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1. Introduction

Various authors have derived upper bounds on the approximation error of certain linear
combinations of computational units containing adjustable parameters, called variable-basis
approximation schemes [1], for various families of functions to be approximated (see, e.g., [2–
11] and the references therein). In these schemes, the number of computational units (i.e., the
number of basis functions) can be used to measure the model complexity [12, 13]; roughly
speaking, models with a large complexity make the approximation task computationally
inefficient. This typically occurs when the functions to be approximated depend on a large
number d of variables, often because of the so-called curse of dimensionality [14]. However,
experimental results have shown that variable-basis approximation schemes perform
successfully in approximation of various high-dimensional mappings and theoretical insights
into this have been obtained (see, e.g., [1, 3, 11], and the references therein).
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Upper bounds on the approximation error, giving a partial explanation of this
efficiency, have been derived using tools from statistical learning theory (SLT) [15]. This
approach was first applied by Barron [2] and Girosi [4]. The latter exploited a well-known
theorem by Vapnik and Chervonenkis [15], which gives, for a family of real-valued functions,
a probabilistic uniform bound on the difference between the expected and empirical risks
associated with a learning problem. Such a bound is expressed in terms of a combinatorial
parameter, the VC dimension of the approximating family. For functions having an integral
representation as the convolution κ∗λ of an L1(Rd) function λ with a bounded function κ :
R
d → R, Girosi [4] estimated in terms of VC-dimension the sup-norm error in approximation

by linear combinations of κ(· − t1), . . . , κ(· − tn), with the parameters t1, . . . , tn varying in R
d;

this is a variable-basis approximation scheme [1].
In [8], Girosi’s estimate [4] was extended to the approximation of functions for which

the representation κ∗λ holds with λ ∈ Lp(Rd), 1 < p < ∞, with the error measured in a
weighted essential supremum norm. In [9], Kon and Raphael used Girosi’s approach [4] to
derive error bounds for approximation in certain Hilbert spaces frequently used in learning
theory, called reproducing kernel Hilbert spaces (RKSHs; see [16, 17], [18, Section III.3], and
[19]). In [10], we exploited recent developments of SLT [20] to improve the approximation
bounds from [4, 8, 9]. The estimates in [10]were derived in terms of the Rademacher complexity
[20] of the families of functions to be approximated. Among recent works dealing with
learning from the point of view of approximation theory, we cite [18] (on the mathematical
foundations of learning), [21] (which uses Rademacher averages, too), [22] (which considers
noise in the sampling data), [23], and the references therein. An excellent monograph devoted
to this topic is [24].

The above-mentioned estimates were derived for scalar functions. They can be applied
separately to every component of a vector mapping but, in doing so, one does not exploit
mutual dependencies, similarities, and relationships that may hold among the components
themselves. This may happen in various contexts, for example, when one has to approximate
the optimal policy functions inN-stage optimization problems [25]. Despite its relevance in
a number of applications, in the learning theory community the problem of approximating
vector-valued functions has been studied much less than the scalar case. Its importance in
learning seems to have been first pointed out in [26, 27]. A framework to study this problem
in RKHSs was set down in [28] and further developed in other works; see [29] and the
references therein.

In this paper, first we improve an estimate, obtained in [10], of the approximation
error for scalar functions. Then, we derive upper bounds on the error of approximating
simultaneously all components of multivariable vector-valued functions, using a variable-basis
approximation scheme in which all the scalar components share the same adjustable parameters
inside the basis functions. In this way, one may obtain the same approximation accuracy using
fewer parameters to be optimized than those required by componentwise (hence scalar)
approximation, in which, in general, the adjustable parameters inside the basis functions are
different for the different components. We derive our estimates in terms of the Rademacher
complexities of the families of functions f : X ⊂ R

d → R
k, whose components have

an integral representation expressed in terms of L1(X) functions and a bounded kernel.
These components are approximated by linear combinations of functions obtained from
the kernel in an adaptive way; this is a variable-basis approximation scheme [1]. We
highlight advantages of simultaneous vector function approximation over componentwise
approximation and we consider the application to approximate dynamic programming forN-
stage optimization problems.
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The paper is organized as follows. Section 2 describes notations and gives definitions.
Section 3 refines some estimates for scalar functions, obtained in [4] and improved in
[10]. Section 4 contains our upper bounds on the approximation error, for certain families
of vector-valued functions. Section 5 compares the bounds derived for scalar and vector
functions. Section 6 discusses the application of the results to approximate dynamic
programming.

2. Notations and definitions

By R and R+ we denote the sets of real and positive real numbers, respectively, and by N and
N+ the sets of natural numbers and positive integers, respectively.

For a real normed linear space (H, ‖·‖), f ∈ H, and r > 0, we denote by Br(f, ‖·‖) the
closed ball of radius r in the norm ‖·‖ centered at f ∈ H, that is,

Br
(
f, ‖·‖) =

{
h ∈ H | ‖h − f‖ ≤ r}. (2.1)

We write Br(‖·‖) instead of Br(0, ‖·‖). When the norm is clear from the context, we write
merely H, Br(f), and Br instead of (H, ‖·‖), Br(f, ‖·‖), and Br(‖·‖), respectively.

For 1 ≤ p < ∞, a positive integer d, and a Lebesgue-measurable set X ⊆ R
d, we

denote by Lp(X) the space of (equivalence classes of) real-valued functions on X that have
integrable pth powerwith respect to the Lebesguemeasure, endowedwith the standard norm
‖·‖p,X . By L∞(X) we denote the space of (equivalence classes of) real-valued functions on
X that are essentially bounded with respect to the Lebesgue measure, endowed with the
essential supremum norm ‖·‖∞,X , and by C(X) the space of continuous functions on X with
the supremum norm. Whenever there is no ambiguity, we omit X from the notations.

The d-dimensional Fourier transform is defined [30, pages 180, 187] as the operator on
L1(Rd) ∩L2(Rd), continuously extended to an operator from L2(Rd) to L2(Rd), such that for
every function f ∈ L1(Rd) ∩ L2(Rd) one has

f(t) �−→ f̂(s) =
1

(2π)d/2

∫

Rd

ei〈t,s〉f(t)dt, (2.2)

where 〈·, ·〉 denotes the Euclidean inner product in R
d. For f ∈ L2(Rd), one has ‖f‖2 = ‖f̂‖2

[30, page 187].
For a positive integer d, a set X ⊆ R

d, and a family F of functions on X, we denote
by Fx : X → R a function in F, where x is a parameter used to identify elements in F( we
use the notation Fx since we will consider families F of functions on X having the integral
representation f(x) =

∫
XKx(t)λ(t)dt, whereK : X ×X → R. So, Fx(t) is defined viaKx(t) and

the parameter x used to identify the elements of F is a point x ∈ X) .
By PX we denote a probability distribution on X; we write merely P when the set X is

clear from the context. For every positive integer n, a PX-i.i.d. sequence is a sequence {ti} of n
points obtained by sampling X independently n times according to PX (similarly, we define
a pX-i.i.d. sequence when pX is a probability density).

A Rademacher random variable is a random variable taking only the values −1 and +1
with equal probability [20]. Let PX be a probability distribution on X ⊆ R

d, {ti} a PX-i.i.d.
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sequence, and {εi} a sequence of n independent Rademacher random variables. Given a
family F = {Fx} of functions f : X → R, the Rademacher complexity of F is defined as [20]

Rn(F) � Et1,...,tnEε1,...,εn

{
1√
n
sup
Fx∈F

∣
∣
∣
∣
∣

n∑

i=1

εiFx
(
ti
)
∣
∣
∣
∣
∣

}

. (2.3)

Upper bounds on the Rademacher complexities of various families of functions are available;
see, for example, [10, 20, 31].

The VC dimension of a family F = {Fx} of real-valued functions on a set X is the
maximum number h of points {ti} in X that can be separated into two distinct classes in
all 2h possible ways, by using functions of the form Fx(t) − α, where the parameters x and α
vary in X and R, respectively [15].

3. A bound for the approximation of scalar functions

For r > 0, the Bessel potential of order r is defined as the function βr : R
d → R with the Fourier

transform

β̂r(s) = (2π)−d/2
(
1 + ‖s‖2)−r/2. (3.1)

We consider the family of functions defined as

F1
r �

{
f : R

d −→ R | f = βr∗λ, λ ∈ L1
(
R
d)}, (3.2)

where for two functions g, h : R
d → R, (g∗h)(x) �

∫
Rdg(y)h(x − y)dy is their convolution.

The space F1
r is called Bessel potential space of order 1; it is a normed space with the norm ‖·‖F1

r

defined for every f ∈ F1
r as ‖f‖F1

r
� ‖λ‖1.

The following result from [10] improves the approximation bound from [4,
Proposition 3.1]. We let

KBessel
r,x (t) � βr(x − t). (3.3)

Theorem 3.1 (see [10]). There exists an absolute positive constant C such that the following holds.
Let r, d be positive integers, r > d, and let hr be the VC dimension of {KBessel

r,x }. For every f ∈ F1
r and

every positive integer n, there exist t1, . . . , tn ∈ R
d and c1, . . . , cn ∈ {−1, 1} such that

sup
x∈Rd

∣∣∣∣∣
f(x) − ‖λ‖1

n

n∑

i=1

ciβr(x − ti)

∣∣∣∣∣
≤ C‖λ‖1

√
hr
n
. (3.4)

In [4, 10], no upper bound on hr was given (up to our knowledge, in the literature
even the boundedness of hr had not yet been proven till now). In the following we provide
such an upper bound.

Proposition 3.2. Let r, d be positive integers, r > d, and let hr be the VC dimension of {KBessel
r,x }.

Then hr ≤ d + 2.
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Proof. Consider the two families of functions E � {KBessel
r,x } and G � {Gx}, where Gx(t) �

e−‖x−t‖
2
. By inspection of the proof of [10, Corollary 5.2] we get

βr(t) =
2−d/2

Γ(r/2)

∫∞

0
u(r−d)/2−1 e−‖t‖

2/4u e−u du. (3.5)

This integral representation shows that βr(t) is a decreasing function of ‖t‖. Let us define the
two functions a, b : [0,+∞] → R as

a(‖t‖) � βr(t),

b(‖t‖) � e−‖t‖
2
, b(+∞) = 0.

(3.6)

Since b is one-to-one, there exists a function φ : [0, 1] → R such that a = φ◦b. Indeed, one can
take φ = a◦b−1. Then βr(x− t) = φ(e−‖x−t‖2), that is, E = φ(G), where φ is one-to-one (since it is
the composition of two one-to-one functions). Then the VC dimensions VC(E) and VC(G) of
E and G are the same. Since G is a subset of the family of functions L = {KGauss

x } considered
in the proof of [10, Corollary 5.2], where it was shown that VC(L) ≤ d + 3, one has also

VC(E) = VC(G) ≤ VC(L) ≤ d + 3. (3.7)

The proof of the bound VC(L) ≤ d + 3 in [10, Corollary 5.2] can be slightly adapted to
find a better upper bound directly on VC(G). Here we report only the modifications that are
required. By the same arguments of the proof of [10, Corollary 5.2] it is easy to show that, for
every fixed x, each element of the family {−‖x − t‖2 + α}, where α is a real parameter, can be
expressed as a linear combination of the d + 2 functions

1, t1, . . . , td, ‖t‖2. (3.8)

Hence, by [32, Theorem 1], VC(G) is at most d + 2.

Combining [10, Theorem 4.5] with the proof technique of Proposition 3.2, we get the
following estimate. Recall that a function ψ with bounded variation can be written as the
difference of two decreasing functions ψ1 and ψ2 [33, Theorem 4, page 331]. In order to state
the result we require in addition that ψ1 and ψ2 are bounded.

Proposition 3.3. Let d be a positive integer, X ⊂ R
d a compact domain, K : R

d × R
d → R

continuous, λ ∈ L1(X), and let f : X → R have the representation f(x) =
∫
XKx(t)λ(t)dt,

where Kx(t) = ψ(‖x − t‖) and ψ(z) has bounded variation. Suppose that there exist τ1, τ2 ≥ 0 and
a decomposition of ψ(z) as ψ(z) = ψ1(z) − ψ2(z) such that ψ1(z) and ψ2(z) are decreasing and
supt∈R

|ψ1(z)| ≤ τ1, supt∈R
|ψ2(z)| ≤ τ2. Then there exist two absolute positive constants C1 and C2

such that for every positive integer n, there exist t1, . . . , tn ∈ X and c1, . . . , cn ∈ {−1, 1} for which

sup
x∈X

∣∣∣∣∣
f(x) − ‖λ‖1

n

n∑

i=1

ciK
(
x, ti

)
∣∣∣∣∣
≤ ‖λ‖1

(
C1

√
d + 2 + C2

(
τ1 + τ2

))
√

1
n
. (3.9)



6 Journal of Inequalities and Applications

Proof. Setting K1,x(t) � ψ1(‖x − t‖) and K2,x(t) � ψ2(‖x − t‖), we get

f(x) =
∫

X

Kx(t)λ(t)dt =
∫

X

K1,x(t)λ(t)dt −
∫

X

K2,x(t)λ(t)dt. (3.10)

Since the functions ψ1 and ψ2 are decreasing, exploiting similar arguments as in the proof of
Proposition 3.2 we conclude that the upper bound d + 2 holds for the VC dimensions of the
families of functions {K1,x} and {K2,x}, too. Then the statement follows by [10, Theorem 4.3
and Lemma 4.4] and the subadditivity property of the Rademacher complexity [34, Theorem
12, point 7].

4. Bounds for the approximation of vector-valued functions

In [10], the following approximation error bound was obtained in terms of the Rademacher
complexity for some quite general families of functions. It improves, at least asymptotically,
the bound derived in [4] for the same families of functions.

Theorem 4.1 (see [10]). Let X ⊂ R
d be a compact domain, K : X ×X → R continuous, and τ > 0

such that, for all x and t, one has |K(x, t)| ≤ τ . Let λ ∈ L1(X), let f be a real-valued function on X
having the representation f(x) =

∫
XK(x, t)λ(t)dt, and Rn the Rademacher complexity of the family

{K(x, ·)}. There exists an absolute positive constant C such that for every positive integer n there exist
t1, . . . , tn ∈ X and c1, . . . , cn ∈ {−1,+1} for which

sup
x∈X

∣∣∣∣∣
f(x) − ‖λ‖1,X

n

n∑

i=1

ciK(x, ti)

∣∣∣∣∣
≤ C‖λ‖1,X

(Rn + τ
)
√

1
n
. (4.1)

Note that the approximation scheme in (4.1) requires n binary parameters and nd real
parameters.

Remark 4.2. Inspection of the proof of Theorem 4.1 shows that if λ(t) is a nonnegative
function, then ci = +1, i = 1, . . . , n. Thus, if K(x, t) is convex (or concave), both f(x) and its
sparse approximation (‖λ‖1/n)

∑n
i=1ciK(x, ti) are convex (concave, resp.), too. Preservation of

convexity (or concavity) is an interesting property of approximators, sometimes exploited in
applications [35].

We first derive for vector-valued functions an immediate corollary of Theorem 4.1.
Then, we turn our attention to the simultaneous approximation of all the components of a
vector-valued function, which allows one to exploit similarities that may hold among them.

Corollary 4.3. Let X ⊂ R
d be a compact domain, K : X × X → R continuous, τ > 0 such that,

for all x and t, one has |K(x, t)| ≤ τ , and Rn the Rademacher complexity of the family {K(x, ·)}. Let
f : X → R

k be such that each of its components has the representation fm(x) =
∫
XK(x, t)λm(t)dt,

where λm ∈ L1(X),m = 1, . . . , k. Then for every ε > 0 it is possible to approximate in the supremum
norm on X each component fm of f with an error at most ε by using approximations of the form

f̂m(x) =
‖λm‖1,X
nm

nm∑

i=1

cm,iK
(
x, tm,i

)
, (4.2)
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where, for i = 1, . . . , nm and m = 1, . . . , k, tm,i ∈ X and cm,i ∈ {−1,+1}, provided that for every
m = 1, . . . , k one has

nm ≥
C2(Rnm + τ

)2‖λm‖21,X
ε2

, (4.3)

where C is an absolute positive constant.

Proof. It follows immediately by Theorem 4.1 applied to each of the k components of f,
choosing each nm such that the correspondent approximation error is upper bounded
by ε.

To approximate all the k components of f, the approximation scheme (4.2) requires
n =

∑k
m=1nm binary parameters, and nd real parameters.
Let us now consider the case where similarities among the k components of f are

present. We would like to exploit them to obtain a desired approximation accuracy with a
number of parameters smaller than the one given by (4.2), by letting some parameters be
shared among the k approximators. Assume that, in the expression fm(x) =

∫
XK(x, t)λm(t)dt,

m = 1, . . . , k, for the components of f, each λm ∈ L1(X) can be written as

λm(t) = λ̃m(t)λ(t), (4.4)

where λ̃m are measurable functions taking only the values −1 and +1 and 0/=λ ∈ L1(X) is
a nonnegative function (there is no loss of generality in assuming that λ is nonnegative).
Setting

K̃m(x, t) � K(x, t)λ̃m(t), (4.5)

one has

fm(x) =
∫

X

K̃m(x, t)λ(t)dt, (4.6)

which can be written as

fm(x)
‖λ‖1,X =

∫

X

K̃m(x, t)
λ(t)
‖λ‖1,X dt. (4.7)

As noted in [4], for every x ∈ X the representation (4.7) can be regarded as the expected value
of the random variable sgn(λ(t))K̃m(x, t)with respect to the probability density |λ(t)|/‖λ‖1,X .

It is easy to see how similarities among the k components of f can be modeled in this
way, for example, by assuming that there exists ζ > 0 such that K(x, t) ∼= 0 if ‖x − t‖ > ζ.
Indeed, if there exists x′ ∈ X such that λ(t) ∼= 0 on a neighborhood N′ of x′ of radius larger
than ζ, all components of f will assume very small values on another neighborhoodN′′ ⊂ N′

of x′.
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Exploiting the particular nature of the functions λ̃m(t), which can take only the values
−1 and +1, the following proposition shows that the Rademacher complexities of the families
{K̃m(x, ·)} and {K(x, ·)} are the same.

Proposition 4.4. Let Rn and Rm,n be the Rademacher complexities of the families {K(x, ·)} and
{K̃m(x, ·)}, respectively. Then for everym = 1, . . . , k, Rm,n = Rn.

Proof. It follows directly from the definition of the Rademacher complexity, as each λ̃m(t) can
take only the values −1 and +1 and the Rademacher random variables εi are independent and
symmetrically distributed around 0.

To derive an extension of Theorem 4.1 to families of vector-valued functions, we will
exploit the following estimate from [10]. Recall that for a family F = {Fx} of functions on X
and a probability distribution PX on X, the expected risk associate with a function Fx ∈ F is
defined as

R
(
Fx

)
�

∫

X

Fx(t)dPX(t). (4.8)

So,R(Fx) = EPX{Fx(t)}, where EPX is the expectation operator. The empirical risk associate with
the function Fx(t) ∈ F and the sequence {ti} of samples is defined as

Remp
(
Fx,

{
ti
})

� 1
n

n∑

i=1

Fx(ti). (4.9)

Theorem 4.5 (see [10]). Let PX be a probability distribution on X ⊆ R
d, {ti} a PX-i.i.d. sequence

of n points in X, τ > 0, and F a family of [−τ, τ]-valued continuous functions with Rademacher
complexity Rn. Then there exists an absolute constant C such that for all 0 < δ < 1, with probability
at least 1 − δ, one has

sup
Fx∈F

∣∣R
(
Fx

) − Remp
(
Fx,

{
ti
})∣∣ ≤ 2τ C

√
1
n
max

{(Rn + τ
2τ

)2

, ln
1
δ

}
. (4.10)

In the next theorem (Theorem 4.7), we will improve the estimate from Theorem 4.1
for approximation of vector-valued functions (for k = 1 and in the limit δ → 0 one gets
Theorem 4.1). To derive such an extension, we will need the density result stated in the
following lemma. For X ⊂ R

d compact, K : X × X → R continuous, and λ ∈ L1(X), we
let

Fλ �
{
f : X −→ R | f(x) =

∫

X

K(x, t)λbound(t)λ(t)dt, ‖λbound‖∞,X ≤ 1
}
,

Gλ �
{
g : X −→ R | g(x) =

∫

X

K(x, t)λbin(t)λ(t)dt, λbin : X −→ {±1}measurable
}
.

(4.11)

Lemma 4.6. LetX ⊂ R
d be compact,K : X×X → R continuous, and λ ∈ L1(X). Then Gλ is dense

in Fλ in the supremum norm.
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Proof. Given an element of Fλ, say f̃bound(x) =
∫
XK(x, t)λ̃bound(t)λ(t)dt, and an arbitrary ε > 0,

let us find an element of Gλ, say g̃bin(x) =
∫
XK(x, t)λ̃bin(t)λ(t)dt, such that supx∈X |f̃bound(x) −

g̃bin(x)| < ε.
As K(x, t) is uniformly continuous on X × X, for every η > 0 it is possible to find a

partition {Pi : i = 1, . . . ,N(η)} of X such that for every i, j ∈ {1, . . . ,N(η)} one has
∣
∣Kmax(i,j) −Kmin(i,j)

∣
∣ ≤ η, (4.12)

where Kmax(i,j) � max(x,t)∈Pi×PjK(x, t) and Kmin(i,j) � min(x,t)∈Pi×PjK(x, t). Let x ∈ Pi. As

∫

Pi

K(x, t)λ̃bound(t)λ(t)dt =
∫

Pj

(
K(x, t) −Kmin(i,j)

)
λ̃bound(t)λ(t)dt

+Kmin(i,j)

∫

Pj

(
λ̃bound(t) − λ̃bin(t)

)
λ(t)dt

+
∫

Pj

(
Kmin(i,j) −K(x, t)

)
λ̃bin(t)λ(t)dt

+
∫

Pj

K(x, t)λ̃bin(t)λ(t)dt,

(4.13)

we get

sup
x∈Pi

∣∣∣∣

∫

Pj

K(x, t)λ̃bound(t)λ(t)dt −
∫

Pj

K(x, t)λ̃bin(t)λ(t)dt
∣∣∣∣

≤ sup
x∈Pi

∣∣∣∣

∫

Pj

(
K(x, t) −Kmin(i,j)

)
λ̃bound(t)λ(t)dt

∣∣∣∣

+ sup
x∈Pi

∣∣∣∣Kmin(i,j)

∫

Pj

(
λ̃bound(t) − λ̃bin(t)

)
λ(t)dt

∣∣∣∣

+ sup
x∈Pi

∣∣∣∣

∫

Pj

(
Kmin(i,j) −K(x, t)

)
λ̃bin(t)λ(t)dt

∣∣∣∣.

(4.14)

As to the first and third terms in the right-hand side of (4.14), by Hölder’s inequality
and (4.12)we get

sup
x∈Pi

∣∣∣∣

∫

Pj

(
K(x, t) −Kmin(i,j)

)
λ̃bound(t)λ(t)dt

∣∣∣∣ ≤ sup
x∈Pi

∥∥K(x, ·) −Kmin(i,j)
∥∥
∞,Pj

∥∥λ̃boundλ
∥∥
1,Pj

≤ η‖λ‖1,Pj ,

sup
x∈Pi

∣∣∣∣

∫

Pj

(
Kmin(i,j) −K(x, t)

)
λ̃bin(t)λ(t)dt

∣∣∣∣ ≤ sup
x∈Pi

∥∥K(x, ·) −Kmin(i,j)
∥∥
∞,Pj

∥∥λ̃binλ
∥∥
1,Pj

≤ η‖λ‖1,Pj .

(4.15)

Now we consider the second term in the right-hand side of (4.14). Let c �
∫
Pj
λ̃bound(t)λ(t)dt

and divide Pj into two sets Aj and Bj , such that
∫
Aj
|λ(t)|dt = (‖λ‖1,Pj + c)/2 (such sets exist
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by [33, Theorem 6, page 300], as ‖λ̃bound‖∞ ≤ 1 implies c ≤ ‖λ‖1,Pj ). Choosing λ̃bin such that
λ̃bin(t) = sgn(λ(t)), for all t ∈ Aj and λ̃bin(t) = −sgn(λ(t)), for all t ∈ Bj , simple computations
give

∫

Pj

(
λ̃bound(t) − λ̃bin(t)

)
λ(t)dt = 0. (4.16)

Summing up, taking η = ε/2 for every ε > 0 we get

sup
x∈X

∣
∣f̃bound(x) − g̃bin(x)

∣
∣

= sup
x∈X

∣
∣
∣
∣
∣

∑

Pj

(∫

Pj

K(x, t)λ̃bound(t)λ(t)dt −
∫

Pj

K(x, t)λ̃bin(t)λ(t)dt
)∣
∣
∣
∣
∣
≤ ε‖λ‖1.

(4.17)

The statement follows by letting ε → 0 and considering correspondingly refined partitions.

Now we can prove our main result.

Theorem 4.7. Let X ⊂ R
d be a compact domain, K : X × X → R continuous, τ > 0 such that, for

all x and t, one has |K(x, t)| ≤ τ , and Rn be the Rademacher complexity of the family {K(x, ·)}. Let
0/=λ ∈ L1(X) be a nonnegative function on X and f : X → R

k such that each of its components has
the representation fm(x) =

∫
XK̃m(x, t)λ(t)dt. For m = 1, . . . , k, set K̃m(x, t) = K(x, t)λ̃m(t), where

each λ̃m is a measurable function such that ‖λ̃m‖∞,X ≤ 1. Then there exists an absolute constantC such
that for every positive integer n there exist t1, . . . , tn ∈ X and cm,1, . . . , cm,n ∈ {−1,+1},m = 1, . . . , k,
for which one has simultaneously for allm = 1, . . . , k

sup
x∈X

∣∣∣∣∣
fm(x) −

‖λ‖1,X
n

n∑

i=1

cm,iK
(
x, ti

)
∣∣∣∣∣
≤ 2τ C‖λ‖1,X

√
1
n
max

{(Rn + τ
2τ

)2

, ln k
}
. (4.18)

Proof. For every x ∈ X, fm(x)/‖λ‖1,X =
∫
XK̃m(x, t)(λ(t)/‖λ‖1,X)dt can be considered as

the expected risk of the function sgn(λ(·))K̃m(x, ·) with respect to the probability density
|λ(t)|/‖λ‖1,X . Combining Proposition 4.4, Theorem 4.5, and Lemma 4.6, for every positive
integer l and m = 1, . . . , k, it is possible to find an approximation λ̃lbin,m(t) of λ̃m(t) such that
for every δm > 0 and every λ(t)/‖λ‖1,X-i.i.d. sequence {ti}, we get with probability at least
1 − δm

sup
x∈X

∣∣∣∣∣
fm(x)
‖λ‖1,X − 1

n

n∑

i=1

λ̃lbin,m(ti)K
(
x, ti

)
∣∣∣∣∣
≤ 2τC

√
1
n
max

{(Rn + τ
2τ

)2

, ln
1
δm

}
+
1
l
. (4.19)

For simplicity and without any loss of generality, we take δm = δ < 1/k, for all m = 1, . . . , k.
By standard probability arguments we get with probability at least 1 − kδ

sup
x∈X

∣∣∣∣∣
fm(x)
‖λ‖1,X − 1

n

n∑

i=1

λ̃lbin,m(ti)K
(
x, ti

)
∣∣∣∣∣
≤ 2τ C

√
1
n
max

{(Rn + τ
2τ

)2

, ln
1
δ

}
+
1
l

(4.20)



G. Gnecco and M. Sanguineti 11

simultaneously for all components of f. Then, there exists a choice tl,δi of ti, i = 1, . . . , n, for
which the above-written upper bound holds.

AsX is compact, by letting l → ∞ and δ → 1/k it is possible to extract a subsequence
denoted—with a little abuse—by {tl,δi }, such that, for each i = 1, . . . , n, tl,δi → t∗i ∈ X. Similarly,
since for every l one has a finite number of binary parameters cl,δm,i = λ̃lbin,m(t

l,δ
i ), one can also

extract a subsequence denoted—with a little abuse—by {cl,δm,i}, such that, for every i = 1, . . . , n

andm = 1, . . . , k, cl,δm,i → c∗m,i ∈ {−1,+1} as l → ∞ and δ → 1/k. Then

sup
x∈X

∣
∣
∣
∣
∣
fm(x) −

‖λ‖1,X
n

n∑

i=1

c∗m,iK(x, t∗i )

∣
∣
∣
∣
∣
≤ sup

x∈X

∣
∣
∣
∣
∣
fm(x) −

‖λ‖1,X
n

n∑

i=1

cl,δm,iK
(
x, tl,δi

)
∣
∣
∣
∣
∣

+ sup
x∈X

∣
∣
∣
∣
∣
‖λ‖1,X
n

n∑

i=1

[
cl,δm,iK

(
x, tl,δi

) − c∗m,iK
(
x, t∗i

)]
∣
∣
∣
∣
∣
.

(4.21)

As K(x, t) is uniformly continuous on X ×X, in the limit we get

sup
x∈X

∣∣∣∣∣
fm(x) −

‖λ‖1,X
n

n∑

i=1

c∗m,iK
(
x, t∗i

)
∣∣∣∣∣
≤ 2τC‖λ‖1,X

√
1
n
max

{(Rn + τ
2τ

)2

, ln k
}
. (4.22)

Remark 4.8. Note that Theorem 4.7 does not require knowledge of the Rademacher
complexities of the families {K̃m(x, ·)}, which might not be related in a simple way to that
of {K(x, ·)} (differently from Proposition 4.4, where a very special structure of λ̃m(t) has been
used).

Remark 4.9. If ((Rn + τ)/2τ)
2 ≥ ln k (in particular, this holds for the scalar case k = 1), one

simply gets

sup
x∈X

∣∣∣∣∣
fm(x) −

‖λ‖1,X
n

n∑

i=1

cm,iK
(
x, ti

)
∣∣∣∣∣
≤ C‖λ‖1,X

(Rn + τ
)
√

1
n
,

which has the same form of the bound given in Theorem 4.1 but holds simultaneously for all
the components of f.

Corollary 4.10. Let X ⊂ R
d be a compact domain, K : X ×X → R continuous, τ > 0 such that, for

all x and t, one has |K(x, t)| ≤ τ , and let Rn be the Rademacher complexity of the family {K(x, ·)}. Let
0/=λ ∈ L1(X) be a nonnegative function on X and f : X → R

k such that every component has the
representation fm(x) =

∫
XK̃m(x, t)λ(t)dt. Form = 1, . . . , k, set K̃m(x, t) = K(x, t)λ̃m(t), where each

λ̃m is a measurable function such that ‖λ̃m‖∞,X ≤ 1. Then for each ε > 0 it is possible to approximate
in the supremum norm on X each component fm of f with an error at most ε by using approximations
of the form

f̂m(x) =
‖λ‖1,X
ñ

ñ∑

i=1

cm,iK
(
x, ti

)
, (4.23)
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where ti ∈ X and cm,i ∈ {−1,+1}, for i = 1, . . . , ñ andm = 1, . . . , k, provided that

ñ ≥
C2‖λ‖21,X

ε2
max

{(
Rn + τ

)2
, 4τ2 ln k

}
, (4.24)

where C is an absolute constant.

Proof. It follows immediately by applying Theorem 4.7, by choosing n such that the
approximation error for each of the k components of f is upper bounded by ε.

5. Comparison between the scalar and the vector approximation schemes

To approximate in the supremum norm onX all the k components of a function f : X ⊂ R
d →

R
k with an error at most ε > 0, the vector approximation scheme (4.23) requires

(i) ñk binary parameters,

(ii) ñd real parameters,

where ñ ≥ (C2‖λ‖21,X/ε2)max{(Rn + τ)
2, 4τ2 ln k}.

To the same end, the scalar approximation scheme (4.2) requires

(i) ñ binary parameters,

(ii) ñ d real parameters,

where n =
∑k

m=1nm and nm ≥ C2(Rnm + τ)2‖λm‖21,X/ε2.
In contrast to (4.2), in (4.23) the real parameters ti are the same for all the components.

In the following, we compare the lower bounds on the numbers of real parameters given by
(4.2) and (4.23). To this end, we focus on a case in which the dependence of the Rademacher
complexity Rn on n can be estimated from above.

Recall that a reproducing kernel Hilbert space (RKHS) is a Hilbert space H formed by
functions defined on a nonempty set X such that for every x ∈ X the evaluation functional
Fx, defined for any f ∈ H asFx(f) = f(x), is bounded [16, 19]. RKHSs can be characterized in
terms of kernels, which forX ⊆ R

d are symmetric positive-semidefinite functionsK : X×X → R,
that is, symmetric functions such that for all positive integers m, all (w1, . . . , wm) ∈ R

m, and
all (x1, . . . , xm) ∈ Xm satisfy the condition

∑m
i,j=1wiwjK(xi, xj) ≥ 0. A kernel is called positive-

definite if the previous inequality is strict for all (w1, . . . , wm)/= (0, . . . , 0). If the kernelK is also
continuous, then it is called a Mercer kernel. For every kernel K : X × X → R and x ∈ X, we
define the function Kx : X → R as

Kx(·) � K(x, ·). (5.1)

If there exists a function κ : R
d → R such that the kernelK can be written asKx(t) = κ(x − t),

thenK is called a convolution kernel or a translation-invariant kernel. By the Riesz representation
theorem [36, page 200], for every x ∈ X there exists a unique element Kx ∈ H, called the
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representer of x, such that Fx(f) = 〈f,Kx〉, for all f ∈ H (this property is called the reproducing
property). It is easy to check that the function K : X × X defined for all x,y ∈ X as K(x,y) =
〈x,y〉, where 〈·, ·〉 denotes the ordinary scalar product in R

d restricted toX, is a kernel. On the
other hand, every kernelK : X×X → R generates an RKHSHK(X) that is the completion of
the linear span of the set {Kx : x ∈ X}, with the inner product defined as 〈Kx, Ky〉K = K(x,y);
we denote by ‖·‖K the induced norm (see, e.g., [16] and [19, page 81]).

For a compact domain X ⊂ R
d, a positive-definite, continuous kernel K : X ×X → R,

and a probability measure μ on X, we define the integral operator TK : L2(μ) → L2(μ) as

(TKf)(x) =
∫

X

K(x, t)f(t)dμ(t). (5.2)

The following proposition gives an upper bound on the Rademacher complexity of the family
GK = {K(x, ·)} associate with the kernel K defining TK. By Tr(TK), we denote the trace of TK,
that is, the sum of its eigenvalues.

Proposition 5.1. LetX ⊂ R
d be a compact domain,K : X×X → R a positive-definite Mercer kernel,

μ a probability measure on X, and TK : L2(μ) → L2(μ) the integral operator defined by (5.2). Let
HK(X) be the RKHS associate with the kernel K, GK = {K(x, ·)}, and sK � supx∈X‖K(x, ·)‖K =
maxx∈X

√
K(x, x). If the largest eigenvalue l1(TK) of TK satisfies l1(TK) ≥ 1/n, then

Rn

(
GK

) ≤ sK
√
Tr
(
TK

)
.

Proof. Let BK be the unit ball of HK(X) centered at 0. By the definition of sK, GK ⊆ sKBK.
Then, the statement follows by [20, Theorem 15, parts 1 and 3] and [20, Theorem 16].

Let us assume that the required approximation error ε > 0 is sufficiently small, so
that the assumption l1(TK) ≥ 1/n of Proposition 5.1 is satisfied with n equal to each nm in
Corollary 4.3 and to ñ in Corollary 4.10. Then, taking for simplicity of comparison ‖λm‖1,X =

‖λ‖1,X (which holds, e.g., when the functions λ̃m take values in {±1}) and using the upper
bound on the Rademacher complexity given in Proposition 5.1, the lower bounds on n and ñ
given by Corollary 4.3 and Corollary 4.10 become, respectively,

(i) n ≥ kC2(sK
√
Tr(TK) + τ)

2‖λ‖21,X/ε2;

(ii) ñ ≥ (C2‖λ‖21,X/ε2)max{(sK
√
Tr(TK) + τ)

2
, 4τ2 ln k}.

Inspection of the respective proofs shows that all the absolute positive constants C above
are equal. Thus, for a Mercer kernel satisfying the assumptions of Proposition 5.1, the lower
bound obtained by applying Corollary 4.10 and Proposition 5.1 is an improvement over the
one obtained by applying Corollary 4.3 and Proposition 5.1, at least for a large number k of
components.
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6. Application to N-stage optimization problems

Let us consider the solution, by the well-known dynamic programming (DP) algorithm [14],
of the following finite-horizon, discrete-time dynamic optimization problem, modeled as in [37]:
given x0 ∈ X, find x1, . . . , xN ∈ X such that

Jo
(
x0
)
= sup

{
N−1∑

t=0

βth
(
xt, xt+1

)
+ βNhN

(
xN

)
}

,

where
(
xt, xt+1

) ∈ D, t = 0, 1, . . . ,N − 1.

(6.1)

The vector xt ∈ X ⊆ R
d represents the state of a dynamical system, X is the set to which the

state vector belongs (state space), D ⊆ X × X is the graph of a correspondence that models the
transition from one stage to the following one, h : D → R is a transition reward, hN : X →
R is the final reward associate with the final stage, 0 < β ≤ 1 is a discount factor, and Jo is
the so-called value function. Using an economic terminology, βth(xt, xt+1) and βNhN(xN) are
actualized values of transition and final rewards, respectively. For simplicity of notations and
without loss of generality, we assume that X, h, and D do not depend on the time t.

Dynamic programming considers the followingN subproblems:

JoN(xN) = hN(xN); (6.2)

given xi ∈ X, find xi+1, . . . , xN ∈ X such that

Joi
(
xi
)
= sup

{
N−1∑

t=i

βt−ih
(
xt, xt+1

)
+ βN−ihN

(
xN

)
}

, i =N − 1, . . . , 0,

where
(
xt, xt+1

) ∈ D, t = i, . . . ,N − 1.

(6.3)

Under suitable conditions on the problem formulation [38], Theorem 4.1 can be
exploited to find sparse approximations for both the ith stage value functions Joi : X → R

and each component of the optimal ith stage policy functions goi : X → X, i = N − 1, . . . , 0.
For the latter, since each component is dealt with separately, in general one expects that the
parameters t1, . . . , tn ∈ X and c1, . . . , cn ∈ {−1,+1} for which the bound given in Theorem 4.1
holds will be different from one component to the other. In order to reduce the number
of parameters needed to obtain a desired accuracy of approximation of the optimal policy
functions, it is useful to have at one’s disposal an approximation error bound for which some
of the parameters are common to the approximators of all the components of each optimal
policy function. If similarities (correlations) among the components of each optimal policy
function to be approximated exist and can be modeled as in Theorem 4.7, the latter gives such
an upper bound. In dynamic optimization problems, these similarities can arise in several
ways (although their analysis is problem-dependent).

For example, applying the dynamic programming algorithm at stage N − 1, for each
xN−1 ∈ X one has to find

xoN = goN−1
(
xN−1

)
= argmax

xN∈X

[
h
(
xN−1, xN

)
+ βhN

(
xN

)]
. (6.4)
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Similarities among the components of goN−1 may be present, depending on the properties of
hN−1 and hN , which are given in the problem formulation.

Another case in which there can be similarities among the components of the optimal
policy function may occur in the case of infinite-horizon, discrete-time dynamic optimization
problems modeled as follows: given x0 ∈ X and 0 < β < 1, find x1, x2, . . . ,∈ X such that

Jo
(
x0
)
= sup

{ ∞∑

t=0

βth
(
xt, xt+1

)
}

,

where
(
xt, xt+1

) ∈ D, t = 0, 1, . . . .

(6.5)

It is known that under suitable hypotheses an optimal policy has one or more stationary
points, that is, there exists x0 ∈ X such that go(x0) = x0. In such a case, if go is Lipschitz
continuous (which holds under some conditions; see [37]) and its Lipschitz constant is
“sufficiently small,” then one has go(x) ∼= x on a “sufficiently large” neighborhood of x0.
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