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1 Introduction

In the classical knapsack problem, a knapsack of capacity C is given, together with

K classes of objects. For every k = 1, . . . , K, each object of the class k has a size
bk and an associated reward rk. The objects can be placed into the knapsack as long

as the sum of their sizes does not exceed the capacity C. The problem consists in
placing the objects inside the knapsack so as to maximize the total reward.

Among the various extensions to a stochastic framework available in the literature

(see, e.g., [7,5,3]), we consider the stochastic knapsack problem proposed in [7].

In such a model, objects belonging to each class become available randomly, ac-

cording to exponentially-distributed inter-arrivals times with means depending on

the class and on the state of the knapsack. Each object has a sojourn time indepen-

dent from the sojourn times of the other objects and described by a class-dependent

distribution. If put into the knapsack, an object from class k generates revenue at
a positive rate rk. Let nk ≥ 0 denote the number of objects of class k that are
currently inside the knapsack. Then one has the linear constraint

∑

k∈K

nkbk ≤ C . (1)

The problem consists in finding a policy that maximizes the average revenue, by

accepting or rejecting the arriving objects in dependence of the current state of the

knapsack.

The stochastic knapsack problem that we have just described has application, e.g.,

in Call Admission Control (CAC) for telecommunication networks. In such a con-

text, the objects are requests of connections coming from K different classes of
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users, each with a bandwidth requirement bk, k = 1, . . . , K, and a distribution for
its duration. In CAC problems, often the constraint (1) arises as a linearization of

the nonlinear constraint

∑

k∈K

βk(nk) ≤ C , (2)

where the βk(·) are nonlinear nonnegative functions. The model in which the linear
constraint (1) is replaced by the nonlinear one (2) is known in the literature as the

generalized stochastic knapsack problem 1 [4]. In call admission control, the coef-

ficients bk of the linearized constraint are called effective bandwidths [6, Chapter

1].

The sets

ΩFR := {(n1, . . . , nK) ∈ N
K
0 :

∑

k∈K

nkbk ≤ C}, (3)

in the linear case, and

ΩFR := {(n1, . . . , nK) ∈ N
K
0 :

∑

k∈K

βk(nk) ≤ C} (4)

in the nonlinear case, are called feasibility regions. In the context of admission

control they model subsets of the call space {(n1, . . . , nK) ∈ N
K
0 }, where given

Quality of Service (QoS) constraints are satisfied.

In general, finding optimal policies is a difficult combinatorial optimization task

both for the stochastic knapsack problem [6, Chapter 4] and for the generalized

stochastic one [1,2]. The a-priori knowledge of structural properties of the (un-

known) optimal policies is useful to find the solutions or, at least, good subop-

timal policies. For two classes of objects and the linear constraint (1), structural

properties were derived in [7] for the optimal policies belonging to the family

of coordinate-convex policies. Such properties restrict the K-tuple (n1, . . . , nK)
to suitable subsets of the feasibility region ΩFR. Some extensions to nonlinearly-

constrained feasibility regions of the structural results obtained in [7] for linearly-

constrained ones were derived in [2] and other structural results were obtained in

[1].

2 Problem formulation

Let n denote the vector (n1, . . . , nk). For each class k = 1, . . . , K, the inter-arrival
time is exponentially distributed with mean value 1/λk(nk). The sojourn times of
the accepted objects are independent and identically distributed (i.i.d.) with mean

values 1/µk, k = 1, . . . , K. At the time of its arrival, each object is either accepted
or rejected, according to a coordinate-convex policy, defined as follows [6, p. 116].

1 Note that this is different from the “generalized stochastic knapsack” considered in [6,

Chapter 3].
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Definition 2.1 A nonempty set Ω ⊆ ΩFR ⊂ N
K
0 is coordinate-convex iff it has the

following property: for every n ∈ Ω with nk > 0 one has n − ek ∈ Ω, where ek

is a K-dimensional vector whose k-th component is 1 and the other ones are 0.
The coordinate-convex policy associated with a coordinate-convex set Ω admits an

arriving object iff after its insertion one has n ∈ Ω.

Note that by (3) or (4), the set ΩFR is itself coordinate-convex. As there is a one-to-

one correspondence between coordinate-convex sets and coordinate-convex poli-

cies, in the following we use the symbol Ω to denote either a coordinate-convex set

or a coordinate-convex policy.

The objective to be maximized in the set P(ΩFR) of coordinate-convex subsets of
ΩFR is given by

J(Ω) =
∑

n∈Ω

(n · r)PΩ(n) , (5)

where r denotes the vector (r1, . . . , rK) and PΩ(n) is the steady-state probability
that the current content of the knapsack is n. As Ω is coordinate-convex, one can

show that PΩ(n) takes on the product-form expression

PΩ(n) =

∏K
i=1 qi(ni)∑

n∈Ω

∏K
i=1 qi(ni)

, where qi(ni) :=

∏ni−1

j=0 λi(j)

ni!µ
ni

i

. (6)

Due to (6), in general the objective (5) is nonlinear. What makes the problem dif-

ficult is that, given any two coordinate-convex sets Ω1, Ω2 ⊆ ΩFR, in general the

relationship Ω1 ⊆ Ω2 does not imply J(Ω1) ≤ J(Ω2).

3 Contributions

For generalized stochastic knapsack problems with two classes of objects (which

model CAC with two classes of users), in [1] we derived for the optimal coordinate-

convex policies structural properties that do not depend on the revenue ratio R :=
r2/r1. In [2], instead, we obtained properties that do depend on it. In the present

work, we develop the investigation in the following directions.

(i) We analyze the optimal choices for some parameters used by a criterion pro-

posed in [1] to improve certain suboptimal coordinate-convex policies. The

criterion is based on the removal or addition of rectangular subregions near

suitably-defined corner points.

(ii) We propose a greedy algorithm of approximate solution, based on the optimal

choice of the parameters in (i). The related simulations show an improvement

of the objective over the numerical results derived in [1].

(iii) We address some relationships between general structural properties of the

optimal coordinate-convex policies and the greedy algorithm in (ii). In partic-

ular, we extend [1, Theorem III.6] by proving that the coordinate-convex set

associated with an optimal coordinate-convex policy has a nonempty inter-

section with the upper boundary (∂ΩFR)+ of the feasibility region ΩFR (see
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Fig. 1), independently of the number of its corner points.

(iv) We exploit another general structural property of the optimal coordinate-

convex policies to initialize the greedy algorithm in (ii).

(a) (b) n1n1

n2n2

(!"FR)
+

(!"FR)
+

1

Fig. 1. The upper boundary (∂ΩFR)+ of a feasibility region ΩFR with two classes of ob-

jects in the case of (a) a linearly-constrained ΩFR (stochastic knapsack) and (b) a nonlin-

early-constrained ΩFR (generalized stochastic knapsack).
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