
Dynamic Co-operative Intelligent Memory

Xiaoyong Wen, Faycal Bensaali and Reza Sotudeh
School of Electronic, Communication and Electrical Engineering

University of Hertfordshire, Hatfield, United Kingdom
{x.wen, f.bensaali, r.sotudeh}@herts.ac.uk

Abstract

As semiconductor technology advances, the
performance gap between processor and memory has
become one of the major issues in computer design. In
order to bridge this gap, many methods, for example,
cache, Massively Parallel Processor (MPP) and
interleaved memory have been developed. However,
computer system performance fails to make reasonable
improvement in the data intensive applications, due to
the long latency and limited bandwidth. In a
continuing effort to bridge this widening gap between
processor and main memory speed, a new concept
called Processor-In-Memory (PIM) is introduced,
which capitalises on merging the processor unit with
its memory unit on the same chip. Several
architectures based on this concept have been
proposed such as, IRAM, Active Pages, FlexRAM,
Computational RAM, etc. The most immediate benefit
provided by these architectures is the increased on
chip bandwidth and low memory latency. These
architectures have some limitations such as their
adaptability, scalability and cost-effectiveness. In this
paper, a Dynamic Cooperative Intelligent Memory
(DCIM) architecture is presented, where some of those
limitations are bridged.

1. Introduction

In the past 30 years, an exponential rate of
improvement has been witnessed in semiconductor
technology. The processor performance increases at a
rate of 60% per year while the memory performance
increases just 10% per year [1]. This situation causes a
50% growing gap between processor and memory in
the performance. This imbalance has become one
major bottleneck in further improving the computer
performance.

Some traditional approaches have been developed to

reduce the widening gap between processor and main
memory speed, such as cache, Massively Parallel
Processor (MPP), multithreading, interleaved memory
and dynamic access ordering. However, the long
latency and limited bandwidth are still major
bottlenecks in those solutions. Advances in VLSI
technology are enabling the processor-memory
integration to bridge the processor-memory
performance gap. It is also a key driver in the
innovation of a new concept called Processor-In-
Memory (PIM). The PIM architecture incorporates
computational units and control logic directly on the
memory to provide immediate access to the data. It
offers the promise of high performance though a
notable reduction in access latency and dramatic
increase in available memory bandwidth for a specific
class of computing that deals with significant amounts
of data processed with simple or complex operations.

Reconfigurable hardware devices in the form of Field-
Programmable Gate Arrays (FPGAs) have been
proposed as viable system building blocks in the
construction of high performance systems at an
economical price. Given the importance and the use of
PIM-based systems in scientific computing
applications, it seems an ideal candidate to harness and
exploit the advantages offered by FPGAs including
flexibility and programmability. To increase their
flexibility, recent FPGA devices provide new fixed
circuit functions. Since they are already committed to
the silicon die at manufacture time, there is no added
cost in circuit area if a designer chooses to use them.
Furthermore, a single FPGA device now contains
enough logic blocks to hold multiple units that can
perform computation concurrently.

It is the aim of this paper to propose a Dynamic Co-
operative Intelligent Memory (DCIM) FPGA-based
system with the potential to implement real-time task
partitioning capability. Unlike existing PIMs, the
concept of dynamic reconfiguration will be exploited
in proposed DCIM architecture.

4th IEEE International Symposium on Electronic Design, Test & Application

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.33

184

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.33

184

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.33

184

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.33

184

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1638422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The structure of the rest of this paper is as follows.
Related work is presented Section 2. The proposed
DCIM architecture and its description are presented in
Section 3. Section 4 is concerned with the DCIM
working procedure. Concluding remarks and future
work are given in Section 5.

2. Related Work

This section takes a closer look at the most recent
architectures and systems based on the PIM concept.

Due to VLSI technology scaling demand, the future
computing devices will be narrowly focused to achieve
high performance and high efficiency and also target
the high volumes and low costs of widely applicable
general purpose designs. To achieve those
requirements, the Smart Memory [2] has been
proposed. A Smart Memory tile consists of a
reconfigurable memory system, a crossbar
interconnection network, a processor core and a quad
interface. The network also connects to high speed
links on the pins of the chip to allow for the
construction of multi-chip systems. In the Smart
Memory, the user can program the wires and the
memory, as well as the processors. This let the user
configure the computing substrate to better match the
structure of the applications, which greatly increases
the efficiency.

The Date IntensiVe Architecture (DIVA) system [3]
combines PIM memories with one or more external
host processors and a PIM-to-PIM interconnect. DIVA
increases memory bandwidth though two mechanisms.
First, the selected computation is performed in memory
to reduce the quantity of data transferred across the
processor-memory interface. Second, providing
communication mechanisms called parcels is to move
both data and computation throughout memory, further
bypassing the processor-memory bus. DIVA specially
supports acceleration of important irregular
applications, such as sparse-matrix and pointer-based
computations.

System Level Intelligent Intensive Computing (SLIIC)
Quick Look (QL) architecture described in [4], is a
single board PIM-based multiprocessor with
programmable interconnection. It consists of eight
Commercial Off-The-Shelf (COTS) PIM chips and two
FPGA chips. The two FPGAs can be used for two
purposes: first, they provide a flexible interconnect
network between the processors; second, they provide
programmable logic that can be used for processor
synchronization. The SLIIC QL board was designed to

promote the investigation of possible benefits of PIMs
by using current COTS PIM technology [4].

In [5], a low complexity PIM architecture for image
and video compression is presented. It consists of
Processing Elements (PEs), where two are combined to
form a subPE unit, a Discrete Cosine Transform (DCT)
and a Discrete Wavelet Transform (DWT) hardware
units. The PEs and subPEs implement 8-bit and 16-bit
operations, such as addition, subtraction, and
multiplication. The DCT and DWT hardware are
control units for determining the performed operations
and storing intermediate results. The architecture gains
up to 40% higher throughput per watt when executing
DCT and DWT and occupies as little as 0.9% area
compared to a commercial digital signal processing.

To support the data-intensive applications, the parallel
PIM architecture (PPIM) is proposed [6]. It is based on
a distributed data-parallel architecture with limited
support for control parallelism. PPIM is a distributed
multiple-SIMD architecture which consists of a small
number of controllers that broadcast instructions to all
the PEs. Every PE can choose to receive its control
from any controller. Each PPIM processor has a
16Mbits memory and each PE has a 256Kbits memory.
The PE has the similar SIMD architecture as the
Computational RAM (C-RAM).

A cooperative intelligent memory was developed
within our SoC group, based on a previously
developed Cooperative Pseudo Intelligent Memory
(CPIM) architecture [7]. Both architectures use a
hierarchical two level CPU structure referred to as
CPU_major and CPU_minor. The CPU_major has a
conventional architecture while CPU_minor is a task
specific processor dealing with highly iterative
memory-to-memory processing. CPIM uses a pre-
compilation task optimization process to determine the
division of work between CPU_major and
CPU_minor. In the CIM system, the whole work
principle is divided into learning and serving stages. In
the learning stage, the Major processor executes the
program from memory. Then a special unit called
Observer detects the iterative loops and the
corresponding information about loops is recorded. In
the serving stage, when the processor reiterates this
program again and encounters the iterative loops, the
processor will stop executing job. The Minor CPU
does the job that the Major leaves. By this way, the
CIM can reduce the Major CPU execution time and
improve the computer performance [7].

185185185185

Although existing PIM systems can improve the
computer performance, they have some limitations.
Three major limitations can be identified as follows:

1. Each PIM system is fixed in its application,
which limits its adaptability, scalability and
cost-effectiveness.

2. A pre-processing stage is required to partition
applications between a processor and an
intelligent memory system, which introduces
software overhead.

3. The capability of PIM is limited as the
effectiveness of the CPU for computation
intensive tasks is largely offset by its
administration burdens, i.e. task partitioning,
logic-in-memory allocation, coordinating
between the CPU and others etc.

To overcome those limitations, a new PIM system
called DCIM is introduced and presented in the next
section.

3. Proposed Architecture

Based on the existing work limitations, the main
objectives of this work can be summarized as follow:

• To explore a self-learning and self-acting,
truly intelligent PIM system for the
improvement of processor-memory
performance.

• To explore the feasibility of PIM
platform on a dynamically reconfigurable
System-on-Chip (SoC) in order to
achieve intelligence, improve
adaptability, eliminate scalability
bottleneck and reduce on-chip energy
consumption and manufacturing cost.

• To develop a methodology for real-time
task partitioning and allocation to the
logic-in-memory in order to eliminate the
pre-processing overhead.

• To develop a logic allocation and
scheduling algorithm for better utilisation
of the Logic-In-Memory (LIM) and for
better performance of the dynamically
reconfigurable system.

• To publicise methodologies/algorithms
above in order to promote the use of
reconfigurable computing platforms more
extensively.

• To develop benchmarking specifications
to enable performance comparisons for

relevant applications using the above
techniques.

Figure 1 shows the building blocks of the proposed
DCIM.

Figure 1. DCIM building blocks

The proposed DCIM consists of a Global Coordinating
Memory (GCM), a Control Logic (CTRL), a Logic-In-
Memory (LIM) and a external CPU.

The LIM and GCM communicate through an on-chip
communication network which is an important element
on this system to avoid the congestion. Compared to
the conventional network topologies, such as bus, ring,
star, tree, mesh and crossbar, on-chip communication
network reduces the latency, power consumption and
cost [8, 9]. A dedicated bus for data transfer is directly
connected from CPU to GCM that can improve data
transfer efficiently. Configuration lines are used
between LIMs and the CPU and CTRL unit.

Control Logic (CTRL)

The Control Logic acts as a coordinator, responsible
for all administration jobs in the system except task
partitioning. The jobs include uploading the LIM
configuration information, real-time allocation the
DCIM resources and coordination between the CPU
and other units in the system.

Logic-In-Memory (LIM)

The LIMs are the tasks-specific functional logic to
fulfil data-intensive tasks. LIM configurations are
initially held in an external system and instantiated
after they are loaded into system; the uploading is via
the configuration data bus.

Global Coordinating Memory (GCM)

186186186186

GCM is the memory where data and instructions are
stored and it is different from the conventional memory.
GCM can perform real-time task partitioning by
detecting data-intensive tasks in the memory. The
detection of data-intensive jobs is implemented in the
logic called Observer.

The internal structure of each block of the DCIM is
shown in Figure 2

Figure 2. DCIM internal structure

The GCM consists of an Observer and a memory. The
reason of putting the Observer close to memory is to
get low latency. It contains a list of desired instruction,
monitors the activities of memory read by the CPU and
read the instruction in the buffer. If the instruction is
being read by the CPU matching with one of the
instructions specified in the list, the instruction address
in memory will be recorded; otherwise, it will just let it
pass by. The memory consists of two separate
memories which are data memory and instruction
memory. Those two memories can be used
independently either at compile or run time. This
flexibility increases the efficiency of on-chip memory
utilization and supports faster program execution. The
data memory consists of more than one memory bank
and each memory bank can communicate with the
CPU and LIMs concurrently and independently.

The LIM unit will achieve the function described
below:

Y=function (x), where x represents data from internal
memory of LIM.

The aim of the buffer is to hold program temporarily
and let the Observer detect the desired function in
program.

4. Working Procedure

A learn and act policy is introduced in the proposed
system.

4.1. Learning Stage

In the learning stage, the system leaves the external
CPU to do both data-intensive and computation-
intensive tasks listed in the GCM. However, the
Observer will be reading the activity (task operations)
on the instructions from the buffer. If a desired
function is detected, the associated information will be
recorded and reported to the CTRL unit. Then, the
CTRL allocates a corresponding LIM accordingly and
then the data will be transferred to its internal memory
via the on-chip network from data memory. For each
task, the DCIM system will learn just once.

LIMs are reconfigurable which means their internal
architectures can be changed and adapted to the
required application. This makes the proposed DCIM a
general purpose system.

To reduce the LIM uploading overhead, a LIM in this
system may be shared by multiple tasks or inherited
from previous applications. There are four situations
for logic-allocation.

1. If a LIM that can take on the new task is left
from previous applications and has not been
assigned any task in the current application,
the LIM will be re-activated and granted to
this task.

2. If the LIM has already been assigned a task
but is sharable with the new task, the LIM
will then be shared between the previously
assigned task and the new task.

3. If the LIM is on system but not available for
the new task, or it is not on system at all, a
new LIM will be uploaded from the external
system given that there is an unassigned LIM
available on system.

4. Otherwise, if there is no unassigned LIM on
system, the system controller will have two
options: (a) overwrite a LIM which is left
from previous applications but has not been
assigned any tasks in the current application,
or (b) fail to fulfil the request, in which case

187187187187

GCM and the system controller have to retry
later.

4.2. Acting Stage

In the acting stage, the record of data-intensive will be
retrieved, and these tasks are assigned to the
corresponding LIMs. When the CPU read program
from memory again and once meets the Observer
desired information, the CPU will jump to next
instruction reading and let LIMs do data-intensive job
by themselves. When the tasks are done, the processed
data will be transferred back to GCM via data bus.

Figure 3 illustrates an example for DCIM working
stages.

Figure 3. DCIM working stages

The CPU starts a program from t0 by executing
computation-intensive task CI1. A data-intensive task,
DI1, is detected by GCM at t1. Once DI1 is finished by
the CPU at t2, the uploading of the corresponding logic,
namely LIM1, is started. The CPU in the meantime
continues on the program, executing CI2. The
uploading is completed at t3 followed by data transfer,
DT1, from the data memory to the memory in LIM1,
which is completed at t4. The program is finished by
the CPU at t5. In this example, only one data-intensive
task is detected. The same program is reiterated by the
CPU at t6. When the CPU reaches the point in the
program at which DI1 is located at t7, it is signalled by
the GCM to skip DI1 and jump to the next
computation-intensive task, CI2; meanwhile, LIM1 is
activated to execute DI1. DI1 is finished by LIM1 at t8
and then data are transferred back to GCM, DT2, at t9.
CI2 is finished by the CPU at t10. The speedup of the
system each time the program is reiterated in this
example DI1 execution time.

5. Conclusions and Future Work

5.1. Conclusions

Due to the imbalance in the processor and memory
performance, a lot of efforts in research and
development have been dedicated to reduce the
widening gap between them. Several traditional
solutions have been developed such as cache,
prefetching, MPP, etc. With these solutions, the long
memory latency and low bandwidth still remain a
major bottleneck. To continue bridge this gap, the
concept of PIM was introduced. Several architectures
based on this concept have been proposed such as the
IRAM, Active Pages, FlexRAM, DIVA etc. Those
proposed architectures have some limitations such as
their adaptability, scalability and cost-effectiveness.
The main goal of the work presented in this report is to
propose a new reconfigurable PIM architecture, with
real time task partitioning capability, where the
limitations of existing PIM architectures are overcome.

The second and following pages should begin 1.0
inch (2.54 cm) from the top edge. On all pages, the
bottom margin should be 1-1/8 inches (2.86 cm) from
the bottom edge of the page for 8.5 x 11-inch paper;
for A4 paper, approximately 1-5/8 inches (4.13 cm)
from the bottom edge of the page.

5.2. Future Work

The next steps are concerned with the investigation
into the design and efficient implementation of the
different blocks in the proposed architecture.

The LIM reconfiguration and CTRL parts are the main
challenges in this proposed system, where the
following problems will be addressed:

 Efficiency of transferring data from main

memory to LIM’s memory.
 The storage of the LIM’s configuration

information.
 The configuration of the LIMs.
 Getting and uploading the configuration

information to the LIM by the CTRL unit.
 Coordination between LIMs, Memory and

CPU

188188188188

6. References

[1] A. Wulf and S.A. McKee, “Hitting the Memory Wall:

Implications of obvious”, ACM Computer Architecture
News, New York, 1995, Vol. 23, No. 1.

[2] K. Mai, T. Paaske, N. Jayasena, R. Ho, W.J. Dally and

M. Hoeowitz, “Smart Memories: A Modular
Configurable Architecture”, Proceedings of the 27th
International Symposium on Computer Architecture,
British Columbia, Canada, 2000, pp. 161-171.

[3] M.W. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J.

Draper, J. LaCross, J. Brockman, W. Athas, A.
Srivasava, V. Freech, J. Shin, and J. Park, “Mapping
Irregular Applications to DIVA, a PIM-based Data-
Intensive Architecture”, Proceedings of the 1999
ACM/IEEE conference on Supercomputing, USA, 1999,
pp. 57 – 57.

[4] J. Suh, C. Li, S.P. Crago and R. Parker, “A PIM Based

Multiprocessor System”, Proceedings of the 15th
International Parallel & Distributed Processing
Symposium table of contents, San Francisco, 2001, Vol.
1 pp. 4-9.

[5] B.J. Jasionowski, M.K. Lay and M. Margala, “A

Processor-In-Memory Architecture for Multimedia
Compression”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2007, Vol. 15, pp.
478-483.

[6] K.K. Rangan, N. Pisolkar, N.B. Abu-Ghazaleh and

P.A. Wilsey, “PPIM-SIM: an efficient simulator for a
parallel processor in memory”, Proceedings of the 34th
Annual Simulation Symposium, USA, 2001, pp. 117-
124.

[7] Zaki Ahmad, “Cooperative Intelligent Memory”, PHD

thesis, University of Hertfordshire, United Kingdom,
2007.

[8] A. Jantsch and G. Liang, “Adaptive Power Management

for the On-Chip Communication Network”,
Proceedings of the 9th EUROMICRO Conference on
Digital System Design, 2006, pp. 649 – 656.

[9] W. Dally and B. Towles, “Route Packets, Not Wires:

On-Chip Interconnection Networks”, Proceeding of the
38th ACM Design Automation Conference, 2001, pp.
681 – 689.

189189189189

