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Abstract

Smoothness of the solutions to network team optimization problems with statistical information
structure is investigated. Suboptimal solutions expressed as linear combinations of elements from
sets of basis functions containing adjustable parameters are considered. Estimates of their accuracy
are derived, for basis functions represented by sinusoids with variable frequencies and phases and
Gaussians with variable centers and widths.
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1 Introduction

Agents cooperating to achieve a common goal model a variety of problems in engineering, economic
systems, management science and operations research, in which distributed optimization processes have
to be performed. In this paper, we consider team decision problems defined on a network of decision

makers, where each decision maker (DM) cooperates to maximize a team utility function (also called
“social utility”). In the model that we adopt, each DM has at its disposal a probabilistic information

(obtained, e.g., by measurement devices) and various possibilities of actions. Decisions are generated by
the DMs via strategies, on the basis of the information available to each of them and in the presence of
uncertainties in the external world, not controlled by the DMs.

Sometimes, a team utility function is present from the beginning in the formulation of the network
optimization problem. For example, a situation with a natural team formulation is represented by routing
in packet-switching telecommunication networks. According to the model proposed in [28] and used in
subsequent works (see, e.g., [2, 4, 14]), the DMs are the routers at each node, which choose the actions
on the basis of their routing strategies. The DMs do not share a common information on the state of the
network (represented, e.g., by the length of the packet queues at the nodes and the delays in the links),
but share the common goal of minimizing the total time spent by the messages at the nodes and on the
communication links.

In other cases, a priori each DM has an individual utility function, so, if one assumes that each
DM aims to maximize its own utility with a “selfish behavior”, the natural framework is provided by
noncooperative game theory and Nash equilibria [22]. Instead, in a team reformulation of the problem,
each DM cooperates to maximize a common goal given, e.g., by the sum of the individual utilities. In this
context, studying a team problem instead of a noncooperative one may be motivated by considering the
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price of anarchy [23]. Roughly speaking, the price of anarchy measures the loss in the social utility when
the DMs play the “worst” Nash equilibrium, compared to the case in which they maximize a common
utility, i.e., when they play as members of a team. In some cases, the price of anarchy is very large,
especially in the presence of smooth individual utility functions [19, Lecture 3]. For example, this may
happen when the individual utilities are related to the congestion of a communication link shared among
some DMs. Another reason for which a team reformulation of a problem is sometimes well motivated
arises from the so-called “Braess’s paradox” [19, Lecture 3] in game theory. Braess’s paradox shows that
adding a resource (e.g., one communication link) to a network of DMs playing a Nash equilibrium, may
even decrease the social utility. This does not happen if the DMs behave as members of a team.

In general, one centralized DM that, relying on the whole available information, maximizes the given
common goal, provides a better performance than a set of decentralized DMs, each of them having
partial information. However, often centralization is not feasible for various reasons. For example, this
happens when the DMs have access to local information and they cannot exchange instantaneously such
information. Moreover, in some situations the cost of making the whole information available to one
single DM is too high with respect to having several DMs with different available information. This
framework models, e.g., communication and computer networks extending in large geographical areas,
production plants, energy distribution, traffic systems in large metropolitan areas divided into sectors,
freeway systems, etc.

In the networks of DMs that we address, the information of each DM depends on the state of the
world but is independent of the actions of the other DMs. This is called a static team, in contrast to
a dynamic team, where each DM’s information is affected by the actions of the other members. Static
teams were first investigated by Marschak and Radner [20, 21, 26], who derived closed-form solutions for
some cases of interests. Then, dynamic teams were studied [6].

Unfortunately, closed-form solutions can be derived only under quite strong assumptions on the team
utility function and on the way in which each DM’s information is influenced by the state of the world
(and, in the case of dynamic teams, by the actions previously taken by the other DMs). In particular,
most results hold under the so-called LQG hypotheses (i.e., linear information structure, concave quadratic
utility, and Gaussian random variables) and with partially nested information (i.e, when each DM can
reconstruct all the information available to the DMs that affect its own information). In general, one has
to search for suboptimal solutions.

In this paper, for static team problems we derive a-priori estimates of the accuracy of suboptimal so-
lutions having the form of linear combinations of k elements from a set of basis functions, containing some
adjustable parameters to be optimized. Such approximation scheme, known as variable-basis approxi-

mation [15, 16], includes free-node splines, trigonometric polynomials with free frequencies and phases,
radial-basis-function networks with adjustable centers and widths, and feedforward neural networks. The
numerical results in [2, 3, 4] show that these approximators are able to find accurate suboptimal solu-
tions to team optimization problems with high-dimensional states. The present work complements such
experimental outcomes providing theoretical results supporting the use of variable-basis approximation
schemes in team optimization problems. The analysis is made for static team problems, however, in [31]
it was shown that many dynamic team optimization problems can be reformulated in terms of equivalent
static ones.

In our model, we have a statistical information structure, i.e., the information available to each DM
is expressed via a probability density function. We provide conditions guaranteeing that optimal solu-
tions exist and have a certain degree of smoothness. Exploiting these results, we investigate suboptimal
solutions obtained by restricting the search to k-term variable-basis approximators with sinusoidal or
Gaussian basis functions. We estimate the accuracy of such suboptimal solutions in terms of the differ-
ence between the value of the team, i.e., the value of the team utility function when optimal strategies are
used, and its value when the strategies used are the optimal ones among restricted families of variable-
basis approximators with k basis functions. The upper bounds that we derive are proportional to k−1/2.

The paper is organized as follows. Section 2 introduces definitions and assumptions and formulates
the team optimization problem (Problem P). Section 3 investigates smoothness properties of optimal
strategies for Problem P. Section 4 describes nonlinear approximation of the optimal strategies from sets
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made up of variable-basis functions and estimates the accuracy of such suboptimal solutions. Section 5
contains some conclusions and discusses possible extensions. Due to lack of space, some proofs are only
sketched; the details can be found in [10, 12].

2 Problem formulation

The context in which we shall formalize the optimization problem and derive our results is the following.

• Team of n decision makers (DMs), i = 1, . . . , n.

• x ∈ X ⊆ R
d: random variable, called state of the world, with a probability density p : X → R

describing a stochastic environment. The vector x models the uncertainties in the external world,
which are not controlled by the DMs.

• yi = fi(x) ∈ Yi ⊆ R
di : information that the DM i has about x, which is a given function of the

state of the world.

• si : Yi → Ai ⊆ R: measurable strategy of the i-th DM.

• ai = si(yi): action that the DM i chooses on the basis of the information yi.

• u : X × Πn
i=1Yi × Πn

i=1Ai → R: real-valued team utility function, to be jointly maximized by the
team.

• The information that the n DMs have on the state of the world x is modelled by an n-tuple of
random variables y1, . . . , yn, i.e., one has a statistical information structure [7] represented by a
probability density q(x, y1, . . . , yn) on the set X ×Πn

i=1Yi, whose marginal density on X is equal to
the density p(x) of the state of the world.

The family of static team optimization problems that we consider is formalized as follows.
Problem P (Static Team Optimization with Statistical Information). Given the statistical
information structure q(x, y1, . . . , yn) with marginal density on X equal to p(x), the utility function
u(x, y1, . . . , yn, s1(y1), . . . , sn(yn)), u : R

N → R, where N = d+
∑n

i=1 di + n, find

sup
s1,...sn

v(s1, . . . , sn) ,

where

v(s1, . . . , sn) := E
x,y1,...,yn

{u(x, {yi}n
i=1, {si(yi)}n

i=1)} .

The quantity sups1,...sn
v(s1, . . . , sn) is also called the value of the team.

By C(Ω) we denote the space of continuous functions on Ω; for a positive integer m > 0, by Cm(Ω)
and C∞(Ω) we denote the spaces of functions on Ω, which are continuous together with their partial
derivatives up to the order m and up to every order, respectively. C0(Ω) and C∞

0 (Ω) are the spaces of
those functions in C(Ω) and C∞(Ω), respectively, which have compact support in Ω [1, p. 9].

Throughout the paper, we make the following assumptions A1 and A2.
A1 The set X of the states of the world is compact, Y1, . . . , Yn are compact and convex, A1, . . . , An are
bounded closed intervals. For an integer m ≥ 2, the utility u is of class Cm on an open set containing
X×Πn

i=1Yi×Πn
i=1Ai, and q a (strictly) positive probability density on X×Πn

i=1Yi, which can be extended
to a function of class Cm on an open set containing X × Πn

i=1Yi.
A concave function f defined on a convex set Ω has concavity at least τ > 0 if for all u, v ∈ Ω and

every supergradient1 au of f at u one has f(v) − f(u) ≤ au · (v − u) − τ‖v − u‖2.

1Recall that, for Ω ⊆ R
d convex and f : Ω → R concave, au ∈ R

d is a supergradient of f at u ∈ Ω if for every v ∈ Ω it
satisfies f(v) − f(u) ≤ au · (v − u) .
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A2 There exists τ > 0 such that the team utility function u : R
N → R is separately concave in each of

the decision variables, with concavity at least τ .
Concavity of the team utility function is motivated by tractability reasons and is often encountered in

practice, too. For example, in economic problems it is motivated by the “law of diminishing returns”, i.e.,
the fact that the marginal productivity of an input usually diminishes as the amount of output increases
[21, p. 99 and p. 110].

3 Smooth optimal strategies

In this section, we give conditions that guarantee existence and smoothness of optimal strategies for
Problem P. We shall exploit them in Section 4, to estimate the accuracy of certain suboptimal solutions.

The next theorem (which extends, to a higher degree of smoothness, a result from [17]) gives conditions
guaranteeing that Problem P has a solution made of an n-tuple of strategies that are Lipschitz continuous2

together with their partial derivatives up to a certain order.

Theorem 3.1 Let Assumptions A1 and A2 hold. If for every n-tuple {s1, . . . , sn} of strategies, the
strategies defined as

ŝ1(y1) := argmax
a1

E
x,y2,...,yn |y1

{u(x, {yi}n
i=1, a1, {si(yi)}n

i=2)},
. . .

ŝn(yn) := argmax
an

E
x,y1,...,yn−1 |yn

{u(x, {yi}n
i=1, {si(yi)}n−1

i=1 , an)}

do not lie on the boundaries of A1, . . . , An, respectively, then Problem P admits Cm−2 optimal strategies
(so

1, . . . , s
o
n) with partial derivatives that are Lipschitz up to the order m− 2.

Note that the condition that ŝ1(y1), . . . , ŝn(yn) do not lie on the boundaries of A1, . . . , An, respectively,
can be imposed a priori by strongly penalizing the utility on the boundary. For limitations of space, we
sketch the proof of Theorem 3.1 for n = 2. For detailed arguments, see [10, 12].
Sketch of proof. Consider a sequence {sj

1, s
j
2} of pairs of strategies, indexed by j ∈ N+, such that

limj→∞ v(sj
1, s

j
2) = sups1,s2

v(s1, s2) (such a sequence exists by the definition of supremum). From this se-

quence, we generate another sequence {ŝj
1, ŝ

j
2} defined as ŝj

1(y1) = argmaxa1
Ex,y2 |y1

{u(x, y1, y2, a1, s
j
2(y2)} ,

ŝ
j
2(y2) = argmaxa2

Ex,y1 |y2
{u(x, y1, y2, ŝj

1(y1), a2)} . By some technical steps, it can be proved that that

for every j ∈ N+, ŝj
1 and ŝ

j
2 are well-defined (i.e., the argmax are singletons) and measurable so it

makes sense to evaluate v(ŝj
1, ŝ

j
2) (by construction, v(ŝj

1, ŝ
j
2) ≥ v(sj

1, s
j
2)), and Lipschitz with a constant

independent of j, equibounded and uniformly equicontinuous.
Let us focus on the strategy of the first DM. The next step consists in showing that there exists

a subsequence of {ŝj
1} that converges uniformly to a strategy so

1 ∈ Cm−2(Y1) with Lipschitz (m − 2)-

order partial derivatives. Let M j
1 (y1, a1) = Ex,y2|y1

{u(x, y1, y2, a1, s
j
2(y2)} . As by hypothesis ŝj

1(y1) is

interior, for every y1 ∈ Y1 we have
∂Mj

1

∂a1

∣

∣

∣

a1=ŝj
1
(y1)

= 0 . Then, by the Implicit Function Theorem, for every

k = 1, . . . , d1 we get
∂ŝj

1

∂y1,k
= −

(

∂2Mj
1

∂ŝj
1

2

)−1
∂2Mj

1

∂ŝj
1
∂y1,k

, where one can show that

(

∂2Mj
1

∂ŝj
1

2

)

≤ −τ < 0.

By some technical steps and exploiting the Ascoli-Arzelà Theorem3 [1, Theorem 1.30, p. 10] one can

show that for every (i1, . . . , id1
) such that i1 + . . .+ id1

= m− 2, the sequence

{

∂m−2ŝj
1

∂y
i1
1,1,...,∂y

id1

1,d1

}

admits a

subsequence that converges uniformly to a Lipschitz function on Y1.
By integrating m − 2 times, we conclude that also the integrals of these subsequences converge uni-

formly to the integrals of the limit functions. Therefore, there exists a subsequence of {ŝj
1} that converges

2Recall that a function f : Ω → R is said to be Lipschitz continuous on Ω if there exists a constant M > 0 such that for
all u, v ∈ Ω, |f(u) − f(v)| ≤ M ‖u − v‖.

3For a compact set Ω ⊂ R
d, Ascoli-Arzelà’s theorem states that if a set F ⊂ C(Ω) is closed, equibounded, and uniformly

equicontinuous, then it is a compact subset of C(Ω).
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uniformly to a strategy so
1 ∈ Cm−2(Y1) with Lipschitz (m − 2)-order partial derivatives. Similarly, one

proves that there exists a subsequence of {ŝj
2} that converges uniformly to so

2 ∈ Cm−2(Y1) with Lipschitz
(m− 2)-order partial derivatives.

By the continuity of the functional v(s1, s2) on C(Y1) × C(Y2) with the respective maximum norms,
finally we obtain v(so

1, s
o
2) = limj→∞ v(ŝj

1, ŝ
j
2) = sups1,s2

v(s1, s2) . �

4 Accuracy of suboptimal solutions to Problem P

Problem P admits a closed-form solution when, e.g., the team utility function u is a second-degree
polynomial with positive definite quadratic term [17, Theorem 4, p. 68]. However, in more general
situations only suboptimal solutions can be obtained. One possible way to find them consists in restricting
the search to strategies having a simple form.

An approximation scheme that has received considerable attention in recent years consists in using
linear combinations ψ(·, w1), . . . , ψ(·, wk) of functions obtained from a “mother function” ψ dependent
on vectors w1, . . . , wk of adjustable parameters, to be optimized together with the coefficients c1, . . . ck
of the linear combination

k
∑

i=1

ci ψ(x,wi) . (1)

In general, the presence of the “inner” parameters w1, . . . , wk “destroys” linearity of the approximation
scheme, so (1) is a nonlinear approximation scheme, which belongs to the class of variable-basis approxi-

mation schemes [15, 16]. With suitable choices of the function ψ, (1) models a variety of approximating
families used in applications, such as free-node splines, trigonometric polynomials with free frequencies
and phases, radial-basis-function networks with adjustable centers and widths, and feedforward neural
networks. Advantages of certain variable-basis approximation schemes of the form (1) over classical linear
ones were investigated, e.g., in [5, 15] for function approximation and in [9, 30] for functional optimiza-
tion. Roughly speaking, for a desired accuracy of approximation, variable-basis approximation schemes
may require much less parameters to be optimized than linear ones [9, 15, 16, 30].

In the following, we shall exploit the smoothness results obtained in Section 3 and certain properties
of variable-basis approximation schemes to derive upper bounds on the distance between the value of
the team, i.e., the quantity sups1,...,sn

v(s1, . . . , sn), and the suboptimal value when the supremum is
performed over a subset of strategies s̃1, . . . , s̃n having the form (1) with a fixed k. In particular, we shall
estimate the number k of basis functions sufficient to guarantee a desired approximation accuracy ε > 0
for the value of the team.

As a first step, the following proposition allows one to reduce the optimization Problem P to a function
approximation problem.

Proposition 4.1 Let u(x, y1, . . . , yn, a1, . . . , an) be Lipschitz with respect to (a1, . . . , an) with Lipschitz
constant L and suppose that Problem P has a solution (so

1, . . . , s
o
n). Then for every positive integer n

and every n-tuple (s1, . . . , sn) of strategies,

v(so
1, . . . , s

o
n) − v(s1, . . . , sn) ≤ L

n
∑

i=1

√

E
yi

{(so
i (yi) − si(yi))

2} .

Sketch of proof. The proof follows by using the Jensen and Minkowski Inequalities, together with the
Lipschitz continuity of u. Details can be found in [10, 12]. �

According to Proposition 4.1, to obtain a “good approximation” of sups1,...,sn
v(s1, . . . , sn), it is sufficient

to have a “good approximation” of (so
1, . . . , s

o
n).
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We shall need the following definitions. Given a Lebesgue-measurable set Ω ⊆ R
d, by Lp(Ω) and

‖ · ‖Lp(Ω), for 1 ≤ p ≤ ∞, we denote the corresponding Lebesgue space and norm, respectively, where

integration is performed with respect to the Lebesgue measure. For Ω ⊆ R
d open, a positive integer m

and 1 ≤ p ≤ ∞, we denote by Wm,p(Ω) the Sobolev space of functions whose weak partial derivatives up
to the order m are in Lp(Ω). Finally, for an open set Ω ⊆ R

d, Wm,p
0 (Ω) is the closure of C∞

0 (Ω) in the
Sobolev space Wm,p(Ω) (see [1, pp. 44-45]).

The next proposition estimates the accuracy of approximation of the optimal strategies in terms of
sinusoids with variable frequencies and phases used in (1). We denote by PrjAi

the projection on Ai

(recall that every admissible strategy si takes its values on Ai).

Proposition 4.2 Let the assumptions of Theorem 3.1 hold with m >
maxi{di}

2 + 1. Then there exists
a positive constant C (dependent on (so

1, . . . , s
o
n)), such that for every positive integer k there exists an

n-tuple of strategies (s̃k
1 , . . . , s̃

k
n) such that

v(so
1, . . . , s

o
n) − v(s̃k

1 , . . . s̃
k
n) ≤ C√

k
,

where

s̃
k
i (yi) =

k
∑

j=1

cijPrjAi
(gij(yi)) , gij ∈ Gi ,

gij ∈ Gi ,

Gi :=

{

gi : Yi → R | gi(yi) = Πdi
k=1 cos(ωi,kyi,k + θi,k) , ωi,k =

2πh

yu
i,k − yl

i,k

, h ∈ N, θi,k ∈ [0, 2π)

}

,

k
∑

j=1

|cij | ≤
∞

∑

j1,...,jdi
=0

|Aj1,...,jdi
i | ,

and
{Aj1,...,jdi

i }
are the coefficients of the Fourier series expansion of a suitable extension of so

i on a set

(yl
i,1, y

u
i,1) × . . .× (yl

i,di
, yu

i,di
) ⊃ Yi .

Proof. Let 1 ≤ p < ∞. By Theorem 3.1, so
i ∈ Wm−1,∞(int(Yi)) ⊂ Wm−1,p(int(Yi)). As every Yi is a

bounded convex set, by Sobolev’s extension theorem (see [29, Theorem 5, p. 181] and [29, Example 2, p.
189]), so

i can be extended to a function so,ext,p
i ∈ Wm−1,p(Rdi).

Fix a set Y per
i := (yl

i,1, y
u
i,1) × . . . × (yl

i,di
, yu

i,di
) ⊃ Yi and consider a function ψi ∈ C∞

0 (Y per
i ) with

Lipschitz (m − 2)-order partial derivatives, such that ψi(yi) = 1, ∀yi ∈ Yi. By using [1, Theorem
3.18, p. 54] one can prove that so,per,p

i := s
o,ext,p
i · ψi ∈ Wm−1,p

0 (Y per
i ) if 1 ≤ p < ∞. By the Sobolev

Embedding Theorem [1, Theorem 5.4, Part III, Case C’, pp. 97-98], if di < p̄ <∞, then Wm−1,p̄
0 (Y per

i ) ⊂
Cm−2([yl

i,1, y
u
i,1] × . . . × [yl

i,di
, yu

i,di
]). This, together with the boundary conditions on s

o,per,p̄
i , allows one

to apply a result4 from [24, pp. 81-82], according to which the Fourier series coefficients of so,per,p̄
i satisfy

Ki :=

∞
∑

j1,...,jdi
=0

|Aj1,...,jdi

i | <∞ ,

(i.e., using the notations of [24, pp. 81-82], so,per,p̄
i ∈ A(1)).

4That result states that Lip(α) ⊂ A(s) when s >
2di

2α+di
(see [24, pp. 81-82] for the notations and the precise definitions of

Lip(α) and A(s)). By the construction of s
o,per,p̄
i and the definition of Lip(α), one can easily show that s

o,per,p̄
i ∈ Lip(m−2) if

di < p̄ < ∞. Moreover, the condition s >
2di

2α+di
is satisfied with s = 1 and α = m−2, since by assumption m >

maxi{di}
2

+1,

then s
o,per,p̄
i ∈ A(1), as desired.
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Hence, so,per,p̄
i belongs to the closure (with respect to the L2((y

l
i,1, y

u
i,1) × . . .× (yl

i,di
, yu

i,di
))-norm) of

the convex hull of the set

G
per
i :=

{

gi : (yl
i,1, y

u
i,1) × . . . × (yl

i,di
, y

u
i,di

) → R |

gi(yi) = b Πdi
k=1 cos(ωi,kyi,k + θi,k) , |b| ≤ Ki , ωi,k =

2πh

yu
i,k − yl

i,k

, h ∈ N, θi,k ∈ [0, 2π)

}

.

Let Hi be the Hilbert space of functions fi : Yi → R such that Eyi
{|fi(yi)|2} < ∞, where the expected

value is evaluated on Yi. As the probability density q is bounded and s
o,per,p̄
i is an extension of so

i , the
latter belongs to the closure (with respect to Hi norm) of the convex hull of Gi. Moreover, for each
gi ∈ Gi we have

‖gi‖Hi
=

√

Eyi
{|gi(yi)|2} ≤ Ki .

Hence, by the Maurey-Jones-Barron Lemma [8, Lemma 8.1], for every integer k ≥ 1 and every Ci >

K2
i − ‖so

i ‖2
Hi

there exists a function s̃k
i in the convex hull of k elements of Gi such that

‖so
i − s̃k

i ‖2
Hi

= Eyi
{|so

i (yi) − s̃k
i (yi)|2} ≤ Ci

k
. (2)

We conclude the proof by taking projections and applying (2) and Proposition 4.1. �

The next proposition estimates the accuracy of suboptimal solutions when Gaussian basis functions
with variable centers and widths are used in (1).

Proposition 4.3 Let the assumptions of Theorem 3.1 hold with an odd integer m > maxi{di}+1. Then
there exist K(m, di) > 0, i = 1, . . . , n, and a positive constant C, which depends on (so

1, . . . , s
o
n), such

that for every positive integer k there exists an n-tuple of strategies (s̃k
1 , . . . , s̃

k
n) such that

v(so
1, . . . , s

o
n) − v(s̃k

1 , . . . s̃
k
n) ≤ C√

k
,

s̃
k
i (yi) =

k
∑

j=1

cijPrjAi
(gij(yi)) ,

gij ∈ Gi ,

Gi :=

{

gi : Yi → R | gi(yi) = e
−

‖yi−ti‖
2

δi , ti ∈ R
di , δi > 0

}

,

k
∑

j=1

|cij | ≤ K(m, di)‖λi‖L1(R
di ) ,

and λi ∈ L1(R
di) is such that so,ext,1

i = Bm−1 ∗ λi for a suitable extension so,ext,1
i of so

i on R
di .

Proof. Recall that for a positive integer d and r > 0, Br : R
d → R is the Bessel potential of order r,

which is defined [29, Chapter 5, Section 3] as the inverse Fourier transform of B̂r(ν) := 1

(1+4π2‖ν‖2)
r
2

.

As in the proof of Proposition 4.2, so
i can be extended to a function s

o,ext,1
i ∈ Wm−1,1(Rdi). Since

m − 1 is even, we can apply the strict inclusion of Sobolev spaces into Bessel potential spaces stated in
[29, Remark 6.6 (b), p. 160]). Then, there exists λi ∈ L1(R

di) such that so,ext,1
i = Bm−1 ∗λi . As m−1 >

di, the statement follows by [11, Corollary 5.2], Proposition 4.1, and the fact that, as Yi is bounded,
√

Eyi
{|so

i (yi) − si(yi)|2} can be bounded from above by a constant times supyi∈Yi
|so

i (yi) − si(yi)|. �
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Propositions 4.2 and 4.3 provide upper bounds on the distance between the value of the team and its
suboptimal value obtained in correspondence to suboptimal solutions expressed as k-term linear combi-
nations (see (1)) of sinusoidal or Gaussian basis functions. The bounds are of the form C k−1/2, where C
is independent of k (it depends on (so

1, . . . , s
o
n)) and in principle can be bounded from above in terms of

properties of the probability density q modelling the statistical information and of the other quantities
that define the problem. So, to guarantee an approximation accuracy ε > 0 for the value of the team,
it is sufficient to use k ≥ C2 ε−2 basis functions. Hence, the minimum number of sinusoidal or Gaussian
basis functions required to guarantee an accuracy ε grows at most quadratically with ε.

It is interesting to compare the degree of smoothness of the team utility function required to apply
Propositions 4.2 and 4.3 with the degree of smoothness required to apply the same propositions for a
centralized version of the problem, where there is only a single decision maker with information vector
(y1, . . . , yn) ∈ Πn

i=1Yi ⊂ R

∑ n
i=1

di . In this case the value of the one-member team is obviously greater
than or equal to the value of the decentralized team, however this centralized version has at least two
drawbacks: the cost of making all information available to a single decision maker, and the larger degree
of smoothness required.

5 Discussion

Team optimization problems are closely related to potential games [27, Section 3], for which there exists
an algorithm that finds an ε-Nash equilibrium [27, Section 4]. Under certain conditions, it is known that a
Nash equilibrium for a static team problem is team optimal, too [18, Section 3]. In such cases, an ε-Nash
equilibrium is a reasonable approximation to a team-optimal set of strategies. In this framework, high-
order smoothness properties of the optimal strategies helps in evaluating the high-dimensional integrals
involved in a stochastic extension of the problem and of the algorithm in [27, Section 4]. This algorithm
is particularly suitable for problems defined on networks of agents, as at each iteration each agent needs
to know only the strategies of its neighbors in the network.

As to the results in the first part of the paper (Section 3), we remark that proving a suitable degree of
smoothness of the (unknown) optimal strategies for team optimization problems may allow one to exploit
in their solution the so-called blessing of smoothness [25]. Theorem 3.1 may be applied, e.g., to stochastic
versions of the congestion, routing, and bandwidth allocation problems considered in [19, Lectures 3 and
4], which are stated in terms of smooth and concave utility functions.

Searching for the optimal values of all the parameters of the k-term suboptimal solutions (i.e., the
coefficients of the linear combinations and the inner parameters of the basis functions) at the same time
may result not only in high-dimensional optimization problems with a lot of local minima, but also in
numerical instabilities. To cope with this problem, one may resort to the so-called greedy algorithms,
in which, loosely speaking, the parameters are not optimized at once, but one after the other, hence by
solving a sequence of low-dimensional problems. The k-term approximation is obtained inductively as a
combination of the (k−1)-term one and a new element from the basis set. Depending on the way in which
the low-dimensional optimization problems are defined, different kinds of greedy algorithms are obtained,
which have shown their effectiveness in many contexts; see, e.g., [13] for variable-basis approximation and
[32] for variable-basis convex optimization.

Acknowledgement

The authors were partially supported by a PRIN grant from the Italian Ministry for University and
Research (project “Models and Algorithms for Robust Network Optimization”).

References

[1] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.

8



[2] M. Baglietto, T. Parisini, and R. Zoppoli, Distributed-information neural control: The case of dy-

namic routing in traffic networks, IEEE Trans. on Neural Networks 12 (2001), no. 3, 485–502.

[3] M. Baglietto, T. Parisini, and R. Zoppoli, Numerical solutions to the Witsenhausen counterexample

by approximating networks, IEEE Trans. on Automatic Control 46 (2001), 1471–1477.

[4] M. Baglietto, M. Sanguineti, and R. Zoppoli, The extended Ritz method for functional optimiza-

tion: Overview and applications to single-person and team optimal decision problems, Optimization
Methods and Software 24 (2009), 15–43.

[5] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE
Trans. on Information Theory 39 (1993), 930–945.

[6] T. Basar and R. Bansal, The theory of teams: A selective annotated bibliography, Lecture Notes in
Control and Information Sciences, vol. 119, Springer, 1989.

[7] D. Blackwell, Equivalent comparison of experiments, Annals of Mathematical Statistics 24 (1953),
265–272.

[8] F. Girosi and G. Anzellotti, Rates of convergence for Radial Basis Functions and neural networks,
Artificial Neural Networks for Speech and Vision (R. J. Mammone, ed.), Chapman & Hall, 1993,
pp. 97–113.

[9] S. Giulini and M. Sanguineti, Approximation schemes for functional optimization problems, Journal
of Optimization Theory and Applications 140 (2009), 33–54.

[10] G. Gnecco, Functional optimization by variable-basis approximation schemes, PhD Thesis in Math-
ematics and Applications, Department of Mathematics, University of Genoa, 2009.

[11] G. Gnecco and M. Sanguineti, Approximation error bounds via Rademacher’s complexity, Applied
Mathematical Sciences 2 (2008), 153–176.

[12] G. Gnecco and M. Sanguineti, Error estimates for suboptimal solutions to team optimization problems

with statistical information structure, Tech. report, DIST, University of Genova, 2008.

[13] A. Hofinger, Nonlinear function approximation: Computing smooth solutions with an adaptive greedy

algorithm, J. of Approximation Theory 143 (2006), 159 175.

[14] A. Iftar and E. J. Davison, A decentralized discrete–time controller for dynamic routing, Int. J. of
Control 69 (1998), 599–632.
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