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Abstract

This paper deals with the problem of scheduling imperfect preventive maintenance (PM)

of some equipment. It uses a model due to Kijima in which each application of PM

reduces the equipment's e�ective age (but without making it as good as new). The

approach presented here involves minimizing a performance function which allows for the

costs of minimal repair and eventual system replacement as well as for the costs of PM

during the equipment's operating lifetime. The paper describes a numerical investigation

into the sensitivity of optimum schedules to di�erent aspects of an age-reduction model

(including the situation when parts of a system are non-maintainable { i.e., una�ected by

PM.)

Key words Cost rate, E�ective age, Failure mode, Failure rate, Imperfect pre-

ventive maintenance, Optimization



1 Introduction

Most organizations incur signi�cant costs associated with equipment failure and its sub-

sequent repair or replacement. The frequency of such failure can typically be reduced

by periodic maintenance. Mathematical models for analyzing and optimizing the per-

formance of repairable equipment have been widely discussed in the literature [1] { [14].

In this paper we follow ideas given in [1] and [8] and study the optimal scheduling of

preventive maintenance (PM), basing our approach on the notion that eqipment which

bene�ts from PM can have an e�ective age which is less than its calendar age.

When only minimal repairs are performed and there are no other interventions, the

likelihood of equipment failure can be expected to increase steadily with time. More

precisely, we suppose that the number of failures occurring during a time interval (a; b) is

Z b

a

h(t)dt:

The function h(t) is sometimes called the failure rate or hazard rate (as in [8] or [10]) and

sometimes the failure intensity [4, 5]. If H(t) denotes the inde�nite integral
R t
0
h(s)ds, the

number of failures occurring between t = a and t = b is H(b)�H(a). H(t) is called the

cumulative failure rate.

In practice, preventive maintenance (PM) is used to lengthen the useful lifetime of

equipment (and hence to decrease average running cost) by reducing the occurrence of

failures. One of the key characteristics of a maintenance model is the e�ect of di�erent

kinds of intervention on the age of the system. Perfect repair and minimal repair are both

commonly used in idealised age-e�ect models; and similar terms can also be applied to

maintenance. In reality, however, both repair and maintenance are usually imperfect {

i.e., somewhere between perfect and minimal. Pham and Wang [11] and, more recently,

Doyen and Gaudoin [4] have given useful surveys of imperfect maintenance models. One

of the most important of these is the e�ective age model (Kijima et al [6], [7]). This is

also called the virtual age model. If we assume that maintenance makes the equipment's

e�ective age, y, less than its calendar age, t, then the number of failures occurring after

a PM will depend on H(y) rather than H(t). Since H is a monotonically increasing

function, fewer failures will occur after a PM than if PM had not been carried out.

Our purpose in this paper is to consider the optimal scheduling of preventive main-

tenance. Our particular focus is on the way that such schedules can be a�ected by the

choice of aging model that is used. Speci�cally, we compare the so-called Type 1 and
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Type 2 aging models proposed in [6, 7]. These have also been recently discussed in an

optimization context by Kahle [5].

2 E�ective age models

In what follows we shall use xk to denote the interval between the (k � 1)-th and k-th

PM. Thus, if equipment enters service at time t = 0, the �rst PM occurs at time t1 = x1.

Just before this maintenance, the e�ective age y1 is the same as its calendar age x1.

Immediately after PM, however, the e�ective age is reduced to b1x1, where b1 is some

constant (0 < b1 < 1). (We note here that we are making the idealised assumption that

time taken to perform PM is negligible.) Then, until the next PM at time t2 = x1 + x2,

the e�ective age is y = b1x1 + x for 0 < x < x2 = t2 � t1: In particular, we denote the

e�ective age just after the �rst PM by y
+

1 = b1x1: The e�ective age of the system just

before the second PM at time t2 is then y2 = b1x1 + x2:

After the second (and subsequent) PMs, the e�ective age reduction can be modelled

in two di�erent ways [2, 7]. In type 1 e�ective age reduction [7] it is assumed that,

immediately after the second PM, the e�ective age becomes

y
+

2 = y
+

1 + b2x2 = b1x1 + b2x2 = y2 � (1� b2)x2 where 0 < b1 � b2 < 1:

More generally, between the (k � 1)-th and the k-th PM, the e�ective age is

y = bk�1xk�1 + � � �+ b1x1 + x; (1)

where 0 < x < xk = tk � tk�1 and b1 � b2 � ::: � bk � 1. Thus the e�ective age

immediately after the (k � 1)-th PM is

y
+

k�1 = yk�1 � (1� bk�1)xk�1: (2)

In type 2 e�ective age reduction [7] it is assumed that the e�ective age immediately after

the second PM is y+2 = b2y2 = b2b1x1 + b2x2: More generally, between the (k � 1)-th and

the k-th PM, the e�ective age is

y = bk�1yk�1 + x = (bk�1 � � � b2b1)x1 + � � �+ bk�1xk�1 + x; (3)

where 0 < x < xk = tk � tk�1 and b1 � b2 � ::: � bk � 1. In particular, the e�ective age

just after the (k � 1)-th PM is

y
+

k�1 = bk�1yk�1: (4)
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More compactly, (3) can be written y = Bk�1xk�1 + Bk�2xk�2 + ::: + B1x1 + x where

0 < x < xk = tk � tk�1 and Bj denotes the product bk�1bk�2:::bj .

Type 1 age-reduction has been investigated by Kijima and co-workers in [6, 7] while

the type 2 model has also been discussed by Dagpunar [2] and Lin et al. [8]. Both types

are considered in the recent papers by Doyen and Gaudoin [4] and Kahle [5]. The main

di�erence between these e�ective age reduction models is as follows. In the type 1 model,

the k-th PM makes an e�ective age reduction only as regards the actual aging of the

system since the (k � 1)-th PM. In the type 2 model, however, each PM is assumed to

cause an e�ective decrease in all the aging that has taken place since time t = 0. Hence,

under the type 2 model, repeated PMs can have a cumulative age-reduction e�ect which

does not occur with the type 1 model.

We could say that the type 2 model takes a more optimistic view of the bene�ts of

PM. If we suppose that PM occurs annually then, for both the type 1 and type 2 aging

models, the e�ective age after maintenance at the end of the �rst year is b1(< 1) years.

Hence both models predict the same number of failures in year two. However the e�ect

of PM at the end of year two is dependent on which aging model is used. The type 1

e�ective age after the second PM is b1+ b2 years; but the type 2 e�ective age is (b1+1)b2

years. If b1 = b2 = 0:5, say, then the type 1 and type 2 e�ective ages after the second

PM are, respectively, 1 year and 0.75 years. Thus, during year three, the type 2 model

implies failures than the type 1 model. This di�erence will become even more marked in

subsequent years.

Extra parameters can be included in both age-reduction models to make them reect

the complexities of a real system. In practice, after a number of PMs have been performed,

equipment may be less robust than its e�ective age suggests; and we can model this using

variable scaling factors on h(t). We suppose the number of failures occurring in (0; tk)

can be written as

H(tk) =

Z y1

0

h(y)dy +

k�1X
j=1

f
Z yj+1

y+j

Ajh(y)dyg =
Z y1

0

h(y)dy +

kX
j=2

Hj�1 (5)

where

Hj�1 =

Z yj

y
+

j�1

Aj�1h(y)dy (6)

and where the Aj are constants such that 1 � A1 � A2 � :::. (The expression (5) can also

be extended to make a distinction between maintainable and non-maintainable failure

modes (see [8]). This will be considered in a later section.)
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The PM schedules presented in [8] are optimized by a semi-analytic solution technique

which takes advantage of the relatively simple forms (Weibull functions) chosen for the

function h(t). Bartholomew-Biggs et al. [1] have considered the same type 2 age-reduction

model as used in [8] but their PM schedules are optimized using general-purpose nonlin-

ear minimization algorithms. Such techniques may be more suitable when the h(t) are

more complicated than Weibull functions. The problem formulations in [1] also feature

constraints to exclude spurious solutions with unacceptably short (or even negative) inter-

vals between PM. The main purpose of the present paper is to compare type 1 and type

2 age-reduction models when used to determine optimum PM schedules in a framework

similar to that described in [1].

Before we proceed to formulate an optimization problem we shall list some general

assumptions and notation.

General assumptions

The system enters service at time t = 0.

When a system failure occurs, minimal repair takes place instantly.

Preventive maintenance is completed instantly.

The system may have two categories of failure modes, i.e., maintainable and non-maintainable.

The failure rate for non-maintainable parts of the system is not a�ected by minimal re-

pair, preventive maintenance or system failure.

The failure rate for maintainable parts of the system is not changed by minimal repair

but it is changed whenever a PM is performed.

Notation

tk = time duration from t = 0 to the time of the kth PM.

xk = tk � tk�1 = interval between the (k � 1)-th and k-th PM.

yk = e�ective age of the system just before k-th PM.

y
+

k = e�ective age of system just after k-th PM.

N = total number of PM performed. (The N-th PM is a system replacement.)

ha(t) = failure rate of maintainable components

hb(t) = failure rate of non-maintainable components

H(t) = cumulative failures up to time t when no PM occurs. See (16).

Ak = adjustment factor on ha(t) due to the k-th PM. Ak � 1.

bk = e�ective age reduction factor due to the k-th PM. bk � 1.

Hj�1(t) = cumulative failures from tj�1 to t when PM occurs (tj�1 � t � tj). See (6).

cp = cost of a PM.
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cm = cost of a minimal repair.

cr = cost of a system replacement.

m = relative maintenance cost cm=cp

r = relative repair cost cr=cp

3 Optimizing a PM schedule

To optimize PM scheduling we minimize a performance function of the form

C =
Rc

tN
=

r + (N � 1) + m

PN

j=1Hj�1(tk)

tN
(7)

where

r =
cr

cp
and m =

cm

cp
: (8)

The function C is given in [8] and assumes that PM takes place N � 1 times with the

N -th PM actually being a replacement. The numerator Rc in (7) represents equipment

lifetime cost, expressed as a multiple of the cost of one PM. Rc includes the �xed costs of

replacement and N � 1 PMs plus the repair costs predicted by the failure-rate function.

The denominator, tN , is simply the total life of the equipment (since we assume that the

N -th PM represents a replacement). Hence (7) represents the mean lifetime cost.

We can use (5) to write the numerator of C in terms of e�ective age. Then, by means of

either (1) and (2) or (3) and (4), we can express it in terms of the xk (intervals between the

k-th and (k�1)-th PMs). Furthermore, tN = x1+x2+ :::+xN and so the minimization of

the cost function (7) can be carried out using x1; :::; xN as independent variables. Hence,

for any chosen value of N , we can use a nonlinear optimization technique to �nd the

optimal PM intervals to minimize the mean lifetime cost. In the examples which follow

we adopt a transformation proposed in [1] and minimize a function ~C(u) where xi = u
2
i .

This transformation prevents the iterative optimization methods from being attracted

to spurious solutions with some xi < 0. The minimizations were performed using a

Newton method and with �rst and second derivatives of ~C being obtained by automatic

di�erentiation as described in [1].

The choice of optimization method is not particularly relevant to our present purpose

of exploring the sensitivity of optimum PM schedules to changes in the aging model. It is

worth stating, however, that minimization of the mean cost function does not appear to

be particularly diÆcult. The Newton method typically converges in quite a small number
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of iterations, even when a good initial estimate of the solution is not provided. We have

found no evidence that the problems have multiple solutions.

4 Qualitative e�ects of age-models on PM schedules

Before carrying out our numerical investigation, we look more closely at the way that

the two aging models can be expected to inuence the optimization of a PM schedule.

In particular, we argue that the type 2 model may lead to schedules with PM bunched

together more closely than would be the case with the type 1 model.

To substantiate the previous remark we suppose that a double PM is performed in

which one maintenance is scheduled immediately after another. Under the type 1 model,

the second PM would cause no decrease in e�ective age since the age-reduction factor

would only be applied to the zero time elapsed since the previous PM. This is quite a

reasonable model of reality: if routine adjustments and replacements have just been made

we would not expect to improve the health of the system by doing the same operations

all over again. The type 2 model, on the other hand, does imply that it can be bene�cial

to perform a double PM. If the k-th PM reduces e�ective age to y+k = bkyk then a second

PM performed immediately would decrease the e�ective age again to y
+

k+1 = bk+1y
+

k =

bk+1bkyk. Indeed if we were to perform a p-tuple PM { i.e. doing p successive PMs

with no time in between { then we could drive the e�ective age of the system arbitrarily

close to zero! The practical bene�ts of such a strategy might of course be o�set by

cost considerations; but the fact that such unlimited rejuvenation appears possible does

suggest that the type 2 model may give a less realistic picture of system behaviour than

the type 1 model.

In the above discussion, however, we have ignored the potential role of the parameters

Aj in equation (5). Setting each Aj > 1 can help to counteract any tendency in the type

2 model to encourage use of repeated PMs to drive e�ective age towards zero. Let us

suppose that the cumulative failure rate, H(t), is approximated by a quadratic function

H(t) = c2t
2 + c1t

and that the e�ective age just after the k-th PM is bkyk. Then, by (5), the rate of increase

of the function H just after the PM is

hk = Ak(2c2bkyk + c1):
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If the (k + 1)-th PM is performed right after the k-th then, under the type 2 model, the

e�ective age is further reduced to bk+1bkyk and the subsequent rate of increase of H(t) is

hk+1 = Ak+1(2c2bk+1bkyk + c1):

Hence the extra PM can yield an unrealistic bene�t unless hk+1 � hk, i.e.

Ak+1(2c2bk+1bkyk + c1) � Ak(2c2bkyk + c1)

which will occur if

Ak+1 � Ak

qk + 1

bk+1qk + 1
where qk =

2c2bkyk

c1
: (9)

We emphasise that the relationship (9) is only relevant to the type 2 aging model and

it suggests that we should not use the simple choice Ak = 1 for all k. There appears,

however, to be no comparable objection to using constant Ak = 1 with type 1 aging.

In a later section we shall consider some particular choices of Ak.

5 Quantitative e�ects of age models on PM schedules

In oerder to perform a numerical investigation of PM schedules under di�erent aging mod-

els we require an expression for the cumulative failure rate function, H(t). For illustrative

purposes we have obtained two polynomial forms for H(t) by considering the behaviour

of an imaginary system for which { in the absence of maintenance { the cumulative prob-

ability of failure by the k-th month of operation is k� 0:25%. By running simulations for

such a system over a �ve-year period we obtained data for the average number of failures

as a function of time. Least-squares polynomials were then constructed to approximate

this data. (We imposed some restrictions on the polynomials { namely that the constant

term is zero and the linear term has a positive coeÆcient { to ensure that H(t) predicts

zero failures at time t = 0 and does not allow spurious negative failures when t is near

zero.) Two of the resulting expressions for H(t) are as follows (where t is in years):

Case A - quadratic

H(t) = 0:1676t2 + 0:0704t (10)

Case B - cubic

H(t) = �0:0036t3 + 0:1919t2 + :0323t (11)

This derivation of (10), (11) from simulated data means the H(t) do have a certain degree

of realism. We note that the least squares approach yields a polynomial form for H(t)
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rather than the commonly-used Weibull form �t
�. We acknowledge, of course, that for a

real-life system it may be much more diÆcult to �nd functions H(t) to model the failure

rate. Practical techniques for gathering and using data to derive formulae for predicting

system failures are of great importance; but they are outside the scope of this paper.

In most of our numerical experiments we shall treat the age-reduction factors bj in

equations (2) and (4) as constants. Furthermore we shall assume that all the Aj in (5)

depend on a single parameter. Thus we have, for j = 1; 2; 3:::,

bj = b̂ where 0 < b̂ < 1 and Aj = â
j�1 where â � 1: (12)

The purposes of our investigation include:

� to compare optimum PM schedules obtained with type 1 and type 2 aging;

� to see how schedules vary with the e�ectiveness of PM (as described by values of b̂ and

â in (12));

� to consider how schedules are a�ected by the relative costs m and r in (8).

Most of our results will be obtained with the quadratic model of failure rate (10); but

there will be a brief discussion of the alternative expression (11). While acknowledging

that our experiments involve arti�cial problems we argue that the results will give useful

indications of how optimal PM schedules are a�ected by the modelling of e�ective age.

5.1 Comparing schedules based on type 1 and type 2 aging

We now show how optimal PM solutions can di�er depending on which aging model is

used in forming the cost function (7). The results are based on the quadratic form (10)

for H(t), together with the following values for the parameters de�ned in (8) and (12):

r = 500; m = 100; b̂ = 0:5; and â = 1:1: (13)

In the notation used in (7), the number of PMs is N �1 and so minimizing C with N = 1

gives the time to replacement, t�N , which without any maintenance produces the least

mean operating cost. For the cost data in (13) we get C� � 190:1 and the corresponding

t
�

N = x1 � 5:46 years.

Table 1 is obtained by minimizing (7) with N = 2; 3; 4 and shows how mean cost can be

improved by preventive maintenance. For each N , we quote the optimal inter-PM times,

xk, the time to replacement, t�N and the mean cost, C�, using both the type 1 and the

type 2 aging models. For a single application of PM, the two aging models are equivalent;

but for two or more PMs they give di�erent results. Broadly speaking, the type 2 model
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causes the �rst PM to be performed later than for a type 1 solution. Subsequent inter-PM

intervals tend to be shorter for type 2 solutions than for type 1. The type 1 model o�ers

only one chance to undo the aging that occurs prior to the �rst PM; but in the type 2

model this can be o�set by all subsequent PMs.

no of PMs inter-PM times (years) t
�

N C
�

1 Type 1 3.39 2.73 6.12 171.0

Type 2 3.39 2.73 6.12 171.0

2 Type 1 2.68 2.15 1.48 6.32 166.6

Type 2 3.13 1.27 2.28 6.67 158.2

3 Type 1 2.43 1.95 1.34 0.66 6.37 165.9

Type 2 2.94 1.19 1.08 1.93 7.13 149.1

4 Type 1 2.43 1.95 1.34 0.66 0.0 6.37 166.0

Type 2 2.8 1.13 1.02 0.92 1.65 7.53 142.2

5 Type 1 2.43 1.95 1.34 0.66 0.0 0.0 6.37 166.2

Type 2 2.69 1.09 0.98 0.89 0.8 1.43 7.8 137.0

Table 1: Optimal costs based on Type 1 and Type 2 aging models

It is not particularly helpful to compare the values of C� for type 1 and type 2 solutions

in Table 1 since the corresponding functions (7) are di�erent. Hence we cannot say that

the type 2 solutions are better than those for the type 1 model. It is more meaningful,

however, to consider how the patterns of type 1 and type 2 optimal PM schedules di�er.

For type 1 schedules the inter-PM times, x1; x2; :::; xN form a decreasing sequence; but in

type 2 solutions it is more common to have x1 > x2; ::: > xN�1 followed by xN�1 < xN .

Under the type 2 aging model, the e�ective age after the last PM is typically much smaller

than it is for a type 1 solution and hence it is economical to operate the system over a

longer �nal period up to its replacement time, t�N .

For the case with N = 4, Figures 1 and 2 plot e�ective age against elapsed time for

the two age models. It is clear that the type 2 model leads to schedules in which the

e�ective age has a downward trend so that y+k < y
+

k�1. This does not happen in the type

1 solutions in which e�ective age tends to increase even though it lags behind calendar

age.

Table 1 shows that, for both models, the mean cost decreases (and t
�

N increases) as

the number of PMs increases from one to three. However, this trend does not continue
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Figure 1: E�ective age vs elapsed time for type 1 aging
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Figure 2: E�ective age vs elapsed time for type 2 aging

for the type 1 model and it is not bene�cial to do more than three PMs. If we optimize

(7) for N > 4 the optimal PM schedule remains essentially the same as in the last type 1

row in Table 1 because all the extra inter-PM times x5; x6; ::: are set to zero.

With the type 2 aging model it is advantageous to do more than three PMs. If

we minimize (7) for N = 5; 6; :::, we �nd that C� continues to decrease until it reaches a

minimum of about 116 when N = 23 (which implies 22 applications of PM with t�N � 10:3

years). In this schedule, the initial PM is performed after about 2.3 years, while the second

occurs less than a year later and subsequent inter-PM times continue to decrease steadily.

Eventually the PMs take place every month or so (which might well be undesirable in

practice). This type 2 schedule for N = 23 may reect the behaviour discussed in section
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4 { i.e., the possibility that a type 2 model can make the equipment appear arbitrarily

young if double (or even p-tuple) PMs are performed. This rather unrealistic feature

needs to be o�set by the use of suitably large values for the Aj parameters in equation

(5); and we shall consider this point again in the next section.

5.2 E�ect of the parameter â

An increase in the value of â from 1 represents a decrease in the e�ectiveness of each

PM, because, through (12), it increases the multiplying factors Aj in equation (5). We

have already pointed out that the parameters Aj interact with type 1 and type 2 aging

models in di�erent ways. In particular, the inequality (9) is relevant to the type 2 model

if we want to avoid schedules which perform many PMs close together to try and make

virtually unlimited reductions in e�ective age.

If we consider the quadratic expression (10) for H(t), then the parameter q in (9) is

given by q � 2:38yk. If bk+1 = bk = 0:5 as in (13) then (9) becomes

Ak+1 � Ak

2:38yk + 1

1:19yk + 1
:

For the example problem considered above, the type 2 optimal schedules have an e�ective

age y1 � 2:5 years just before the �rst PM. Subsequent yk decrease steadily to about 0.1

years when k � 20. Hence (9) implies

Ak+1 � �Ak where 1:75 � � � 1:1:

Such large values of the Ak are probably not needed with type 1 aging, however, since

this model automatically restricts the decrease in e�ective age that can be achieved by a

single PM (or even by p-tuple PMs).

The examples which follow involve a benchmark case with 6 PMs (i.e. N = 7). We

keep the values of b̂; r and m from (13) and only vary â. In view of the remarks in

the previous paragraph we use di�erent ranges of â for the type 1 and type 2 age models.

Speci�cally, we consider 1 � â � 1:1 for type 1 aging and 1:1 � â � 1:75 for type 2.

The results in Table 2 were obtained with the type 1 aging model and they show C
�,

the inter-PM times x�k and t
�

N for varying â. The graphs in Figure 3 show how e�ective

age varies with elapsed time for each of the â values.

The �rst row of Table 2 shows that the optimal schedule with â = 1 gives equally

spaced PM intervals. As â increases we see, as would be expected, that C� also increases

while t�N decreases.

11



â C
�

x
�

k t
�

N

1 146.3 1.04 1.04 1.04 1.04 1.04 1.04 1.04 7.27

1.01 149.2 1.15 1.12 1.09 1.04 0.98 0.91 0.84 7.13

1.025 153.3 1.35 1.27 1.17 1.04 0.88 0.71 0.53 6.94

1.04 156.9 1.59 1.45 1.26 1.03 0.77 0.49 0.20 6.78

1.05 158.9 1.77 1.58 1.32 1.02 0.68 0.32 0.0 6.69

Table 2: Optimal costs for type 1 schedules and varying â
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Figure 3: E�ective age in type 1 schedules for â = 1; 1:01; 1:025; 1:05 (clockwise from top

left)

The e�ective age plots for the four solutions in Figure 3 all have similar form, but

a closer inspection shows that each increase in â leads to the �rst PM being performed
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later. However, the subsequent inter-PM times, x2; x3:::, become progressively shorter

when â > 1 and so t
�

N decreases as â increases. We note, in particular, that when

â = 1:05 (bottom left graph) there are e�ectively only �ve PMs (rather than six as in the

other three cases) because the optimization has forced the last inter-PM interval to zero.

Table 3 and Figure 4 give similar information about schedules obtained with the type

2 aging model for varying â values. They show that the �rst type 2 PM typically occurs

much later than in any of the type 1 schedules and that this di�erence becomes more

marked as â increases. Moreover, the type 2 inter-PM times, x2; x3; :::; decrease more

rapidly those in the type 1 solutions. This is shown in the sub-plots in Figure 4: the type

2 schedule with â = 1:75 e�ectively only uses 4 PMs rather than 6 because the optimum

values of x5; x6 and x7 are all zero. Table 3 also shows how t
�

N decreases and C
� increases

for type 2 schedules as â gets larger. If we recall that the optimum mean cost without

PM is 190.1 then we can see from the second column of Table 3 that, if â is large, there

may be little to be gained by using a type 2 optimal PM schedule.

â C
�

x
�

k t
�

N

1.1 132.8 2.6 1.05 0.95 0.86 0.77 0.7 1.24 8.18

1.25 156.8 2.29 0.96 0.76 0.60 0.46 0.36 0.52 6.95

1.4 173.8 3.89 0.81 0.56 0.39 0.26 0.17 0.16 6.24

1.5 181.3 4.24 0.68 0.44 0.28 0.17 0.10 0.02 5.93

1.6 186.2 4.56 0.54 0.33 0.19 0.11 0.0 0.0 5.73

1.75 190.1 4.99 0.34 0.18 0.05 0.0 0.0 0.0 5.56

Table 3: Optimal costs for type 2 schedules and varying â

5.3 E�ect of the parameter b̂

A decrease in the parameter b̂ appearing in (12) represents an increase in the eÆciency of

each PM. Hence we expect it to produce a decrease in C
� and an increase in t

�

N . To see

how optimum PM schedules change to achieve this, we suppose r and m are as given

in (13) and we �x the values â = 1:025 for the type 1 model and â = 1:25 for the type

2 model. We use the quadratic model (10) for H(t) and consider how the optimum PM

schedules vary with b̂ in the case when N = 7. We illustrate schedules by showing the

inter-PM times, x1; x2; :::; x7. Figures 5 and 6 indicate the occurrence of each PM by a

symbol along a horizontal time line; the height of each of these time lines indicates the

13
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Figure 4: E�ective age in type 2 schedules for â = 1:1; 1:25; 1:5; 1:75 (clockwise from top

left)

corresponding mean cost, C�. The inter-PM intervals tend to decrease more rapidly as b̂

increases. This is true for both e�ective age models: but the type 1 schedules apply PM

rather more uniformly than the type 2 schedules.

We now consider the case when the bk are not constant but increase towards 1 as k

increases. This represents a law of diminishing returns in the e�ectiveness of PM over

equipment operating life that could be an alternative to the use of the parameters Aj in

(5). We consider a model where

b1 = 0:5 and bk = b
�
k�1 where � < 1: (14)

Figures 7 and 8 show results for varying � with r and m from (13) and using â = 1 for

both type 1 and type 2 schedules. We see that a more rapid decline in the eÆcacy of PM
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Figure 5: Type 1 schedules for varying b̂ (1: b̂ = 0:4, 2: b̂ = 0:5, 3: b̂ = 0:6)
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Figure 6: Type 2 schedules for varying b̂ (1: b̂ = 0:4, 2: b̂ = 0:5, 3: b̂ = 0:6)

{ i.e., a decrease in � in (14) { causes the �rst one or two inter-PM times to increase;

but subsequent xk then typically decrease so there is an overall reduction in time to

replacement and mean cost. This remark applies to both type 1 and type 2 solutions

(although Figure 8 shows that type 2 schedules di�er from type 1 in having xN > xN�1).

Comparing the middle row of Figure 5 with all three rows in Figure 8 suggests that

type 2 schedules in which bk increases from one PM to the next bear some resemblance

to type 1 schedules obtained when bk is constant.
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Figure 7: Type 1 schedules for bk = b
�
k�1 (1: � = 0:95, 2: � = 0:9, 3: � = 0:8)
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Figure 8: Type 2 schedules for bk = b
�
k�1 (1: � = 0:95, 2: � = 0:9, 3: � = 0:8)

5.4 E�ect of changes in repair and replacement cost

We now consider how optimal PM schedules are a�ected by the relative costs of replace-

ment and minimal repair, r and m. Results shown in Figure 9 are for type 1 schedules

using b̂ = 0:5; â = 1:025; r = 500; N = 7 with varying m. Not unexpectedly, C� de-

creases and t
�

N increases as m gets smaller. Speci�cally, as m is halved, the inter-PM

times all increase by a factor of about
p
2.

The type 2 schedules in Figure 10 also use the values b̂ = 0:5; r = 500; N = 7 with

â = 1:25. These schedules are quite di�erent from those in Figure 9. However, the e�ect

of decreasing minimal repair costs is qualitatively the same as for the type 1 model because

the inter-PM times (and hence t�N) increase by about
p
2 when m is halved.
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Figure 9: Type 1 schedules for varying m (1: m = 25, 2: m = 50, 3: m = 100)
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Figure 10: Type 2 schedules for varying m (1: m = 25, 2: m = 50, 3: m = 100)

We now consider the e�ect of changes in replacement cost r. Using the type 1 age

model with parameters b̂ = 0:5; â = 1:025; m = 100 and N = 7, the optimum mean

cost varies with r as follows:

When r = 500, C
� = 153:3;

When r = 1000, C
� = 213:1;

When r = 2000, C
� = 297:8.

The PM schedules which produce these costs are essentially the same as those in Figure 9.

In other words, doubling replacement cost has virtually the same e�ect on the optimal PM

strategy as halving minimal repair cost. This observation follows from the roles played

by r and m in the cost function (7) and so it is also true for type 2 schedules
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5.5 E�ect of number of PMs

We have already noted (see Table 1) that the optimum mean cost depends on the number

of PMs that are performed. Figure 11 illustrates this for the type 1 age model with

b̂ = 0:5; â = 1:025; r = 500; m = 100. Recalling that the minimum mean cost without

PM is about 190.1, we see that the biggest improvement comes in the N = 2 case where a

single, well-placed, PM reduces the mean cost by about 12%. Further PMs also produce

improvements, but the bene�ts of each extra PM becomes smaller.
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Figure 11: Type 1 schedules for varying N

Similar behaviour is observed for type 2 schedules. Figure 12 was obtained using

values b̂ = 0:5; â = 1:25; r = 500; m = 100 and it shows that reductions in mean cost

(and the change in distribution of PMs) become relatively smaller as N gets larger.

If N is increased beyond the range illustrated in Figures 11 and 12 then type 1 and

type 2 solutions behave in di�erent ways. The optimal type 1 schedule with N = 8 adds

one further short interval, x8 � 0:32, but this does not produce any reduction in mean

cost compared with the N = 7 solution. The type 1 schedule with N = 9 adds a further

interval x9 � 0:13 which produces a small increase in mean cost compared with the N = 7

case. Type 1 solutions with N � 10 then remain e�ectively the same as for N = 9 with

x10; x11; :: all being zero. In other words, the type 1 model identi�es six PMs as being the

optimal choice.

The type 2 model, on the other hand, suggests it is bene�cial to perform more than six

PMs. Type 2 solutions show continuing (but small) improvements in C
� as N increases

from 7 to 11. The schedules for N = 12; 13 give higher mean cost than when N = 11 and
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Figure 12: Type 2 schedules for varying N

feature some very short inter-PM intervals (e.g. x12 � 0:05; x13 � 0:02). For N � 14 the

solutions stay e�ectively the same as for N = 13 with all subsequent xk being set to zero.

5.6 E�ect of changing failure rate model

The results in preceding sections were obtained using the quadratic model (10) for H(t).

Repeating the calculations using the cubic model (11), made almost no signi�cant di�er-

ence to the results: the optimal inter-PM times sometimes changed only in the second

or third digit. Use of the cubic model does remove the small curiosity, noted in section

5.2, that all the xk are equal in type 1 sschedules with â = 1; but the inter-PM times are

still e�ectively equal for practical purposes. In the examples discussed in the preceding

subsection, the cubic model of H(t) indicates that the optimal number of PMs with type

2 aging is twelve as opposed to ten for the quadratic model. However the variations in

mean cost for 10 � N � 13 are so small that this change does not seem to be of much

signi�cance.

5.7 E�ect of non-maintainable failure modes

In practice, PM operations (like cleaning, oiling and adjustment) can reduce the frequency

of mechanical failures. However there may be no corresponding PM interventions that

will extend the life of sealed electronic units { that is, some parts of a system may be non-

maintanable. If ha(t) denotes the hazard rate of maintainable failure modes and hb(t) is

the hazard rate for non-maintainable ones then the number of failures occurring between
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times tk�1 and tk is

Hk�1(tk) =

Z yk

y+
k�1

Ak�1ha(y)dy +

Z tk

tk�1

hb(t)dt: (15)

That is, some failures depend on e�ective age and some depend on calendar age. (In

practice, it may not be easy to make clear distinctions between failure modes.) Thus the

total number of failures occurring between t = 0 and t = tk would be

H(tk) =

k�1X
j=1

Hj�1(tj);

which gives a similar expression to (5), namely

H(tk) =

Z y1

0

ha(y)dy +

k�1X
j=1

f
Z yj+1

y+j

Ajha(y)dyg+
Z tk

0

hb(t)dt:

If no PM were performed the number of failures between t = 0 and t = tk would be

H(tk) =

Z tk

0

ha(t)dt+

Z tk

0

hb(t)dt: (16)

We now consider PM schedules in the presence of non-maintainable failure modes. We

shall assume that the cumulative failure functions H(t) are given by (10) and (11) but

that a fraction � of the failures are due to non-maintainable elements. For case A, the

cumulative failure rate is

H(t) = 0:1676t2 + 0:0704t

and so the failure rate h(t) in (5) is obtained by di�erentiation as

h(t) = 0:3352t+ 0:0704:

We now suppose that this splits into maintainable and non-maintainable failure rates

ha(t) = (1� �)(0:3352t+ 0:07); hb(t) = �(0:3352t+ 0:07):

Obviously there would be similar de�nitions of ha and hb for Case B. If we substitute such

expressions for ha and hb in (15) we obtain the number of failures occurring between the

(k � 1)-th and k-th PMs; and this, in turn, feeds into the cost function (7).

Tables 4 and 5 are obtained by introducing non-maintainable failures into the system

used for previous numerical examples. These tables show that { as might be expected {
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� = 0 � = 0:2 � = 0:4

C
�

; t
�

N C
�

; t
�

N C
�

; t
�

N

153.3 , 6.94 161.6, 6.56 169.6, 6.24

Table 4: E�ects of � on type 1 schedules (b̂ = 0:5; â = 1:025; r = 500; m = 100 & N = 7)

� = 0 � = 0:2 � = 0:4

C
�

; t
�

N C
�

; t
�

N C
�

; t
�

N

156.8 , 6.95 164.5, 6.57 171.7, 6.24

Table 5: E�ects of � on type 2 schedules (b̂ = 0:5; â = 1:25; r = 500; m = 100 & N = 7)

the bene�cial e�ect of PM is diminished as � gets larger. Hence the optimal mean cost

rises (because more failures will occur) and the optimal lifetime decreases.

This way of modelling non-maintainable failure modes a�ects both type 1 and type 2

schedules in a similar way. As � increases then all the inter-PM times decrease in quite

a uniform manner: for the particular system in these examples, each increase of 0.2 in �

causes all the optimal xk to decrease by about 5%.

6 Conclusions & discussion

In this paper we have outlined two forms of the e�ective-age approach to modelling

preventive maintenance. In the type 1 model, the k-th PM only reduces the aging that

has occurred since the (k � 1)-th PM; but in the type 2 model the k-th PM makes a

cumulative reducation on all aging since the equipment entered service. Both types of

age model can be used to compute a mean cost function; and optimal PM schedules are

then obtained by adjusting inter-PM intervals to minimize this function.

We have computed optimal PM schedules based on both type 1 and type 2 aging.

Our results show that type 1 and type 2 schedules can be quite di�erent from each other.

Type 1 schedules require PMs to be fairly uniformly distributed (see Figure 3). In type

2 schedules, the spread of inter-PM times is greater, with a relatively long delay before

the �rst PM while subsequent PMs quickly become relatively closer together (see Figure

4). Furthermore, the type 2 aging model admits optimum schedules which cause e�ective

age to decrease steadily over the operating life. This does not seem to be the case with

21



type 1 solutions. The fact that the type 2 solutions allow equipment to become e�ectively

younger and younger in spite of increasing calendar age means that the Aj parameters

in (5) are important in ensuring that type 2 solutions do not become unrealistic. The

type 1 model is intuitively more convincing in the way that each PM is assumed only to

counteract the most recent deterioration in the state of the system.

Our numerical tests have also shown how type 1 and type 2 optimal schedules respond

to changes in the e�ectiveness of PM (as given by bk and Aj in (2), (4) and (5)) and to

changes in the relative costs of repair and system replacement.

For any particular case there will be an optimum number of PMs { i.e., one which yields

the least value of the cost function (7). Our tests indicate that this optimum number is

likely to be higher for type 2 schedules than for type 1. However, it also appears that the

optimum mean cost, C�, becomes less sensitive to the number of PMs as N gets larger.

Finally we have shown how both type 1 and type 2 optimum PM schedules can change

if the system is regarded as having both maintainable and non-maintainable components.

Two modi�cations to the PM scheduling problem may be worth attention in future.

Just as we may distinguish between maintainable and non-maintainable failure modes so

we might subdivide the maintainable modes into type 1 and type 2 classes. PM functions

such as lubrication and adjustment can reasonably be expected to reduce e�ective age in

a type 1 manner; but where PM actually involves some degree of replacement then the

type 2 model could be appropriate.

A second observation is that maintenance does not just reduce the occurrence of

failures but also makes equipment operate more eÆciently. Hence we could extend the

mean cost function to reect operating costs as well as repair costs. We would expect,

for instance, a newer system to be more fuel eÆcient than an older one; and so e�ective

age could appear in an expression for running costs just as it does in the expression for

failure rate. Gathering data for formulating running cost as a function of age could, in

practice, be as challenging as the task of modelling the cumulative failure rate function

H(t). Nonetheless, it would be worth the attempt, so that PM scheduling could be based

on a more complete representation of lifetime costs.
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