
Computational Linear Algebra Issues in the Galerkin
Boundary Element Method

O.O. Ademoyero, M.C. Bartholomew-Biggs, A.J. Davies

Numerical Optimisation Centre, Mathematics Department
University of Hertfordshire

Abstract

This paper deals with the symmetric linear systems of equations arising in the Galerkin boundary
element method. In particular we consider the merits of direct and iterative solvers and present some
numerical results which illustrate the way that solution costs vary with the number of boundary
elements and indicate the possible advantages of iterative techniques (such as conjugate gradients)
over direct (Gaussian elimination type) approaches.

The first part of the paper is concerned with sequential implementations of the Galerkin boundary
element method. We shall also present results from a parallel implementation, running on annCUBE
machine. We shall consider the speed-ups obtained and for this purpose it will be instructive to
consider separately the three phases: (1) constructing the linear system; (2) solving the linear system;
and (3) using the results to compute interior solutions.

Our results show clearly the benefits of parallel implementation, but they also demonstrate that these
benefits may not be uniform across all aspects of the calculation.

This paper was presented at the conference IMSE2000, held in Banff, Alberta June 12-15, 2000.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1638349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Boundary integral equations

The two-dimensional mixed potential problem may be written in the form

∇2u = 0 in D (1)

subject to the boundary conditions

u = u0 on C0 and q ≡ ∂u

∂n
= q1 on C1 (2)

whereD is the region bounded by the closed curve,C = C0 + C1 as shown in Figure 1.

C1

C0

q = q1

u = u0

D P Qp
∇2u = 0

Figure 1: Potential problem in the regionD.

For a point,P , in D we can write the potential atP in the form of a boundary integral [1], using the
notation of Gray [2]:

P(P) ≡ u(P) +
∮

C

(
u(Q)

∂G

∂n
(P,Q)−G(P,Q)q(Q)

)
dQ = 0 (3)

where

G(P,Q) = − 1
2π

ln |Q− P | = − 1
2π

lnR

is the fundamental solution (Green’s function) andn = n(Q) is the unit outward normal onC atQ.

For properly-posed problems only one ofu or q is known onC so that equation (3) is not directly of
use as it stands. The usual approach [1] is to develop a boundary integral equation by considering
the pointP as a boundary point and to obtain the boundary integral equation by ‘excluding’P with
a small disc and taking the limit as the disc radius tends to zero to give

α(P)u(P) +
∮

C

(
u(Q)

∂G

∂n
(P,Q)−G(P,Q)q(Q)

)
dQ = 0 (4)

whereα(P) is the so-called ‘free-term’ coefficient. Equation (4) is often called the potential bound-
ary integral equation. Similarly the flux boundary integral equation is developed in the form [3]

β(P)q(P) +
∮

C

(
u(Q)

∂2G

∂N∂n
(P,Q)− ∂G

∂N
(P,Q)q(Q)

)
dQ = 0 (5)

whereN = N(P) is the unit outward normal onC at P . These equations are well-established and
have been studied for quite some time. However, there are considerable worries about the existence

of the integrals. Equation (4) involves a weakly singular part, due toG, and a strongly singular part,
due to∂G

∂n . Equation (5) includes a strongly singular part, due to∂G
∂N , and a hypersingular part, due

to ∂2G
∂N∂n . In fact the strongly singular parts are handled in the Cauchy principal value sense and

the hypersingular part is usually handled in terms of a Hadamard finite-part integral in which it is
assumed that divergent terms from neighbouring regions cancel. This causes particular difficulties
when collocation is used to develop the system equations. Gray [2], suggests an alternative approach
via the Galerkin method. We develop our argument in just the same way. We consider the potential
and flux integrals for pointsP in D as follows:

P(P) ≡ u(P) +
∮

C

(
u(Q)

∂G

∂n
(P,Q)−G(P,Q)q(Q)

)
dQ = 0 (6)

F(P) ≡ q(P) +
∮

C

(
u(Q)

∂2G

∂N∂n
(P,Q)− ∂G

∂N
(P,Q)q(Q)

)
dQ = 0 (7)

where equation (7) is obtained by direct differentiation of equation (6) using the fact that we can
reverse the order of integration and differentiation since the integrals in (6) are well-behaved. We
now consider limiting values as the pointP approaches the curveC.

2 Galerkin formulation

CN

C

Figure 2: Boundary approximated by a polygonal curve.

We use the usual boundary element approximation in which the curveC is approximated by a piece-
wise curve,CN . In our caseCN is taken as a polygon, as in Figure 2 and the boundary values ofu
andq are approximated by

ũ(Q) =
N∑

j=1

wj(Q)uj and q̃(Q) =
N∑

j=1

wj(Q)qj (2. 1)

where{wj(Q) : j = 1, 2, · · · , N} is a set of linearly independent basis functions. We shall consider
linear elements in which thewj(Q) are the usual ‘hat’ functions. The boundary element formulation
of equations (6) and (7) takes the form

P̃CN
(P) ≡ u(P) +

∮
CN

(
ũ(Q)

∂G

∂n
(P,Q)−G(P,Q)q̃(Q)

)
dQ = 0 (2. 2)

F̃CN
(P) ≡ q(P) +

∮
CN

(
ũ(Q)

∂2G

∂N∂n
(P,Q)− ∂G

∂N
(P,Q)q̃(Q)

)
dQ = 0 (2. 3)

The limiting process proposed by Gray then sets equations (2. 2) and (2. 3) in the form

lim
ε→0

P̃CN
(Pε) = 0 and lim

ε→0
F̃CN

(Pε) = 0 (2. 4)

where, asε → 0, Pε → P0 onCN . Finally, then, the Galerkin formulation is taken as∮
CN

wk(P0) lim
ε→0

P̃CN
(Pε)dP0 = 0 (2. 5)∮

CN

wl(P0) lim
ε→0

F̃CN
(Pε)dP0 = 0 (2. 6)

There is a variety of different types of integral in equations (2. 5) and (2. 6) depending on the el-
ements in whichP andQ are situated. The integrals may be either non-singular, weakly singular,
strongly singular or hypersingular. The details of how these are handled are given by Gray [2] and
we shall not repeat them here.

The importance of the Galerkin approach is that if equation (6) is used on that part of the boundary on
which a Dirichlet condition holds and thenegativeof equation (7) is used on that part of the boundary
on which a Neumann condition holds then the resulting boundary element algebraic equations are
symmetric. The equations generated from (2. 5), (2. 6) may be written as

Hu−Gq = 0 (2. 7)

which, in block form, are[
hdd hdn

−hnd −hnn

] [
ud

un

]
−

[
gdd gdn

−gnd −gnn

] [
qd

qn

]
= 0.

Here the partition superscripts indicate the distinction between the parts of the boundary on which
Dirichlet and Neumann conditions hold. Sinceud andqn are known, we can re-arrange the system
so that only the unknown boundary values appear on the left. Thus ifx denotes(qd, un) we can
obtain the overall system of equations in the form

Ax = b

where

A =
[
−gdd hdn

gnd −hnn

]
. (2. 8)

Green’s function has the properties

G(P,Q) = G(Q, P)
∂G

∂n
(P,Q) =

∂G

∂n
(Q,P) = − ∂G

∂N
(P,Q) =

∂G

∂N
(Q,P)

∂2G

∂N∂n
(P,Q) =

∂2G

∂N∂n
(Q,P)

and by virtue of these it follows thatA is symmetric.

3 Linear solvers for the Galerkin method

The N × N linear systemAx = b arising in the Galerkin method may be solved by a variety of
methods. Of the direct approaches (i.e. those which transform or factorise the given system) the
Gaussian elimination or Gauss-Jordan methods are always applicable. (We prefer the Gauss-Jordan
approach for reasons which will be mentioned in the later section on parallelization.) Choleski
factorization is a more efficient method (requiring only about half as much arithmetic and storage),
but it requiresA to be both symmetric and positive definite. While the symmetry of (2. 8) is assured
there is no guarantee, unfortunately, that it will be positive definite. An iterative method which can
be used to exploit the symmetry of the system without assuming positive definiteness is the method
of conjugate gradients.

3.1 Conjugate gradient methods for Galerkin systems

The conjugate gradient (CG) approach, as first proposed by Hestenes and Stiefel [12], was intended
for definite, rather than indefinite systems of equations. It proceeds via iterations of the form

x(k+1) = x(k) + α(k)p(k) (3. 1)

where thesearch directionsp(0), p(1), ...p(k), .. are constructed to satisfy the conjugacy property

p(i)T Ap(j) = 0 when i 6= j. (3. 2)

If α(k) in (3. 1) is calculated by

α(k) = − p(k)T r(k)

p(k)T Ap(k)
(3. 3)

wherer denotes the residualAx− b then it follows that

p(k)T r(k+1) = 0. (3. 4)

This, when combined with the conjugacy property (3. 2), means that afterk iterations

p(j)T r(k+1) = 0, for j = 0, 1, .., k. (3. 5)

This result impliesfinite termination— i.e. CG methods solveAx = b in at mostN iterations.

There are a number of ways of generating the conjugate sequence{p(k)}. The original CG algorithm
takesp(0) = −r(0) and then uses the two-term recurrence relation

p(k+1) = −r(k+1) + β(k)p(k) with β(k) =
r(k+1)T r(k+1)

r(k)T r(k)
. (3. 6)

This is only guaranteed to be stable whenA is a positive- (or negative-) definite matrix. To deal with
the indefinite case we can replace (3. 6) by a three-term recurrence relation [14]

p(k+1) = −Ap(k) + α(k)p(k) + β(k)p(k−1) (3. 7)

whereα(k), β(k) are chosen so that

p(k+1)T Ap(j) = 0 for j = k, k − 1.

Other extensions of the CG method to cover the indefinite and non-symmetric case include the
conjugate residualmethod and thebi-conjugate gradientapproach. The former is equivalent to
applying the CG method to the systemAT Ax = AT b, while the latter is based on applying the CG
method to a2N × 2N system of the form(

0 A
AT 0

) (
x̃
x

)
=

(
b
b̃

)
.

A fuller account of CG methods in the context of boundary integral methods is given in [13].

The finite termination property ensures that the CG method is anO(N3) process, since the work
on each iteration is chiefly theN2 multiplications needed to form the matrix-vector productAp(k).
This workload can be considerably reduced ifA is sparse; but this is not relevant to us since the
Galerkin approach typically generates dense matrices. However, even in the dense case, the CG
method becomes more competitive if the eigenvalues ofA are “bunched”. Specifically it can be
proved that, ifA has onlyK distinct eigenvalues then convergence occurs in, at most,K iterations.

The preceding observation motivates thepre-conditionedCG method. In this approach we seek a
matrix M such thatMAMT has eigenvalues more tightly grouped than the orginal matrixA. The
basic CG method can then be applied to solve the systemMAMT y = Mb after which we set
x = MT y. A relatively simple choice forM is the so-called diagonal pre-conditioner

M = diag(
√
|aii|−1). (3. 8)

If we use (3. 8) the pre-conditioned matrixMAMT has all diagonal elements equal to plus or
minus one. This can sometimes cause the eigenvalues also to be clustered around±1. If A is
positive (negative) definite then the diagonal terms ofMAMT will be all positive (negative). More
sophisticated preconditioners can be obtained by findingM through “incomplete”LU or Cholesky
factorizations.

We now compare the performance of the Gauss-Jordan method (GJ) with that of the CG method
using the recurrence relation (3. 6) and the bi-conjugate gradient method Bi-CGSTAB [15]. The
test set of equations comes from applying the Galerkin approach to a Dirichlet problem in the ellipse
given parametrically by

x = 1.5 cos θ y = sin θ, 0 ≤ θ < 2π.

We shall call this Example 1and Table 1 shows the run-times needed to solve the different sizes of
linear system corresponding to different discretizations.

N TCG Tstab TGJ

64 0.052 0.046 0.224
128 0.138 0.166 1.603
256 0.460 0.662 12.22
512 1.74 2.53 95.91

Table 1: Comparison of linear solvers on Example 1

Here the plain CG method does appreciably better than the Gauss-Jordan approach, and usually
outperforms the more complicated Bi-CGSTAB algorithm. Its remarkable performance on the larger
problems is due to the fact that it converges to the required accuracy in only four iterations for every
value ofN . Even if we make the CG method converge to higher accuracy it only requires eight
iterations (in the case whenN = 64).

The good performance of the CG method suggests that the coefficient matrix (2. 8) of the Galerkin
linear system for Example 1 has repeated or “bunched” eigenvalues. We can easily investigate this,
using the Jacobi method, since the symmetry ofA means that all the eigenvalues are real; and in
the caseN = 64, for instance, we find that there are quite a few instances of “pairing-up” where
eigenvalues agree to several significant figures. However, in order to give a more precise measure of
grouping, let us suppose that the eigenvaluesλi are numbered so thatλ1 ≤ λ2 ≤ ... ≤ λN . We shall
say thatλi is ”η−distinct” if

|λi − λi−1| > η|λi| and |λi+1 − λi| > η|λi|

For the Galerkin matrix of Example 1 withN = 64 and with0.005 ≤ η ≤ 0.01, the above definition
implies that about58% of the eigenvalues are distinct. This does not go very far towards explaining
the exceptionally good behaviour of the CG method. Therefore we can also consider another way of
measuring the grouping of eigenvalues and we shall say thatλi is “η−separated” if

|λi − λi−1| > η|λmax| and |λi+1 − λi| > η|λmax|

whereλmax is the largest absolute eigenvalue. Withη between 0.01 and 0.005, this definition means
that the separated eigenvalues of the Galerkin matrix for Example 1 (withN = 64) account for

between22% and 28% of the total. This is somewhat more consistent with the number of CG
iterations taken – although it still does not fully account for the speed of convergence.

It is worth noting that diagonal pre-conditioning based on (3. 8) does not improve the performance of
the CG method in this case; and analysis of the pre-conditioned matrix shows a similar distribution
of eigenvalues.

If this sort of behaviour is typical of other problems then it appears that the CG approach will be very
efficient. To test this conjecture we now quote results for three other boundary element problems.
For each of the following examples we generate and solve the Galerkin linear system for different
values ofN and observe the number of CG iterations required, both with and without the use of
diagonal pre-conditioning. Unless otherwise stated, the results given below were obtained using the
convergence criterion

||Ax− b|| ≤ ε||b|| (3. 9)

with ε = 10−5. (As an important practical point we mention that – in order to obtain a meaningful
comparison of a pre-conditioned solution with the original one – the convergence test for the pre-
conditioned system must be based on achieving||MAMT y −Mb|| ≤ ε||Mb||.)

Example 2involves the problem
∇2u = 0

subject to the boundary conditions

u(0, y) = 0 0 ≤ y ≤ 1
u(x, 0) = x 0 ≤ x ≤ 1
u(1, y) = 1 0 ≤ y ≤ 1
u(x, 1) = x 0 ≤ x ≤ 1

Results for Example 2 are given in Table 2.

N no preconditioner preconditioner
64 17 14
128 26 17
256 32 24
512 92 94

Table 2: Numbers of CG iterations for Example 2.

The results here are rather less dramatic than for Example 1 but even so the numbers of iterations
lie betweenN/4 andN/8. The use of diagonal preconditioning yields improvements of between
10% and30%. CG run-times are typically one-third (or better) of the times required by Gaussian
elimination (GE); and even if we increase the accuracy of the solutions by settingε = 10−8 in (3. 9)
the conjugate gradient solutions for theN = 256 andN = 512 cases are more than twice as fast as
GE.

Example 3involves the solution of
∇2u = 0

subject to the boundary conditions

q(0, y) = 0 0 ≤ y ≤ 1
u(x, 0) = 0 0 ≤ x ≤ 1
q(1, y) = 0 0 ≤ y ≤ 1
u(x, 1) = 1 0 ≤ x ≤ 1

N no preconditioner preconditioner
64 50 37
128 85 68
256 153 136

Table 3: Numbers of CG iterations for Example 3.

Results for Example 3 are summarised in Table 3.

Once again the eigensystem of the Galerkin matrixA seems reasonably suitable for the CG approach,
since we obtain convergence in appreciably less thanN iterations, especially with the benefit of pre-
conditioning. (These remarks still hold when the convergence criterion is (3. 9) withε = 10−8.)
However, the speed advantage of the CG approach is not now particularly striking. Its run-times are,
at best, about75% of those for GE; and sometimes the iterative solution takes a little longer.

In Example 4we solve
∇2u = 0

subject to the boundary conditions

u(0, y) = 300 0 ≤ y ≤ 6
q(x, 0) = 0 0 ≤ x ≤ 6
u(6, y) = 0 0 ≤ y ≤ 6
q(x, 6) = 0 0 ≤ x ≤ 6

Results for this problem are shown in Table 4

N no preconditioner preconditioner
64 35 42
128 67 79
256 148 161
512 235 375

Table 4: Numbers of CG iterations on Example 4.

It is slightly surprising to note that the diagonal pre-conditioning strategy always leads to a deteri-
oration in performance on Example 4. Nevertheless, Table 4 shows that, as for previous examples,
the number of CG iterations needed is still appreciably less thanN . This means, for the larger prob-
lems, that the (un-preconditioned) CG method takes only about60% of the time needed by GE. This
advantage is lost, however, if the convergence tolerance is set toε = 10−8.

From the above results it is now clear that the exceptional behaviour displayed in Example 1 cannot
be taken for granted. Nevertheless, the Galerkin matrices in Examples 2 - 4 do seem to suit the CG
method to some extent. In order to relate the results in Tables 2 - 4 to the eigenvalue distributions of
these Galerkin matrices, Table 5 shows percentages of “distinct” eigenvalues for theN = 64 cases
of Examples 2 - 4. Similarly, Table 6 shows percentages of ”separated” eigenvalues.

Both the tables show that pairing and grouping of eigenvalues is quite common for the Galerkin
matrices arising in the example problems. However, it has to be acknowledged that there is not
particularly good agreement, in detail, between numbers of distinct or separated eigenvalues and the
numbers of iterations recorded in Tables 2 - 4. Theη = 0.005 column in Table 6 is quite consistent
with unpreconditioned CG performance on Examples 2 and 4, where the numbers of iterations are
aboutN/4 andN/2 respectively. For Example 3, however, it is the number of distinct eigenvalues

η = 0.01 η = 0.005 η = 0.0025
Example 2 un-preconditioned 67% 69% 71%
Example 2 preconditioned 71% 71% 73%
Example 3 un-preconditioned 65% 76% 76%
Example 3 preconditioned 66% 74% 82%
Example 4 un-preconditioned 71% 79% 81%
Example 4 preconditioned 66% 74% 82%

Table 5: Percentages of distinct eigenvalues of Galerkin matrices for Examples 2 - 4.

η = 0.01 η = 0.005 η = 0.0025
Example 2 un-preconditioned 19% 25% 34%
Example 2 preconditioned 18% 25% 40%
Example 3 un-preconditioned 20% 26% 29%
Example 3 preconditioned 29% 34% 43%
Example 4 un-preconditioned 31% 46% 57%
Example 4 preconditioned 22% 28% 40%

Table 6: Percentages of separated eigenvalues of Galerkin matrices for Examples 2 - 4.

in Table 5 which corresponds much better with observed performance. Table 6 is also misleading
about the effect of preconditioning since it suggests that faster convergence will occur on Example
4 but not on Example 3. This is precisely the reverse of the observed behaviour!

The above remarks show that there is scope in this area for further research into the behaviour of
different implementations of the CG approach. One obvious avenue to explore, in view of the fact
the Galerkin matrices we have considered have turned out to be indefinite, would be the use of
the more stable three-term recurrence relation (3. 7). A more substantial line of research would
be to try more sophisticated pre-conditioning techniques with a view to better exploitation of the
favourable eigenvalue structure that seems to arise naturally in our problems. However, the widely
usedincomplete factorizationapproaches are of most benefit for problems whereA is sparse, and
only relatively few elements of the factor matrices need to be calculated. This is not likely to be the
case for the Galerkin matrix (2. 8). Improvements on diagonal preconditioning could, however, be
based onquasi-Newtonestimates ofA−1. The quasi-Newton approach will now be outlined.

3.2 Quasi-Newton methods for Galerkin systems

Suppose that the diagonal matrixJ(0) is an estimate ofA−1. (We might useJ(0) = diag(a−1
ii) or

J(0) = I.) Then, for any vectorp – such that(p− J(0)Ap)T Ap 6= 0 – the matrix

J(1) = J(0) +
v(0)v(0)T

v(0)T Ap
, where v(0) = p− J(0)Ap, (3. 10)

is an estimate ofA−1 in the sense that it satisfies the quasi-Newton condition

J(1)Ap = p. (3. 11)

The update (3. 10) is called thesymmetric rank-one formulaand it is well known that, if usedN
times for distinct vectorsp, it will yield J(N) = A−1. A reasonably cheap preconditioner, therefore,
might be obtained by taking

M = J(k)

for some smallk, sayk = 1, 2, and then applying a CG method to the system

MAT AMy = Mb.

The use of quasi-Newton updates like (3. 10) has been proposed by Broyden [16] as a way of
approximating the Jacobian matrix within a Newton-like method for solving nonlinear equations.
(The form (3. 10) is specialised for a symmetric Jacobian; but there are similar updates for the non-
symmetric case.) Such quasi-Newton methods can, of course, also be used for solving linear systems
– but they are usually reckoned to be uncompetitive with methods like conjugate gradients which do
not incur the computational overheads which follow from using a second matrixJ as well asA. In
waht follows, however, we report some experimental results obtained with an algorithm which does
use (3. 10) to solve Galerkin systems.

The Quasi-Newton (QN) methods we propose have certain features in common with the CG ap-
proach described in the preceding sub-section. In particular, each iteration uses a search direction,
p(k) and obtains a new solution estimate of the form

x(k+1) = x(k) + αp(k)

whereα may be chosen using the formula

α(k) = − p(k)T r(k)

p(k)T Ap(k)
where r(k) = Ax(k) − b.

The initial search direction is usuallyp(0) = −r(0); and subsequently we use

p(k) = −J(k)r(k)

whereJ(k) is obtained using the update (3. 10). Specifically, at the end of iterationk we let

δ(k−1) = x(k) − x(k−1) = αp(k−1) and γ(k−1) = αAp(k−1)

and then (3. 10) gives

J(k) = J(k−1) +
v(k−1)v(k−1)T

v(k−1)T γ(k−1)
where v(k−1) = δ(k−1) − J(k−1)γ(k−1)

The important point to note is that, if we chooseJ(0) = I, the calculation ofp(k) can be done
without formingJ(k) explicitly and incurring the cost of a matrix-vector product. Providing we have
stored the vectorsv(0), ..,v(k−1) we can write

p(k) = −r(k) −
k−1∑
j=0

v(j)T r(k)

v(j)T γ(j)
v(j)

which can be done using aboutkN multiplications. Whenk << N this is considerably fewer than
theN2 which would be needed to obtainJ(k)r(k) directly. A similar calculation scheme can be used
to evaluate the productJ(k−1)γ(k−1) in (3.2).

The QN approach we have just described can be viewed as an iterative process for minimizing the
quadratic functionrT A−1r; and in fact the CG method can also be viewed in the same way. Hence
QN should converge to the solution ofAx = b in the same number of iterations as the CG method.
In practice, the CG method is quite susceptible to the effects of rounding error in finite precision
arithmetic; but the QN approach is more robust in this respect. Hence we can reasonably expect the
QN method to converge in appreciably less thanN iterations on the Galerkin problems; and so the
fact that the search direction calculation (3.2) is more expensive than that for the CG approach may
not be too serious.

N no preconditioner preconditioner
64 22 15
128 31 19
256 39 24
512 99 68

Table 7: Numbers of QN iterations for Example 2.

The tables and discussions below deal with the performance of the QN method on Examples 2 -4
from the previous subsection.

For Example 2 the QN approach does slightly more iterations than the CG methodexceptwhen
N = 512 and preconditioning is used. In this case QN uses two-thirds the number of steps and
this is enough to make it the fastest algorithm, by a fairly small margin. It is also worth noting that,
generally speaking, pre-conditioning has a relatively more significant effect on the QN method than
on conjugate gradients.

N no preconditioner preconditioner
64 43 34
128 71 55
256 112 95

Table 8: Numbers of QN iterations for Example 3.

On Example 3 the QN approach consistently needs fewer iterations than the CG method. However, it
is the CG method that uses less arithmetic overall; and the QN approach only outperforms Gaussian
elimination as regards run-time in the caseN = 256 when pre-conditioning is used.

N no preconditioner preconditioner
64 35 35
128 64 59
256 111 100
512 178 178

Table 9: Numbers of QN iterations on Example 4.

On Example 4 the advantage of the QN method over the CG approach (in terms of iteration count)
becomes more significant asN increases. The additional overheads of QN, however, mean that the
unpreconditioned CG solution is still the fastest, for the level of accuracy given by (3. 9). In fact,
for N = 512, CG takes about60% of the time needed by Gaussian elimination whereas QN uses
about80%. However, when the required accuracy is increased, so thatε = 10−8 in (3. 9), the greater
robustness of the QN scheme can be observed: QN still converges in slightly less time than GE, but
CG needs20% longer.

It is worth mentioning in passing that we have also tried a slightly different implementation of the
QN approach, in which the step lengthα is chosen in a different way. In this version the QN
approach can be regarded as seeking the minimum ofrT r, rather thanrT A−1r. Some differences in
performance were observed, but overall the effectiveness of the method is about the same as the one
we have described above. An alternative strategy which hadnotyet been tried would be a composite
approach which performs a moderate number of QN iterations (say aboutN/3) and then switches to
CG when the matrix-vector calculations become expensive.

Several interesting questions about linear solvers for Galerkin systems have been raised in this sec-
tion and more work needs to be done to resolve them. For the remainder of this paper, however,
we shall confine ourselves to the use of the CG method in the context of investigating some wider
benefits of running Galerkin boundary element method problems in a parallel environment.

4 Implementation on a multiprocessor parallel computer

The Galerkin boundary element method may be computationally expensive for the solution of large
problems. The generation and solution of the large matrix systems resulting from the discretization
of the boundary often requires significant storage and computational power. In such problems, where
a large number of similar operations is performed [4], a parallel machine is a particularly attractive
option since it can be used to exploit the inherent parallelism of the Galerkin boundary element
algorithm. Distributed memory machines, although requiring extra programming, can provide truly
scalable performance, at considerably lower cost than that of current vector supercomputers.

In this Section we deal with the parallel implementation on a multiprocessor parallel computer of
the Galerkin boundary element method described in Section 2. The code involves three phases: the
generation of the influence matrices and the assembly of the system matrix and the right-hand-side;
the solution of the system of equations; the recovery of internal potentials. In the implementation
of the method, phases one and two are computationally and numerically intensive and the storage
and computational costs grow rapidly as the problem size increases. Natarajan and Krishnaswamy
[5] state that, ifN is the number of nodal unknowns, then the storage requirement for the coeffi-
cient matrix isO(N2) while the computational cost for phases one and two areO(N2) andO(N3)
respectively.

4.1 Geometric domain decomposition

The domain decomposition method is commonly used for the solution of large boundary element
problems by breaking them into smaller problems, and using multiprocessor parallel computers.
Early parallel implementations of the boundary element method were developed on transputer net-
works by Davies [6] where the Gauss quadrature was parallelised and by Daoudi and Lobry [7]
who distributed the elements in a cyclic fashion. Recent parallel implementations use parallel code
development packages. Semeraro and Gray [8] use a block decomposition technique on the system
matrix for the symmetric-Galerkin method with PVM. Kreienmeyer and Stein [9] use a collocation
data decomposition technique on a Parsytec MultiCluster2 with32 processors. They demonstrate
that, provided the speed of inter-processor communication is relatively fast compared with PVM,
theoretical improvements in performance are attainable. Geometric or data parallelism is the most
natural subdivision of the workload for calculations over a region of space. A parallel multi-block
data decomposition boundary element method solution by Davies and Mushtaq [10] requires an
iterative process to update the coupling data between adjacent multiple blocks.

4.2 Multi-partition method

The multi-partition method is described by Mushtaq and Davies [4] [11]. The original boundary of
the problem is subdivided into multiple boundary partitions, see Figure 3, so that each partition is
distributed to a network of processors in boundary sections. Such a distribution allows phases one
and three to be disjoint i.e. no inter-processor communication is necessary.

Figure 3: Illustration of the multi-partition method.

The system of equations corresponding to the partitioning strategy of Figure 3 is written as
H1

H2

H3

H4

u =


G1

G2

G3

G4

q

where the subscripts represent the partition number. On application of the boundary conditions, the
system of equations may be written as

A1

A2

A3

A4

x =


b1

b2

b3

b4


whereA is the symmetric system matrix,x is the unknown vector, andb is the known vector
as defined in Section 2. Each matrix-vector combinationA andb corresponding to a boundary
partition can be generated independently of the others. This is illustrated in Figure 4.

Figure 4: Illustration of the data mapping.

Phases one and three involve the parallel data distribution of the matrices and this is performed such
that the coefficients of the matrices are evenly distributed to individual processors in order to bal-
ance the computational load and achieve a highly efficient parallelism. The domain decomposition
method is used and the domain of the problem is divided into sub-domains, each processor being
responsible for evaluating its subset of the boundary double integrals of the sub-domain. The double
integrals correspond to rows and columns of the matrices. IfN is the problem size andp is the num-
ber of processors, then each processor is responsible forN/p rows of the system matrix andN/p
elements of the right-hand-side vector which gives a well-balanced workload. Each processor is also
responsible for recovering the interior potentials ofl/p interior points, wherel is the number of in-
ternal points at which the internal solution is sought. The order of the matrices for each sub-domain
is much smaller than that of the whole domain, and so the storage limitation can be overcome with
the domain decomposition method. Also, the data distributed over the processors is smaller than that
of a single processor computer and so the computational efficiency and speed is much higher.

The parallelization of phase two is performed by data partitioning which leads to an efficient par-
allelism. The initial experiments to be described here involve parallel versions of only three of the
linear solvers mentioned in the previous section. These are the conjugate gradient method, the bi-
conjugate gradient (stabilised) method and the Gauss-Jordan method. It should be noted that, in
contrast to phases one and three, phase two requires inter-processor communication. This inter-
processor communication is involved in passing data for such phase two operations as scalar prod-
ucts, matrix-vector products, gathering data from processors and broadcasting data to processors.

The parallel distributed computer used in this work is annCUBE 2 with 64 processors in a hyper-
cube configuration each having4Mbytes local memory on each processor.

In the performance results which follow in Section 4.3 we define parallel Speed-upSp, as

Sp =
Computation time on one processor

Computation time on p processors

4.3 Performance results for parallel Galerkin boundary element method

To illustrate how symmetry is exploited in the multiprocessor environment we consider the Dirichlet
problem described as Example 1 in the previous section.

In the Galerkin method, phase one is highly computationally intensive compared with the same phase
in the collocation method. However, it is ideally suited for a distributed memory machine because
of the absence of inter-processor communication. The same remark also applies to phase three.

The parallel performances in phases one and three are shown in Tables 10 and 11. We see from
these tables that, as the problem size for phase one and the number of interior points for phase
three is doubled, the computation time for the phases increases by a factor of four independent
of the number of processors and that for a given number of processors the time isO(N2). As
the number of processors doubles, however, the computation time for the phases decreases by a
factor of two, independent of the problem size and the number of interior points. This means that
phases one and three are highly parallel efficient, almost one hundred percent, independent of the
problem size, the number of interior points and the number of processors. This is due to the fact
that the load is well-balanced, i.e. the tasks involved in these phases are uniformly distributed over
the processors. The desired linear speed-up for different problem sizes in phase one and different
interior point numbers in phase three is obtained, which indicates the efficiency of this algorithm in
a multiprocessor environment.

n 64 128 256 512
p Time (s)

1 8.72 35.08 140.69 563.50
2 4.36 17.54 70.35 281.75
4 2.18 8.77 35.17 140.88
8 1.09 4.39 17.59 70.46
16 0.55 2.19 8.79 35.22
32 0.27 1.10 4.40 17.61
64 0.14 0.55 2.20 8.81

Table 10: Time (seconds) taken for Phase one.

l 64 128 256 512
p Time (s)

1 1.23 4.92 19.70 78.78
2 0.62 2.46 9.85 39.39
4 0.31 1.23 4.92 19.70
8 0.15 0.62 2.46 9.85
16 0.07 0.31 1.23 4.93
32 0.04 0.16 0.62 2.47
64 0.02 0.08 0.31 1.23

Table 11: Time (seconds) taken for Phase three.

We now turn to the parallelization of phase two. We have already seen that the symmetry of the
equations enables us to use the conjugate gradient method and, moreover, that for Example 1 the CG
method converges in only four iterations without preconditioning. We now consider the performance
of this method, along with other linear solvers, in a parallel environment.

The times taken in phase two, by the parallel solvers, conjugate gradient without preconditioning, bi-
conjugate gradient (stabilised) and Gauss-Jordan for different problem size are compared in Tables
12 - 15. The Gauss-Jordan direct solver was preferred to Gaussian elimination because no back
substitution is required, thus eliminating processor idle time.

From Tables 12 - 15 we make the following observations.
(i) The conjugate gradient algorithm significantly outperforms the Gauss-Jordan algorithm in all

cases, even though the Gauss-Jordan has the best speed-up factor.
(ii) Phase two clearly does not exhibit the same parallelism as phases one and three. The speed-
up values are not constant; and for each value ofN the computation time initially decreases asp
increases but then it reaches a minimum and starts to increase. The number of processors at which a
minimum occurs increases with the problem size. Table 15, in particular, shows that it has not been
reached for64 processors withn = 512. The reason for this increase in computation time is that
for a small number of processors the communication costs are small but the solution costs are high.
As the number of processors increases so too do the communication costs, whereas the solution cost
decreases. We eventually reach an optimum number of processors for which the total cost of phase
two is a minimum.

Taken together, Tables 10 - 15 also show that the set-up phase for the Galerkin method is the most
expensive for this example. However, the computation cost in this phase, as well as in phase three,
reduces linearly with the number of processors. Consequently, since eventually the cost in phase two
starts to increase withN , there will be sizes of problem for which the equation solution phase will
be the dominant part of the solution cost.

n = 64
p TCG Tstab TGJ SCG Sstab SGJ

1 0.052 0.046 0.224 1.00 1.00 1.00
2 0.039 0.029 0.134 1.35 1.57 1.68
4 0.035 0.022 0.088 1.51 2.03 2.56
8 0.035 0.023 0.071 1.50 2.02 3.17
16 0.039 0.028 0.067 1.33 1.64 3.36
32 0.048 0.039 0.074 1.09 1.18 3.04
64 0.066 0.061 0.091 0.79 0.75 2.47

Table 12: Time (s) and Speed-up for Phase two.

n = 128
p TCG Tstab TGJ SCG Sstab SGJ

1 0.138 0.166 1.603 1.00 1.00 1.00
2 0.075 0.091 0.841 1.82 1.82 1.91
4 0.053 0.054 0.461 2.62 3.05 3.48
8 0.043 0.040 0.282 3.17 4.11 5.68
16 0.042 0.039 0.204 3.30 4.28 7.85
32 0.047 0.047 0.181 2.95 3.55 8.88
64 0.059 0.067 0.194 2.32 2.47 8.25

Table 13: Time (s) and Speed-up for Phase two.

The final set of Tables 16 - 18 show the times for all three individual phases compared with the total
time (seconds) taken for the complete implementation. This total time includes the three phases
together with data broadcast and gather timewhich reflects the need to distribute data to thep
processors at the beginning of a solution and to collect results at the end. As the number of processors
increases, thetotal time taken for the implementation decreases until an optimum is reached for the
number of processors for a particular problem size. This eventual increase in the implementation
time is due to the fact that as the number of processors increases (for a particular problem size) so
the bradcast and gather costs increase.

n = 256
p TCG Tstab TGJ SCG Sstab SGJ

1 0.460 0.662 12.22 1.00 1.00 1.00
2 0.250 0.355 6.26 1.84 1.86 1.95
4 0.137 0.203 3.27 3.36 3.25 3.74
8 0.088 0.121 1.80 5.20 5.47 6.79
16 0.069 0.094 1.11 6.64 7.03 10.99
32 0.064 0.093 0.81 7.18 7.11 15.05
64 0.071 0.105 0.73 5.49 6.28 16.84

Table 14: Time (s) and Speed-up for Phase two.

n = 512
p TCG Tstab TGJ SCG Sstab SGJ

1 1.74 2.53 95.91 1.00 1.00 1.00
2 0.90 1.29 48.43 1.94 1.95 1.98
4 0.47 0.68 24.62 3.67 3.73 3.90
8 0.27 0.38 12.85 6.51 6.73 7.47
16 0.17 0.24 7.09 9.98 10.66 13.53
32 0.12 0.16 4.33 14.95 15.38 22.17
64 0.11 0.15 3.11 15.90 17.24 30.87

Table 15: Time (s) and Speed-up for Phase two.

n 64 128 256 512
p Total Phase1 Total Phase1 Total Phase1 Total Phase1

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

1 10.20 8.72 40.55 35.08 161.80 140.69 646.33 563.50
2 5.46 4.36 20.73 17.54 81.56 70.35 342.21 281.75
4 3.46 2.18 11.20 8.77 41.82 35.17 163.54 140.88
8 3.22 1.09 7.19 4.39 22.70 17.59 83.98 70.46
16 4.62 0.55 6.70 2.19 14.67 8.79 45.71 35.22
32 8.34 0.27 9.49 1.20 13.69 4.40 29.63 17.61
64 16.26 0.14 16.94 0.55 19.28 2.20 27.72 8.81

Table 16: Total time (s) taken for the implementation and Phase one.

5 Conclusion

The Galerkin method is seen to be highly parallel-efficient, giving near-perfect speed-up in the sys-
tem set-up phase and in the recovery of internal potentials. The problems considered in this pa-
per are relatively small and so the equation solution time remains small compared with the set-up
time. However, for larger problems, the set-up time reduces linearly with the number of processors
whereas the equation-solving time does not. The symmetry of the equations developed from the
Galerkin method allows us to use iterative schemes (conjugate gradients and quasi-Newton) which
has been shown to have the potential to converge very rapidly for problems of this type, thus keeping
the solution costs relatively low. However, there is still scope for more investigation of the properties
of the coefficient matrix (2. 8) in the Galerkin system with a view to taking even more advantage of
its eigenvalue structure.

n 64 128 256 512
p Total Phase2 Total Phase2 Total Phase2 Total Phase2

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

1 10.20 0.046 40.55 0.166 161.80 0.662 646.33 2.53
2 5.46 0.029 20.73 0.091 81.56 0.355 342.21 1.29
4 3.46 0.022 11.20 0.054 41.82 0.203 163.54 0.68
8 3.22 0.023 7.19 0.040 22.70 0.121 83.98 0.38
16 4.62 0.028 6.70 0.039 14.67 0.094 45.71 0.24
32 8.34 0.039 9.49 0.047 13.69 0.093 29.63 0.16
64 16.26 0.061 16.94 0.067 19.28 0.105 27.72 0.15

Table 17: Total time (s) taken for the implementation and Phase two.

l 64 128 256 512
p Total Phase3 Total Phase3 Total Phase3 Total Phase3

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

1 10.20 1.23 40.55 4.92 161.80 19.70 646.33 78.78
2 5.46 0.62 20.73 2.46 81.56 9.85 342.21 39.39
4 3.46 0.31 11.20 1.23 41.82 4.92 163.54 19.70
8 3.22 0.15 7.19 0.62 22.70 2.46 83.98 9.85
16 4.62 0.07 6.70 0.31 14.67 1.23 45.71 4.93
32 8.34 0.04 9.49 0.16 13.69 0.62 29.63 2.47
64 16.26 0.02 16.94 0.08 19.28 0.31 27.72 1.23

Table 18: Total time (s) taken for the Implementation and Phase Three.

References

[1] Brebbia C.A. and Dominquez J.Boundary Elements, an Introductory Course, Computational
Mechanics Publications, 1992.

[2] Gray L.J. Evaluation of singular and hypersingular Galerkin integrals: direct limits and symbolic
computation;Singular Integrals in boundary element methods, eds Sladek V. and Sladek J,
Computational Mechanics Publications, 33-84, 1998.

[3] Sladek V. and Sladek J. Introductory notes on singular integrals;Singular Integrals in boundary
element methods, eds Sladek V. and Sladek J, Computational Mechanics Publications, 1-31,
1998.

[4] Mushtaq J. and Davies A.J. Parallel boundary element implementation of the aerofoil problem
on a Local Area Network multicomputer system using PVM and HPF.Proceedings of PART
’97: The 4th Australasian Conference on Parallel and Real-Time Systems, eds Sharda N. and
Tam A, Springer-Verlag, 126-133,1998.

[5] Natarajan R. and Krishnaswamy D. A case study in parallel scientific computing: the boundary
element method on a distributed-memory multicomputer.Engrg. Anal. with Bound. Elem., 18,
183-193, 1996.

[6] Davies A.J. The boundary element method on a transputer network.Boundary Elements XIII,
ed. Brebbia C.A. Computational Mechanics Publications, 985-994, 1991.

[7] Daoudi E.M. and Lobry J. Implementation of a boundary element method on distributed memory
computers.Parallel Computing, 18, 1317-1324, 1992.

[8] Semeraro B.D. and Gray L.J. PVM implementation of the symmetric-Galerkin method.Engrg.
Anal. with Bound. Elem., 19, 67-72, 1997.

[9] Kreienmeyer M. and Stein E. Parallel implementation of the boundary element method for linear
elastic problems on a MIMD Parallel Computer.Computation Mechanics, 15, 342-349, 1995.

[10] Davies A.J. and Mushtaq J. The domain decomposition boundary element method on a network
of transputers.Boundary Element Technology XI, eds Ertekin R.C. Brebbia C.A. Tanaka M. and
Shaw R. Computational Mechanics Publications, 397-406, 1996.

[11] Mushtaq J. and Davies A.J. Parallel implementation of the boundary element method using
PVM and HPF on a collection of networked workstations.High Performance Computing 97,
181-188, 1997.

[12] Hestenes M.R. and E. Steifel. Methods of conjugate gradients for solving linear systems.J.
Res. Nat. Bureau of Standards49, 409-436, 1952.

[13] Romate J.E. On the use of conjugate gradient type methods for boundary integral equations.
Computational Mechanics12, 214-232, 1993.

[14] Nazareth L. A conjugate gradient algorithm without line searches.JOTA23, 373-387, 1977.

[15] van der Vorst H.A. BiCGSTAB: a fast and smoothly convergent version of Bi-CG for the solu-
tion of nbonsymmetric linear systems.SIAM J. Sci. Stat. Comput.13, 631-644, 1992.

[16] Broyden C.G. A class of methods for solving nonlinear simultaneous equations.Mathematics
of Computation19, 577-593, 1965

