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Abstract 
 

As semiconductor technology advances, the 
performance gap between processor and memory has 
become one of the major issues in computer design. In 
order to bridge this gap, many methods, for example, 
cache, Massively Parallel Processor (MPP) and 
interleaved memory have been developed. However, 
computer system performance fails to make reasonable 
improvement in the data intensive applications, due to 
the long latency and limited bandwidth. In a 
continuing effort to bridge this widening gap between 
processor and main memory speed, a new concept 
called Processor-In-Memory (PIM) is introduced, 
which capitalises on merging the processor unit with 
its memory unit on the same chip. Several 
architectures based on this concept have been 
proposed such as, IRAM, Active Pages, FlexRAM, 
Computational RAM, etc. The most immediate benefit 
provided by these architectures is the increased on 
chip bandwidth and low memory latency. These 
architectures have some limitations such as their 
adaptability, scalability and cost-effectiveness. In this 
paper, a Dynamic Cooperative Intelligent Memory 
(DCIM) architecture is presented, where some of those 
limitations are bridged. 

 
 
1. Introduction 
 
In the past 30 years, an exponential rate of 
improvement has been witnessed in semiconductor 
technology. The processor performance increases at a 
rate of 60% per year while the memory performance 
increases just 10% per year [1]. This situation causes a 
50% growing gap between processor and memory in 
the performance. This imbalance has become one 
major bottleneck in further improving the computer 
performance. 
 
Some traditional approaches have been developed to 

reduce the widening gap between processor and main 
memory speed, such as cache, Massively Parallel 
Processor (MPP), multithreading, interleaved memory 
and dynamic access ordering. However, the long 
latency and limited bandwidth are still major 
bottlenecks in those solutions. Advances in VLSI 
technology are enabling the processor-memory 
integration to bridge the processor-memory 
performance gap. It is also a key driver in the 
innovation of a new concept called Processor-In-
Memory (PIM). The PIM architecture incorporates 
computational units and control logic directly on the 
memory to provide immediate access to the data. It 
offers the promise of high performance though a 
notable reduction in access latency and dramatic 
increase in available memory bandwidth for a specific 
class of computing that deals with significant amounts 
of data processed with simple or complex operations. 

 
Reconfigurable hardware devices in the form of Field-
Programmable Gate Arrays (FPGAs) have been 
proposed as viable system building blocks in the 
construction of high performance systems at an 
economical price. Given the importance and the use of 
PIM-based systems in scientific computing 
applications, it seems an ideal candidate to harness and 
exploit the advantages offered by FPGAs including 
flexibility and programmability. To increase their 
flexibility, recent FPGA devices provide new fixed 
circuit functions. Since they are already committed to 
the silicon die at manufacture time, there is no added 
cost in circuit area if a designer chooses to use them. 
Furthermore, a single FPGA device now contains 
enough logic blocks to hold multiple units that can 
perform computation concurrently. 

 
It is the aim of this paper to propose a Dynamic Co-
operative Intelligent Memory (DCIM) FPGA-based 
system with the potential to implement real-time task 
partitioning capability. Unlike existing PIMs, the 
concept of dynamic reconfiguration will be exploited 
in proposed DCIM architecture. 
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The structure of the rest of this paper is as follows. 
Related work is presented Section 2. The proposed 
DCIM architecture and its description are presented in 
Section 3. Section 4 is concerned with the DCIM 
working procedure. Concluding remarks and future 
work are given in Section 5. 
 
2. Related Work 
 
This section takes a closer look at the most recent 
architectures and systems based on the PIM concept. 
 
Due to VLSI technology scaling demand, the future 
computing devices will be narrowly focused to achieve 
high performance and high efficiency and also target 
the high volumes and low costs of widely applicable 
general purpose designs. To achieve those 
requirements, the Smart Memory [2] has been 
proposed. A Smart Memory tile consists of a 
reconfigurable memory system, a crossbar 
interconnection network, a processor core and a quad 
interface. The network also connects to high speed 
links on the pins of the chip to allow for the 
construction of multi-chip systems. In the Smart 
Memory, the user can program the wires and the 
memory, as well as the processors. This let the user 
configure the computing substrate to better match the 
structure of the applications, which greatly increases 
the efficiency. 
 
The Date IntensiVe Architecture (DIVA) system [3] 
combines PIM memories with one or more external 
host processors and a PIM-to-PIM interconnect. DIVA 
increases memory bandwidth though two mechanisms. 
First, the selected computation is performed in memory 
to reduce the quantity of data transferred across the 
processor-memory interface. Second, providing 
communication mechanisms called parcels is to move 
both data and computation throughout memory, further 
bypassing the processor-memory bus. DIVA specially 
supports acceleration of important irregular 
applications, such as sparse-matrix and pointer-based 
computations. 

System Level Intelligent Intensive Computing (SLIIC) 
Quick Look (QL) architecture described in [4], is a 
single board PIM-based multiprocessor with 
programmable interconnection. It consists of eight 
Commercial Off-The-Shelf (COTS) PIM chips and two 
FPGA chips. The two FPGAs can be used for two 
purposes: first, they provide a flexible interconnect 
network between the processors; second, they provide 
programmable logic that can be used for processor 
synchronization. The SLIIC QL board was designed to 

promote the investigation of possible benefits of PIMs 
by using current COTS PIM technology [4]. 
 
In [5], a low complexity PIM architecture for image 
and video compression is presented. It consists of 
Processing Elements (PEs), where two are combined to 
form a subPE unit, a Discrete Cosine Transform (DCT) 
and a Discrete Wavelet Transform (DWT) hardware 
units. The PEs and subPEs implement 8-bit and 16-bit 
operations, such as addition, subtraction, and 
multiplication. The DCT and DWT hardware are 
control units for determining the performed operations 
and storing intermediate results. The architecture gains 
up to 40% higher throughput per watt when executing 
DCT and DWT and occupies as little as 0.9% area 
compared to a commercial digital signal processing. 
 
To support the data-intensive applications, the parallel 
PIM architecture (PPIM) is proposed [6]. It is based on 
a distributed data-parallel architecture with limited 
support for control parallelism. PPIM is a distributed 
multiple-SIMD architecture which consists of a small 
number of controllers that broadcast instructions to all 
the PEs. Every PE can choose to receive its control 
from any controller. Each PPIM processor has a 
16Mbits memory and each PE has a 256Kbits memory. 
The PE has the similar SIMD architecture as the 
Computational RAM (C-RAM).  

A cooperative intelligent memory was developed 
within our SoC group, based on a previously 
developed Cooperative Pseudo Intelligent Memory 
(CPIM) architecture [7]. Both architectures use a 
hierarchical two level CPU structure referred to as 
CPU_major and CPU_minor. The CPU_major has a 
conventional architecture while CPU_minor is a task 
specific processor dealing with highly iterative 
memory-to-memory processing. CPIM uses a pre-
compilation task optimization process to determine the 
division of work between CPU_major and 
CPU_minor. In the CIM system, the whole work 
principle is divided into learning and serving stages. In 
the learning stage, the Major processor executes the 
program from memory. Then a special unit called 
Observer detects the iterative loops and the 
corresponding information about loops is recorded. In 
the serving stage, when the processor reiterates this 
program again and encounters the iterative loops, the 
processor will stop executing job. The Minor CPU 
does the job that the Major leaves. By this way, the 
CIM can reduce the Major CPU execution time and 
improve the computer performance [7]. 
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Although existing PIM systems can improve the 
computer performance, they have some limitations. 
Three major limitations can be identified as follows: 
 

1. Each PIM system is fixed in its application, 
which limits its adaptability, scalability and 
cost-effectiveness.  

2. A pre-processing stage is required to partition 
applications between a processor and an 
intelligent memory system, which introduces 
software overhead. 

3. The capability of PIM is limited as the 
effectiveness of the CPU for computation 
intensive tasks is largely offset by its 
administration burdens, i.e. task partitioning, 
logic-in-memory allocation, coordinating 
between the CPU and others etc. 

 
To overcome those limitations, a new PIM system 
called DCIM is introduced and presented in the next 
section. 

 
3. Proposed Architecture 
 
Based on the existing work limitations, the main 
objectives of this work can be summarized as follow: 
 

• To explore a self-learning and self-acting, 
truly intelligent PIM system for the 
improvement of processor-memory 
performance. 

• To explore the feasibility of PIM 
platform on a dynamically reconfigurable 
System-on-Chip (SoC) in order to 
achieve intelligence, improve 
adaptability, eliminate scalability 
bottleneck and reduce on-chip energy 
consumption and manufacturing cost. 

• To develop a methodology for real-time 
task partitioning and allocation to the 
logic-in-memory in order to eliminate the 
pre-processing overhead. 

• To develop a logic allocation and 
scheduling algorithm for better utilisation 
of the Logic-In-Memory (LIM) and for 
better performance of the dynamically 
reconfigurable system. 

• To publicise methodologies/algorithms 
above in order to promote the use of 
reconfigurable computing platforms more 
extensively. 

• To develop benchmarking specifications 
to enable performance comparisons for 

relevant applications using the above 
techniques. 

 
Figure 1 shows the building blocks of the proposed 
DCIM. 
 

 
 

Figure 1.  DCIM building blocks 
 
The proposed DCIM consists of a Global Coordinating 
Memory (GCM), a Control Logic (CTRL), a Logic-In-
Memory (LIM) and a external CPU. 

 
The LIM and GCM communicate through an on-chip 
communication network which is an important element 
on this system to avoid the congestion. Compared to 
the conventional network topologies, such as bus, ring, 
star, tree, mesh and crossbar, on-chip communication 
network reduces the latency, power consumption and 
cost [8, 9]. A dedicated bus for data transfer is directly 
connected from CPU to GCM that can improve data 
transfer efficiently. Configuration lines are used 
between LIMs and the CPU and CTRL unit. 

 
Control Logic (CTRL) 

 
The Control Logic acts as a coordinator, responsible 
for all administration jobs in the system except task 
partitioning. The jobs include uploading the LIM 
configuration information, real-time allocation the 
DCIM resources and coordination between the CPU 
and other units in the system. 

 
Logic-In-Memory (LIM) 

 
The LIMs are the tasks-specific functional logic to 
fulfil data-intensive tasks. LIM configurations are 
initially held in an external system and instantiated 
after they are loaded into system; the uploading is via 
the configuration data bus. 

 
Global Coordinating Memory (GCM) 
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GCM is the memory where data and instructions are 
stored and it is different from the conventional memory. 
GCM can perform real-time task partitioning by 
detecting data-intensive tasks in the memory. The 
detection of data-intensive jobs is implemented in the 
logic called Observer. 
 
The internal structure of each block of the DCIM is 
shown in Figure 2 
 

  
 

Figure 2.  DCIM internal structure 
 
The GCM consists of an Observer and a memory. The 
reason of putting the Observer close to memory is to 
get low latency. It contains a list of desired instruction, 
monitors the activities of memory read by the CPU and 
read the instruction in the buffer. If the instruction is 
being read by the CPU matching with one of the 
instructions specified in the list, the instruction address 
in memory will be recorded; otherwise, it will just let it 
pass by. The memory consists of two separate 
memories which are data memory and instruction 
memory. Those two memories can be used 
independently either at compile or run time. This 
flexibility increases the efficiency of on-chip memory 
utilization and supports faster program execution. The 
data memory consists of more than one memory bank 
and each memory bank can communicate with the 
CPU and LIMs concurrently and independently.  

 
The LIM unit will achieve the function described 
below: 

 
Y=function (x), where x represents data from internal 
memory of LIM. 

 

The aim of the buffer is to hold program temporarily 
and let the Observer detect the desired function in 
program. 
 
4. Working Procedure 
 
A learn and act policy is introduced in the proposed 
system.  
 
4.1. Learning Stage 
 
In the learning stage, the system leaves the external 
CPU to do both data-intensive and computation-
intensive tasks listed in the GCM. However, the 
Observer will be reading the activity (task operations) 
on the instructions from the buffer. If a desired 
function is detected, the associated information will be 
recorded and reported to the CTRL unit. Then, the 
CTRL allocates a corresponding LIM accordingly and 
then the data will be transferred to its internal memory 
via the on-chip network from data memory. For each 
task, the DCIM system will learn just once.  
 
LIMs are reconfigurable which means their internal 
architectures can be changed and adapted to the 
required application. This makes the proposed DCIM a 
general purpose system. 

 
To reduce the LIM uploading overhead, a LIM in this 
system may be shared by multiple tasks or inherited 
from previous applications. There are four situations 
for logic-allocation. 
 

1. If a LIM that can take on the new task is left 
from previous applications and has not been 
assigned any task in the current application, 
the LIM will be re-activated and granted to 
this task.  

2. If the LIM has already been assigned a task 
but is sharable with the new task, the LIM 
will then be shared between the previously 
assigned task and the new task.  

3. If the LIM is on system but not available for 
the new task, or it is not on system at all, a 
new LIM will be uploaded from the external 
system given that there is an unassigned LIM 
available on system. 

4. Otherwise, if there is no unassigned LIM on 
system, the system controller will have two 
options: (a) overwrite a LIM which is left 
from previous applications but has not been 
assigned any tasks in the current application, 
or (b) fail to fulfil the request, in which case 
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GCM and the system controller have to retry 
later.  

 
4.2. Acting Stage 
 
In the acting stage, the record of data-intensive will be 
retrieved, and these tasks are assigned to the 
corresponding LIMs. When the CPU read program 
from memory again and once meets the Observer 
desired information, the CPU will jump to next 
instruction reading and let LIMs do data-intensive job 
by themselves. When the tasks are done, the processed 
data will be transferred back to GCM via data bus.  

 
Figure 3 illustrates an example for DCIM working 
stages. 

 
 

Figure 3. DCIM working stages 
 

The CPU starts a program from t0 by executing 
computation-intensive task CI1. A data-intensive task, 
DI1, is detected by GCM at t1. Once DI1 is finished by 
the CPU at t2, the uploading of the corresponding logic, 
namely LIM1, is started. The CPU in the meantime 
continues on the program, executing CI2. The 
uploading is completed at t3 followed by data transfer, 
DT1, from the data memory to the memory in LIM1, 
which is completed at t4. The program is finished by 
the CPU at t5. In this example, only one data-intensive 
task is detected. The same program is reiterated by the 
CPU at t6. When the CPU reaches the point in the 
program at which DI1 is located at t7, it is signalled by 
the GCM to skip DI1 and jump to the next 
computation-intensive task, CI2; meanwhile, LIM1 is 
activated to execute DI1. DI1 is finished by LIM1 at t8 
and then data are transferred back to GCM, DT2, at t9. 
CI2 is finished by the CPU at t10. The speedup of the 
system each time the program is reiterated in this 
example DI1 execution time. 
 

5. Conclusions and Future Work 
 
5.1. Conclusions 
 
Due to the imbalance in the processor and memory 
performance, a lot of efforts in research and 
development have been dedicated to reduce the 
widening gap between them. Several traditional 
solutions have been developed such as cache, 
prefetching, MPP, etc. With these solutions, the long 
memory latency and low bandwidth still remain a 
major bottleneck. To continue bridge this gap, the 
concept of PIM was introduced. Several architectures 
based on this concept have been proposed such as the 
IRAM, Active Pages, FlexRAM, DIVA etc. Those 
proposed architectures have some limitations such as 
their adaptability, scalability and cost-effectiveness. 
The main goal of the work presented in this report is to 
propose a new reconfigurable PIM architecture, with 
real time task partitioning capability, where the 
limitations of existing PIM architectures are overcome. 
 
 

The second and following pages should begin 1.0 
inch (2.54 cm) from the top edge. On all pages, the 
bottom margin should be 1-1/8 inches (2.86 cm) from 
the bottom edge of the page for 8.5 x 11-inch paper; 
for A4 paper, approximately 1-5/8 inches (4.13 cm) 
from the bottom edge of the page. 
 
5.2. Future Work 
 
The next steps are concerned with the investigation 
into the design and efficient implementation of the 
different blocks in the proposed architecture. 
 
The LIM reconfiguration and CTRL parts are the main 
challenges in this proposed system, where the 
following problems will be addressed: 

 
 Efficiency of transferring data from main 

memory to LIM’s memory. 
 The storage of the LIM’s configuration 

information. 
 The configuration of the LIMs. 
 Getting and uploading the configuration 

information to the LIM by the CTRL unit.  
 Coordination between LIMs, Memory and 

CPU 
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