error rate via γ̂(p). Moreover, recalling

that the PER Ψr(γ̂) is a monotonically decreasing function of its argument γ̂, it can

be easily seen that the first derivative of (4.6) w.r.t. γ̂ is always greater that zero,

i.e., for a given TM, the EGP monotonically increases with γ̂. Hence, the PA that

maximizes the EGP is the same that maximizes γ̂(p). Looking at the expression of

γ̂(p) given by (2.19)-(2.20) in Sect. 2.3.1, equivalence (4.8) easily follows. �

3Let us remark that (2.20) would be a convex function of the PA vector even without limiting µ

to 1, and thus without affecting the validity of the following analysis. As demonstrate in [45], this

simplification merely allows to obtain a significant reduction of complexity producing a closed-form

expression of the optimal PA coefficients in exchange of any appreciable loss of performance.
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Accordingly, the EGP oriented PA problem (EGOPA-OP) can be reformulated as

follows.

Prop. 4.2 (EGOPA-OP) Given TM φ = φ0, the EGP oriented power allocation

OP can be formulated as

p∗ = argmin
p

{ψ(φ0,p)}

s.t. p ≽ 0 (4.10.a)

f(p) ≼ 0 (4.10.b).

(4.10)

Let us notice that, for the sake of notational simplicity, in the following we will

denote the objective function as ψ(p), dropping the dependence on the TM φ0.

4.4.2 Lagrangian dual decomposition approach

The EGOPA-OP in (4.10) is convex since both the objective function ψ(p) and the set

of constraints (4.10.a)-(4.10.b) are convex functions of the PA variable p. Thus, it can

be optimally solved applying the Lagrangian dual decomposition (LDD) technique

[69], i.e., the OP is solved maximizing the dual function associated to the primal

problem (4.10). A summary on the LDD theory is reported in Appendix A.1.1.

Accordingly, upon denoting as ϑm themth Lagrange multiplier relevant to constraints

(4.10.b) and stacking them into the (QU+QI+1)-sized vector ϑ
∆
= [ϑ0, · · · , ϑQU+QI

]T,

the Lagrangian associated with the EGOPA-OP (4.10) is

LΛ(ϑ,p)
∆
= ψ(p) + ϑTf(p). (4.11)

Hence, the LDD approach obtains a lower bound on the optimal value ψ∗ ∆
= ψ(p∗) of

the primal problem (4.10) by solving the associated dual problem

ϑ∗ = argmax
ϑ∈Dϑ

{g(ϑ)} , (4.12)

where Dϑ
∆
= {ϑ : ϑm ≥ 0, 0 ≤ m ≤ QU +QI} and

g(ϑ)
∆
= inf

p∈Dp

{LΛ(ϑ,p)} , (4.13)

is the dual function, with Dp
∆
= {p : pn ≥ 0, 1 ≤ n ≤ N}. We note that the difference

between the optimal value ψ∗ and the optimal dual value g∗
∆
= g(ϑ∗), i.e., the duality
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gap, according to the convex analysis is zero. It follows that strong duality holds,

implying that the primal problem (4.10) can be equivalently solved by solving the

dual problem (4.12). Then, the optimal PA p∗ can be recovered by ϑ∗ as stated in

the following.

Theorem 4.1 In view of the convexity of the EGOPA-OP, the duality gap is zero

and the Karush-Kuhn-Tucker (KKT) conditions are sufficient to derive the optimal

PA p∗ as

p∗n = ρn

[
log

1

ϑ∗0 + ϑ∗ϕ(n) +
∑QI

i=1 ϑ
∗
QU+iKi,n

− log
ρn
αn

]+
(4.14)

∀n ∈ Ds, where ϑ∗ is the optimal value of the Lagrange multipliers, ρn and αn are

defined in Sec. 4.4.1, and ϕ(n) is the indicator function used in (4.2).

Proof Let associate the Lagrange multipliers µn, 1 ≤ n ≤ N , and ϑm, 0 ≤ m ≤
QU + QI , to the inequality constraints (4.10.a) and (4.10.b), respectively, and cast

them into η
∆
= [µ1, · · · , µN , ϑ0, · · · , ϑQU+QI

]T. Upon applying the KKT conditions,

we obtain

∇pψ(p
∗) + ϑT∇pf(p

∗) = 0, (4.15)

η ≽ 0, (4.16)

µnp
∗
n = 0, 1 ≤ n ≤ N, (4.17)

ϑmfm(p∗) = 0, 0 ≤ m ≤ QU +QI . (4.18)

Then, we obtain from (4.15), for 1 ≤ n ≤ N ,

−αn
ρn

e−p
∗
n/ρn − µn + ϑ0 + ϑϕ(n) +

QI∑
i=1

ϑQU+iKi,n = 0, (4.19)

that, under (4.17), gives(
ϑ0 + ϑϕ(n) +

QI∑
i=1

ϑQU+iKi,n −
αn
ρn

e−p
∗
n/ρn

)
p∗n = 0, (4.20)

whereas, according to (4.16), we get

ϑ0 + ϑϕ(n) +

QI∑
i=1

ϑQU+iKi,n ≥ αn/ρne−p
∗
n/ρn . (4.21)
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Now, there exist two possible cases. First, when ϑ0 + ϑϕ(n) +
∑QI

i=1 ϑQU+iKi,n <

αn/ρn, then (4.21) is satisfied only if p∗n > 0. This means that the optimal PA results

from (4.20) as

p∗n = ρn

(
log

1

ϑ0 + ϑϕ(n) +
∑QI

i=1 ϑQU+iKi,n

− log
ρn
αn

)
. (4.22)

Alternatively, the condition ϑ0 + ϑϕ(n) +
∑QI

i=1 ϑQU+iKi,n ≥ αn/ρn is not allowed

since if p∗n > 0 it would violate (4.20) and so the only admissible value is p∗n = 0.

Hence, combining together these results the optimal PA over the nth subcarrier can

be written

p∗n = ρn

[
log

1

ϑ∗0 + ϑ∗ϕ(n) +
∑QI

i=1 ϑ
∗
QU+iKi,n

− log
ρn
αn

]+
, (4.23)

where ϑ∗ is the optimal value of the Lagrange multipliers. Finally, since the EGOPA-

OP is convex, from the convex optimization theory it is known that the solution is

also unique. �

The following remarks about Theorem 4.1 are now of interest.

Subgradient-based PA Algorithm for EGOPA-OP (4.10)

1. Initialize i = 0, ϑ(0) = ϑ0, ξ, ϵ and Imax

2. Repeat

3. Compute pϑ(i) = inf
p∈Dp

LΛ(ϑ
(i),p)

4. Compute ϑ(i+1) =
[
ϑ(i) + ξT · ∇ϑg(ϑ

(i))
]+

5. i← i+ 1

6. Until
(
||p(i+1) − p(i)|| < ϵ

)
or (i = Imax)

7. Return p∗ = p(i)

Table 4.1: Pseudo-code of the subgradient-based EGOPA-OP

1) The optimal variable ϑ∗ is found solving the dual problem (4.12) with the sub-

gradient based updating of the dual variable ϑ, as usually done in these cases (e.g.

[70], [73]). The subgradient method [74], detailed in Appendix A.1.2, is an iterative
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algorithm that maximizes g(ϑ) updating, at each step i+1, all the components of the

dual variable ϑ(i) produced at the previous step i along the search direction defined

by the subgradient of g(ϑ) at ϑ(i). The LDD method based on the subgradient

update is summarized in Tab. 4.1. Therein, ϑ(i) ∆
= [ϑ

(i)
0 , · · · , ϑ(i)QU+QI

]T contains the

Lagrange multipliers at the ith iteration, with ϑ0 denoting the chosen initial value,

ξ = [ξ0, · · · , ξQU+QI ]
T is the step-size vector, ε is the maximum convergence error

and Imax is the maximum number of iterations allowed. The dual variable update is

done at line 4, where, at the generic step i, the subgradient, looking at (4.11) and

(4.13), results ∇ϑg(ϑ
(i)) = f(pϑ(i)), Here, pϑ(i) denotes the optimal PA for the given

dual variable ϑ(i), evaluated using the closed-form expression (4.14) at line 3. The

procedure is then iterated until convergence is achieved, in view of the strong duality

property of the problem at hand [69].

2) This is obtained at the price of a demanding computational complexity load of

O(1/ε2). Further, whenever the problem dimensionality is high (as in our case) it

incurs in an extremely slow convergence [70]. The above hard drawbacks will motivate

an equivalent yet numerically efficient optimization method, as outlined in Sect. 4.5.

3) The optimal PA offers an interesting multi-level water-filling interpretation [66],

[68], depicted in Fig. 4.2. The first term within the square brackets in (4.14), indeed,

is the water level per subcarrier, determined by the available power and interference

constraints, whereas the second one is the height of the vessel bottom that depends

on the inverse of the signal-to-noise-plus-interference ratio (SINR).

4.5 Successive Set Reduction approach

In this section a novel approach to the PA problem for EGP maximization is formal-

ized. Sections 4.5.1 and 4.5.2 provide motivations and the formal description of the

SSR problem. In Section 4.5.3, resorting to the QVI theory, we show the existence

of the SSR solution. In Sections 4.5.4 and 4.6 an iterative algorithm for PA based

on the SSR approach is then introduced and some sufficient conditions for optimality

under interweave and underlay interference constraints are also discussed. Finally,

the AMC algorithm is described.
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Figure 4.2: Multi-level water-filling interpretation

4.5.1 Rationale of the SSR approach

Unfortunately, conventional numerical methods, such as the LDD method described in

previous Sect. 4.4.2, can lead to extremely slow convergence. Moreover, a careful off-

line tuning of the step size ξ and Lagrange multipliers initialization are often required

for guaranteeing a fast convergence. Therefore the following subsections present a

novel methodology which overcomes these obstacles relying on a different geometric

interpretation of the power allocation problem. Actually, differently from the LDD

approach, which builds a lower bound of the objective function and operates over a

new set of variables defined by the multipliers, the novel proposed method exploits

the monotonicity property of the objective function ψ(p) to rearrange the origi-

nal optimization problem as a mathematical program with equilibrium constraints

(MPEC)4 [75]. This goal can be achieved by deriving a splitting rule for the original

set of constraints, together with an optimality condition guaranteeing the equivalence

between the original problem and the equivalent MPEC-based re-formulation. This

design approach provides then an iterative algorithm that, step by step, moves towards

4MPEC constitute a special class of mathematical programs where the decision variables satisfy

a finite number of constraints together with an equilibrium condition.
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a “promising” region (i.e. a reduced set) where to look for the solution. More

specifically, thanks to a proper partition of the set of feasible power vectors, each

step of the algorithm produces a closed-form power increment that decreases more

and more the value of the objective function ψ(p), defined in (4.9), to be minimized.

This power increment is obtained by optimizing a properly shifted version of ψ(p)

over a reduced set of feasible powers. For this reason, we will refer to this novel

methodology as successive set reduction, or SSR for short, and, accordingly, to the

relevant iterative algorithm as the SSR algorithm.

4.5.2 SSR approach for the EGP optimization problem

In this subsection, we define the novel SSR approach that offers a solution pJ
∆
=∑J

j=1 δpj , where the power increments δpj
∆
= [δpj,1, · · · , δpj,N ]T, ∀j, are obtained re-

lying on a proper decomposition of the EGOPA-OP (4.10) into a set of J subproblems,

each of which solved through a simple closed-form equation.

First of all, let us define the vectors δp
∆
= [δpT

1 , δp
T
2 , · · · , δp

T
J ]

T ∈ ℜNJ and δp−j
∆
=

[δpT
1 , · · · , δp

T
j−1, δp

T
j+1, · · · , δp

T
J ]

T ∈ ℜN(J−1). Thus, introducing the set J ∆
= {1, 2, · · · , J},

the J-dimensional SSR problem can be defined as follows.

Prop. 4.3 (SSR Problem) The vector δp∗ ∈ ℜNJ is the SSR solution if it jointly

solves the following optimization problems, tagged as SSR subproblems, ∀j ∈ J

min
δpj

ψj(δpj , δp−j)

s.t. δpj ≽ 0 (4.24.a)

uj(δpj) ≤ 0 (4.24.b)

wj(δpj , δp−j) ≤ 0 (4.24.c)

(4.24)

where both uj and wj are assumed to be continuously differentiable affine functions

(that will be analytically derived in the next section) in the argument δpj and

ψj(δpj , δp−j)
∆
=

N∑
n=1

α̃n(δp−j)e
−

δpj,n
ρn (4.25)

represents the objective function associated to the jth increment, with δp0
∆
= 0 and

α̃n(δp−j)
∆
= αn

(
j−1∏
υ=0

e−
δpυ,n
ρn

)
. (4.26)
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Note that the new objective function in (4.25) is a properly shifted version of the

original objective function (4.9), while the number of reduced sets J depends on the

topology of the original set of the feasible power allocation vectors and on the splitting

rule of the original set. The design guidelines for an iterative algorithm producing the

reduced sets will be defined in the following sections. Now, let us denote the solution

set of the jth SSR subproblem (4.24) as Sj(δp−j) ⊂ ℜN . In the sequel, we will refer

to (4.25) either as ψj(δpj , δp−j) or ψj(δp) at our best convenience. The SSR solution

is then the NJ-tuple δp∗ such that δp∗
j ∈ Sj(δp

∗
−j) ∀j ∈ J . Equivalently, a necessary

condition for the existence of the solution δp∗ to the SSR problem is that there exist

some constraint multipliers λ
∆
= [λ1, λ2, · · · , λJ ]T and µ

∆
= [µ1, µ2, · · · , µJ ]T such that

the KKT systems

∇δpj
ψj(δp

∗
j , δp

∗
−j) + λj∇δpj

wj(δp
∗
j , δp

∗
−j) + µj∇δpj

uj(δp
∗
j ) = 0 (4.27)

λj ≥ 0, µj ≥ 0 (4.27.a)

µjuj(δp
∗
j ) = 0 (4.27.b)

λjwj(δp
∗
j , δp

∗
−j) = 0 (4.27.c)

hold ∀j ∈ J .
Finally, consider the point-to-set map Kj : ℜN(J−1) → ℜN , given by

Kj(δp−j)
∆
=
{
δpj ∈ ℜN : wj(δpj , δp−j) ≤ 0, uj(δpj) ≤ 0

}
. (4.28)

Since ψj(δpj , δp−j) is convex in δpj , a point δp∗
j ∈ ℜN , is the solution of the jth

SSR subproblem if and only if (minimum principle) [71]

(δpj − δp
∗
j )

T∇δpj
ψj(δp

∗
j , δp−j) ≥ 0 ∀δpj ∈ Kj(δp−j). (4.29)

Interestingly, the latter can be interpreted as an instance of

(δp− δp∗)TF (δp∗) ≥ 0 ∀ δp ∈ K(δp∗). (4.30)

which is the QVI(K, F ) problem, where F (δp)
∆
= [FT

1 (δp), · · · , FT
J (δp)]T: ℜNJ →

ℜNJ , with Fj(δp)
∆
= ∇δpj

ψj(δpj , δp−j), and K(δp)
∆
=
∏J
j=1Kj(δp−j). In the next

subsection, we will provide sufficient conditions for such a QVI to have a solution.
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4.5.3 Existence of the SSR solution

In order to demonstrate the existence of the solution for the SSR problem, we will

pursue an approach analogous to the one proposed in [72] for generalized Nash equilib-

ria, which is specifically tailored for sets Kj(δp−j) that are representable by convex

inequalities. However, differently from the generalized Nash equilibrium problem,

here the equilibrium condition must be satisfied among the reduced subsets instead

of among different competitive players. Thus, we will extend that approach to take

into account the particular structure of our problem (4.30). In particular, as in [72],

we will rely on both the well-known Kakutani’s fixed-point theorem [71] and the

following Sequentially Bounded Constraints Qualification (SBCQ) assumption [75]

for each SSR subproblem j ∈ J .

Prop. 4.4 SBCQ: for any bounded sequence of vectors {δp(k)
j } ∈ Sj(δp

(k)
−j ) ∀k, there

exists a corresponding bounded sequence {λ(k)j } of Lagrange multipliers satisfying the

jth KKT system.

Remark. Accordingly, for each δp(k) ∆
= [δp

(k)
1

T
, · · · , δp(k)

J

T
]T feasible to (4.30), KKT

multipliers exist for the solution of the jth SSR problem (4.24), i.e., KKT conditions

hold with bounded multipliers on bounded sets.

Let us start by defining the constraint functions uj and wj in (4.24.b) and (4.24.c),

respectively, as

uj(δpj)
∆
= −1 +

N∑
n=1

δpj,n
Pj

, (4.31)

wj(δpj , δp−j)
∆
= −1 +

N∑
n=1

δpj,n
Θj,n(δp−j)

, (4.32)

where Θj,n(δp−j) are convex differentiable functions and {Pj}Jj=1 are properly defined

positive constant values, and let

Xj
∆
=
{
δpj ∈ ℜN : uj(δpj) ≤ 0

}
, X−j

∆
=

J∏
υ=1,υ ̸=j

Xυ (4.33)

be the sets identified only by the constraints depending on δpj . We now summarize

in the following theorem some sufficient conditions which guarantee the existence of
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the QVI solution.

Theorem 4.2 (Solution Existence) Let F : ℜNJ → ℜNJ be a point-to-point map

and let K : ℜNJ → ℜNJ a point-to-set map such that

a) for each δp−j ∈ X−j the set Kj(δp−j) is nonempty, ∀j ∈ J (feasibility assump-

tion),

b) Θj,n(δp−j) > 0, ∀j ∈ J and ∀n ∈ Ds,

c) the set Xj is nonempty and bounded, ∀j ∈ J (compactness assumption),

then the QVI(K, F ) solution is ensured.

Proof At first, note that the SSR subproblem defined as in (4.24), parameterized in

δp−j , is convex in δpj . Hence, being Θj,n(δp−j) > 0 ∀n ∈ Ds and ∀j ∈ J and thus

belonging δpj to a bounded set, there always exists a bounded pair (λj , µj). This

means that the SBCQ assumption holds.

Now, exploiting assumption c) we can deduce that

X ∆
=

J∏
j=1

Xj (4.34)

is a compact, nonempty and convex subset of ℜNJ . Hence, the mapping defined as

Φ(δp)
∆
=

J∏
j=1

Sj(δp−j) (4.35)

is a nonempty, compact and convex subset of X . Even looking at (4.35), since for

a given δp−j the original optimization problem is convex, the set Sj is a singleton.

It follows that the QVI(K, F ) has solution given that the set-valued map Φ has a

fixed point, i.e., δp∗ = Φ(δp∗). Then, under the Kakutani’s fixed point theorem,

demonstrating the existence of the SSR solution amounts to show that Φ is a closed

point-to-set map, according to the definition in [76].

As shown in the following, under the SBCQ, there always exist two bounded multi-

pliers vectors λ and µ such that δv̄j ∈ Sj(δp̄−j), ∀j ∈ J , thus demonstrating the
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existence of the SSR solution. First of all, let us introduce the definition of closed

point-to-set mapping.

Definition 4.1 (Closed point-to-set mapping, [76]) The mapping Φ is closed at

a point δp̄
∆
= [δp̄T

1 , · · · , δp̄
T
J ]

T ∈ X if, given two sequences {δp(k)} and {δv(k)}
belonging to X , with δp(k) ∆

= [δp
(k)
1

T
, · · · , δp(k)

J

T
]T and δp(k) ∆

= [δv
(k)
1

T
, · · · , δv(k)

J

T
]T,

such that

lim
k→∞

δp
(k)
j = δp̄j , lim

k→∞
δv

(k)
j = δv̄j (4.36)

and δv
(k)
j ∈ Sj(δp(k)

−j ) ∀k and ∀j, then it follows that δv̄j ∈ Sj(δp̄−j).

For a given j ∈ J define, z(k)(j)
∆
= [z

(k)
1 (j)

T
, · · · , z(k)l (j)

T
, · · · , z(k)J (j)

T
]T ∀k, where

z
(k)
l (j) =

δv
(k)
j if l = j,

δp
(k)
l otherwise.

(4.37)

From (4.36) we have

z̄l(j)
∆
= lim
k→∞

z
(k)
l (j) =

δv̄j , if l = j,

δp̄l, otherwise.
(4.38)

For the sake of notation, from now on the dependence on j will be omitted. Thus,

exploiting the assumption a) and b) and the convex nature of optimization problem

(4.24), for each k, there exist two KKT multipliers λ
(k)
j and µ

(k)
j such that the jth

system

∇δpj
ψj(z

(k)
j ) + λ

(k)
j ∇δpj

wj(z
(k)) + µ

(k)
j ∇δpj

uj(z
(k)
j ) = 0

λ
(k)
j ≥ 0, µ

(k)
j ≥ 0, µ

(k)
j uj(z

(k)
j ) = 0, λ

(k)
j wj(z

(k)) = 0
(4.39)

is solved. Since the SBCQ is satisfied, we can claim that there always exist two

bounded KKT multipliers λ̄j and µ̄j such that

lim
k→∞

λ
(k)
j = λ̄j lim

k→∞
µ
(k)
j = µ̄j . (4.40)

Thus, for k →∞, δv̄j ∈ Sj(δp̄−j), ∀j ∈ J , as desired. �

4.5.4 SSR algorithm

We now reformulate the EGP maximization problem in a simpler equivalent form

obtained through the SSR approach. To accomplish this task, we first derive the
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condition under which the power vector

pJ
∆
=

J∑
j=1

δp∗
j = [pJ,1, · · · , pJ,N ]T, (4.41)

referred to as SSR power allocation (SSR-PA) and obtained as the combination of the

single components of the SSR solution, solves the EGOPA-OP (4.10).

First of all, let us note that the formulation of the SSR subproblem (4.24) is

analogous to the PA problem for EGP optimization originally proposed in [45] for

a non-cognitive context. Assuming, w.l.g., that in (5.19) and (4.31) Pj ≥ Θj,n(δp−j),

∀n ∈ Ds, the following theorem can be stated.

Theorem 4.3 The solution of the jth SSR subproblem (4.24), δp∗
j

∆
= [δp∗j,1, · · · , δp∗j,N ]T,

∀j ∈ J , can be expressed by

δp∗j,n = ρn


1 +

N∑
i=1

ρ̃j,i log
(
ρ̃j,i α̃j,n

α̃j,i ρ̃j,n

)
N∑
k=1

ρ̃j,k


+

∀n ∈ Ds, (4.42)

where ρ̃j,n
∆
= ρn

Θj,n
and, for the sake of readability, the dependence of Θj,n and α̃j,n to

δp−j is omitted.

Proof The reduced set PA problem corresponds to the PA algorithm for EGP op-

timization proposed [45], where the constraint on the total available power is here

substituted by constraint (4.24.c). Accordingly, this problem has a closed-form solu-

tion that is obtained as summarized in the following, where the dependence on the

step j of the SSR algorithm is dropped w.l.g. Be δp∗ the solution of the OP (4.24),

its directional derivative must satisfy

(δp− δp∗)T ▽ ψj(δp
∗) =

N∑
n=1

(δpn − δp∗n)
∂ψj(δp)

∂δpn

∣∣∣∣
δp=δp∗

≥ 0, (4.43)

which yields

N∑
n=1

pn
∂ψj(δp)

∂δpn

∣∣∣∣
δp=δp∗

≥
N∑
n=1

δp∗n
∂ψj(δp)

∂δpn

∣∣∣∣
δp=δp∗

∆
= C. (4.44)

Since (4.43) is an affine function of the power δp, it can be evaluated on the N extreme

points {Θn}Nn=1 of the set DΘ where, if δpn > 0 ∀n, (4.44) holds with strict equality.
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Thus, setting δpk = Θk, with Θk given by (4.59), and δpn = 0, ∀n ̸= k, in (4.44) we

get the optimality condition

Θk
∂ψj(δp)

∂δpk

∣∣∣∣
δp=δp∗

= C, ∀k, 1 ≤ k ≤ N. (4.45)

This means that all the weighted components of the gradient of the objective function

must be equal. Considering N active subcarriers, this condition can be obtained in N

steps, where at the generic step i, with i < N , the current power δp
(i−1)
k over all the

subcarriers k ≤ i is increased of δp̃
(i)
k , i.e., δp

(i)
k = δp

(i−1)
k + δp̃

(i)
k , so that condition

(4.45) is satisfied ∀k ≤ i+ 1. In particular, defining

δp(i) ∆
=

 i∑
k=1

δp̃
(k)
1 ,

i∑
k=2

δp̃
(k)
2 , · · · , δp̃(i)i ,

N−i︷ ︸︸ ︷
0, · · · , 0

T

, (4.46)

from (4.44)

Θ1
∂ψj(δp)

∂δp1

∣∣∣∣
δp=δp(i)

= · · · = Θi+1
∂ψj(δp)

∂δpi+1

∣∣∣∣
δp=δp(i)

(4.47)

we get

δp̃
(i)
i = ρi log

(
α̃iρ̃i+1

ρ̃iα̃i+1

)
(4.48.a),

δp̃
(i)
k

ρk
=
δp̃

(i)
i

ρi
∀k ≤ i (4.48.b), (4.48)

where ρ̃i
∆
= ρi

Θi
. The last increment δp̃(N)

n , 1 ≤ n ≤ N , is such that constraint (4.24.a)

holds with strict equality

N∑
n=1

 N∏
k=1,k ̸=n

Θkδp̃
(N)
n

+
N−1∑
i=1

N−1∑
m=i

 N∏
j=1,j ̸=i

Θjδp̃
(m)
i

 =
N∏
i=1

Θi. (4.49)

Substituting δp̃(N)
n = ρn

δp̃
(N)
N

ρN
according to (4.48.b) into (4.49), δp̃

(N)
N is obtained.

Plugging its expression into

δp∗n
∆
=

N∑
k=1

δp̃(k)n = ρn

[
log

(
α̃n
ρ̃n

)
− log

(
α̃N
ρ̃N

)]
+ ρn

δp̃
(N)
N

ρN
, (4.50)

the closed form (4.42) is eventually found. �

It is then possible to exploit the expression of the jth SSR solution, providing a

simple way to compute the SSR-PA. Given a fixed j, let define the subcarrier indices

set Nj as
Nj

∆
= {n ∈ Ds : δpj,n ̸= 0}, ∀j ∈ J , (4.51)
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so that, jointly exploiting (4.26), (4.41) and (4.42), we get the SSR-PA

pJ,n
ρn

= log

(
1

λJ

)
+ log (ΘJ,n)− log

(
ρn
αn

)
∀n ∈ NJ (4.52)

with

log

(
1

λJ

)
=

1 +
∑
i∈NJ

1
ΘJ,n

[
ρi log

(
ρi

αi ΘJ,n

)
+ pJ−1,i

]
∑

k∈NJ

ρk
ΘJ,k

. (4.53)

It is now worth to highlight the following result.

Prop. 4.5 (cEGOPA-OP) The SSR-PA pJ given in (4.52) is also the solution

to the following convex optimization problem, tagged as cost-based EGOPA-OP or

cEGOPA-OP:
min
p

ψ(p) + λJ CJ(p)

s.t. p ≽ 0
(4.54)

where

CJ(p)
∆
=

N∑
n=1

pn
ΘJ,n

− 1 (4.55)

plays the role of a linear cost function.

The equivalence can be easily verified by solving the KKT system of the cEGOPA-

OP (4.54) and noting that the gradient of the cost function is a constant vector

given by ∇pCJ (pJ) = [1/ΘJ,1, 1/ΘJ,2, · · · , 1/ΘJ,N ]
T
. Interestingly, in the objective

function of (4.54) we meet again the objective function ψ(p) of the EGOPA-OP (4.10).

Comparing (4.52) with (4.14), we infer that, in general, the SSR approach does not

provide solutions to (4.10). An interesting question is whether one can design the

reduced set constraints so that the SSR solution coincides with the optimal PA. The

answer is given by the following theorem.

Theorem 4.4 (Optimality Condition) Let the set I(pJ )
∆
= {i : fi(pJ ) = 0} be

the non-empty set of indices associated to the constraints fi(pJ) that hold with equality

in p = pJ and assume that pJ is a feasible vector to the EGOPA-OP (4.10) and the

following condition is satisfied

∂CJ(pJ)

∂pn
=

1

ΘJ,n
=

A

σϕ(n) + µ
∑

i∈I(pJ ), i>QU

Ki,n
, ∀n ∈ NJ (4.56)
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where σϕ(n), µ, A are constant coefficients, such that σϕ(n) ≥ 0, µ ≥ 0, σϕ(n)+µ > 0,

and A > 0.

Then, the power vector pJ obtained through (4.41) represents the optimal solution of

EGOPA-OP.

Proof By writing the KKT system associated to the cEGOPA-OP (4.54) and com-

paring it with the KKT condition (4.15) of the EGOPA-OP, we obtain that pJ is the

solution of the original problem if and only if it exists a positive vector ϑ such that∑
i∈I(pJ )

ϑi∇pfi(pJ) = λJ∇pC(pJ ) (4.57)

where ϑi = 0, ∀i /∈ I(pJ). In other words, we can claim that pJ is the solution

of our PA problem if ∇pC(pJ ) belongs to the convex cone generated by the vectors

{∇pfi(pJ)}i∈I(pJ )
. From the Farka’s Lemma, [69], this is true if it does not exist a

vector y ∈ ℜN such that

ZT
Jy ≥ 0 (4.58.a) and ∇pC(pJ)

Ty < 0 (4.58.b), (4.58)

with ZJ
∆
=
[
∇pfi1(pJ)

T, · · · ,∇pfiM (pJ)
T
]T

and {i1, · · · , iM} ∈ I(pJ). Substituting
(4.56) into (4.58.a) and (4.58.b) and after some algebra the proof follows. �

Theorem 4.4 provides sufficient conditions for the equivalence between the solutions

of the SSR and of the EGOPA-OP, and, since (4.10) is convex, it also states the

uniqueness condition for the QVI(K, F ). Let us note that the sequence in which

the J sub-problems are solved does not affect, in general, the optimality of the SSR

solution, since it is sufficient for the partition of the set, no matter how obtained,

to satisfy the optimality condition at the last increment. Unfortunately, there is no

simple procedure to find the point-to-set map K(δp∗) guaranteeing the optimality

conditions. Hence, since the practical implementation of the SSR is viable only if

the J-sized vector of power increments can be easily computed, in the next section

we focus on a near-optimal criterion, referred to as extreme points criterion, to easily

design the reduced subsets for all j ∈ J .

4.6 Extreme points criterion

Let us assume that the values {Θj,n}Nn=1 identify the extreme points of the set, i.e.,

the maximum allowed power increment per each subcarrier that does not violate any



54 LRA for cognitive BIC-OFDM systems

Figure 4.3: Graphical interpretation of the extreme points criterion.

of the constraint of the problem, regardless of the other subcarriers. These values are

expressed by

Θj,n
∆
= min

{
P̄j,n,

{
Īj,i,n

}QI

i=1
, T̄j,n

}
, (4.59)

with

P̄j,n
∆
= P −

N∑
ν=1

pj−1,ν , (4.60)

Īj,i,n
∆
=

(
T

(I)
i −

N∑
ν=1

pj−1,νKi,ν

)
/Ki,n, 1 ≤ i ≤ QI , (4.61)

and

T̄j,n
∆
= T

(U)
ϕ(n) −

∑
ν:ϕ(ν)=ϕ(n)

pj−1,ν . (4.62)

As apparent, the reduced set Kj is obtained by the intersection of the halfspace of the

positive power increments with the halfspace lying below the hyperplane passing by

the extreme points defined as Ej,n
∆
= {

n−1︷ ︸︸ ︷
0, · · · , 0,Θj,n,

N−n︷ ︸︸ ︷
0, · · · , 0}, ∀n ∈ Ds, properly

shifted to take into account the partial solution pj obtained so far. Figure 4.3

illustrates the extreme points criterion for a “toy” case with N = 2 subcarriers,

QU = 2 UPUs, with ϕ(1) = 1 and ϕ(2) = 2, and QI = 1 IPU. The set delimited

by the black thick line represents the set of feasible power values, identified by the

intersection of constraints (4.10.a)-(4.10.b). The algorithm starts evaluating the first
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reduced set, consisting of the larger grey-shaded triangular-shaped area, and finds

the first increment of power that belongs to the edge of this set. Then, the new

reduced set is built by re-centering the origin of the axes on the previously found

solution δp1 and evaluating the new extreme points. This second step evaluates then

a new reduced set, consisting of the smaller grey-shaded triangular-shaped area, and

proceeds again by finding the second increment of power δp2 that belongs to the edge

of this new set. This procedure is iterated until the last increment lies on the initial

set border.

Some observations are now in order.

1) Features. The proposed SSR algorithm iteratively reduces the set of feasible

power increments until, after J steps, no further power increment that would not

violate any of the constraints is feasible, i.e., ΘJ,n = 0, ∀n ∈ Ds. However, in

order to avoid possible cases where J →∞, a safer stop criterion was adopted, such

that ||ΘJ || ≤ ϵSSR, where ϵSSR is a conveniently small value. In particular, at each

step, the best local choice is performed solving the SSR subproblem (4.24). This

problem is equivalent to the PA problem in [45], with the only difference that the

constraint on the total available power is now replaced by the constraint of feasible

power increments. In a way, the original constraints (4.10.b) are progressively dumped

on Θj,n, so that, at each step, the problem formulation is analogous to a non-cognitive

case.

2) Optimality. Let us denote with Ñ the set of subcarrier indices such that ΘJ,n > 0

and assume that I(pJ) is a singleton. Comparing equations (4.59)-(4.62) with (4.56),

it can be noted that the SSR solution is optimal for those subcarriers that belong to

Ñ . As a consequence, if pJ−1 is an interior point of the original set, global optimality

occurs whenever the set I(pJ) is a singleton, i.e. every time that, at the optimal

solution, only one constraint in (4.10.b) holds with equality. In this sense, we can

claim that the SSR algorithm follows a near optimality criterion.

3) Complexity. Both the power increment δpj and the parameters {Θj,n, α̃j,n, ρ̃j,n}, ∀n,
at each step j have a closed-form expression, so that the complexity of the algorithm

simply reduces to O(J).

The SSR algorithm is briefly summarized in the pseudo-code of Table 4.2.
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SSR Algorithm

1. Initialize j = 1, ∆p(0) = 0

2. Repeat

3. j ← j + 1

4. Evaluate pj , Θj , {α̃j,n, ρ̃j,n} ∀n
5. Evaluate δpj according to (4.42)

6. Until (||Θj || < ϵSSR)

7. Set J = j

8. Return p∗ =
J∑
j=1

δpj

Table 4.2: Pseudo-code of the SSR algorithm

4.7 AMC-SSR algorithm

As outlined in Sect. 4.3, once the PA for a certain TM is evaluated, then the EGP is

maximized performing a simple exhaustive search overall the possible TMs. Denoting

with m(i) the ith element of the set Dm, this procedure, named AMC-SSR algorithm,

is made of M steps and is summarized in Table 4.3.

It is worth noting that this exhaustive approach is made possible thanks to the low

complexity of the SSR algorithm that in J closed-form steps is able to evaluate the PA

p∗(φ) for a given φ. The advantage earned with the AMC approach is great: at each

SNR, we are able to always choose the best setting of transmission parameters, so

that the GP performance are always greater or equal than the ones obtained keeping

a fixed TM.

4.8 Simulation results

In this section, the LRA method is numerically verified for realistic cognitive wireless

scenarios. First, the SSR algorithm is checked against the LDD technique to ensure

that, practically, both of them yield the same EGP performance. Then, the proposed

AMC strategy based on the SSR algorithm is evaluated in terms of the actual GP

(AGP) performance.
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AMC-SSR Algorithm

1. Initialize ζ(0) = 0

2. For i = 1 :M

3. - Set m(i) = m(i)

4. - Evaluate p(i) and γ(i)

5. - Enter γ(i) into the LUT and return the coding

6. rate r(i) associated to the best EGP value ζ(i)

7. - If
(
ζ(i) > ζ(i−1)

)
8. Set p∗ = p(i), m∗ = m(i), r∗ = r(i)

9. End For

10. Return (p∗,m∗, r∗)

Table 4.3: Pseudo-code of the AMC-SSR algorithm

System setup

Simulations have been carried out on a BIC-OFDM scenario denoted by an overall

system radio frequency bandwidth of Btot = 20 MHz, central frequency of f0 = 2

GHz and subcarrier spacing of 15.152 kHz. The simulation parameters setup of the

BIC-OFDM system is reported in Tab. 4.4. Accordingly, the total number of TMs is

12 when the convolutional code is employed and 24 under turbo code adoption. The

radio propagation channel model is instead reported in Tab 4.5.

The primary network considersQU UPUs andQI IPUs, transmitting over contiguous

bands having the same size, i.e., Bu =Wi = Btot/(QI+QU ), 1 ≤ u ≤ QU , 1 ≤ i ≤ QI .
As depicted in Fig. 4.4, the SRx is placed at the origin of the reference system with

the STx being 160 m away. The IPUs are set round the secondary receiver within a

radius of R = 200 m, the UPUs are placed round the secondary receiver at a distance

of at least 200 m from it, according to the interference-free zone mentioned in Sect.

4.2.2. The interference threshold, referred at the primary receivers, is set to Ith for

all the UPUs and IPUs.

Validation of the SSR algorithm

Figure 4.5 compares the optimum EGP, obtained with the LDD technique (empty
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Parameter/Feature Symbol Value/Description

Payload length Np 1024 bits

CRC length NCRC 32 bits

OFDM (Figs. 4.5, 4.6)

No. of subcarriers N 64

FFT size Nfft 64

CP length Ncp 16 samples

OFDM (Figs. 4.7, 4.8, 4.9)

No. of subcarriers N 1320

FFT size Nfft 2048

CP length Ncp 160 samples

Transmission Parameters

Bits per subcarrier Dm {2, 4, 6}
Code type (Figs. 4.5, 4.6, 4.7, 4.8) 64-state Convolutional code

Mother code rate r0 1/2

Punctured code rates Dr
{
1

2
,
2

3
,
3

4
,
5

6

}
Code type (Figs. 4.7, 4.9) Turbo code

Mother code rate r0 1/3

Punctured code rates Dr
{
1

3
,
2

5
,
1

2
,
4

7

2

3

3

4

4

5

6

7

}
Available power P [0, 50] dBm

Table 4.4: Parameters and features of the cognitive BIC-OFDM system.

circles) and the EGP produced by the SSR algorithm (full circles), versus the mean-

available-symbol-energy-to-noise-spectral density ratio Es/N0 ratio at the SRx, where

Es is evaluated assuming that all the available transmit power is employed. These

results are obtained averaging 103 independent channel realizations, with the STx

employing Ntot = 64 subcarriers together with a convolutional encoder and static

modulation and coding according to three different TMs, i.e., φ1
∆
= {2, 3/4}, φ2

∆
=

{4, 1/2} and φ3
∆
= {6, 5/6}. The primary network is composed of QU = 1 UPU

and QI = 2 IPUs, placed at 660, 85 and 52 meters from the STx, respectively. The

interference temperature is Ith = −110 dBm. The LDD parameters are ξm = ϑ
(0)
m /10,
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Parameter/Feature Value/Description

Path-loss model NLOS urban scenario, [77]

Carrier frequency 2 GHz

Base station height 12.5 m

Mobile terminal height 1.5 m

Noise power level -100 dBm

Short-term fading model ITU Ped. B, [33]

Table 4.5: Parameters and features of the radio propagation channel model.

Figure 4.4: Simulation scenario. Example with QU = 2, QI = 3.

0 ≤ m ≤ QU +QI + 1, ε = 10−4 and Imax = 106.

For all the considered TMs, it is apparent that the SSR algorithm suffers a slight

performance loss with respect to the LDD method, which can be appreciated for φ2

only, while it is negligible for all the other ones. The advantage we earn applying the

SSR algorithm instead of conventional numerical methods is enlightened in Fig. 4.6,

which depicts the number of iterations required to converge by the SSR (solid line),
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LDD (circles) and interior-point (squares), the latter for φ4
∆
= {6, 2/3}, algorithms.

We observe that the SSR algorithm needs less than 10 iterations to converge for

any TM, the LDD method more than some orders of magnitude and the interior-

point method about 50 outer iterations and, for each of them, an average of 10

inner iterations. Moreover, each iteration of the SSR is in closed-form, compared to

the iterations of the interior-point method that are based on numerical algorithms,

obtaining thus great saving in computational complexity.

Further, Fig. 4.7 shows the comparison between the EGP defined in (3.17) (empty

marks) and the AGP (full marks), i.e., the average of the ratio between the number

of information bits Np and the time required to successfully deliver them, versus the

Es/N0 ratio when the AMC-SSR algorithm is adopted. Both convolutional (squares)

and turbo (circles) encoders are considered, with Ntot = 1320 subcarriers, QU = 2

UPUs and QI = 3 IPUs at 400, 597, 85, 52 and 87 meters from the STx, respectively,

and Ith = −110 dBm. It can be seen how the EGP reliably works in predicting the

actual link performance, exhibiting a normalized error that is always lower than 10%.

Figure 4.7 also shows the benefit of adopting the AMC algorithm w.r.t. static TMs

(dotted grey lines). As matter of fact, if the modulation order and coding rate were

fixed, the system performance would incur in one of the following two cases: i) if a

conservative TM were adopted, i.e., low modulation order and/or high coding rate,

the performance would be good at low Es/N0, but would prematurely flatten out

as the Es/N0 increases; ii) on the contrary, if more aggressive TM were employed,

we would get low AGP values at low Es/N0 and good values only in medium-high

Es/N0 region. The AMC algorithm instead always selects the best TM making the

performance lie over the envelope determined by the static modes. The same behavior

was obtained with turbo codes (not reported on the graph for the sake of clearness).

Performance of the AMC-SSR algorithm

In Fig. 4.8 and 4.9, the AGP improvements brought forth by the AMC-SSR algorithm

(full marks) are quantified for both convolutional and turbo encoding, respectively,

when adopting as performance benchmark the same AMC algorithm based on a

conventional SL-PA strategy, referred to as AMC-SL for short (empty marks), recently

proposed in [65]. Simulations are carried out averaging 104 independent channel

realizations, for Ntot = 1320, QU = 2 UPUs and QI = 3 IPUs, whose positions are

randomly determined at each packet transmission according to the scenario in Fig.
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4.4. Two different interference thresholds are considered (for UPUs, it is equivalent

to change the radius of the interference-free zone), that is to say Ith = −100 dBm

(squares), i.e. the same as the channel noise level, and Ith = −110 dBm (circles).

The dashed curve tagged Non Cognitive Scenario stands for the AMC-SSR algorithm

without any PU constraint, i.e., with Ith = +∞. As such, this AMC scheme gives

the best attainable AGP performance since it allocates all the available power and

coincides with the scheme recently proposed in [45] for a non-cognitive scenario.

Both figures show that the proposed AMC-SSR algorithm outperforms the non-

adaptive AMC-SL, enabling a maximum relative gain on the AGP of around 25% and

47% for Ith = −100 dBm and Ith = −110 dBm, respectively. The behavior shown by

the AMC-SSR and AMC-SL algorithms can be readily explained as follows. In the low

Es/N0 regime, the SU link performance is limited by the channel frequency selectivity

rather than the interference caused to the PUs, which can be promptly neglected. The

AMC-SSR is very close to the non-cognitive case with Ith = +∞, indeed, and upon

cleverly distributing the power over the subcarriers with the highest channel gains,

it outperforms the non adaptive AMC-SL scheme. In the medium-to-high Es/N0

regime, instead, when the available power increases, the main constraint to satisfy

turns out to be the interference caused to the PUs. Here, the SL strategy makes

the AGP curve flatten out at lower Es/N0 values as it inefficiently allocates power

among the subcarriers to satisfy the interference constraints without any specific

adaptivity. As result, the maximum interference level is prematurely met and no

power increase is permitted. On the other side, the AMC-SSR algorithm properly

shapes the PA distribution while accounting both for the current channel realization

and the topology of the primary network, so that the link performance is significantly

boosted. This observation is corroborated by the results obtained both in Fig. 4.8

and 4.9, when the interference threshold Ith decreases from -100 to -110 dBm. As

a matter of fact, as the interference constraints get tighter, the AGP curves of the

AMC-SL flattens out at lower and lower Es/N0 values compared with what we have

with the proposed AMC-SSR algorithm.

4.9 Concluding remarks

In this chapter, we addressed the LRA problem, i.e., modulation and coding scheme

along with power-per-subcarrier, for a cognitive BIC-OFDM system. The resulting
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strategy is based upon the optimization of the GP metric under constraints on the

total power available at the secondary transmitter and the maximum interference

tolerable at the primary receivers. First, the PA optimization problem was analyzed

and it was proven that is a convex OP whose solution can be found exploiting

conventional numerical methods. However, to overcome some critical drawbacks

of these numerical solutions, such as the high computational complexity, the PA

problem was re-interpreted through the QVI framework, which yielded the novel

iterative SSR algorithm and allowed to prove the existence and uniqueness of its

solution. An optimum AMC procedure was also derived to further enhance the link

performance. Simulation results corroborated the analytical derivation and showed

that the proposed approach gives, practically, identical goodput performance to that

offered by the conventional numerical methods, enables fast convergence making it

extremely suitable for practical time-varying wireless scenarios and has better AGP

performance over conventional non-adaptive PA algorithms.
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Figure 4.5: LDD vs. SSR algorithm. Performance comparison.

Figure 4.6: LDD vs. SSR algorithm. Convergence comparison.
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Figure 4.7: Estimated vs. actual goodput comparison.

Figure 4.8: AMC-SSR vs. AMC-SL algorithm. Performance comparison with convolutional

codes.
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Figure 4.9: AMC-SSR vs. AMC-SL algorithm. Performance comparison with turbo codes.





Chapter 5

Hybrid ARQ based LRA for

BIC-OFDM systems

In this Chapter, a novel link performance prediction approach, for BIC-OFDM sys-

tems employing HARQ mechanisms along with maximal-ratio combining at the re-

ceiver, is first proposed. Capitalizing on this novel prediction method, tagged as

aggregate ESNR mapping technique, or αESM for short, a link adaptation strategy,

that at each round of the HARQ protocol sets the transmission parameters to maxi-

mize the expected goodput, is then derived. Thanks to the αESM technique, the link

adaptation strategy exploits the information offered by the HARQ feedback channel

about the past failed transmissions along with information on the actual channel

conditions, enabling an improved trade-off between data rate and link reliability

compared to the case when only information on the channel status are accounted

for.

5.1 Hybrid ARQ with packet combining

5.1.1 Background on HARQ

Next-generation wireless communication systems will implement packet-oriented data

transmission [27], with very strict requirements on the data rate and reliability of the

communication, according to the desired QoS. This implies that the receiver should

be able to exploit all the known features of the communication system, such as inter-

leaving, soft decisions, channel state information, etc., to increase the performance as

much as possible. On the other hand, bandwidth is scarce and expensive in a heavily
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booming cellular market. This means that the resource “redundancy” must be used

with care, applying methods such as adaptive error protection [22].

To this end, a very interesting solution for reliable packet transmission is based

on the HARQ concept, which relies on combining the error correction capability

of the channel coding and error detection offered by, e.g., the CRC, with the ARQ

mechanism [22]. In pure HARQmechanism, basically, the transmitter sends a message

to the receiver which, in turn, sends a 1 bit feedback ACK or NACK to tell the

transmitter about a successful or unsuccessful, respectively, reception of the message.

In the latter case, the transmitter sends again the packet by encoding it with either

the same puncturing pattern or a different subset of redundancy bits. Finally, HARQ

mechanism is best exploited when employed with packet combining. In fact, in this

case, the receiver stores the previously unsuccessfully received copies of the packet

and later combines them with the new received copies, creating a single packet that

is more reliable than any of its constituent packets [22].

In literature, a considerable effort has been devoted to the analysis of performance

limits in the presence of HARQ protocols, mainly focusing on traditional metrics,

such as the ergodic capacity and the outage probability, [78]– [79]. For example,

an information theoretic throughput analysis of HARQ schemes for the Gaussian

collision channel was presented in [80], while in [81] the authors derive the optimal

tradeoff among throughput, diversity gain, and delay of the multi-antenna block-

fading ARQ channel, with a fixed discrete-input signal constellation. In [79], the long-

term transmitted rate of HARQ based systems in a fast fading scenario is analyzed,

when only channel statistics are available at the transmitter, and it is also presented

a rate adjustment strategy aimed at guaranteeing a certain target outage probability.

Other significant examples of works addressing the issue of selecting the transmission

parameters on the fly for HARQ protocols are [82]– [83] and the references therein.

5.1.2 HARQ based BIC-OFDM system

Let us consider the BIC-OFDM system described in Sect. 2.2 when Hybrid ARQ

protocols with packet combining are employed. In this case the transmitter produces

L randomly punctured versions of the message, i.e., the RLC-PDU, as follows. The

generic ℓth copy is obtained randomly selecting N
(ℓ)
c out of the Nu/r0 coded binary

symbols at the output of the linear binary code, so that N
(ℓ)
c = Nu/r

(ℓ), being r(ℓ)
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the desired coding rate at round ℓ and r0 the mother code. The ℓth copy is then

sent over the block fading channel to the receiver. The latter decodes the received

copy combining the soft-metrics, represented by the log-likelihood ratios of the binary

coded symbols, of all the ℓ copies received so far in a maximum ratio combining

fashion. The equivalence between maximum likelihood decoding and maximum ratio

combining was shown for the Type-I HARQ scheme, or Chase Combining [84]. As a

matter of fact, the L copies can be seen as L randomly punctured versions of the same

message, with soft-metrics associated to the punctured bits equal to 0. If the packet

is decoded with errors (detected through the CRC), a NACK is sent on the 1 bit

feedback channel, assumed to be error free and delay free, to the transmitter, which

in turn is called to transmit the (ℓ + 1)th copy of the packet. This procedure goes

on until the transmitter receives an ACK or the maximum number of transmissions

L is reached. Whenever one of these events occurs, the message is removed from the

buffer and the transmitter moves on sending a new packet. In particular, when all

the L copies of the packets are unsuccessfully decoded, that is, at round L a NACK

is fed back, the system occurs in an outage event.

5.2 The αESM model

In this section, we extend the procedure presented in Sect. 2.2.1 for estimating the

pairwise error probability of the maximum likelihood metric decoder to the HARQ

context by introducing the concept of aggregate effective SNR mapping αESM. This

approach is built around the concept of decoding score, a RV whose positive tail

probability yields the pairwise error probability [36], and the equivalent BIOS model

of the BIC system. Thus, first of all, let us recall the equivalent BIOS model, depicted

in Fig. 5.1, for the BIC-OFDM system described in Sect. 2.2. Here, at each HARQ

round ℓ, 1 ≤ ℓ ≤ L, the BIC-OFDM channel is modeled as a set of

B(ℓ) ∆
=

N∑
n=1

m(ℓ)
n (5.1)

parallel binary input output symmetric channels. The pairwise error probability of

the BIC-OFDM system can be expressed as a function of the underlying binary code,

so that, if b(ℓ) ∆
= {b(ℓ)1 , · · · , b(ℓ)

N
(ℓ)
c

} is the reference codeword (corresponding to the

transmitted RLC-PDU at the ℓth HARQ round) and b(ℓ)′ ∆
= {b(ℓ)1

′
, · · · , b(ℓ)

′

N
(ℓ)
c

} the
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Figure 5.1: Equivalent BIOS model.

competing codeword, the PEP results

PEP
(
b(ℓ),b(ℓ)′

)
∆
= Pr

{
ϕ(b(ℓ)′, z(ℓ)) > ϕ(b(ℓ), z(ℓ))

}
, (5.2)

where ϕ(·) is the decoding metric1. Relying on the equivalent BIOS model, it can be

noted that:

• the input to the kth channel, 1 ≤ k ≤ B(ℓ), is the bit bj(x
(ℓ)
n ), that is, the bit

in the jth position of the label of the QAM symbol x
(ℓ)
n sent on subcarrier n, so

that we can write the decoder metric as

ϕ(b(ℓ), z(ℓ)) =

N∏
n=1

m(ℓ)
n∏

j=1

ϕj(bj(x
(ℓ)
n ), z(ℓ)n ), (5.3)

where ϕj(bj(x
(ℓ)
n ), z

(ℓ)
n ) is the decoding metric associated to bit bj(x

(ℓ)
n );

• the output is the bit-loglikelihood metric, also named bit score, here rewritten,

for the ease of notation, as

Λ
(ℓ)
k = log

ϕj(b
(ℓ)′

Π(n,j), z
(ℓ)
n )

ϕj(b
(ℓ)
Π(n,j), z

(ℓ)
n )

, (5.4)

1In order to avoid a cumbersome notation, we denote with (5.2) the general expression of the PEP

at PR ℓ, without any specific assumption on the recombination of the previous copies of message.

The analysis developed in the following will clarify how to evaluate the quantities involved according

to the chosen decoding strategy.
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where Π(n, j) = k is the interleaving function that maps the k CBS on the jth

position of the symbol sent over the nth subcarrier.

Thus, the pairwise decoding score (PDS) relevant to the transmitted codeword is

defined as

Λ(ℓ)
pw =

N∑
n=1

m(ℓ)
n∑

i=1

Λ
(ℓ)
Π(n,i). (5.5)

Clearly, only the bit indices in which the codewords b(ℓ) and b(ℓ)′ differ have a non-

zero bit score.

Arguably, the optimal receiver, that extends the decoding to account for the combina-

tion of all the received copies, should perform a joint decoding of the pairwise decoding

scores over all the possible L transmissions but would results in an exponentially

increasing complexity with L [85]. Thus, an efficient complexity-performance tradeoff

is given by the bit-level combining receiver [86]: at the ℓth PR, 1 ≤ ℓ ≤ L, the bit

scores Λ
(ℓ)
k are evaluated as in (2.7) and, for each bit k, are added together so that

the aggregate bit score results

L(ℓ)
k = q

(ℓ)
k

T
Λ

(ℓ)
k , (5.6)

where Λ
(ℓ)
k

∆
=
[
Λ
(1)
k , · · · ,Λ(ℓ)

k

]T
is the vector collecting the bit scores of the CBS k

up to round ℓ and q
(ℓ)
k

∆
=
[
q
(1)
k , · · · , q(ℓ)k

]T
∈ {0, 1}ℓ is the corresponding vector of

puncturing variables, that is, q
(j)
k = 1 if bit k has been transmitted at round j, 0

otherwise (i.e., it has been punctured). Hence, the aggregate PDS at round ℓ results

L(ℓ)
pw =

N∑
n=1

m(ℓ)
n∑

i=1

L(ℓ)
Π(n,i), (5.7)

whereas the pairwise error probability (5.2), related to the PDS as it can be seen

substituting after some algebra (5.6) into (5.3), results

PEP(b(ℓ),b(ℓ)′) = Pr
(
L(ℓ)
pw > 0

)
, (5.8)

i.e., the PEP can be evaluated as the tail probability of the RV L(ℓ)
pw. Thus, as it will

be clear soon, let us introduce the definition of the CMGF of the bit score

κL(ℓ)
k

(s)
∆
= log

(
E
{
esL

(ℓ)
k

})
(5.9)
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Recalling the features of the HARQ system under analysis, we can assume that,

since at each round a random subset of the CBS is selected, the pattern q
(ℓ)
k can be

modeled as a sequence of ℓ independent and identically distributed (i.i.d.) binary RVs

taking values 0 or 1 independently of the bit index k, and as a consequence, it will be

designated as q(ℓ) = [q(1), · · · , q(ℓ)]T.
Accordingly, exploiting the law of total probability and eqn. (5.6), expression (5.9)

yields

κL(ℓ)
k

(s) = log

 ∑
q̄(ℓ)∈Q(ℓ)

Pr
(
q(ℓ) = q̄(ℓ)

) ℓ∏
j=1

[
E
{
esΛ

(j)
k

}]q̄(j) , (5.10)

where Q(ℓ) is the set of the possible puncturing patterns q(ℓ) over the first ℓ PRs.

Finally, recalling that κΛ(s)
∆
= log

(
EΛ

{
esΛ
})

, (5.9) turns into

κL(ℓ)
k

(s) = log

 ∑
q̄(ℓ)∈Q(ℓ)

Pr
(
q(ℓ) = q̄(ℓ)

) ℓ∏
j=1

[
e
κ
Λ
(j)
k

(s)
]q̄(j) . (5.11)

Now, we can study the pairwise error probability for infinite interleaving. Following

the line of reasoning presented in [36], in case of infinite-length interleaving and linear

binary code, the bit score Λ
(ℓ)
k are i.i.d RVs over the index k and independent of q(ℓ)

and the cumulant transform of the aggregate PDS κ
(ℓ)
pw(s)

∆
= log

(
E
{
esL

(ℓ)
pw

})
can be

simply expressed as

κ(ℓ)pw(s) = dκL(ℓ)
k

(s) (5.12)

where d represents the Hamming distance between the reference and the competing

codewords.

Therefore, the tail probability (5.8) of two codewords differing in d positions can be

computed, exploiting relationship (5.12), as

PEP(d) =
1

2πȷ

∫ σ+ȷ∞

σ−ȷ∞

1

s
e
dκ

L(ℓ)
k

(s)
ds. (5.13)

In general, obtaining exact expressions for the PEP integral (5.13) are extremely

difficult and numerical methods are required. However, similarly to what is proposed

in [34], we will resort to the so-called Gaussian approximation of the PEP integral,

yielding

PEP(d) ≃ Q
(√
−2dκL(ℓ)

k

(ŝ)

)
, (5.14)
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where ŝ represents the saddle point, i.e., the value of s that makes the first derivative

of the cumulant transform, κ
(ℓ)
pw

′
(s) , equal to zero.

It is worth noting that eqn. (5.14), corresponding to the 0th order Lugannani-Rice

expansion of the integral in (5.13), provides the error probability of a BPSK system

over AWGN channel with SNR equal to −κL(ℓ)
k

(ŝ). Recalling eqn. (5.11) we can

eventually define the aggregate effective SNR, or αESNR, as

Γ(ℓ)
α = − log

 ∑
q̄(ℓ)∈Q(ℓ)

Pr
(
q(ℓ) = q̄(ℓ)

) ℓ∏
j=1

[
e−γ̂

(j)
]q̄(j) , (5.15)

where

γ̂(j)
∆
= −κ

Λ
(j)
k (ŝ)

, 1 ≤ j ≤ ℓ (5.16)

is the effective SNR relevant to the single jth HARQ round, described in Sect. 2.3.1 .

Exploiting the above ESM concept, expression (5.15) can be further rearranged,

leading to the main results of this section as stated in the following.

Theorem 5.1 Assuming that the coding rate r(ℓ) varies with the PR index ℓ, 1 ≤
ℓ ≤ L, the αESM Γ

(ℓ)
α can be lower-bounded as

Γ(ℓ)
α ≥ g(Γ(ℓ−1)

α , ξ(ℓ)) + f(γ̂(ℓ), ξ(ℓ)), (5.17)

with Γ
(1)
α = γ̂(1) and R(1) = r(1), where

ξ(ℓ)
∆
=

r(ℓ)

R(ℓ−1)
, R(ℓ) ∆

= min{R(ℓ−1), r(ℓ)} (5.18)

g(x, a) =

{
− log[1 + a(e−x − 1)], r(ℓ) ≤ R(ℓ−1)

x, r(ℓ) > R(ℓ−1)
,

f(x, a) =

{
x, r(ℓ) ≤ R(ℓ−1)

− log[1 + 1
a (e

−x − 1)], r(ℓ) > R(ℓ−1)
.

(5.19)

Proof In order to prove Theorem 5.1, two different cases are taken into account.

Let us start with the case in which the coding rate is monotonically increasing up

to the ℓth PR, i.e., r(j) > r(j−1), 1 ≤ j ≤ ℓ. Denoting as N
(j)
c = Nu/r

(j), with

N
(j)
c ≤ N

(j−1)
c , the number of coded bits transmitted at the jth PR, 1 ≤ j ≤ ℓ, the
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set Q(ℓ) containing all the possible puncturing patterns among the ℓth PRs can be

written as

Q(ℓ) ∆
= {[1Tℓ ,0T0︸ ︷︷ ︸

q0

]T , [1Tℓ−1,0
T
1︸ ︷︷ ︸

q1

]T , · · · , {[1T1 ,0Tℓ−1︸ ︷︷ ︸
qℓ−1

]T }, (5.20)

in that a given coded bit can be transmitted at PRs 1, 2, · · · , ℓ (pattern q0), or at

PRs 1, 2, · · · , ℓ − 1 (pattern q1), and so on, or only at PR 1 (pattern qℓ−1). Hence,

defining p(j)
∆
= Pr{q(ℓ)

k = qj} as the probability that the kth coded bit is punctured

at the ℓth PR using the pattern qj , 0 ≤ j ≤ ℓ − 1, it can be verified that the set of

these probabilities can be computed as

P(ℓ) ∆
=

{
N

(ℓ)
c

N
(1)
c

,
N

(ℓ−1)
c −N (ℓ)

c

N
(1)
c

, · · · , N
(1)
c −N (2)

c

N
(1)
c

}
. (5.21)

Now, let us prove (5.17) of Theorem 5.1 by induction. It can easily verified that the

expression holds for ℓ = 1, 2, · · · . Therefore, at the (ℓ+ 1)th PR we can write

Γ(ℓ+1)
α = − log

{
N

(ℓ+1)
c

N
(1)
c

e−
∑ℓ+1

j=1 γ̂
(j)

+
ℓ+1∑
k=2

(
N

(k−1)
c −N (k)

c

N
(1)
c

)
e−

∑k−1
j=1 γ̂

(j)

}
, (5.22)

that after some algebra can be rearranged as

Γ
(ℓ+1)
α = − log

N(ℓ+1)
c

N
(1)
c

e
−

ℓ∑
j=1

γ̂(j) (
e−γ̂

(ℓ+1) − 1
)
+

N(ℓ)
c

N
(1)
c

e
−

ℓ∑
j=1

γ̂(j)

+
ℓ∑

k=2

(
N(k−1)

c −N(k)
c

N
(1)
c

)
e
−

k−1∑
j=1

γ̂(j)

 .

(5.23)

Then, considering that the last two terms in the curly brackets of (5.23) correspond

to e−Γ(ℓ)
α , and

e−
∑ℓ

j=1 γ̂
(j)

e−Γ
(ℓ)
α

≤ 1 as the coding rate is increasing, we end up to

Γ(ℓ+1)
α ≥ Γ(ℓ)

α − log

[
1 +

R(ℓ)

r(ℓ+1)

(
e−γ̂

(ℓ+1)

− 1
)]
, (5.24)

where we exploit that R(ℓ) = r(1) due to (5.18) and the assumption of increasing

coding rate.

In the case the coding rate is not increasing up to the ℓth PR, i.e., r(j) ≤ r(j−1),

1 ≤ j ≤ ℓ, the set of puncturing patterns at the ℓth PRs turns into

Q(ℓ) ∆
= {[0T0 ,1Tℓ︸ ︷︷ ︸

q0

]T , [0T1 ,1
T
ℓ−1︸ ︷︷ ︸

q1

]T , · · · , {[0Tℓ−1,1
T
1︸ ︷︷ ︸

qℓ−1

]T }, (5.25)
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with probabilities

P(ℓ) ∆
=

{
N

(1)
c

N
(ℓ)
c

,
N

(2)
c −N (1)

c

N
(ℓ)
c

, · · · , N
(ℓ)
c −N (ℓ−1)

c

N
(ℓ)
c

}
. (5.26)

Therefore, following the same line of reasoning adopted above, at the (ℓ + 1)th PR

we can write

Γ(ℓ+1)
α = − log

{
N

(1)
c

N
(ℓ+1)
c

e−
∑ℓ+1

j=1 γ̂
(j)

+

ℓ+1∑
k=2

(
N

(k)
c −N (k−1)

c

N
(ℓ+1)
c

)
e−

∑ℓ+1
j=k γ̂

(j)

}
, (5.27)

that after some algebra can be rearranged as

Γ
(ℓ+1)
α = γ̂(ℓ+1) − log

{
N(ℓ)

c

N
(ℓ+1)
c

[
N(ℓ+1)

c −N(ℓ)
c

N
(ℓ)
c

+

N(1)
c

N
(ℓ)
c

e
−

ℓ∑
j=1

γ̂(j)

+
ℓ∑

k=2

(
N(k−1)

c −N(k)
c

N
(ℓ)
c

)
e
−

l∑
j=k

γ̂(j)

 .
(5.28)

Then, considering that the last two terms in the curly brackets of (5.28) correspond

to e−Γ(ℓ)
α , we end up to

Γ(ℓ+1)
α = γ̂(ℓ+1) − log

[
1 +

r(ℓ+1)

R(ℓ)

(
e−Γ(ℓ)

α − 1
)]
, (5.29)

where R(ℓ) = r(ℓ) due to the assumption of decreasing coding rate. �

A few remarks about Theorem 5.1 are now discussed.

1. It can be shown that the lower-bound (5.17) is exactly met when r(ℓ) ≤ R(ℓ−1),

i.e., in the case the coding rate is decreased along with retransmissions.

2. The updating of Γ
(ℓ)
α through (5.17) requires only the knowledge of two aggregate

quantities Γ
(ℓ−1)
α and R(ℓ−1) related to the previous (ℓ − 1)th step, together

with the ESNR γ̂(ℓ), which is evaluated at the current ℓth PR according to

(2.19)-(2.20), i.e., based on the SNRs Υ(ℓ) and the TM φ(ℓ) ∆
= {m(ℓ), r(ℓ)}.

In particular, φ(ℓ) includes the bit distribution across the subcarriers m(ℓ) ∆
=

[m
(ℓ)
1 , · · · ,m(ℓ)

N ]T ∈ Dm, Dm being the set containing all the possible bit loading

realizations, with m
(ℓ)
n ∈ Dm

∆
= {0, 2, 4, · · · ,mmax}, ∀n, and the coding rate

r(ℓ) ∈ Dr
∆
= {r0, r1, · · · , rmax}, so that φ(ℓ) ∈ Dφ, with Dφ = Dm × Dr being

the set of the allowable TMs. Therefore, let us define the “state” of the HARQ
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scheme (or in other words, the memory of the HARQ) σ(ℓ) ∆
= {Γ(ℓ)

α , R(ℓ)}. This
is the reason why the aggregate ESNR at the ℓth PR will depend only on the

state σ(ℓ−1) (related to the past retransmissions up to that of index ℓ− 1) and

the TM φ(ℓ). Accordingly, it will be written as Γ
(ℓ)
α (φ(ℓ)|σ(ℓ−1)). The αESM

update is depicted in Fig. 5.2.

3. Under the assumption that the coding rate is not adapted, i.e., r(j) = r(j−1),

2 ≤ j ≤ ℓ, it can be shown that Γ
(ℓ)
α =

∑ℓ
j=0 γ̂

(j). As expected, in view of the

HARQ mechanism, the aggregate ESNR is obtained by the accumulation of the

ESNRs evaluated at each PR.

Figure 5.2: Block diagram of the αESM update.

5.3 Expected goodput in presence of HARQ mech-

anism

5.3.1 Expected goodput formulation

As outlined in Chapter 3, we will pursue an inter-round optimization approach, where

the EGP metric is optimized over the tunable transmission parameters at each PR.

In Sect. 3.2.3, the EGP was derived for the ARQ based system described in Sect. 2.2.

Here, the EGP metric is suitably modified to account for the effect of the HARQ

mechanism. Let us in fact consider the generic ℓth branch of the equivalent model

depicted in Fig. 5.3. Due to the packet-combining mechanism, the PER at the

generic round ℓ depends now also on the previously transmitted packets, that is
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Figure 5.3: Equivalent model for the HARQ BIC-OFDM system..

PER(φ(ℓ)|H(ℓ)) in eqn. (3.15) turns in PER(φ(ℓ)|{φ(i)}ℓ−1
i=1 , {H(i)}ℓi=1). Thanks to

the αESM model derived in the previous section, which is capable of taking into

account the effect of the HARQ mechanism, the PER at PR ℓ for the HARQ-based

BIC-OFDM system can be evaluated as

PER(φ(ℓ)|{φ(i)}ℓ−1
i=1 , {H

(i)}ℓi=1) = Ψr(ℓ)
(
Γ(ℓ)
α (φ(ℓ)|σ(ℓ−1))|H(ℓ)

)
, (5.30)

where the right hand side of (5.30) is the PER of the equivalent BPSK system over

AWGN channel that experiences an SNR equal to Γ
(ℓ)
α .

Capitalizing on equation (5.30), the EGP derivation is then analogous to the one done

in Sect. 3.2.3, so that it is here briefly recalled.

Resorting to the long-term static channel assumption, the expectation over the future

channel realization EH(ℓ+j)

{
Ψr(ℓ+j)

(
Γ
(ℓ+j)
α (φ(ℓ+j)|σ(ℓ+j−1))|H(ℓ+j)

)}
is substituted

with Ψr(ℓ)
(
Γ
(ℓ+j)
α (φ(ℓ)|σ(ℓ−1))|H(ℓ)

)
, that represents the PER we would have if the

packet experiences the current channel conditions H(ℓ) throughout its possible future

retransmissions.

Thus, based on the above observations, the outage probability (3.12) is now expressed

by

Pout(φ
(ℓ),Γ(ℓ)

α , · · · ,Γ(L)
α ) =

L−ℓ∏
j=0

Ψr(ℓ)
(
Γα

(ℓ+j)(φ(ℓ)|σ(ℓ−1))|H(ℓ)
)
, (5.31)
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whereas the expected delivering time (3.16) results

TD(φ
(ℓ),Γ(ℓ)

α , · · · ,Γ(L−1)
α ) = Tu(φ

(ℓ))

L∑
j=ℓ

j−ℓ∏
k=0

Ψr(ℓ)
(
Γ(ℓ+k−1)
α (φ(ℓ)|σ(ℓ−1))|H(ℓ)

)
,

(5.32)

with Ψr(ℓ)
(
Γ
(ℓ−1)
α (φ(ℓ)|σ(ℓ−1))|H(ℓ)

)
∆
= 1.

Furthermore, approximating the ESNR Γ(ℓ)(φ(ℓ)|σ(ℓ−1)) with its lower bound of

Theorem 5.1, we have

Γ(ℓ+j)
α (φ(ℓ)|σ(ℓ−1)) = g(Γ(ℓ−1)

α , ξ(ℓ)) + (j + 1)f [γ̂(ℓ)(φ(ℓ)), ξ(ℓ)] ∀j ≥ 0. (5.33)

We can now get the following results.

Prop. 5.1 Replacing (5.33) into (5.32) and (5.31), it turns out that

1. TD(φ
(ℓ),Γ

(ℓ)
α , · · · ,Γ(L−1)

α ) in (5.32) can be written as

TD(φ
(ℓ)|σ(ℓ−1)) = Tu(φ

(ℓ))λ(φ(ℓ)|σ(ℓ−1)),

where

λ(φ(ℓ)|σ(ℓ−1)) =
L∑
j=ℓ

j−ℓ∏
k=0

{
Ψr(ℓ)(g(Γ

(ℓ−1)
α , ξ(ℓ)) + kf [γ̂(ℓ)(φ(ℓ)), ξ(ℓ)])

}
, (5.34)

with Ψr(ℓ)(g(Γ
(ℓ−1)
α , ξ(ℓ)))

∆
= 1, is a monotonically decreasing function of the

ESNR γ̂(ℓ)(φ(ℓ));

2. Pout(φ
(ℓ),Γ

(ℓ)
α , · · · ,Γ(L)

α ) can be written as

Pout(φ
(ℓ)|σ(ℓ−1)) =

L−ℓ∏
j=0

Ψr(ℓ)
(
g(Γ(ℓ−1)

α , ξ(ℓ)) + (j + 1)f [γ̂(ℓ)(φ(ℓ)), ξ(ℓ)]
)
,

(5.35)

which is a monotonically decreasing function of the ESNR γ̂(ℓ)(φ(ℓ)).

Proof In order to show (5.34) and (5.35), it is sufficient to demonstrate that the

product of the n PER functions Ψr , with n = j− ℓ in (5.34), since Ψr
∆
= 1 for k = 0,

and n = L−ℓ+1 in (5.35), monotonically decreases with γ̂. To this end, consider w.l.g.

eqn. (5.35) and the case r(ℓ) ≤ R(ℓ). We get that g(Γ
(ℓ−1)
α , ξ(ℓ)) = c∆ is constant and

f(γ̂(ℓ), ξ(ℓ)) = γ̂(ℓ). Thus, recalling the PER Ψ(·) properties in Sect. 2.3.1 and upon



5.4 LRA algorithm with instantaneous CSIT 79

defining Ψtot(γ̂
(ℓ))

∆
=

n−1∏
k=0

Ψr(ℓ)
(
c∆ + ikγ̂

(ℓ)
)
, with ik = k and ik = k + 1 for (5.34)

and (5.35), respectively, we get that

∂

∂γ̂(ℓ)
Ψtot(γ̂

(ℓ)) = Ψtot(γ̂
(ℓ))

n−1∑
j=0

ij
Ψ′
r(ℓ)

(
c∆ + ij γ̂

(ℓ)
)

Ψr(ℓ)
(
c∆ + ij γ̂(ℓ)

) < 0, (5.36)

being 0 ≤ Ψr ≤ 1 and Ψ
′

r < 0. Thus, since the derivative of Ψtot is negative, it follows

that Ψtot is a monotonically decreasing function of γ̂(ℓ) and, accordingly, equations

(5.34) and (5.35) too. �

Collecting these results, the EGP at the ℓth round is finally obtained as

ζ(ℓ)(φ(ℓ)|σ(ℓ−1)) =
Np

B

1− Pout(φ
(ℓ)|σ(ℓ−1))

Tf({φ(i)}ℓ−1
i=1) + Tu(φ(ℓ))λ(φ(ℓ)|σ(ℓ−1))

. (5.37)

In the following sections, two LRA algorithms will be proposed to maximize the above

EGP metric in presence of HARQ mechanism. These two approaches correspond to

two different levels of CSI knowledge at the transmitter (CSIT). The first scenario

assumes that instantaneous CSI is perfectly known at the transmitter. In this case,

the algorithm is able to assign a different modulation over each subcarrier. Since

in most practical scenarios the entire instantaneous channel vector can be hardly

available, the second scenario, tagged as limited CSIT, only assumes the knowledge

of the channel statistics and, accordingly, and AMC algorithm is derived.

5.4 LRA algorithm with instantaneous CSIT

In this section, the LRA problem for the EGP metric (5.37) maximization at the

generic PR ℓ is formulated, under the condition that the transmitter has knowledge

of the entire SNR matrix Υ(ℓ), as defined in (2.5). Accordingly, the EGP optimization

is done selecting the best TM φ
(ℓ)
o , i.e., the best pair bit loading (BL) distribution

m
(ℓ)
o and coding rate r

(ℓ)
o , belonging to the finite set Dφ. The LRA OP, tagged as

LRA-OP1, can be formally stated as follows.

LRA−OP1 :
φ

(ℓ)
o = argmax

φ

{
ζ(ℓ)(φ|σ(ℓ−1))

}
s.t. φ ∈ Dφ

. (5.38)



80 Hybrid ARQ based LRA for BIC-OFDM systems

Given the specific structure of the objective function of LRA-OP1, the latter can be

split into two decoupled subproblems as formulated in the following.

Prop. 5.2 The LRA-OP1 at the ℓth PR can be solved in two steps:

i) search for the optimal bit loading for each value of the data rate B(ℓ) ∆
=
∑
n∈Ds

m
(ℓ)
n ,

where B(ℓ) ∈ DB
∆
= {0, 2, · · · , B(ℓ)

max} and Ds defines the set of subcarriers, as

LRA−OP1.a :
mo(B

(ℓ)) = argmin
m

{∑
n∈Ds

Ω
(ℓ)
n (m)

}
s.t. m(ℓ)T1N = B(ℓ), ∀B(ℓ) ∈ DB

, (5.39)

where the sequence Ω
(ℓ)
n , n ∈ Ds, defines the modulation model in (2.20);

ii) select the optimal combination of bit loading and coding rate as

LRA−OP1.b :
φ

(ℓ)
o = argmax

φ

{
ζ(ℓ)(φ|σ(ℓ−1))

}
s.t. φ ∈ D⋆φ

, (5.40)

where D⋆φ
∆
= (D⋆m × Dr) ⊆ Dφ, D⋆m ⊆ Dm being the set that includes only the

results mo(B
(ℓ)) solving LRA-OP1.a.

Proof In order to show the equivalence of LRA-OP1 and LRA-OP1.a-LRA-OP1.b,

first recall the results obtained in Prop. 5.1, i.e., λ(φ(ℓ)|σ(ℓ−1)) monotonically de-

creases with γ̂(ℓ) = γ̂(ℓ)(φ(ℓ)), while 1 − Pout(φ
(ℓ)|σ(ℓ−1)) monotonically increases

with γ̂(ℓ)(φ(ℓ)). In fact, it can be easily seen that the first derivative of (5.37)

w.r.t. γ̂(ℓ) is always greater than zero, so that (5.37) is monotone increasing with

γ̂(ℓ). Moreover, the ESNR γ̂(ℓ) does not depend on the coding rate, but only on

the bit distribution among the subcarriers, as it can be seen in (2.19)-(2.20). Hence,

the equivalence easily follows. In fact, it is first evaluated, for each possible value

of data rate B(ℓ), the bit distribution mo(B
(ℓ)) that maximize the ESNR. From

(2.19), it follows that γ̂(ℓ)(φ(ℓ)) is maximized for that mo(B
(ℓ)) that makes the

sum
∑
n∈Ds

Ω
(ℓ)
n (m(ℓ)) minimum, defining accordingly LRA-OP1.a. The solutions

to LRA-OP1.a provide the set D⋆m including the optimal bit distribution mo(B
(ℓ)),

one for each B(ℓ) ∈ DB . Then, in LRA-OP1.b, the optimal combination of mo(B
(ℓ))

and coding rate r(ℓ) ∈ Dr that gives the maximum value of the EGP, among all the

possible values ζ(ℓ)(mo(B
(ℓ)), r(ℓ)|σ(ℓ−1)), is chosen. This is pursed with an exhaustive

search over the set D⋆φ, such that |D⋆φ| ≪ |Dφ| due to the previous “skimming” action

performed by LRA-OP1.a over all the possible combinations of m(ℓ) ∈ Dm. �
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5.4.1 Bit loading algorithm

The idea we pursue in this section is that of reformulating LRA-OP1.a exploiting

the embedded structure of matroid, so that it can be optimally and efficiently solved

through an iterative greedy approach.

Toward this end, let us recall the definition and some useful propertis of the matroids.

Definition 5.1 (Matroids [87]) A finite matroid is defined as an ordered pair of

sets M ∆
= {S, I}, where S is a finite non-empty set and I is a non-empty family of

subsets of S (called the independent subsets) with the properties:

i) the empty set ∅ ∈ I;
ii) if Y ∈ I and X ⊆ Y, then X ∈ I (hereditary property);

iii) if X ,Y ∈ I, with |X | < |Y|, there exists an element x ∈ Y − X such that

X ∪ {x} ∈ Y (exchange property).

Then, a weighted matroid is defined as a matroid M ∆
= {S, I} in which a weight

function w : S → R+ assigns a strictly positive weight to each element of S. Therefore,
∀X ⊆ S we have w(X ) =

∑
x∈X w(x).

The concept of weighted matroid is usually combined with that of greedy algorithm,

a class of (typically simple) iterative methods which can solve a given OP through a

sequence of locally optimal steps, i.e., at a given iteration the choice we adopt looks as

the best one, irrespective of the effect it may have in the future. More specifically, for

a given weighted matroid there always exists a greedy algorithm working on it that

enables to find the minimum-weight independent subset at affordable complexity.

Accordingly, dropping for the sake of notation the dependence on the PR index ℓ,

in order to find a solution to LRA-OP1.a, let us define M ∆
= {S, I} as the weighted

matroid such that:

i) S ∆
= {ϑm,n, ∀m ∈ {2 , · · · ,mmax − 2} , ∀n ∈ C}, ϑm,n representing the action

of increasing from m − 2 to m the number of coded bits loaded on the nth

subcarrier, i.e., 0→ 2, 2→ 4, (mmax − 2)→ mmax;

ii) the family {Xa} of independent subsets, with Xa ∈ S and a
∆
= |X |, is composed

by all the combinations of the elements of S;
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iii) the weight function assigned to each element of S is defined as

wm(γn)
∆
= Ωn(m|γn)− Ωn(m− 2|γn), m ∈ {2 , · · · ,mmax} , Ωn(0|γn)

∆
= 0,

(5.41)

where Ωn(m|γn) is the modulation model (2.20) expressed as a function of the

number of bits m loaded over subcarrier n, for a given SNR level equal to γn.

As it can be shown that Ωn(m|γn) > Ωn(m|γn) for ∀m > m, it can be noted

that the weight wm(γn) > 0.

Due to the above definition the following results follow.

1. The hereditary and exchange property of the matroid M can be easily verified.

2. Each subset X ∈ I is a feasible bit loading distribution if its elements are such

that

ϑm,n ∈ X ⇒ ϑm−2,n ∈ X , ∀m ∈ {2 , · · · ,mmax} , ∀n ∈ Ds. (5.42)

This means, for instance, that X1
∆
= {ϑ4,n} is not allowed since before the

increment 2 → 4, the increment 0 → 2 has clearly to occur, whereas X2
∆
=

{ϑ2,n, ϑ4,n} and X1
∆
= {ϑ2,n} both obey to (5.42) and thus are feasible bit

loading configurations.

3. The minimum-weight independent subset X (o)
j made of j elements, 1 ≤ j ≤ |S|,

returned by a greedy algorithm working on the corresponding weighted matroid

M, is a feasible bit loading distribution (optimality condition), which represents

the optimal solution mo(B) of LRA-OP1.a, with B = 2j, if

wm(γn) > wm(γn), ∀m > m, ∀n ∈ Ds. (5.43)

Thus, X (o)
j is built starting from X (o)

j−1, or equivalently mo(B) is derived from

mo(B − 2), and making the local (greedy) optimal choice.

Collecting together the above results, we end up to the following iterative procedure.

1) Sort S according to the increasing weights of its elements, thus obtaining G;

2) Initialize mo(0) = 0, j = 1;

3) Select the jth element of G and denote it as ϑm,n;
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4) Return mo(B) with B = 2j, starting from mo(B− 2) obtained at the (j − 1)th

iteration and switching from m to m+ 2 bits on the nth subchannel, n and m

being given by Step 3);

5) Increment j by 1;

6) If j ≤ |S| then

7) Go to Step 3);

8) Else, the algorithm ends, returning the sequence mo(B), B ∈ {0 , 2, · · · , Bmax}

It is worth noting that the solution to LRA-OP1.a is optimal, as at each step j the

set composed of j positive elements with the smallest values is selected, and so, no

other set of j elements exists whose sum is lower; efficient, as having the problem

optimal substructure, i.e., mo(B − 2) is included in mo(B), and the greedy choice

property, i.e., at each iteration the selection of the element with the smallest weight

is locally optimal, we can find the globally optimal solution applying a sequence of

|S| = mmax

2
N greedy choices, instead of

(mmax

2
+ 1
)N

required by the exhaustive

search.

The above mentioned procedure brings some comments that are worth of being

emphasized.

The weights wm(γn) for m = 2, 4, 6 obey to the optimal condition (5.43) only for

γn ≥ γ0,mmax , where the threshold depends on the highest modulation order mmax.

In the case of mmax = 6, the threshold γ0,mmax is around 2 dB. Therefore, whenever

for a given subcarrier we have γn < γ0,mmax , the greedy procedure does not provide

the optimal solution in that it is applied to a problem that does not have optimal

substructure, and so, it may give a bit loading configuration that is not feasible.

Nevertheless, there always exists a threshold γ0,mmax such that the optimal condition

(5.43) holds, with

γ0,mmax ≤ Gγ(mmax), (5.44)

where

Gγ(m) =
4[

d
(min)
m

]2
+
[
d
(min)
m−2

]2
−
[
d
(min)
m

]2 log

(
2m−1ψm(1)

2m−3ψm(1) + 2m−1ψm−2(1)

)
.

(5.45)
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Proof Let us denote αmn(µ)
∆
= ψmn(µ)/2

mn−1 and βmn(µ)
∆
= µ2

[
d
(min)
mn

]2
/4 in

(2.20), for notation convenience. Substituting (2.20) into (5.41), the weight for a

2mn -QAM modulation over subcarrier n results

wmn =

√
2mn/2∑
µ=1

[
αmn(µ)e

−γnβmn (µ) − αmn−2(µ)e
−γnβmn−2(µ)

]
. (5.46)

For sufficiently large SNR values, (2.20) is quite well approximated by the terms

relevant to the symbols in the complementary subset at distance d
(min)
mn [45], i.e., the

ones relevant to µ = 1. Under this assumption, the optimality condition ωm > ωm

can be written as

αmn(1)e
−γnβmn (1) + αmn−2(1)e

−βmn−2(1) <

αmn(1)e
−γnβmn (1) + αmn−2(1)e

−γnβmn−2(1).
(5.47)

Recalling that mn > mn and according to the properties of αmn and βmn described

in Appendix A.2, it follows that αmn−2(1) < αmn(1) ≤ αmn−2(1) < αmn(1), whereas

βmn−2(1) > βmn(1) ≥ βmn−2(1) > βmn(1). Thus, the first term of inequality

(5.47) can be lower bounded by αmn(1)e
−γn(βmn (1)+βmn−2(1)). The second term of

inequality (5.47) can instead be upper bounded by (αmn(1) + αmn−2(1)) e
−βmn (1)γn .

Substituting these bounds in (5.47), optimality condition (5.44)-(5.45) is eventually

found. �

In the low-SNR region where (5.43) is not satisfied, the weights crossing each other

are almost overlapped. This fact suggests a slight modification of the procedure that

enables a suboptimal yet greedy and feasible bit loading solution: the initial sorting

is modified moving ϑm,n just after ϑm,n if wm(γn) < wm(γn), for m > m, ∀n ∈ Ds.
The complexity load required by this greedy-based solution is mainly due to the

sorting of S, and accordingly, results as O(|S| log |S|), with |S| = mmax

2
N .

The the bit loading algorithm solving LRA-OP1.a is summarized in Tab. 5.1, where

G(j) denotes the jth element of the set G.

5.4.2 AMC with BL algorithm

As stated earlier, once the optimal bit loading configuration mo(B) for each possible

value of data rate B is found, the solution to LRA-OP1 is obtained with a simple

exhaustive search over all the pairs (mo(B), r) ∈ D⋆φ, i.e., solving LRA-OP1.b. This

procedure is summarized in Tab. 5.2.
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Bit loading algorithm for LRA-OP1.a

Initialization phase

1. Build G sorting the elements of S in increasing order

2. For n = 1 : N

3. If wm(γn) < wm(γn), for m > m

4. Move ϑm,n just after ϑm,n in G

5. End If

6. End For

7. Initialize mo(0) = 0

Greedy procedure

8. For j = 1, · · · , |G|

9. Set θm,n = G(j) and B = 2j

10. Return mo(B) = mo(B − 2) + [

n︷ ︸︸ ︷
0, · · · , 0, 2,

N−n︷ ︸︸ ︷
0, · · · , 0]T

11.End For

Table 5.1: Pseudo-code of the bit loading algorithm

5.5 LRA with limited CSIT

In the LRA problem discussed above, the receiver must communicate on the feedback

channel the whole SNR matrix Υ(ℓ), since the transmitter requires the full CSI

knowledge to perform the bit-loading procedure. An alternative solution that offers a

trade-off between the amount of feedback information and quality of solution is given

by assigning the same modulation order to all the subcarrier within the same round.

In this way, it is sufficient that the receiver feeds back only the value of the index

identifying the optimal pair modulation order/coding rate.

Formally, this AMC problem can be defined as

OP2 :
φ

(ℓ)
o = argmax

φ

{
ζ(ℓ)(φ|σ(ℓ−1))

}
s.t. φ ∈ D′

φ

, (5.48)
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AMC with BL algorithm for LRA-OP1

1. Initialize ζ
(ℓ)
o = 0

2. Evaluate the optimal BL set D⋆m with the procedure in Tab. 5.1

3. For j = 1 : |D⋆m|

4. Set mo = D⋆m(j)

5. For k = 1 : |Dr|

6. Set φ(ℓ) = (mo,Dr(k)) and evaluate ζ(ℓ)(φ(ℓ)|σ(ℓ−1))

7. If ζ(ℓ)(φ(ℓ)|σ(ℓ−1)) > ζ
(ℓ)
o

8. Set φ
(ℓ)
o = φ(ℓ) and ζ

(ℓ)
o = ζ(ℓ)(φ(ℓ)|σ(ℓ−1))

9. End If

10. End For

11.End For

12.Return φ
(ℓ)
o

Table 5.2: Pseudo-code of the AMC algorithm with BL

where now the TM φ
∆
= {m,n}, since mn = m, ∀n ∈ Ds, and D′

φ
∆
= Dm ×Dr.

5.5.1 AMC algorithm

The optimization problem (5.48) can be easily solved through and exhaustive search

over all the pairs modulation order and coding rate to find the one that optimizes the

EGP. In fact, since all the quantities to be evaluated have a closed-form expression,

its complexity simply reduces to O(|Dm| · |Dr|). The AMC algorithm is summarized

in the pseudo-code of Tab. 5.3.

5.6 Simulation results

Simulation tests have been carried over a typical wireless link to verify the efficacy

of the proposed HARQ-based LRA algorithms. The setting of parameters/features

adopted for the simulation is reported in Tabs. 5.4 and 5.5. All the performance
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AMC algorithm for LRA-OP2

Initialize ζ
(ℓ)
o = 0

For j = 1 : |Dm|

For k = 1 : |Dr|

Set φ(ℓ) = (Dm(j),Dr(k)) and evaluate ζ(ℓ)(φ(ℓ)|σ(ℓ−1))

If ζ(ℓ)(φ(ℓ)|σ(ℓ−1)) > ζ
(ℓ)
o

Set φ
(ℓ)
o = φ(ℓ) and ζ

(ℓ)
o = ζ(ℓ)(φ(ℓ)|σ(ℓ−1))

End If

End For

End For

Return φ
(ℓ)
o

Table 5.3: Pseudo-code of the AMC algorithm for EGP maximization with limited CSIT

metrics are considered as a function of the distance between the transmitter (Tx) and

the receiver (Rx), averaged over 103 independent channel realizations.

Figure 5.4 depicts the average AGP, i.e., the average of the ratio between the number

of payload bits Np and the transmission time required to successfully delivering them,

offered by the adaptive HARQ-based algorithm with CSIT that exploits the BL

procedure, summarized in Tabs. 5.1 and 5.2. This algorithm is tagged as HybridGP-

AMC with BL. The AGP performance obtained by the latter are compared with

the performance obtained in the case when simple ARQ without packet combining

is employed. In the latter case, since there is no recombination, the ESNR adopted

to evaluated the goodput is the one relevant to the single PR, i.e., the conventional

κESM ESNR, described in Sect. 2.3.1. Interestingly, as it can be seen in Sect. 5.4.1,

the BL procedure that maximizes the EGP in presence of HARQ (5.37) is the same

that maximizes the EGP with simple ARQ mechanism, that is expressed by (4.6)

considering uniform PA. In fact, the BL is obtained by minimizing the sum of the

modulation models Ωn, which is identified by the same expression (2.20) in both

cases. Thus, in conclusion, this benchmark is obtained applying the same algorithm

in Tabs. 5.1-5.2, where the evaluation of the goodput is now done according to (4.6),
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Parameter/Feature Symbol Value/Description

RLC-PDU

Payload length Np 1024 bits

CRC length NCRC 32 bits

OFDM

No. of active subchannels C 1320

FFT size NFFT 2048

CP length NCP 160 samples

Modulation & Coding

Bits per subcarrier Dm {0, 2, 4, 6}
Code type PCCC turbo-code

Mother code rate r 1/3

Punctured code rates Dr
{
1

3
,
2

5
,
1

2
,
4

7
,
2

3
,
3

4
,
4

5
,
6

7

}
Transmitted power (Figs. 5.4-5.6) P 20 dBm

Transmitted power (Figs. 5.7-5.9) P 40 dBm

Bandwidth B 20 MHz

ARQ

ARQ scheme Multiple-channel Stop & Wait

No. of logical channels 8

Table 5.4: Parameters and features of the HARQ BIC-OFDM system.

i.e., without exploiting the αESM methodology, but only the κESM one. We will

refer to this case simply with GP-AMC with BL. From Fig. 5.4, it can be argued

how the HybridGP-AMC with BL has an edge over the simple GP-AMC with BL,

especially when the distance between the Tx and the Rx increases, corresponding to

the low SNRs region. Here in fact, since the reliability is lower, the recombination

mechanism due to the HARQ protocol is well exploited.

In order to further reduce complexity, the overall number of subcarriers can be

grouped in N/U chunks, each composed of U adjacent subcarriers spanning a fre-

quency interval smaller than the channel coherence bandwidth. As a result, the bit

loading procedure is simplified since the subcarriers of each chunk are loaded with the
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Parameter/Feature Value/Description

Path-loss model NLOS urban scenario, [77]

Carrier frequency 2 GHz

Base station height 12.5 m

Mobile terminal height 1.5 m

Noise power level -100 dBm

Long-term fading model Log-normal distribution

Variance of the shadowing 6 dB

Short-term fading model ITU Ped. B, [33]

Table 5.5: Parameters and features of the radio propagation channel model.

same number of bits. Figure 5.5 proves that the AGP for both the HybridGP-AMC

with BL and GP-AMC with BL slightly degrades when using U = 4 when compared

to U = 1, i.e., the bit loading at subcarrier level.

In Fig. 5.6, the performance of the HybridGP-AMC algorithm with limited CSIT

described in Tab. 5.3 are compared with the ones obtained with the HybridGP-AMC

with BL algorithm and the ones obtained with simple GP-AMC algorithm. It is

evident that, at low distances, where the SNR level is higher, the recombination

mechanism does not influence much the results. In fact, the algorithms without BL

have almost the same performance, whereas the one with BL produce a better AGP

due to the finest mechanism with whom it assigns different modulation orders per

subcarrier. When the distance increases, so that the SNR level gets lower, the recom-

bination mechanism starts playing an important role, in fact the performance obtained

by two algorithms based on HARQ with packet combining get closer outperforming

the GP-AMC algorithm.

Figures 5.7-5.9 are about the HybridGP-AMC with BL and the GP-AMC with BL

when a QoS constraint is imposed, which specifies the maximum delay in the delivery

of each packet to the end-user as TQoS = 0.5ms. From Fig. 5.7, it can be noticed

that the packet drop rate, namely the ratio between the number of discarded packets

that are not delivered within the maximum allowed delay and the total number of

transmitted packets, is lower for the HybridGP-AMC with BL, still providing the

same value of AGP. This competitive feature can be explained as follows, also looking
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at Fig. 5.9 as well, which depicts the retransmission rate. Actually, while the GP-

AMC with BL is more conservative and transmits with lower data rate to guarantee

adequate PER performance, the HybridGP-AMC with BL adopts a stronger resource

allocation strategy in virtue of the retransmission model included in the EGP objective

function. Consequently, whenever a NACK is received, different copies of the same

packet are transmitted within the allowed interval TQoS, thus efficiently exploiting

the HARQ recombination mechanism. This is why the HybridGP-AMC with BL has

both higher retransmission rate than the simple GP-LRA with BL and enables better

data rate performance.

5.7 Concluding remarks

An efficient LRA policy suitable for improving the link performance of BIC-OFDM

systems in presence of HARQ schemes with packet combining was proposed and

properly outlined. First of all, a novel link performance prediction method was derived

relying on the ESM approach, called aggregate ESM, or αESM, capable of taking

into account the entire channel history up to the actual PR through a simple scalar

value. By exploiting a lower bound of the αESM, characterized by a simple first-order

recursive equation, the adaptive modulation and coding problem aimed at maximizing

the goodput was properly formalized and solved, either in the case of full CSIT and

limited CSIT. In the former case, the AMC strategy derived is able to assign a different

modulation order per subcarrier and the optimality of this bit loading procedure

was proven resorting to the matroids theory. Simulation results confirmed that the

proposed schemes remarkably boost link performance compared to AMC strategies

that do not account for the recombination mechanism of the HARQ scheme with

packet combining and, besides, when QoS constrained applications are considered,

the proposed strategy helps in increasing the number of packets meeting the QoS

constraint.
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Figure 5.4: HybridGP-LRA with BL vs. GP-LRA with BL. AGP Performance comparison.

Figure 5.5: HybridGP-LRA with BL vs. GP-LRA with BL. Chunk approximation.
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Figure 5.6: HybridGP-AMC with BL vs. HybridGP-AMC and GP-AMC. AGP perfor-

mance comparison.

Figure 5.7: HybridGP-LRA with BL vs. GP-LRA with BL. Packet dropped rate compari-

son.
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Figure 5.8: HybridGP-LRA with BL vs. GP-LRA with BL. Retransmission rate compari-

son.

Figure 5.9: HybridGP-LRA with BL vs. GP-LRA with BL. QoS performance comparison.





Chapter 6

Fair RA scheme for

BIC-OFDMA systems

In this Chapter, a novel RA algorithm, aimed at optimizing the performance of the

user with the lowest GP value on the downlink of a BIC-OFDMA base station, is

proposed. In detail, after an overview on the main RA approaches usually adopted

in literature, the BIC-OFDMA system under analysis and the max-min RA problem

are introduced. The RA problem consists in particular of three subproblems, i.e., the

power allocation problem, the AMC problem and the subcarrier allocation problem,

which are analyzed and optimally solved in Sections 6.4-6.6. For the latter problem, an

efficient solution based on the Ant Colony Optimization framework is also provided.

Finally, Sect. 6.7 shows simulation results obtained over realistic wireless propagation

scenarios, which corroborate the effectiveness of the proposed RA algorithm.

6.1 Resource allocation in OFDMA systems

Radio resource management (RRM) is the set of functionalities whose aim is to provide

services according to the QoS negotiated for each application over the area covered

by the system and to optimize the system performance through the choice of the

best radio resource sharing among users. Scheduling, together with some other well

known functionalities such as power control, handover, admission control, congestion

and load control and link adaptation (LA), belongs to RRM.

A general definition of the radio resource that should be assigned is quite hard to

give, because it depends on the particular wireless system. However, a radio resource
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(RR) could be proposed as the signal format necessary to define how a certain amount

of data can be transmitted over the wireless medium. For instance, in a TDMA

system, an RR is identified by the time slot over which transmission is allowed, the

carrier frequency and the relevant bandwidth, the modulation and coding format, the

power level and the transmitting spatial dimension. In a FDMA system, instead of

the time slot, the RR depends on the portions of spectrum assigned to each user for

transmission.

In the last decade, the principles of multiuser downlink and MAC designs have

been changed. Instead of assigning a fixed amount of resources to each data flow,

channel-aware scheduling strategies [20] have been proposed to adaptively transmit

data and dynamically assign wireless resources based on CSI [88]. The key idea is

the multiuser diversity, that consists in taking advantage of the independent channel

variation across users choosing the ones with good channel conditions to transmit

packets [88], improving in this way network performance. For instance, multiuser

diversity is exploited by the concept of opportunistic scheduling [89], where some form

of priority is given to users with (temporarily) better channels. A major problem for

multiuser adaptation schemes is how to design practical algorithms that achieve the

multiuser diversity gain while supporting diverse QoS requirements under realistic

channel scenarios.

6.1.1 Margin and rate adaptive approaches

As anticipated in Sect. 1.2, OFDMA is not only preferred in many current standards,

but is also a strong candidate for next generation cellular systems thanks to its

flexibility to perform dynamic allocation of the available radio resources. Here, the

multiuser diversity is particularly exploited in the frequency domain where channels

for different users fade independently, so that, diversity gain arises from the fact that

in a system with many users, there is likely to be a user whose channel is near its

peak at any one time. Taking advantage of knowledge of the CSIT, the OFDMA

systems can employ the following adaptive resource allocation (RA) technique [88]:

AMC, adaptive power allocation, which have already been discussed in the previous

chapters, and dynamic subcarrier assignment, where the base station dynamically

assigns subcarriers according to CSI or/and QoS requirements.

In literature, there can be distinguished two main approaches to the RA problem.
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One is margin-adaptive which minimizes the total power consumption subject to

prescribed rate requirements for users. This is the approach developed for instance

in [90], [91], [92]. The other one is a rate-adaptive approach, where the aim is to

maximize the sum rate of all users, given a total transmit power constraint [93], [94].

In addition, proportional rate constraints can be imposed to guarantee proportional

fairness among users [95], [96].

6.1.2 The maximum fairness problem

The above mentioned approaches can however result unfair in the way resources are

assigned to users. In fact, different mobile terminals will experience different average

channel conditions, due, for example, to shadow fading and distance dependent path

loss that significantly affect the average received signal strength. In this case, different

terminals can experience different channel conditions for a long time, so that users

with worse channel conditions will receive less resources and obtain poor performance.

This situation is usually called starvation. A practical example can be a rate adaptive

approach in which resources have to be shared among two users, one very close to the

base station (BS) and the other, on the contrary, close to the cell border. This is a

typical case in which the former user, that is characterized by an higher average SNR

level thanks to its proximity to the BS, obtains almost all the transmission resources.

Thus, to achieve the maximum fairness among users, a max-min approach can be

adopted to provide similar performance to users [97], which means solving a max-

min optimization problem. In literature, the max-min problem has so far focused on

providing similar rates (or capacity) to all the users served by an OFDMA BS. In par-

ticular, this problem has been tackled in [98], where the subcarriers are dynamically

allocated to the users, and in [99], by optimizing the subcarriers and bits assigned

to each user. In [97] a multi-cell OFDMA scenario is considered, where this goal is

obtained by jointly optimizing coordinated BSs subcarrier and power allocation.

Here, differently to what has been done so far, the focus is on the maximum fairness

problem aimed at providing similar GP performance to each user on the downlink of

a BIC-OFDMA BS, by dynamically allocating subcarrier, power, modulation order

and coding rate.
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6.2 BIC-OFDMA system model

In this section, the BIC-OFDMA system that serves Q users in the setQ ∆
= {1, · · · , Q}

over N available subcarriers in the set Ds
∆
= {1, · · · , N} is described. The qth link

is is depicted in Fig. 6.1. Since the processing is similar to the one of the single

user BIC-OFDM system described in Sect. 2.2, only the main differences will be

highlighted, referring to Sect. 2.2 for the analogous parts. The Q packets, one per

Figure 6.1: BIC-OFDMA system model.

each user, coming from the upper layers are processed in two steps. In the former,

i.e., the packet processing, the generic packet belonging to user q, which is N
(q)
u =

N
(q)
h +N

(q)
p +N

(q)
CRC bits long, i.e., the sum of the lengths of the header, payload and

cyclic redundancy check, respectively, is the input of a FEC encoder with mother code

r0 and it is transmitted in a maximum of L ARQ PRs. At each PR1 ℓ, 1 ≤ ℓ ≤ L,

1Packets of different users may be at different stages of the retransmission mechanism. It means

that ℓ is actually ℓq , but, to avoid a cumbersome notation and keeping in mind this observation, we
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the output of this block is punctured according to the coding rate r
(ℓ)
q ∈ Dr

∆
=

{r0, · · · , rmax} assigned to the qth user, obtaining N
(ℓ,q)
c

∆
= N

(ℓ,q)
u /r

(ℓ)
q CBS that, in

turn, are randomly interleaved with a bit-level interleaver.

Let us denote the subcarrier allocation vector as a
(ℓ)
q

∆
= [a

(ℓ)
q,1, · · · , a

(ℓ)
q,N ]T ∈ {0, 1}N ,

where a
(ℓ)
q,n = 1 if subcarrier n is assigned to user q, 0 otherwise, and withm

(ℓ)
q ∈ Dm

∆
=

{2, · · · ,mmax} the number of bits that user q loads on its subcarriers. According to

the so-called orthogonality principle of the OFDMA paradigm, each subcarrier is

assigned to at most one user at time, so that it must hold

Q∑
q=1

a(ℓ)q,n ≤ 1, ∀n ∈ Ds. (6.1)

Thus, in the frame processing, the CBS are mapped into the (N
(ℓ,q)
c /m

(ℓ)
q )-sized

sequence {s(ℓ)q,i} made of unit-energy symbols, with s
(ℓ)
q,i ∈ 2m

(ℓ)
q -QAM. This sequence

is then allocated over the N
(ℓ)
q

∆
=
∑N
n=1 a

(ℓ)
q,n available subcarriers and transmitted

within N
(ℓ)
ofdma,q

∆
= N

(ℓ,q)
c /(m

(ℓ)
q N

(ℓ)
q ) OFDMA symbols as follows. For convenience,

let us first introduce the N -sized vector x
(ℓ)
q

∆
= [x

(ℓ)
q,1, · · · , x

(ℓ)
q,N ]T built in this way.

At the generic jth OFDMA symbol, the N
(ℓ)
q positions of x

(ℓ)
q , corresponding to

the subcarrier indexes n for which a
(ℓ)
q,n = 1, contain the sequence of QAM symbols

{s(ℓ)q,k}, with
(
(j − 1)N

(ℓ)
q + 1

)
≤ k ≤

(
jN

(ℓ)
q

)
, and the other positions are set to 0.

The overall symbol vector is then built as x(ℓ) ∆
=
∑Q
q=1 x

(ℓ)
q and allocated on the N

subcarriers along with a certain amount of power p(ℓ) ∆
= [p

(ℓ)
1 , · · · , p(ℓ)N ]T such that∑N

n=1 p
(ℓ)
n = P , where P is the total available power at each PR. The resulting vector

is processed by the IFFT and the CP insertion blocks. Finally, the obtained signal is

transmitted over a block fading channel.

The sample received on subcarrier n by the qth user results

z(ℓ)q,n = a(ℓ)q,n

√
p
(ℓ)
n h(ℓ)q,nx

(ℓ)
q,n + w(ℓ)

q,n, (6.2)

where h
(ℓ)
q,n is the complex-valued channel coefficient at the qth receiver on subcarrier

n and w
(ℓ)
q,n ∈ N (0, σ

(w)
ℓ,q,n

2
) represents the ambient noise for user q on subcarrier n.

Therefore, the diagonal post-processing SNRs matrix resultsΥ(ℓ)
q

∆
= diag

{
[γ

(ℓ)
q,1, · · · , γ

(ℓ)
q,N ]

}
,

where γ
(ℓ)
q,n = p

(ℓ)
n |h(ℓ)q,n|2/σ(w)

ℓ,q,n

2
is the SNR experienced by user q over subcarrier n at

round ℓ.

will simply write ℓ in the following.
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6.3 Max-min goodput problem

6.3.1 Problem formulation

In this section the RA problem, based on the fairness criterion described in Sect. 6.1.2,

is introduced. The problem aims at deriving a proper setting of transmission param-

eters (TPs) τ
(ℓ)
q

∆
= {r(ℓ)q ,m

(ℓ)
q ,a

(ℓ)
q ,p(ℓ)}, ∀q ∈ Q at each scheduling period, which

corresponds to the generic transmission attempt ℓ of user q, as shown by the SW

mechanism in Fig. 6.2. In particular, with reference to the inter-round optimization

Figure 6.2: Multi-user SW.

criterion in Sect. 3.2.3, we consider as figure of merit the limiting behavior of the EGP

(3.17) for large retry limit, i.e., L→∞. In this case, it can be easily shown that, for

each user, the optimization of (3.17) is equivalent to optimize the second term at the

denominator of (3.17). Thus, solving the series for L→∞ and exploiting the κESM

methodology to evaluate the PER for the generic user q as described in Sect. 2.3.1,

i.e. PER
r
(ℓ)
q
(τ

(ℓ)
q |H(ℓ)

q ) = Ψ
r
(ℓ)
q
(γ̂q(τ

(ℓ)
q )), with H

(ℓ)
q

∆
= diag

{
[h

(ℓ)
q,1, · · · , h

(ℓ)
q,N ]

}
, the

objective function, in (bits/OFDMA symbol), results

ζ(ℓ)q (τ (ℓ)
q ) = ζ(0)q r(ℓ)q m(ℓ)

q

(
N∑
n=1

a(ℓ)q,n

)[
1−Ψ

r
(ℓ)
q

(
γ̂q(τ

(ℓ)
q )
)]
, (6.3)

where ζ
(0)
q

∆
= N

(q)
p /N

(q)
u .

Actually, the ESNR described in Sect. 2.3.1 is evaluated for a single user OFDM

system. Though, since the OFDMA paradigm allows only one user at a time to
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transmit over each subcarrier, the evaluation of the ESNR for each user is straight-

forward. In fact, given the TP setting {τ (ℓ)
q }q∈Q, it is as if there were Q independent

and non-overlapped OFDM systems, where the generic qth system is characterized

by
∑N
n=1 aq,n subcarriers, and hence the ESNR γ̂

(ℓ)
q (τ

(ℓ)
q ) of each user can be simply

evaluated from (2.19) as

γ̂(ℓ)q (τ (ℓ)
q )

∆
= − log

 1

m
(ℓ)
q

N∑
i=1

a
(ℓ)
q,i

N∑
n=1

a(ℓ)q,n Ωq,n(m
(ℓ)
q , p(ℓ)n )

 , ∀q ∈ Q, (6.4)

where

Ωn(m
(ℓ)
q , p(ℓ)n )

∆
=

√
2m

(ℓ)
q,n/2∑

µ=1

ψmn(µ)

2m
(ℓ)
q −1

· e−p
(ℓ)
n γ(ℓ)

q,nβ
(ℓ)
q,n , (6.5)

is as in (2.20), with β
(ℓ)
q,n

∆
=
(
µ · d(min)

mn /2
)2
/p

(ℓ)
n , here expressed as a function of m

(ℓ)
q

and p
(ℓ)
n .

Hence, dropping w.l.g. the dependence on the PR index ℓ, we can now introduce the

RA problem that achieves the maximum fairness among the users by maximizing the

minimum user EGP, tagged as max-min goodput optimization problem (MMG-OP),

as follows.

MMG-OP : max
τ∈Dτ

f(τ ) = min
q∈Q

ζq(τ q)

s.t.
∑N
n=1 pn = P (6.6.a)∑
q∈Q aq,n ≤ 1 ∀n, (6.6.b)

Ψrq (γ̂q(τ q)) ≤ Ψq ∀q, (6.6.c)

τ q ∈ Dτ ∀q, (6.6.d)

(6.6)

where τ
∆
= {τ 1, · · · , τQ}, Dτ

∆
= Dp×Da×Dm×Dr is the set of feasible transmission

modes, with Dp
∆
= {pn|0 ≤ pn ≤ P, ∀n}, Da

∆
= {aq,n|aq,n ∈ {0, 1}, ∀q, n}, constraint

(6.6.b) is the orthogonality constraint (6.1) and (6.6.c) is a constraint on the QoS,

implying that the PER has to be kept below a desired limit Ψq, ∀q. It is worth

noting that this is a constrained nonlinear problem with both integer and continuous

variables. In addition, f(τ ) is not concave w.r.t. τ , meaning that multiple local
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optima can exist. Finding the global optimum of such a function results therefore

prohibitive. In the next section, the proposed RA algorithm to solve (6.6) will be

highlighted.

6.3.2 Iterative algorithm for the MMG problem

The MMG-OP (6.6) is solved resorting to a coordinate ascent method (CAM) [74].

This method allows to reduce the complexity of problem (6.6), iteratively optimiz-

ing the objective function f w.r.t. one variable (i.e., the power allocation or the

subcarrier allocation or the pair modulation and coding rate) keeping the others

fixed in the meanwhile. Denoting with a
∆
= [aT1 , · · · ,aTQ]T, m

∆
= [m1, · · · ,mQ]

T and

r
∆
= [r1, · · · , rQ]T the overall subcarrier, bit and coding rate vectors, respectively, and

with τ−y the TP setting without transmission parameter y, at the generic ith step

of the algorithm, three subproblems are solved, returning respectively

i) the power allocation p(i+1), given τ
(i)
−p

∆
= {a(i),m(i), r(i)}, tagged as PA-OP;

ii) the subcarrier allocation a(i+1) given τ
(i)
−a

∆
= {p(i+1),m(i), r(i)}, named SA-OP;

iii) the pair (m(i+1), r(i+1)) given τ
(i)
−(m,r)

∆
= {p(i+1),a(i+1), r(i)}, tagged as AMC-

OP.

The algorithm is described in Tab. 6.1, where ICAM is the maximum number of

iterations, ϵ is a small constant, identifying the accuracy interval of the solution, and

τ ∗ is the solution to the MMG-OP (6.6).

In the following sections, each of these three subproblems is optimally solved so that,

at each step, a nondecreasing value of the objective function is produced. For this

reason, the algorithm ends when it is reaches either the maximum number of iterations

ICAM or a local optimum, within the accuracy interval ϵ. In detail, PA-OP is solved

in Sect. 6.4, AMC-OP is solved in Sect. 6.5, whereas SA-OP is solved in Sect. 6.6.

The algorithm also requires a good initialization point τ (0), in order to enhance the

possibility to reach the global optimum or at least a better local optimum. This issue

motivates the search of an effective τ (0) that has been carried out and described in

Sec. 6.7.

Remark . The solution to the OP (6.6) can be an empty set since there may not be

a TP setting that simultaneously satisfies all the constraints. In this case, it means
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Coordinate ascent method for the MMG-OP

1. Initialize: i = 0, τ = τ (0), ϵ, ICAM

2. Repeat

3. (PA-OP): Evaluate p(i+1) = argmax
p∈Dp

f(p|τ (i)
−p)

4. (SA-OP): Evaluate a(i+1) = argmax
a∈Da

f(a|τ (i)
−a)

5. (AMC-OP): Evaluate (m(i+1), r(i+1)) = argmax
(m,r)∈Dm×Dr

f(m, r|τ (i)
−(m,r))

6. i = i+ 1

7. Until ∥f(τ (i+1))− f(τ (i))∥ < ϵ or i = ICAM

8. Return: τ ∗ = τ (i)

Table 6.1: Pseudo-code of the coordinate ascent method for the MMG-OP

that the system is overloaded and the problem is relaxed dropping the packets not

satisfying all the constraints.

6.4 Power allocation optimization problem

In this section, the algorithm that provides the optimal solution p∗ = [p∗1, · · · , p∗N ]T

to the PA-OP is derived resorting to the Lagrangian dual decomposition method. Let

us start by explicitly describing the PA-OP previously introduced.

PA-OP. Given τ−p, the MMG-OP (6.6) reduces to the following power allocation

problem, or PA-OP for short:

max
p∈Dp

min
q∈Q

ζq(p)

s.t.
N∑
n=1

pn ≤ P ,

γ̂q(p) ≥ γq ∀q,

(6.7)

where γq
∆
= Ψ−1

rq

(
Ψq
)
. This optimization problem is solved as stated in the following
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proposition.

Theorem 6.1 The PA-OP (6.7) is a convex optimization problem and the solution

can be found solving this equivalent convex optimization problem, tagged as EPA-OP.

EPA-OP : min
p∈Dp,t

−t

s.t.
N∑
n=1

pn − P ≤ 0, (6.8.a)

t− ζq(p) ≤ 0 ∀q, (6.8.b)

γq − γ̂q(p) ≤ 0 ∀q. (6.8.c)

(6.8)

Proof Given τ−p, for the generic user u the EGP can be rewritten as follows:

ζq(p) = c1,q

[
1−Ψrq

(
− log

(
1

c2,q

N∑
n=1

aq,nΩq,n(pn)

))]
, (6.9)

where c1,u
∆
= ζ

(0)
q rqmq

N∑
n=1

aq,n and c2,q
∆
= mq

N∑
n=1

aq,n are constant terms. Be, for

the ease if notation, g(p)
∆
= 1

c2,q

N∑
n=1

aq,nΩq,n(pn), and h(p)
∆
= − log ◦g(p). For the

composition rule of convexity [69], since g(p) is convex according to (2.20) and − log

is convex and nonincreasing, then h is convex. For the same rule, since Ψrq is convex

and nonincreasing, we get that Φ = Ψ◦h is convex and thus ζ(p) is a concave function

of the power. Since the constraints in (6.7) define a convex set and the minimum of

a concave function is still concave, the maximization of this function over the set of

feasible powers is a convex optimization problem. Finally, as shown e.g. in [97], the

max-min problem (6.7) can be equivalently rearranged in its epigraph form (6.8). �

The optimal solution p∗ can be found resorting to the Lagrangian duality theory

for convex optimization problems [69], briefly recalled in Appendix A.1.1, by solving

the dual optimization problem associated to the so-called primal problem (6.8). In

fact, since the objective function and all the constraints in (6.8) are differentiable, the

KKT conditions hold and thus strong duality holds too, i.e., the difference between

the optimal primal and dual values is zero.

Thus, in order to introduce the dual OP, let us first associate the Lagrange multiplier

θ to constraint (6.8.a) and the multipliers ωq and ϕq, ∀q ∈ Q, to constraint (6.8.b) and
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(6.8.c), respectively, whose feasible sets are Dθ
∆
= {θ|θ ≥ 0, }, Dω

∆
= {ωq|∀q ωq ≥ 0},

Dϕ
∆
= {ϕq|∀q ϕq ≥ 0}. Collecting these values in the vector Θ, the dual function is

defined as

inf
p∈Dp,t


∑
q∈Q

ωq − 1

 t+ Lp(Θ,p)

, (6.10)

where Lp(Θ,p)
∆
= θf1(p)−

∑
q∈Q

ωqζq(p)+
∑
q∈Q

ϕuf2,q(p) and f1(p) and f2,q(p) denote,

for the sake of readability, the left-hand side of constraints (6.8.a) and (6.8.c), respec-

tively. Since the infimum of a linear function is −∞, unless it is identically zero, it

must hold
∑
q∈Q ωq − 1 = 0, so that the dual function results

gp(Θ) = inf
p∈Dp

Lp(Θ,p), (6.11)

with the set of feasible ωq that modifies as follows: Dω = {ωq|ωq ≥ 0, ∀q,
∑
q∈Q ωq =

1}.
Accordingly, the optimal dual valueΘ∗ is found solving the dual optimization problem

stated as follows
max gp(Θ)

s.t. Θ ∈ DΘ

. (6.12)

Upon referring to

p(Θ)
∆
= arg min

p∈Dp

Lp(Θ,p) (6.13)

as the optimal solution to (6.11) for a given multiplier Θ, the primal optimal solution

to the EPA-OP (6.8) is thus found as p∗ = p(Θ∗), thanks to the strong duality of

the problem at hand.

Subgradient Method for the Dual OP (6.12).

The dual OP (6.12) can be solved, as usually done in cases [73], [70], resorting

to the subgradient-based update of the dual variable Θ, briefly recalled in Ap-

pendix A.1.2 and referring to [74] for further details. This iterative method con-

sists in maximizing gp(Θ) by updating, at each step i + 1, all the components of

the dual variable Θ(i) produced at the previous step i along the search direction

defined by the subgradient of gp(Θ) at Θ(i). Looking at (6.11) and at the def-

inition of Lp, the latter results ∇Θgp(Θ
(i)) = [f1(p),−ζ1(p), · · · ,−ζQ(p), f2,1(p),

· · · , f2,Q(p)]|Tp=p(Θ(i)), with p(Θ(i)) evaluated via (6.13). Then, the dual variable
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update is Θ(i+1) =
[
Θ(i) + δΘ∇Θgp(Θ

(i))
]
DΘ

, where [·]DΘ denotes the projection

operation over the set of feasible multipliers values DΘ
∆
= Dθ×Dϕ×Dω and δΘ is the

step size of the subgradient method, chosen sufficiently small to allow the algorithm

to converge. The dual method based on subgradient update is summarized in Table

6.2. The projection operation at Line 4 [x]DΘ simply reduces to xi = [xi]
+, ∀ xi

EPA-OP algorithm

1. Initialize: i = 0, Θ = Θ(0), δΘ, ϵ, imax

2. Repeat

3. p(Θ(i)) = argmin
p∈Dp

Lp(p,Θ(i))

4. Θ(i+1) =
[
Θ(i) + δΘ∇Θgp(Θ

(i))
]
DΘ

5. i = i+ 1

6. Until
∥∥p(Θ(i+1))− p(Θ(i))

∥∥ ≤ ϵ or i = imax

7. Return p∗ = p(Θ(i))

Table 6.2: Pseudo-code of EPA-OP algorithm

projected over the sets Dθ or Dϕ, whereas it is equivalent to xi = [xi + ϵω]
+, where

ϵω is a scalar such that
∑
i[xi + ϵω]

+ = 1, ∀ xi projected over the set Dω. The

scalar ϵω is found solving the last equality with the bisection method. The solution

to the convex optimization problem at Line 3 can be carried out via conventional

optimization algorithms like the steepest descent method or the ellipsoid method [69].

6.5 AMC Algorithm

The AMC-OP that returns the optimal pair of bits and coding rates vectors (m∗, r∗),

with m∗ = [m∗
1, · · · ,m∗

Q]
T and r∗ = [r∗1 , · · · , r∗Q]T, can be stated as follows.

AMC-OP. Given τ−(m,r), the MMG-OP (6.6) reduces to the following adaptive
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modulation and coding problem, or AMC-OP for short:

max
(mq,rq)∈Dm×Dr, ∀q

min
q∈Q

ζq(mq, rq)

s.t. Ψrq (γ̂q(mq)) ≤ Ψq ∀q. (6.14)

This problem can be solved through a simple iterative method due to the discrete

nature of the sets Dm and Dr. In fact, it is sufficient to select the user u with the

lowest goodput value and perform exhaustive search over the set Dm×Dr to check if

there is a pair (m, r) that increases the goodput of u satisfying the QoS constraint.

Then, a new control on the goodput values is done to see if there is a new user with the

lowest goodput value. In this case, the same search is performed and the algorithm

stops when the user with the lowest goodput cannot improve its performance anymore.

This algorithm is summarized in Tab. 6.3, where D(l) denotes the lth element of the

set D.

AMC-OP algorithm

1. Initialize: k = 1, u(0) = 0 and (m, r) = (m0, r0)

2. Evaluate ζq(mq, rq), ∀q
3. Set u(k) = argminq{ζq}q∈Q

4. If u(k) ̸= u(k−1)

5. For i = 1 : |Dm|
6. For j = 1 : |Dr|
7. If ζu(k)(Dm(i),Dr(j)) > ζu(k)(mu(k) , ru(k))

and ΨDr(j)(γ̂u(k)(Dm(i))) ≤ Ψu(k)

8. Set mu(k) = Dm(i), ru(k) = Dr(j)
9. Set k = k + 1 and Go to Step 2

10. End If

11. End For

12. End For

13. End If

14. Return (m∗, r∗) = (m, r)

Table 6.3: Pseudo-code of AMC-OP algorithm
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6.6 Subcarrier allocation problem

The subcarrier allocation problem SA-OP introduced in Sect. 6.3.2 can be formalized

as follows.

SA-OP. Given τ−a, the SA problem the maximizes the performance of the user with

the minimum EGP can be formalized as:

max
aq∈Da, ∀q

min
q∈Q

ζq(aq)

s.t.
∑
q∈Q

aq,n ≤ 1 ∀n, (6.15.a)

γ̂q(aq) ≥ γq ∀q. (6.15.b)

(6.15)

This optimization problem is a NP-hard problem, in particular it is a nonlinear integer

programming. In order to solve this problem, first a relaxation of the subcarrier

allocation variable is carried out and it is demonstrated that such a relaxed version is

a convex optimization problem. Then, an algorithm to evaluate its optimal solution

will be derived. In fact, the relaxed optimization problem does not converge to

a solution in the discrete domain Da, nevertheless it represents an upper bound

of the original problem, since we are optimizing over a lager continuous set, i.e.,

a ∈ D(c)
a = {aq,n|aq,n ∈ [0, 1], ∀q, n}, that contains the original set Da. Capitalizing

on this observation, the discrete solution can be found resorting to the branch and

bound approach [100], where a sequence of upper and lower bounds of the original

problem are generated until their difference is within the required accuracy interval.

Thus, in the remainder of this section it is first described the optimal solution solv-

ing the relaxed SA problem and refining the obtained solution with a branch and

bound method. Then, since the complexity of this approach can be high, a practical

algorithm, based on the Ant Colony Optimization framework, is also proposed.

6.6.1 Branch and bound based SA-OP

In this section, the relaxed version of the SA-OP (6.15) is first analyzed. Then, the

optimal solution a∗q = [a∗q,1, · · · , a∗q,N ]T, ∀q ∈ Q, is found via branch and bound,

mapping the continuous solution back to the original discrete domain.
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Relaxed SA-OP

Let us start by rewriting ζq(aq), with aq ∈ D(c)
a , ∀q ∈ Q, pointing out the dependence

on aq

ζq(aq) = ςq

(
N∑
n=1

aq,n

)[
1−

⌢

ψq

(∑N
n=1 aq,nΩq,n∑N

i=1 aq,i

)]
, (6.16)

where ςq
∆
= ζ

(0)
q rqmq, Ωq,n

∆
= Ωq,n/mq, ∀q, n, are constant terms w.r.t. to aq, and

⌢

ψq
∆
= Ψrq ◦ − log.

It is worth noting that the presence of vector aq in (6.16) is twofold, i.e., both as

a simple unweighed sum and as a weighted sum, by Ωq,n, of its components. This

observation paves the way to the main result of this section, outlined in the following

proposition.

Theorem 6.2 Defining the slack variables sq > 0, ∀q, it holds

ζ̃q(sq,aq)
∆
= ςqsq

[
1−

⌢

ψq

(∑N
n=1 aq,nΩq,n

sq

)]
≤ ζq(aq), (6.17)

whenever

sq ≤
N∑
n=1

aq,n, ∀q (6.18)

and these properties follows:

P1) relationship (6.17) under constraint (6.18) denotes a goodput lower bound;

P2) strict equality holds in (6.17) when sq =
N∑
n=1

aq,n;

P3) ζ̃q(sq,aq) is jointly concave w.r.t. (sq,aq).

Proof For a given aq, ζ̃q(sq) is a monotone nondecreasing function of sq. In fact,

with reference to (6.17), be, for the ease of notation and neglecting w.l.g. the constant

terms, g(sq)
∆
= − log(1/sq), and note that, since sq > 0, it holds g′(sq) > 0. Being

⌢

ψq
∆
= Ψrq ◦ g, with 0 ≤

⌢

ψq ≤ 1, and recalling that Ψ′
rq < 0, we have that

⌢

ψ′
q =

Ψ′
rq (g(sq)) g

′(sq) < 0. Hence ζ̃q(sq) = ςqsq[1 −
⌢

ψq(sq)] is a monotone nondecreasing

function of sq since ζ̃ ′q(sq) = (1−
⌢

ψq(sq))− sq
⌢

ψ′
q ≥ 0. Thus, relying on this property

and on constraint (6.18), properties P1 and P2 follow.
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In order to prove property P3, let us note that ψq(aq)
∆
= 1 −

⌢

ψq

(∑N
n=1 Ωq,naq,n

)
is

concave in aq. In fact, defining the convex function h(aq)
∆
= − log(

∑N
n=1 aq,nΩq,n),

according to the properties of Ψrq and to the rule of composition of convex function

[69], we have that
⌢

ψq (aq) = Ψrq ◦ h is a convex function. Therefore it easily follows

that both ψq(aq) and ζ̃q(aq) are concave functions of aq. Let us also note that

ζ̃q(sq,aq) = ςqsqψq

(
aq
sq

)
. (6.19)

Since sq > 0, then ζ̃q(sq,aq) corresponds to the perspective of the function ψq. Since

the perspective of a concave function is still concave [69], this proves P3. �

Thus, due to property P3, the relaxed subcarrier allocation problem can be optimally

solved maximizing the minimum of (6.19), and, thanks to properties P1-P2, this

solution coincides with the one that maximizes the minimum of (6.16). This problem

can be summarized as follows, tagged as relaxed SA-OP (RSA-OP).

RSA-OP : max
a∈D(c)

a , s

min
q∈Q

ζ̃q(aq, sq)

s.t.
∑
q∈Q

aq,n ≤ 1 ∀n, (6.20.a)

N∑
n=1

Ω̄q,naq,n ≤ e−γqsq ∀q, (6.20.b)

N∑
n=1

aq,n ≥ sq ∀q, (6.20.c)

(6.20)

where s
∆
= [s1, · · · , sQ]T and constraint (6.20.b) is the QoS constraint (6.6.c) expressed

as a function of aq and sq. The optimal solution to problem (6.20) can be found via

the coordinate ascent method. In fact, since the objective function is jointly concave

w.r.t. to (aq, sq), the iterations between the two concave subproblems lead to the

global optimum of the function. The algorithm is summarized in Table 6.4.

The solution to RSA-OP.a is trivial, in fact, as previously demonstrated, since ζ̃q(sq)

is monotonically increasing with sq, the optimal solution is s
(j+1)
q =

∑N
n=1 a

(j)
q,n. Thus,

the complexity of the RSA-OP (6.20) only lies in the optimization problem RSA-OP.b.

Here, it is possible to exploit the relation, as in the PA case, between the primal and

the dual function to find its solution. The algorithm is summarized in Tab. 6.5, and,

since it is analogous to the one of the PA case, it is briefly described in the following.
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Coordinate ascent method for the RSA-OP

1. Initialize: set j = 0, aq = a
(0)
q , ∀u, ϵ, J

2. Repeat

3. (RSA-OP.a): Compute s
(j+1)
q = maxsq ζ̃q(sq,a

(j)
q ) s.t. (6.20.b)-(6.20.c)

4. (RSA-OP.b): Compute a
(j+1)
q = maxaq ζ̃u(aq, s

(j+1)
q ) s.t. (6.20.a)-(6.20.c)

5. Until ||s(j+1) − s(j)|| < ϵ or j = J

6. Output: a∗q = a
(j)
q , ∀q.

Table 6.4: Pseudo-code of RSA-OP algorithm

LDD Method for RSA-OP.b

Problem RSA-OP.b can be written as

min
{aq}q∈Q,v

−v

s.t.
∑
q∈Q

aq,n − 1 ≤ 0 ∀n, (6.21.a)

sq −
N∑
n=1

aq,n ≤ 0 ∀q, (6.21.b)

N∑
n=1
Mq,naq,n − e−γqsq ≤ 0 ∀q, (6.21.c)

v − ζ̃q(aq) ≤ 0 ∀q, (6.21.d)

(6.21)

Defining h1,q(aq,n)
∆
= (aq,n − 1/Q), and denoting with h2,q(aq), and h3,q(aq) the left-

hand side of constraints (6.21.b)-(6.21.c), respectively, the dual function results

inf
a∈D(c)

a ,v

∑
q∈Q

µq − 1

 v +
∑
q∈Q

L(a)
q (a,Ξ) (6.22)

with L(a)
q (aq,Ξ)

∆
=

N∑
n=1

ψnh1,q(aq,n) + νqh2,q(aq) + ϑqh3,q(aq) − µq ζ̃q(aq) and Ξ the

vector collection all the Lagrangians values. According to the considerations done for

the power allocation,
∑
q∈Q µq − 1 = 0 otherwise (6.22) is unbounded below. Thus,

the dual function can be written as

gs(Ξ) = inf
a∈D(c)

a

∑
q∈Q
L(a)
q (aq,Ξ) (6.23)
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RSA-OP.b algorithm

1. Initialize: i = 0, Ξ = Ξ(0), ϵsa, imax

2. Repeat

3. aq(Ξ
(i)) = argmin

aq∈Da

L(a)
q (aq,Ξ

(i)), ∀q

4. Ξ(i+1) =
[
Ξ(i) + δΞ∇Ξgs(Ξ

(i))
]
DΞ

5. i = i+ 1

6. Until i = imax or
∥∥a(Ξ(i+1))− a(Ξ(i))

∥∥ ≤ ϵsa
7. Return a∗ = a(Ξ(i))

Table 6.5: Pseudo-code of RSA-OP.b algorithm

whereΞ ∈ DΞ = Dψ×Dϑ×Dν×Dµ, beingDψ
∆
= {ψn|ψn ≥ 0 ∀n}, Dν

∆
= {νq|νq ≥ 0 ∀q},

Dϑ
∆
= {ϑq|ϑq ≥ 0 ∀q} and Dµ

∆
=

{
µq|µq ≥ 0 ∀q and

∑
q∈Q

µq = 1

}
. The solution a∗ to

(6.21) is found first in the dual domain solving the dual OP, i.e., Ξ∗ = argmax
Ξ∈DΞ

gs(Ξ),

and then evaluating a∗ = a(Ξ∗), where a(Ξ) = argmin
a∈D(c)

a

∑
q L

(a)
q (a,Ξ). The

maximization of the dual function is obtained via the subgradient update algorithm

and it is reported in Tab. 6.5, where, in the projected subgradient update of the

Lagrange multipliers at Line 4, the projection operator [·]DΞ is such that xi = [xi]
+,

∀xi projected over Dψ, Dϑ and Dν , whereas it is equivalent to
∑
i[xi + ϵµ]

+ = 1,

∀xi projected over Dµ, with ϵµ evaluated via bisection method. The parameter δΞ

is a sufficiently small value to ensure the convergence of the algorithm. Still at line

4, ∇Ξgs(Ξ
(i)) denotes at subgradient of gs at Ξ = Ξ(i). Finally, at line 3, the

optimization problem can be solved resorting to conventional optimization algorithms

like, for instance, the steepest descent method or the ellipsoid methods [69].

Branch ad bound refinement step

In order to find a feasible solution to the SA-OP (6.15) from the relaxed solution of the

RSA-OP (6.20), a branch and bound (B&B) algorithm is now introduced. The B&B

is an iterative algorithm that builds a tree whose levels are composed by a certain
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number of nodes. At each node, an upper bound, ζub, and a lower bound, ζlb, of the

optimal value ζ∗(a∗) of the original SA-OP (6.15) are evaluated and the algorithm

ends when, at a certain node, the difference between these two values is within the

required accuracy interval. In detail, each node corresponds to a subset A ⊂ D(c)
a ,

where some variable values are fixed to 0 or 1 and the others assume continuous

values in [0, 1]. To show how the B&B algorithm works, some useful sets must now

be defined. Let denote with Bk the set collecting the sets associated to each node

of the graph at step k. Be Ik,A the set of the pairs of indexes (q, n) identifying the

subcarrier indicators aq,n that have already been fixed to 0 or 1 in the set A of step k.

The algorithm is initialized with B0 = {D(c)
a } and I0,B0 = {∅}, i.e., at the beginning

we have only one node where all the subcarriers indexes are variable and can assume

continuous values in D(c)
a . Then, the algorithm starts and, at each step k, consists of

three phases.

i) In the first, the branching phase, the algorithm chooses a set A ∈ Bk associated

to a node and generates two child nodes, whose relevant sets A1 and A2 are built as

follows. A variable aq,n ∈ A such that (q, n) ̸∈ Ik,A is picked and the two child nodes

sets are built as A1 = A∩{aq,n = 1, aν,n = 1 ∀ν ̸= q} and A2 = A∩{aq,n = 0}, with
Ik,A1 = Ik,A1 ∪ {(ν, n)}

Q
ν=1 and Ik,A2 = Ik,A2 ∪ {(q, n)}. The set Bk+1 is obtained

removing from Bk the set A and adding {A1,A2}.
ii) The bounding phase follows, where the upper and lower bounds at both the child

nodes are evaluated and the best bounds found so far are computed as Uk+1 =

min{Uk, ζub(A1), ζub(A2)}, Lk+1 = min{Lk, ζlb(A1), ζlb(A2)}, where ζub(A) and ζlb(A)
denotes the upper bound and a lower bound, respectively, on the solution of the

original optimization problem (6.15) when a is constrained to assume values in A.
Soon, there will be given details on how to evaluate these bounds.

iii) At last, in the pruning phase, all the nodes in Bk+1, whose upper bound is lower

than the best known lower bound Lk+1, are pruned, that is, are removed from B.
Finally, if Uk+1 − Lk+1 < ϵ the algorithm stops, otherwise it starts again from the

branching phase.

The B&B algorithm is summarized as follows.

1) Initialize k = 0, B(0) = {D(c)
a } and evaluate U0 = ζub(D(c)

a ) and L0 = ζlb(D(c)
a );

2) If Uk − Lk < ϵ stop, otherwise go to Step 3;

3) Branching Phase:
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a) be A ∈ Bk the set with the lowest associated upper bound,

b) pick aq,n ∈ A such that (q, n) ̸∈ Ik,A,
c) generate the child nodes A1 and A2 and update Ik,A1 and Ik,A2 ,

d) update Bk+1 = Bk\{A} ∪ {A1,A2};

4) Bounding Phase:

a) evaluate ζub(A1), ζub(A2), ζlb(A1) and ζlb(A2)

b) set Uk+1 = min{Uk, ζub(A1), ζub(A2)} and Lk+1 = min{Lk, ζlb(A1), ζlb(A2)};

5) Pruning Phase:

∀A ∈ Bk+1 such that ζub(A) ≤ Lk+1, update Bk+1 = Bk+1\{A};

6) Set k = k + 1 and go to Step 2.

Some remarks are now in order.

• Thanks to the orthogonality constraint, whenever we generate the child node

with aq,n = 1, we can already set aν,n = 0, ∀ν ̸= q, since it is the only way to

satisfy condition (6.15.a).

• The upper bound ζub(A) is obtained solving the RSA-OP (6.20), with a ∈ A.
That is, we solve the relaxed SA problem with, possibly, some variable fixed

to 0 or 1. In practice, when the two child nodes are generated, we obtain two

subproblems, in the sense that they are the same optimization problem tackled

at the parent node but with some variables fixed.

• The lower bound ζlb(A) can be obtained rounding each element of the solution

of the upper bound problem to the nearest integer [100].

• At Step 3.b of the B&B algorithm, the variable aq,n ∈ A chosen is the most

ambivalent [100]. In fact, the solution ζub(A) produce, neglecting the variables

whose value is already fixed to 0 or 1, variables with values in [0, 1]. Among

these, since we are interested to find a discrete solution, intuitively the most

critic are those whose value is close to 1/2. Thus, in order to dispel this doubt,

the most ambivalent is chosen, i.e., the one for which its value is the closest one

to 1/2.

• The solution returned corresponds to the one giving the lower bound Lk+1 such

that Lk+1 ≤ ζ∗ ≤ Uk+1, with Uk+1 − Lk+1 ≤ ϵ.
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Figure 6.3: Branch and bound toy example.

Figure 6.3 depicts a toy example representing both the whole tree produced by

an exhaustive search and the path built by the B&B algorithm, for Q = 2 users

and N = 2 subcarriers. Suppose that the optimal solution is identified by the SA

indexes connecting the black nodes. The path produced by the B&B algorithm is

marked with the tick dashed line, and it is generated as follows. At step k = 0,

we have B0 = D(c)
a and I0,B0 = {∅}. At the first step, the variable a1,2 is picked

selecting (1, 2) /∈ I0,B0 , so that two child nodes A(1)
1 and A(1)

2 are produced, with

index sets I
1,A(1)

1
= {(1, 2), (2, 2)} and I

1,A(1)
2

= {(1, 2)}, respectively, and the set

B1 = {A(1)
1 ,A(1)

2 } is built. After evaluating the upper and lower bounds on the

EGP at each node, at step k = 2 the set A(1)
2 is picked since characterized by the

lowest upper bound. Accordingly, the two child nodes A(2)
1 and A(2)

2 , with index sets

I
1,A(2)

1
= {(1, 2), (1, 1)} and I

1,A(2)
2

= {(1, 2), (1, 1), (2, 1)}, are produced selecting

(1, 1) /∈ I
1,A(1)

2
and the set B2 = {A(1)

1 ,A(2)
1 ,A(2)

2 } is built. Following the same line of

reasoning, at step k = 3 the set A(2)
2 is picked from B2, the child nodes A(3)

1 and A(3)
2

are generated selecting the variable a2,2 as well as the index sets I
1,A(3)

1
= I

1,A(3)
2

=

{(1, 2), (1, 1), (2, 1), (2, 2)}. Here, the algorithm stops returning the optimal SA.
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6.6.2 ACO based SA-OP

Rationale of the ACO framework

The ant colony optimization (ACO) is meta-heuristic framework that offers a valid set

of algorithms to solve NP-hard combinatorial optimization problems [101]. It belongs

to the swarm intelligence algorithms branch [102], which constitutes a relative new

approach to problem solving taking inspiration from the social behaviors of insects

and of other animals. The ACO framework, in particular, is inspired by the ants

foraging behavior and relies on a reinforcement learning mechanism. The ants, in

fact, deposit a substance called pheromone on the ground in order to mark some

favorable path. Other ants perceive the presence of pheromone and tend to follow

paths where its concentration is higher. Through this mechanism, ants are able to

transport food to their nest in a remarkably effective way.

Deneubourg et al. [103] thoroughly investigated this behavior in an experiment known

as the double bridge experiment. In this experiment, the nest of a colony of Argentine

ants is connected to a food source by two bridges of equal lengths. At the beginning,

ants start to explore the surroundings of the nest and eventually reach the food

source. Along their path between food source and nest, ants deposit pheromone.

Initially, each ant randomly chooses one of the two bridges. However, due to random

fluctuations, after some time one of the two bridges presents a higher concentration

of pheromone than the other and, therefore, attracts more ants. This brings a further

amount of pheromone on that bridge making it more attractive with the result that

after some time the whole colony converges toward the use of the same bridge. Goss

et al. [104] considered a variant of the double bridge experiment, in which one bridge

is significantly longer than the other. In this case, the stochastic fluctuations in the

initial choice of a bridge are much reduced and a second mechanism plays a key role:

ants randomly choosing the short bridge are the first to reach the nest. The short

bridge receives, therefore, pheromone earlier than the long one and this fact increases

the probability that further ants select it rather than the long one.

The model proposed by Deneubourg and co-workers for explaining the foraging be-

havior of ants was the main source of inspiration for the development of the ACO

framework [101]. In ACO, the optimization problem is coded over a graph where

a number of artificial ants build solutions to the problem at hand and exchange

information on the quality of these solutions via a communication scheme that is
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similar to the above mentioned foraging behavior of real ants. The ACO framework

is summarized in the following.

Ant Colony Optimization Algorithm Survey

Ant Colony Optimization (ACO) framework [101] efficiently solves a combinatorial

optimization problem (COP), described by the model COP
∆
= {S,Ω, f}, where:

1. S denotes the discrete search space over V variables xi that assume values in

Vi
∆
= {v(1)i , · · · , v(|Vi|)

i }, with i = 1, · · · , V ;

2. Ω refers to the set of constraints among the V decision variables;

3. f : S → R+ is the objective function.

A feasible solution t ∈ S to COP is a complete assignment xi = v
(j)
i of values to each

variable satisfying all the constraints in Ω.

ACO find a solution describing the COP on a graph G(V,E), made of V vertices

and E edges. A feasible solution to COP is a complete path on the graph: i) all the

vertices are connected; ii) each vertex is visited only once.

The solution is found through Nit iterations, each composed of Na agents indepen-

dently exploring the graph. Each agent a: i) builds a feasible solution starting from

t(a) = {∅} and randomly selects the initial vertex; ii) selects with probability πi,j the

edge ei,j ∈ Ne, (being Ne the set of edges connecting to the vertices not visited yet),

moving from vertex i to vertex j; iii) updates t(a) = t(a) ← {ei,j} and Ne ← Ne\ei,j ,
and continues until a complete path is obtained. The probability πi,j depends on two

quantities: the local desirability ηi,j and the pheromone φi,j . The former is a quantity

depending on the particular edge, whereas the latter depends on the quality of the

solution to which that edge contributed. At the end of each iteration, the pheromone

over all the edges evaporates with a rate 1− ρ and the agent that produced the best

solution tbest increases the pheromone of a value ∆φ over all the edges ei,j ∈ tbest, so
that φi,j = (1− ρ)φi,j +∆φ if ei,j ∈ tbest, φi,j = (1− ρ)φi,j otherwise. At the end of

the Nit iterations, a stable path emerges on the graph, corresponding to the solution

of the COP.

Solution of SA-OP

In order to solve the SA-OP (6.15) via an efficient algorithm based on the ACO
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framework, let us first model the PER Ψr as

Ψr(γ) = e−σr(γ−γ0,r) (6.24)

being γ0,r and σr proper constant values obtained minimizing the relative quadratic

error of the fitting between the simulated values of the PER and the negative exponen-

tial function in the region of interest (whose validity will be shown in the simulation

results section). To this end, it can be noted that, substituting (6.24) into (6.3) and

rounding σrq with its nearest lower integer, σ̄rq
∆
=
⌊
σrq
⌋
, after some algebra the EGP

can be written as2

ζq(aq) ≃ ζ̄q(aq) = rq

[∑N

n=1
aq,n∆mq,n

]
︸ ︷︷ ︸

λq(aq)

·

1 + σ̄rq−1∑
k=1

(∑N
n=1 aq,nΩq,n∑N

i=1 aq,i

)k
︸ ︷︷ ︸

Λq(aq)

, (6.25)

where ∆mq,n
∆
= (mq − Ωq,ne

γ0,rq ) are constant terms. The following properties are of

interest:

P4) since Λq(aq) ≥ 1, λq(aq) results a lower bound of the EGP;

P5) if Λq(aq) could be neglected, the EGP optimization would simply reduce to a

integer programming, since λq(aq) is a weighted sum of the discrete variables

aq,n;

P6) Λq(aq), on the other hand, depends on the entire allocation vector aq.

With reference to properties P5 and P6, it can be pointed out the analogy between

the two quantities at the basis of the ACO framework, i.e., the local desirability and

the pheromone, with λq and Λq, respectively. This suggests that the SA-OP can be

tackled resorting to the ACO framework. Even if the latter is intrinsically heuristic,

its potentiality can be efficiently exploited when it is coupled with a deterministic

algorithm. The analysis conducted, recalling property P4 too, meets the above

observation, so that we can solve the SA-OP (6.15) in two steps as follows.

2It is exploited the geometric series (1− x)
∑i

k=0 x
k = 1− xi+1.
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SA-OP.1 The first step consists in maximizing the minimum goodput lower bound

λq(aq), denoted SA-OP.1,

max
a∈Da,l

l

s.t.
∑
q∈Q aq,n ≤ 1 ∀n, (6.26.a)∑N

n=1 aq,n
(
Ωq,n −mqe

γq
)
≤ 0 ∀q, (6.26.b)

l ≤ λq(aq) ∀q, (6.26.c)

(6.26)

where (6.26.b) is constraint (6.15.b) explicit as a function of aq, that results a mixed

integer linear programming (MILP), solvable with largely employed MILP tools. Let

denote with a∗lb the solution obtained solving the MILP (6.26) and λ∗lb its associated

value, that is, the best lower bound found so far.

SA-OP.2 The second step, denoted SA-OP.2, consists in solving the SA-OP (6.15)

through the ACO framework, where the solution to SA-OP.1 is used as starting

point, so that the ACO algorithm enhances the performance improving the minimum

goodput lower bound found.

Thus, SA-OP.2 is coded, according to the ACO framework, on a graph G(V, E) made

of the vertices set V and the edges set E . Thanks to the structure of (6.25), these

mappings are in order, and the resulting graph is depicted in Fig. 6.4.

• The vertices of the graph correspond to theN subcarriers, so that V = {1, · · · , N},
and each agent sequentially visits all the vertices.

• As a result, the set of edge connecting vertex n − 1 to vertex n corresponds

to the set of user that can be assigned to vertex n, i.e., En = {eq,n}Qq=0, with

E = E1 × · · · × EN . Thus, selecting edge eq,n means aq,n = 1 and av,n = 0,

∀v ̸= q (e0,n means that no user is assigned to subcarrier n, or, aq,n = 0, ∀q).

The ACO based SA algorithm is summarized in Table 6.6 and described in the

following. As previously outlined, for Nit iterations Na agents explore the graph,

each of them building a complete path t
(i)
j , with i = 1, · · · , Nit and j = 1, · · · , Na.

Due to the correspondence between the pairs vertices-edges and subcarriers-users,

each path univocally identifies a SA vector: t
(i)
j ↔ a(i,j). The probability πq,n to

select edge eq,n is

πq,n =
ηq,nφq,n∑

(k,n)|ek,n∈En

ηk,nφk,n
, (6.27)
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ACO based algorithm for SA-OP.2

1. For i = 0, · · · , Nit

2. For j = 0, · · · , Na

3. Set t
(i)
j = ∅

4. For n = 1, · · · , N

5. Select edge eu,n with probability πu,n

6. Update t
(i)
j = t

(i)
j ∪ eu,n

7. End For

8. End For

9. Evaluate ζ
(i)
best, t

(i)
best and a

(i)
best

10. Pheromone evaporation φq,n = [(1− ρ)φq,n]φmax
φmin

, ∀q, n

11. If ζ
(i)
best > λ∗lb

12. Evaluate ∆ζ(a
(i)
best)

13. Update φq,n = [φq,n + δφ∆ζ(a
(i)
best)]

φmax
φmin

, ∀eq,n ∈ t(i)best

14. End If

15. End For

16. Output: t
(Nit)
best

Table 6.6: Pseudo-Code of the ACO based algorithm for SA-OP.2

where ηq,v is the local desirability and φq,v the pheromone. Recalling properties P4-

P5 and the graph structure where SA-OP.2 is mapped, the following correspondences

are straightforward:

• The local desirability ηq,n is a function of the weights ∆mq,n, since they are local

quantities depending on the specific user q assigned to the specific subcarrier n.

In particular, ηq,n
∆
= [∆mq,n]η̄, so that ηq,n is always greater than a minimum

value η̄ allowing at least a minimum probability to each path to be explored.

• The pheromone φq,v depends instead on Λq, that is in fact, a global quantity,

depending on the quality of the solution found.
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Figure 6.4: ACO graph evolution.

In particular, denoting with a(i,j) the solution found by agent j at iteration i, let

us introduce at the end of each iteration ζ
(i)
best = max

a(i,j)
,∀j

min
q
ζq(a

(i,j)) as the high-

est value of the objective function found and t
(i)
best and a

(i)
best as the related path

and SA, respectively. If ζ
(i)
best > λ∗lb the pheromone, ∀eq,n ∈ t

(i)
best, is updated as

φq,v = [φq,v + δφ∆ζ(a
(i)
best)]

τmax
τmin

, with ∆ζ(a
(i)
best)

∆
= ζ

(i)
best/λ

∗
lb.

The higher the value of the solution w.r.t. the one obtained solving SA.OP.1, the

higher the pheromone increment released on the edges that contributed to that

solution, driving in this way the search over the graph. At the end of the iterations,

thanks to the reinforcement learning mechanism, a path t
(Nit)
best emerges on the graph,

corresponding to the solution of the SA-OP (6.15).

6.7 Simulation Results

In this section, simulation results carried over a realistic wireless scenario are shown in

order to support the analytical results obtained in the previous sections. The parame-
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ters settings of the OFDMA system and radio channel adopted for the simulations are

reported in Tabs. 6.7 and 6.8, respectively. In the following, two reference scenarios

are taken into account. In scenario S1 we consider Q = 2 users and the performance

are evaluated, averaging over 103 channel realizations, as a function of the user 2

average symbol energy to noise power spectral density ratio Es/N0, whereas user 1

has a constant Es/N0 = 27 dB. Scenario S2 has the same characteristics of scenario

S1 extended to Q = 3 users, with user 3 Es/N0 = 7.63 dB. The goodput curves

depicted in the following figures have been normalized w.r.t. B/Q, so that each curve

physically represents a spectral efficiency in (bit/s/Hz).

Parameter/Feature Symbol Value/Description

Payload length Np 1024 bits

CRC length NCRC 32 bits

No. of subcarriers N 64

Bits per subcarrier Dm {2, 4, 6}
Code type 64-state Convolutional code

Mother code rate r0 1/2

Punctured code rates Dr
{
1

2
,
2

3
,
3

4
,
5

6

}
Available power P 34 dBm

Bandwidth B 20 MHz

ARQ scheme Multiple-channel Stop & Wait

No. of logical channels 8

Table 6.7: Parameters and features of the ARQ BIC-OFDMA system.

PER Model.

Figure 6.5 shows the actual PER (dotted curves) and the analytical PER curves

described by eqn. (6.24) (lines with marks), vs. the Es/N0 ratio experienced at

the receiver. The actual PER curves, averaged over 104 channel realizations, have

been obtained simulating a BPSK system transmitting over an AWGN channel and

employing the 64-state convolutional code whose rates are detailed in Tab. 6.7. The

values of σr and γ0,r are reported in Table 6.9.
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Parameter/Feature Value/Description

Path-loss model NLOS urban scenario [IEEE 802.16]

Carrier frequency 2 GHz

BS/Mobile heights 12.5/1.5 m

Noise power level -100 dBm

Short-term fading model ITU Ped. B

Table 6.8: Parameters and features of the radio propagation channel model.

r = 1/2 r = 2/3 r = 3/4 r = 5/6

γ0,r 0.7198 1.064 1.309 1.633

σr 10.23 7.205 5.63 4.581

Table 6.9: Parameters values of the PER Model.

ACO Algorithm for the SA Problem.

Figure 6.6 shows the minimum EGP curves obtained solving the SA problem (6.16)

both with the optimal algorithm based on B&B and with the ACO algorithm de-

scribed in sections 6.6.1 and 6.6.2, respectively, for reference scenario S1.

Depending on the number of iterations Nit and on the number of agents Na that

explore the graph at each iteration, the ACO algorithm stems as a valid candidate to

solve the SA-OP (6.16), offering at the same time very good performance and reduced

complexity w.r.t. the optimal algorithm.

MMG Algorithm Initialization.

In this section, some guidelines are offered in order to find a good initial transmission

mode τ (0) for the CAM based MMG algorithm described in Tab. 6.1, tagged as CAM-

MMG for short. The initial subcarrier allocation is done as follows: each user selects,

in round robin fashion, the subcarrier where it has the best channel gain among the

ones not yet chosen. This initialization is justified by the observation that, for each

user, the PER is dominated by term relevant to the worst channel gain value.
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The power is instead uniformly distributed over all the subcarriers, since, to the best

of authors knowledge, there are not other PA algorithms that maximizes the minimum

GP. This uniform PA is thus also exploited as benchmark to show the improvements

obtained with the proposed algorithm, as usually done in these cases. The impact

of the initial value of the modulation order and coding rate has been investigated by

simulation, as shown in Fig. 6.7, referring to scenario S1.

These curves are obtained running the CAM-MMG for 3 different pairs of initial

modulation order and coding rate. Two main observation can be done. First, for

the pair (m = 4, r = 3/4), Fig. 6.7 depicts both the EGP ζq in (6.3) and the actual

goodput (AGP) value, i.e. the average of the ratio between the number of payload

bits N
(q)
p and the transmission time required to successfully delivering them. As

anticipated in Sect. 3.2.3, their value is very close justifying the adoption of the

long term static assumption. Secondly, the best initial choice is given by the pair

(m = 4, r = 3/4), which offers a good trade-off between data rate and link reliability.

In fact, a too aggressive choice like (m = 6, r = 5/6) only performs well when both

users are in the high SNR region. Conversely, an extremely conservative choice, i.e.,

(m = 2, r = 1/2), works well in the low SNR region but makes the algorithm stuck in

a lower local optimum when users experiences high SNR values.

The impact of the value of the parameters of the ACO algorithm, adopted to solve the

SA problem at Line 4 of the CAM-MMG code in Tab. 6.1, on the final performance

has been evaluated through an intensive off-line simulation. Part of these results are

shown in Fig. 6.8, from which the following setting of values is obtained: ρ = 0.1,

δφ = 0.1, Nit = 50, Na = 50.

Finally, Fig. 6.9 shows the average number of iterations required by the CAM-MMG

algorithm to converge, for two values of user 2 Es/N0. Interestingly, after a few

iterations, we get the most significant improvements in the minimum EGP value,

then only slight gains are obtained. Thus, the value of ICAM can be reduced to trade

off complexity and quality of solution.

MMG Algorithm Performance.

Figures 6.10 compares the AGP performance of user 1 and 2 for scenario S1 obtained

with both the CAM-MMG algorithm and a static RA policy. In particular, the latter

refers to the case in which the setting of transmission parameters τ is not adapted to

the actual channel conditions but is instead kept constant and, in particular, equal
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to the setting τ (0) chosen to initialize the CAM-MMG algorithm.

From Fig. 6.10 it is apparent how unfair RA approaches, such as the static RA policy,

penalize all the user that are not denoted by high SNR levels, like user 1 for the case

at hand. Conversely, it can be noted that the CAM-MMG algorithm successfully

satisfies the fairness criterion, with both users characterized by nearly the same AGP.

The performance of the user with the minimum goodput (dotted line with empty

triangles) in the static RA case are in fact remarkably enhanced. The same behavior

can be found in Fig. 6.11 that refers to scenario S2 where Q = 3 users are involved.

Finally, Fig. 6.12 shows that the CAM-MMG effectively keeps the PER under the

prescribed threshold, depicting the PER curves of user 2 for scenario S1 for two

different QoS constraints, namely, Ψ
(1)

q = 10−1 and Ψ
(2)

q = 10−2, ∀q ∈ Q.

6.8 Concluding remarks

In this chapter, a novel RA algorithm aimed at maximizing the performance of the

user with the lowest value of goodput on the downlink of a BIC-OFDMA system was

derived and properly investigated. Thanks to the CAM, the RA problem was tackled

through an iterative algorithm where, at each step, three subproblems are solved:

the PA problem, the SA problem and the AMC problem. All of these subproblems

were analyzed and optimally solved. In detail, the PA problem was shown to be

convex and thus solved resorting to the LDD approach. The AMC problem was

tackled adopting an exhaustive search. The SA problem was first optimally solved

thanks to a novel analysis on the objective function that allowed to bring back the

problem to the convex optimization framework. Then, a novel algorithm that offers

a trade-off between complexity and quality of solution was also proposed resorting to

the ACO framework. Simulation results over a typical wireless scenario certified the

effectiveness of the proposed approach.
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Figure 6.5: PER fitting model.

Figure 6.6: Performance comparison of B&B and ACO algorithms.
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Figure 6.7: AGP values for different initial couples of (m, r).

Figure 6.8: Performance comparison for different values of ACO parameters ρ, δφ, Nit,

Na.
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Figure 6.9: Average number of iterations of the CAM-MMG algorithm.

Figure 6.10: AGP performance of Q = 2 users obtained with CAM-MMG and static RA

policy.
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Figure 6.11: AGP performance of Q = 3 users obtained with CAM-MMG and static RA

policy.

Figure 6.12: PER performance of Q = 2 users obtained with CAM-MMG for different QoS

thresholds.
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Appendices

A.1 Basics of convex optimization theory

A.1.1 Duality

Consider the optimization problem

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, · · · ,m (A.1.a)

hi(x) = 0 i = 1, · · · , p (A.1.b)

(A.1)

where f0(x) is the objective function, fi(x) and hi(x) are the inequality and equality

constraints, respectively, and x = [x1, · · · , xn]T ∈ Rn is the optimization variable.

This problem is convex if {fi(x)}mi=0 are convex functions and {hi(x)}pi=1 are affine. A

point x is feasible if it satisfies constraints (A.1.a) and (A.1.b). Let p∗ be the optimal

value of (A.1).

The Lagrangian associated to (A.1) is

L(x,λ,υ) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

υihi(x) (A.2)

where λ
∆
= [λ1, · · · , λm]T and υ

∆
= [υ1, · · · , υp]T are the Lagrange multipliers associ-

ated with the inequality and equality constraints, respectively.

Then, the dual function of the (primal) problem (A.1) is defined as

g(λ,υ) = inf
x
L(x,λ,υ). (A.3)

For any λ ≽ 0 and any υ, the dual function yields lower bounds on the optimal value

p∗ of the primal problem. This property is easily verified by noting that, according
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to constraints (A.1.a) and (A.1.b), in (A.2) we have

m∑
i=1

λifi(x̃) +

p∑
i=1

υihi(x̃) ≤ 0, (A.4)

where x̃ is any (primal) feasible point. Upon defining the domain of the dual function

as dom g
∆
= {(λ,υ) : g(λ,υ) > −∞, λ ≽ 0} (i.e. neglecting the trivial case of g

unbounded below), then the pair (λ,υ) ∈ dom g is said dual feasible.

Thus, the best lower bound on p∗ is obtained solving the Lagrange dual problem

max g(λ,υ)

s.t. λ ≽ 0
. (A.5)

The pair (λ∗,υ∗) is referred to as dual optimal or optimal Lagrange multipliers if they

are optimal for problem (A.5) and the associated optimal value of the dual function

is referred to as d∗.

In general, d∗ ≤ p∗ and the difference p∗ − d∗ is called duality gap. When d∗ = p∗

the duality gap is zero, or, equivalently, strong duality holds. Thus, supposing that

strong duality holds, we have

f0(x
∗) = g(λ∗,υ∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +
p∑

i=s1

υ∗i hi(x)

)
≤ f0(x∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

υ∗i hi(x
∗)

≤ f0(x∗).

From this chain we conclude that

1. since the inequality at the third line is an equality, then x∗ is a minimizer of

L(x,λ∗,υ∗);

2.
m∑
i=1

λ∗i fi(x
∗) = 0 and, since each term of the sum is lower or equal than zero, it

follows that λ∗i fi(x
∗) = 0, i = 1, · · · ,m.

Assuming that the function f0, · · · , fm, h1, · · · , hp are differentiable then, according to
point 1 of the previous observations, since x∗ is a minimizer of L(·), then its gradient

must vanish at x∗, i.e.

f0(x
∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

υ∗i∇hi(x∗) = 0.
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Thus, collecting all the conditions, we have

fi(x
∗) ≤ 0 i = 1, · · · ,m

hi(x
∗) = 0 i = 1, · · · , p
λ∗i ≥ 0 i = 1, · · · ,m

λ∗i fi(x
∗) = 0 i = 1, · · · ,m

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑
i=1

υ∗i∇hi(x∗) = 0,

which are called Karush-Khun-Tucker (KKT) conditions.

To summarize, the KKT conditions represent a necessary condition on the pair of

primal and dual optimal points for any optimization problem with differentiable

objective and constraints functions for which strong duality holds. If the optimization

problem is convex, then the KKT conditions are also sufficient for the points to be

primal and dual optimal.

A.1.2 A brief summary on the subgradient method

Often, optimization problems of the form in (A.1) are solved maximizing the dual

function in the dual domain. This is due to the fact that the dual problem is usually

easier to solve, since the dual function is always a concave function of its optimization

variable, even when problem (A.1) is not. Moreover, when the primal problem (A.1)

is convex and KKT holds, the duality gap is zero and then the solution found is both

primal and dual optimal.

The dual OP (A.5) can be solved, as usually done in cases, resorting to the subgradient-

based update of the dual variables (λ,υ), here briefly recalled and referring to [74] for

further details. This iterative method consists in maximizing g(λ,υ) by updating, at

each step i + 1, all the components of the dual variable (λ(i),υ(i)) produced at the

previous step i along the search direction defined by the subgradient of g(λ,υ) at

(λ(i),υ(i)).

For the ease of notation, let us stuck the Lagrange multipliers λ and υ into the vector

y = [λT,υT]T, whose domain is identified by Y, and the relevant functions into

h(x)
∆
= [f1(x), · · · , fm(x), h1(x), · · · , hp(x)]T. Accordingly, the dual function (A.3)

can be rewritten as

g(y) = inf
x
L(x,y) = inf

x
f0(x) + yTh(x). (A.6)
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As previously shown, g(y) is a concave function of y since it is a pointwise minimum

over x of an affine function of y, namely L(x,y). For a given multipliers vector y,

suppose that xy minimizes L(x,y) over the set of feasible values of x. Then h(xy)

is a subgradient of g(y) at y, i.e., the following inequality holds according to the

definition of a subgradient of a concave function in [74]

g(y′) ≤ g(y) + (y′ − y)Th(xy), (A.7)

with y′ ∈ Y. The subgradient method generates a sequence of feasible dual variables

according to the iteration

y(i+1) =
[
y(i) + sh(xy)

]
Y

(A.8)

where i and s denotes the iteration number and the positive scalar step size used to

produce y(i+1), and [·]Y stands for the operator of projection into Y. What makes

the subgradient method work is that for a sufficiently small s, the distance of y(i) to

the optimal dual variable is reduced as the number of iterations increases, as justified

by [74].

A.2 MGF evaluation

In order to demonstrate (2.16), let us start by substituting (2.7) into (2.12), neglecting,

w.l.g. the PR index ℓ, so that

MΛ (s) = Ek



∑
x̃∈χ(ik,nk)

b′
k

exp
(
−
∣∣√γnk

(xnk
− x̃) + wnk

∣∣2)
∑
x̃∈χ(ik,nk)

bk

exp
(
−
∣∣√γnk

(xnk
− x̃) + wnk

∣∣2)

s , (A.9)

where the expectation is taken over all the parameters depending on the kth bit, i.e.,

the noise, the modulation symbol and the position of the coded symbol within the

label of the QAM symbols.

Similarly to the approach suggested in [34], the m.g.f. (A.9) can be upper-bounded

and, it is also demonstrated that, at high SNRs, the bound is dominated by the

term relevant to the nearest neighbor (in the sense of Euclidean distance) of xnk
in

the complementary subset χ
(ik,nk)
b′k

. As a consequence, we can apply the dominated

convergence theorem [34] and, after taking the expectation with respect to the noise,
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(A.9) turns into

MΛ (s) ≃ Ek
{
exp

(
−γnk

d2 (xnk
, x)
(
s− s2

))}
, (A.10)

where x is the nearest neighbor of xnk
in the complementary subset χ

(ik,nk)
b′k

, and

d(y, w) is the Euclidean distance between the complex-valued symbols y and w.

To compute the expectation in (A.10), it is worth noting that

1. due to the Gray mapping rule, we have d (xnk
, x) = µd

(min)
mnk

, where µ is a positive

integer and d
(min)
mnk

is the minimum Euclidean distance between the symbols of

the 2mnk -QAM constellation adopted on the nkth subcarrier;

2. each of the mnk
label bits conveyed by subcarrier nk has 2mnk

−1 symbols on its

complementary subset, so that the total number of terms to be averaged results

mnk
· 2mnk

−1;

3. the distance d (xnk
, x) takes

√
2mnk /2 distinct values so that 1 ≤ µ ≤

√
2mnk /2;

4. by defining the number of symbols at distance µd
(min)
mnk

from the nearest neighbor

in the complementary subset as ψmnk
(µ), we get

∑√
2
mnk /2

µ=1 ψnk
(µ) = mnk

·
2mnk

−1 ∀n ∈ Ds, where ψmnk
(µ)
∣∣∣
m=2

= 4δµ−1, ψmnk
(µ)
∣∣∣
m=4

= 24δµ−1 +

8δµ−2, ψmnk
(µ)
∣∣∣
m=6

= 112δµ−1 +48δµ−2 +16δµ−3 +16δµ−4 for the 4-, 16- and

64-QAM formats, respectively;

5. the probability that the generic coded symbol is sent through the nkth subchan-

nel is mnk
/
∑N
j=1mj .

Therefore, collecting the above results together, the MGF in (A.10) turns out to be

MΛ(s) ≃
1∑N

j=1mj

·
N∑
n=1

√
2mn/2∑
µ=1

ψmn(µ)

2mn−1
e−γn[µ d

(min)
mn ]

2
(s−s2). (A.11)
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