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ABSTRACT

We have developed a regularisation procedure for the direct deprojection and PSF-deconvolution of X-ray surface brightness profiles
of clusters of galaxies. This procedure allows us to obtain accurate density profiles in a straightforward manner from X-ray observa-
tions (in particular data from XMM-Newton, where the PSF correction is important), while retaining information about substructure
in the gas distribution, in contrast to analytic modelling of the profiles. In addition to describing our procedure, we present here a de-
tailed investigation of the accuracy of the method and its error calculations over a wide range of input profile characteristics and data
quality using Monte Carlo simulations. We also make comparisons with gas density profiles obtained from Chandra observations,
where the PSF correction is small, and with profiles obtained using analytic modelling, which demonstrate that our procedure is a
useful improvement over standard techniques. This type of method will be especially valuable in the ongoing analysis of unbiased
and complete samples of X-ray clusters, both local and distant, helping to improve the quality of their results.
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1. Introduction

The density distribution of X-ray-emitting gas in galaxy clus-
ters is an important probe of the underlying mass distribution.
By assuming hydrostatic equilibrium and spherical symmetry,
the total mass distribution can be obtained from the gas density
profile ρgas(r) and temperature profile T (r). The use of galaxy
clusters to test structure formation models and as cosmological
probes is reliant on these techniques. However, observations also
suggest that non-gravitational processes can have important ef-
fects on the gas properties of galaxy clusters (e.g. Arnaud 2005,
for a review), which raises questions about our understanding
of the links between gas and dark matter properties of clusters.
Key diagnostics are provided by the gas entropy distribution,
S = T/ρ2/3

gas , which reflects the specific thermo-dynamical his-
tory of the gas. (e.g. Ponman et al. 1999; Ponman et al. 2003;
Voit 2005; Pratt et al. 2006). It is therefore essential to be able
to accurately measure the gas distributions of clusters, not only
so as to be able to make accurate inferences about their dark
matter properties, but also to investigate the departures of the
gas properties from the self-similar models expected in the ab-
sence of effects such as cooling and non-gravitational heating
and feedback.

Surface brightness profiles of the X-ray emission from
galaxy clusters have been the primary tool for studying their
gas distributions since cluster data became available from early
X-ray missions. Until recently, it was thought that (with the ex-
ception of central cooling flows) cluster profiles could be ad-
equately fitted with a standard analytical β model profile in

surface brightness (e.g. Neumann & Arnaud 1999). However, the
substantial increase in the data quality of cluster observations in
the era of Chandra and XMM-Newton has revealed that cluster
gas distributions are considerably more complex than expected,
e.g. from ROSAT data. A variety of increasingly complicated an-
alytical models have been used to fit cluster surface brightness
profiles (e.g. Pratt & Arnaud 2002; Vikhlinin et al. 2006) and
to calculate the corresponding gas density profile; however, the
need for such a range of models, which are not generally phys-
ically motivated, is unsatisfactory. In addition, using an analyt-
ical model means that full information about real structure in
the cluster profile is lost in converting the profile from surface
brightness to emission measure.

One alternative is direct deprojection of measured surface
brightness profiles (e.g. Fabian et al. 1981; Kriss et al. 1983;
White et al. 1997). If we consider a spherical distribution of
cluster gas, with a density distribution (or emission measure dis-
tribution, S emit(r)) consisting of a series of concentric spherical
shells of radii r0, r1, .., ri, .., rn, then using simple geometric con-
siderations (e.g. McLaughlin 1999) we can calculate a 2D ma-
trix [Rproj] whose elements consist of the contributions of each
shell i to the projected emission measure in a series of annuli
on the plane of the sky j having radii R0,R1, ..,Ri, ..,Rn (which
may be the same or different to the ri), e.g. element Rproj,i j is the
fraction of the emission from shell i that is observed in annu-
lus j. For the purposes of this work, we consider a square matrix
Rproj, with R0 = r0, R1 = r1, etc., so that the matrix has di-
mensions n × n, where n is the number of bins in the observed
surface brightness profile. The product [Rproj][S emit] is then the
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2D emission measure profile as would be observed by a per-
fect detector. We can then calculate a second redistribution ma-
trix, [RPSF] that takes into account the effect of the instrumental
PSF, i.e. Rpsf, jk is the fraction of counts from annulus j of the
“ideal” profile that are redistributed by the telescope into annu-
lus k in the final observed surface brightness profile (we assume
that the energy dependence of the PSF is negligible). The rela-
tionship between an observed S X profile, Cobs(R) and the orig-
inating 3D emission profile, S emit(r) can therefore be expressed
as follows:

[Cobs] = [RPSF][Rproj][S emit] (1)

where Cobs(i) is the surface brightness detected in an annu-
lus i, S emit( j) is the emission measure produced by a 3D shell
j, Rproj(i, j) represents the fraction of emission from shell j that
would be observed by a perfect detector to fall in annulus k, and
RPSF(i, k) a second redistribution of counts from an annulus k of
the ideal profile to annulus i of the actual profile resulting from
the effect of the PSF. Rproj depends only on the geometry of the
cluster (see e.g. McLaughlin 1999) and can be easily calculated,
and RPSF can also be calculated based on knowledge of the opti-
cal properties of a given instrument.

However, it is not straightforward to solve Eq. (1) directly,
as it is an inverse problem: small amounts of noise in the data
become greatly amplified in the solution for S emit. This has lim-
ited the usefulness of such an approach for the analysis of clus-
ter profiles, particularly for an instrument such as XMM-Newton
with a reasonably large PSF. The use of “onion-skin” deprojec-
tion techniques is common for spectral analysis, and has also
been applied to surface brightness profiles from Chandra (e.g.
David et al. 2001); however, the “onion-skin” approach is heav-
ily dependent on the choice of outermost bin. For Eq. (1) to be
accurate, it is necessary to take account of the contribution to
each annulus from shells outside the outermost annulus chosen
for the analysis (we discuss this further in Sect. 2). Finally, it
is necessary to convert the resulting emission measure profiles
to gas density profiles taking into account the variation of the
cooling function Λ(T, Z) with radius.

This paper describes the application of a regularisation tech-
nique to the direct deprojection and PSF-deconvolution of X-ray
surface brightness profiles that has allowed us to overcome these
limitations. Our method is motivated by, and adapted from, work
by Bouchet (1995) on the deconvolution of gamma-ray spectra.
In the following section, we describe the regularisation proce-
dure in more detail. We then present in Sect. 3 the results of a
range of tests using simulated data that demonstrate the reliabil-
ity of our technique and its applicability to a wide range in data
quality and cluster properties. In Sect. 4, we apply our technique
to real data from XMM-Newton and Chandra and demonstrate
that it performs well in comparison to other methods. Finally,
in Sect. 5, we investigate the effect of using gas density profiles
obtained from our method on the calculation of the logarithmic
slope and thus total mass profiles for clusters.

2. Method for regularised deprojection
and PSF-deconvolution

Our method for regularising the deprojection/PSF-
deconvolution process is motivated by the analysis of Bouchet
(1995) on the deconvolution of gamma-ray spectra. The general
method is to introduce additional constraints on the solution
of Eq. (1) based on prior information, in this case simply the
expectation that the solution should be smooth, rather than

unphysically noisy (see Sects. 2.1 and 2.2). It is then necessary
to introduce a means of balancing the regularisation constraint
with the accuracy to which the solution reproduces the data
(parameterised by χ2). As described by Bouchet, this is done by
using Lagrangian multipliers to find a solution, then minimising
the function

L( f , λ) = χ2( f ) + λC( f ) (2)

where f is the solution, C( f ) a function that is a minimum when
the solution best satisfies the regularity constraint, and λ is the
smoothing parameter. By varying λ, we can therefore vary the
degree to which the solution is dominated by consistency with
the data or with the regularising constraints. The choice of λ is
therefore critical to obtaining a reliable solution, and is described
further in Sect. 2.2.

2.1. The regularisation constraint

Again following Bouchet (1995), we adopt the Philips-Towmey
regularisation method (Phillips 1962; Towmey 1963). Generally,
this method consists of minimizing the sum of the squares of
the kth order derivates of the solution around each datapoint.
For our purposes, we define the “smoothness” constraint as the
minimum in the deviation of the solution from a constant about
each data point, so that:

C( f ) =
N−1∑
j=2

( f j−1 + f j)2. (3)

Since our data covers several orders of magnitude in surface
brightness, it is necessary to reduce the dynamic range of the
problem by rescaling the data by a rough best-fitting model.
Bouchet found that the choice of scaling function only affected
the solution for low signal-to-noise data or when the model fit
to the data was poor. We initially used a β model to scale the
data, and found that in cases where the fit was poor (caused by
the data being more centrally peaked than can be represented by
a β model) the solution tended to bias towards a flatter profile;
however, this affected only the central few bins. We then adopted
the AB model of Pratt & Arnaud (2002), which is a modified
version of the β model that can roughly fit both centrally peaked
and cored models. This model was tested on a large sample of
clusters and found to achieve adequate fits in all cases with no
systematic residuals at the centre. It is therefore better suited
as a scaling function for our regularisation procedure, and we
demonstrate in Sect. 3 that our rescaling procedure using the AB
model does not lead to any bias in the output emission measure
and gas density profiles. The regularisation constraint is there-
fore applied to the rescaled data.

2.2. Choice of the smoothing parameter

As mentioned above, the smoothing parameter, λ, is used
to achieve a correct balance between fidelity to the input
data and consistency with the applied regularisation con-
straints. It is therefore critical to adopt an objective means for
choosing λ. Again following Bouchet (1995), we implemented
a cross-validation technique (e.g. Wahba 1978) that consists of
predicting each datapoint by finding a solution using all the data
excluding that point. For a value of λ that is too low (i.e. insuf-
ficient smoothing), cross-validation will poorly predict the data
because rapidly varying solutions will not accurately represent
the excluded datapoints. In constrast, for a value of λ that is
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too high (i.e. oversmoothing), again the data will be poorly pre-
dicted by cross-validation, because real, larger-scale variations
in the data will have been lost. Cross-validation therefore offers
a systematic, objective means of choosing a best value for the
smoothing parameter. We implement this method in the same
way as Bouchet (1995).

2.3. Error calculation

To calculate the errors on the output emission measure profile,
we initially used the standard Monte Carlo technique of adding
Gaussian noise to the observed profile to generate 100 profiles,
applying the code and using the dispersion in the output emis-
sion measure for each bin as the error. However, we found that
this method tends to overestimate the true errors, because it adds
noise to an already noisy profile. Instead, we adopted a more
complicated technique, which was found to give errors that are
unbiased, as follows:

1. the output emission measure profile is fitted with an AB
model;

2. the corresponding S X profile is calculated;
3. Gaussian noise is added to the model S X profile to generate

100 simulated profiles;
4. the simulated S X profiles are deprojected;
5. the dispersion (standard deviation) in the distribution of the

output emission measure for each bin is adopted as the error
for that bin.

The use of a model distribution avoids the problem of adding
in an additional scatter from the noise in the original observed
profile. This error estimation technique was tested as part of the
simulations described in Sect. 3.

2.4. Calculation of the density slope

For the purposes of obtaining total mass profiles, it is particularly
important that any method for obtaining density profiles accu-
rately calculates the logarithmic density slope (dlog ne/dlog r).
In principle it is possible to calculate the slope for each radial
bin of the input surface brightness profile; however, it is neces-
sary to use the Monte Carlo method to obtain the error on the
slope at each point as the errors on density are likely to be corre-
lated, and we found that although the mean dlog ne/dlog r profile
over 100 simulations is well recovered, small variations in the
profile shape lead to very large error bars on the slope. In prac-
tise, the calculation of total mass will always be limited by the
signal-to-noise achievable in the temperature profile. To obtain
good constraints on dlog ne/dlog r, we therefore decided to carry
out the slope calculation in larger radial bins, corresponding to
those used for the cluster temperature profile (for the tests carried
out here, we used binning typical of an XMM-Newton tempera-
ture profile for a cluster observation of the appropriate signal-to-
noise ratio, which corresponds to bins roughly ten times larger
than the surface brightness bins). The slope was then calculated
for each bin using a linear least-squares fit to all of the density
data points falling in that bin. We adopted the dispersion (stan-
dard deviation) of the calculated slope at each radius from the
MC simulations as for the errors on ne. This method for obtain-
ing dlog ne/dlog r was also tested as part of our simulations and
using X-ray data, as described in the following sections.

2.5. Correcting for X-ray emission beyond the profile region

When transforming an observed surface brightness profile to an
emission measure profile, there will be a contribution to each ob-
served surface brightness bin from emission at larger radii than
the outermost profile bin. When fitting analytical models, this
contribution is taken into account, since the surface brightness
models are obtained by integrating along the line of sight; how-
ever, with our deprojection method it is necessary to correct for
this contribution before carrying out the deprojection. We use
the method described by McLaughlin (1999) (his Eq. (A4), with
the slope α measured from the data), which uses the assumption
that S X ∝ r−α at large radius to subtract the contribution from
this emission to each profile bin.

3. Monte Carlo simulations

In order to test how accurately the deprojection code recovers the
correct density profile, and how well the error calculation repre-
sents the true uncertainty, we carried out a series of tests using
Monte Carlo simulations. Here we neglect the variation of tem-
perature and abundance with radius, and assume a one-to-one
relation between the emission measure and the gas density. A
model density profile was used to calculate corresponding sur-
face brightness profiles including Gaussian noise (100 surface
brightness profiles were generated for each model). We assumed
a flat background, which was used to define the global signal-
to-noise of the profile, and to calculate realistic errors as a func-
tion of radius. We chose representative values (see below) for the
global signal-to-noise and the ratio (R) between total source and
background counts for different signal-to-noise profiles based
on a sample of nearby clusters (Pointecouteau et al. 2005), and
a sample of distant clusters (Arnaud et al., in prep.), both ob-
served with XMM-Newton. If Ni and Nbg are the net source and
assumed background counts in each bin, the error σi on the esti-
mated source counts after background subtraction is the quadrac-
tic sum of the error on the observed counts before background
subtraction and the error on the estimated background counts in
the extraction region. We consider the conservative case where
this error is simply

√
Nbg. The errors, σi, were thus calculated

according to1:

σi =

√
Ni + 2.0Nbg (4)

on the assumption of a flat background of total counts Nbtot =
RNtot within R500.

Each surface brightness profile was then convolved with a
PSF matrix: we used a typical XMM-Newton redistribution ma-
trix based on the analytical model of Ghizzardi et al. (2001) and
assuming that the surface brightness profiles contains contribu-
tions from all 3 XMM-Newton cameras (with weights of 0.25,
0.25, 0.5 for the MOS1, MOS2 and pn cameras, respectively).
The XMM-Newton PSF was used so as to test the code in sit-
uations where the PSF correction is large compared to the bin
size. To convert between the PSF in arcmin and units of R500,
we assumed that R500 = 12 arcmin, so that the PSF FWHM of
∼6 arcsec corresponds to ∼1−2 surface brightness bins. Each
simulated profile was then run through the deprojection code,
and the mean and standard deviation of the output density for

1 In cases where the background level can be estimated from blank-
sky fields with long exposures or large extraction regions, the back-
ground may be better determined than the source, in which case this
expression will overestimate the errors.
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Fig. 1. Results of Monte Carlo simulations of the deprojection and PSF deconvolution of surface brigthness profiles corresponding to different
shapes of the input model density profiles, as indicated in the individual plot labels. The simulated surface brightness profiles have a global
S/N ratio of 200, for a total source/background count ratio of R = 0.3. In all cases, the mean output density profile and errors are shown by red
squares, with the input density model profile indicated by a black solid line.

each radial bin was tabulated. The logarithmic density slope
(dlog ne/dlog r) was also compared with the slope of the input
density profile.

Firstly we tested the effect of profile shape on code perfor-
mance, using a variety of analytical models. We tested the stan-
dard β model:

ne(r) = n0

(
1 +

r2

r2
c

)− 3β
2

(5)

as well as several other models that can provide better fits to real
cluster data, in particular fitting centrally peaked profiles. These
included a double β model:

r < rcut ne(r) = n0

⎛⎜⎜⎜⎜⎜⎝1 + r2

r2
c,in

⎞⎟⎟⎟⎟⎟⎠
− 3βin

2

(6)

r > rcut ne(r) = N

(
1 +

r2

r2
c

)− 3β
2

(7)

where N and βin are calculated from the other model param-
eters so as both ne and the slope are continuous (formulae in

Pratt & Arnaud 2002), a modified double β model (the KBB
model of Pratt & Arnaud 2002) to fit more centrally peaked pro-
files:

r < rcut ne(r) = n0

⎛⎜⎜⎜⎜⎜⎜⎝1 + r2

r2ξ
c,in

⎞⎟⎟⎟⎟⎟⎟⎠
− 3βin

2ξ

(8)

r > rcut ne(r) = N

(
1 +

r2

r2
c

)− 3β
2

(9)

where ξ determines the degree to which the profile is peaked,
and a modified single β model (the AB model of Pratt & Arnaud
2002) that has a similar form to the NFW profile allowing it to
fit central cusps:

ne(r) = A

(
r
rc

)−α (
1 +

r2

r2
c

) −3β
2 +

α
2

· (10)

We ran the simulation for each of these profile shapes for sev-
eral sets of parameters to test the influence of profile shape on
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Table 1. Code performance for different profile shapes.

Model β rc rc,in rcut α ξ χ2
dens/Nbins

a χ2
denserrs/Nbins

b χ2
slope/Nbins

c χ2
slopeerrs/Nbins

β 0.67 0.1 – – – – 1.54/55 45.2/55 2.7/54 39.5/54
β 0.35 0.1 – – – – 23.0/64 76.2/63 4.5/63 52.1/60
β 0.9 0.1 – – – – 5.5/47 39.2/47 4.2/46 30.7/46
AB 0.67 0.1 – – 0.1 – 1.02/54 84.2/54 1.1/54 94.0/54
AB 0.67 0.1 – – 0.5 – 2.65/52 42.5/52 9.2/52 26.5/52
AB 0.67 0.1 – – 0.9 – 8.46/49 229/48 5.9/49 228/46
BB 0.67 0.1 0.02 0.2 – – 19.1/49 31.1/49 36.1/49 39.3/49
KBB 0.67 0.1 0.02 0.2 – 0.5 11.8/50 71.9/50 19.4/50 67.0/50
KBB 0.67 0.1 0.02 0.2 – 0.2 2.92/49 56.8/49 5.1/49 39.5/49
bumpy – – – – – – 111.3/91 – 121.4 –
cold front – – – – – – 133.2/69 – 131/69 –

a Using mean profile from 100 simulation runs. b Comparison of mean errors with “true” errors – see text. c Using mean logarithmic density slope
from 100 simulation runs.

code performance. The results are shown in Fig. 1. For these
tests, the input surface brightness profiles had a global signal-
to-noise ratio of 200, representative of a typical observation of
a nearby cluster, a total source/background count ratio R = 0.3,
appropriate for this signal-to-noise, and were binned to obtain a
signal-to-noise per bin of at least 3σ.

Figure 1 shows that our deprojection method is not signifi-
cantly affected by the profile shape: in all cases the input density
profile is recovered to a high degree of accuracy. A more quan-
titative comparison is given in Table 1: the reduced χ2 values
for the mean output density profile compared to the input profile
show that there is no significant bias. It appears that the scal-
ing function does have a small effect on the code performance:
the BB and KBB models, for which the goodness of fit of the
scaling AB model were poorest, have significant residuals in
the central few bins. However, the overall agreement between
the mean output and input profiles (see Table 1) is still excel-
lent. In Fig. 2, we show the dlog ne/dlog r profiles for each of
the models, calculated as described in Sect. 2.4, compared with
the slope of the input density profile, calculated directly from
the model. As indicated in Table 1, our method accurately and
without bias recovers dlog ne/dlog r for all tested input density
models (although the slope is less well-recovered in the inner-
most bin for the steepest density profiles).

As one of the main strengths of this method is that it re-
tains full information from the surface brightness profile, we also
wanted to test its ability to recover information about deviations
from a smooth functional form in the input density profile. We
therefore simulated density profiles containing sinusoidal mod-
ulations superimposed on a β-model form in order to represent
more complex profile behaviour. Figure 3 shows the simula-
tion results for one such profile, which is representative of the
“bumpy” profiles that were investigated. Again, the deprojection
code recovers extremely well the shape of the “bumps” in the
input profile, although they are slightly smoothed, as is evident
in the residual plot. We also simulated a profile with a density
discontinuity (by reducing the βmodel normalisation by a factor
of 2 at a radius of 2.5rc) such as might be produced by a cold
front. Again, the profile is well reproduced, although the output
density discontinuity is slightly smoothed compared to the input
profile. The slight smoothing effect will be more severe for very
narrow, spiked features (as was noted by Bouchet 1995, for his
original application of this technique to spectral deconvolution);
however, in the case of X-ray surface brightness profiles, such
features would not be expected as they are unphysical, so that
this is not an important limitation of the code. Although we have
demonstrated that radial imhomogeneities in gas distribution are

well recovered by our method, it is important to be aware of the
inherent limitations of a one-dimensional approach to measuring
gas density. Like all methods based on azimuthally symmetric
radial surface brightness profiles, our deprojection method does
not take into account azimuthal variations or variations along
the line-of-sight. Our method could be generalized to ellipsoid
shells; however, this would require assumptions about the clus-
ter structure along the line-of-sight. A detailed discussion of the
accuracy of 1D deprojection methods is beyond the scope of this
paper.

We next used a β model profile (for simplicity) to test the
effects of global signal-to-noise ratio and choice of binning. We
tested β model profiles with β = 0.67 (typical of cluster pro-
files) and rc = 0.1R500 for global signal-to-noise ratios of 200,
100, 50 and 15, which fully sample the range in data quality seen
in observations of nearby and distant clusters. The correspond-
ing total source/background count ratios were 0.3, 1, 2 and 5,
respectively, as obtained using the relationship between signal-
to-noise and R in the observations. Figure 4 shows the deprojec-
tion results for the four choices of global S/N, with goodness
of fit information in Table 2. Unsurprisingly, the code performs
best for the highest quality data; however, in all cases the input
density profile is well recovered, and even at the lowest S/N ra-
tio of 15, the deprojection method performs well (χ2 of 0.1 for
24 d.o.f. for the mean output profile). This is further illustrated
by the plots of dlog ne/dlog r shown in Fig. 5.

We then tested the effect of binning of the input surface
brightness profile on the performance of our method. Using the
same β model parameters as for the global S/N tests, and a
global S/N of 200 again, we tested binning with ratios of 3,
5, 10 and 30σ per bin. The deprojection results for these tests
are shown in Fig. 6, with goodness of fit information in Table 2,
and plots of dlog ne/dlog r in Fig. 7. These figures show that the
choice of binning does not have an important effect on the re-
covery of the input density profile.

In addition to testing how well the input density profiles were
recovered in our simulations, we also tested the accuracy of our
error calculation method (described in Sect. 2.3). The “true” er-
ror on the density calculated at a given radius should be given
by the standard deviation of the distribution of density values
(σne ) obtained over the 100 Monte Carlo runs for a given model
(indeed, this is precisely the method we are using in the error
calculation). We therefore compared the mean errors calculated
by our code at each density (〈σcalc〉) with the “true” error from
the simulated density distribution (σne ) to confirm the accuracy
of our method. Figure 8 shows a comparison of 〈σcalc〉(r) and
σne (r) for a range of models, with Figs. 9 and 10 illustrating the
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Fig. 2. Same simulations as for Fig. 1. The mean output profile of dlog ne/dlog r and errors are shown by red squares, with the profile obtained
from the input density model indicated by a black solid line.

effect of global S/N and choice of binning on the accuracy of er-
ror determination. In all cases the errors calculated by the code
are reasonably accurate (within 2σ of the true error) and gener-
ally not biased in any systematic way (although for the steepest
AB model there is a slight systematic underestimation, the ori-
gin of which is unclear). The accuracy of the error calculations
is also shown in Table 1.

4. A comparison of XMM-Newton and Chandra gas
density profiles using the new method

In the previous section we demonstrated using a range of model
density profiles that our deprojection method performs well in
a variety of situations. We next decided to carry out a com-
parison of the Chandra and XMM-Newton density profiles ob-
tained using our method and from analytical models for several

clusters for which high quality data exist from both observato-
ries. The purpose of this comparison was both to test the per-
formance of our code on real data and also to test for the first
time the consistency of surface brightness and density profiles
obtained from the two observatories. The comparison of depro-
jected XMM-Newton profiles with Chandra profiles will be par-
ticularly useful as a test of our PSF-deconvolution method, as the
much smaller Chandra PSF means that its effects on the central
profile are far less important.

We chose to study three nearby clusters Abell 478,
Abell 1413 and Abell 1991, which have recently published ob-
servations with XMM-Newton (Pointecouteau et al. 2004; Pratt
& Arnaud 2002, 2005) and Chandra (Sun et al. 2003; Vikhlinin
et al. 2006).

For Abell 478, we used the XMM-Newton surface bright-
ness profile obtained by Pointecouteau et al. (2004) as input for
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Fig. 3. Monte Carlo simulations of the deprojection and PSF deconvolution of “bumpy” surface brightness profiles. The lefthand density profile is
a beta model with sinusoidal variations superimposed, and the righthand profile is a beta model with a density jump, such as might be produced
by a cold front. Red symbols are the output profile; solid black line is the input model.

Fig. 4. Results of Monte Carlo simulations of the deprojection and PSF deconvolution of surface brigthness profiles with different global S/N
ratios and source/background count ratios R (3σ binning in cases), as indicated in the individual plot labels. In all cases, the mean output density
profile and errors are shown by red squares, with the input density model profile indicated by a black solid line.

the deprojection code. The deprojected XMM-Newton density
profile was then compared with the analytical model fitted by
Pointecouteau et al. (2004) and with the Chandra density pro-
file obtained by Sun et al. (2003). Sun et al. (2003) in fact also
used a deprojection method to obtain their profile; their method
uses an “onion-skin” technique without regularisation. Figure 11
compares the different profiles for Abell 478. All three profiles

are in good agreement, although the deprojected XMM profile is
slightly more centrally peaked than the Chandra profile.

We used the XMM-Newton surface brightness profile of Pratt
& Arnaud (2002) for Abell 1413 as input for the deprojection
code. In this case we compared with the best fitting analytical
models of Pratt & Arnaud (the “KBB” model) (XMM) and of
Vikhlinin et al. (2006) (Chandra), which consisted of a β model
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Fig. 5. Same simulations as Fig. 4. The mean output profile of dlog ne/dlog r and errors are shown by red squares, with the profile obtained from
the input density model indicated by a black solid line.

Fig. 6. Results of Monte Carlo simulations of the deprojection and PSF deconvolution of surface brigthness profiles, using different binning of the
data (signal-to-noise per bin), as indicated in the individual plot labels. The simulated surface brigthness profiles have a global S/N ratio of 200,
for a total source/background count ratio of R = 0.3. In all cases, the mean output density profile and errors are shown by red squares, with the
input profile indicated by a black solid line.
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Table 2. Code performance for different global S/N and binning.

S/N2 σbin
a χ2

mean/Nbins
b χ2

errs/Nbins
c χ2

slope/Nbins
d χ2

slopeerrs/Nbins

15 3.0 2.2/24 37.2/24 2.2/23 39.2/23
50 3.0 1.54/42 24.1/42 1.3/41 25.1/41
100 3.0 1.54/55 45.2/55 2.7/54 39.5/54
200 3.0 2.1/71 55.5/71 2.9/70 40.2/70
200 5.0 2.06/45 33.5/45 1.7/44 27.3/44
200 10.0 5.6/33 38.4/33 3.3/32 41.8/32
200 30.0 14.1/17 15.1/17 9.0/17 15.6/17

a Signal-to-noise ratio per bin. b Using mean densities from 100 simulation runs. c Comparison of mean errors with “true” errors – see text. d Using
mean logarithmic density slope from 100 simulation runs.

Fig. 7. Same simulations as Fig. 6. The mean output profile of dlog ne/dlog r and errors are shown by red squares, with the profile obtained from
the input density model indicated by a black solid line.

multiplied by a polytropic model. Figure 12 compares the dif-
ferent density profiles for Abell 1413. Again, all three density
profiles are in good agreement; however, in this case the model
obtained from our deprojection method is in better agreement
with the Chandra profiles in the central regions than the XMM
analytical model, which fails to reproduce the central cuspiness
measured by Chandra.

For Abell 1991, we used the XMM-Newton profile of Pratt
& Arnaud (2005) as input for the deprojection code, and com-
pared the output density profile with their analytical model (a
sum of two β models) and with the best-fitting model to the
Chandra data of Vikhlinin et al. (2006) (with the same functional
form as for Abell 1413, but with an additional second β-model
component). The results are shown in Fig. 13. In this case, the
two profiles obtained from the XMM-Newton data are in good
agreement, but both significantly less centrally peaked than the

Chandra profile. The slope of the Chandra profile is also slightly
steeper.

Finally, we also decided to test the code on a more distant
cluster observed by XMM-Newton, CL0016+16 (z = 0.5455).
Figure 14 shows our deprojected density profile with the best-
fitting β-model profile of Worrall & Birkinshaw (2003) both
from the XMM-Newton observation. The profiles are in good
agreement, except at the centre, where Worrall & Birkinshaw’s
model fit had systematic residuals, and in the outermost bins,
where our method identifies a steepening at large radius that
could not be taken into account by the β-model fit.

5. A comparison of mass profiles

In addition to comparing the gas density profiles obtained from
Chandra and XMM-Newton cluster observations, as discussed



1016 J. H. Croston et al.: X-ray density profile deprojection

Fig. 8. Error estimation from Monte Carlo simulations of the deprojection and PSF deconvolution of input model density profiles of different
profile shapes. In all cases, the relative mean ouput errors are shown by red squares, with the “true” errors indicated by a black solid line (the
“true” error profile can be made smoother by increasing the number of MC iterations).

in the previous section, we also compared the mass profiles
of Abell 478, Abell 1413 and Abell 1991 obtained from the
XMM-Newton observations via the two methods of deprojection
and model fitting to obtain dlog(ne)/dlog(r). For both sets of
density slope profiles, we used the same temperature profiles,
those of Pointecouteau et al. (2004), Pratt & Arnaud (2002) and
(2005), respectively, for Abell 478, Abell 1413 and Abell 1991,
to calculate a total mass profile. Figure 15 shows the mass pro-
files for all three clusters. In all three cases the two methods of
analysis of the XMM-Newton data obtain similar results. In gen-
eral (and particularly for Abell 1991), the XMM-Newton pro-
files obtained by model fitting are smoother than those obtained
via the deprojection method, which is not surprising; however,

the best-fitting NFW model fits for the new method are consist
within 1σwith those reported in the original XMM-Newton anal-
ysis papers for each cluster.

6. Conclusions

We have described a method for obtaining gas density profiles
from X-ray surface brightness profiles of galaxy clusters, with
the aim of improving constraints on the entropy and total mass
distributions of clusters. We first showed using simulated pro-
files that this method performs well in a range of conditions:

– The effect of the shape of the density profile was tested using
four models: the βmodel, AB model, KBB model, BB model,
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Fig. 9. Error estimation from Monte Carlo simulations of the deprojection and PSF deconvolution of input model density profiles of different
global S/N ratios (3σ binning in cases). In all cases, the relative mean output errors are shown by red squares, with the “true” errors indicated by
a black solid line.

Fig. 10. Error estimation from Monte Carlo simulations of the deprojection and PSF deconvolution of input model density profiles of different
signal-to-noise per bin (for global S/N = 200). In all cases, the relative mean output errors are shown by red squares, with the “true” errors
indicated by a black solid line.
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Fig. 11. Comparison of XMM and Chandra profiles for Abell 478 with
the XMM profile obtained with our method (+ symbols, the best-fitting
XMM model of Pointecouteau et al. (2004) (dashed line), and the
Chandra profile of Sun et al. (2003) (dotted line).

Fig. 12. Comparison of XMM and Chandra profiles for Abell 1413 with
the XMM profile obtained with our method (+ symbols), the best-fitting
XMM model of Pratt & Arnaud (2002) (dashed line), and the Chandra
profile of Vikhlinin et al. (2006) (dotted line).

as well as for profiles with deviations from a smooth shape.
We found that in all cases the agreement between the output
density profile and the model was good, with slightly poorer
performance in the central regions for the KBB and BB mod-
els, due to the choice of an AB model as a scaling function.

– The global signal-to-noise of the input profiles does affect the
accuracy of the output density profiles, with poorer quality
data giving less accurate results; however, this effect was fairly
small, and a good agreement (χ2 of 36/24) was obtained for
a S/N of 15, corresponding to a profile containing ∼2500 net
counts.

– The profile binning did not appear to have an important effect
on the accurate recovery of the input density profile.

We then tested the code performance on real XMM-Newton data
for four clusters: three nearby clusters with published Chandra

Fig. 13. Comparison of XMM and Chandra profiles for Abell 1991 with
the XMM profile obtained with our method (+ symbols), the best-fitting
XMM model of Pratt & Arnaud (2005) (dashed line), and the Chandra
profile of Vikhlinin et al. (2006) (dotted line).

Fig. 14. Comparison of XMM profile for CL0016+16 with the
XMM profile obtained with our method shown in red and the best-fitting
XMM model of Worrall & Birkinshaw (2003) in black.

gas density profiles, and one distant cluster. We found that
our method resulted in gas density profiles in better agreement
with the higher resolution Chandra profiles. We also found that
our method performed well in the case of the distant cluster,
CL0016+16, reproducing a central excess and change of slope at
large radii that could not be taken into account using a β-model
fit. Finally we demonstrated that the mass profiles obtained from
our gas density profiles are consistent with those obtained from
other methods. We therefore find that our method is suitable for
obtaining gas density profiles both from high signal-to-noise ob-
servations of nearby clusters and also for distant clusters. This
model-independent inversion method will be extremely useful
as a consistent and reliable means of obtaining gas density pro-
files (and subsequently entropy and mass profiles) for ongoing
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Fig. 15. Mass profile comparison for Abell 478 (top left), Abell 1413 (top right) and Abell 1991 (bottom). In all cases, + symbols indicate the XMM
mass profile obtained by deprojection, hollow circles the XMM mass profile obtained by fitting a model to the surface brightness distribution (taken
from Pointecouteau et al. 2004; Pratt & Arnaud 2002; and 2005, respectively). Dashed lines indicate NFW fits to the profiles using deprojection,
and dotted lines best fits to the profiles using analytic density profiles.

studies of large, unbiased samples of nearby and distant clusters.
The deprojection code is available on request to the authors.
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