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Abstract
We deal with the problem of scheduling preventive maintenance (PM) for a system so
that, over its operating life, we minimize a performance function which reflects repair and
replacement costs as well as the costs of the PM itself. It is assumed that a hazard rate
model is known which predicts the frequency of system failure as a function of age. It is
also assumed that each PM produces a step reduction in the effective age of the system.

We consider some variations and extensions of a PM scheduling approach proposed by Lin
et al [6]. In particular we consider numerical algorithms which may be more appropriate
for hazard rate models which are less simple than those used in [6] and we introduce some
constraints into the problem in order to avoid the possibility of spurious solutions. We also
discuss the use of automatic differentiation (AD) as a convenient tool for computing the
gradients and Hessians that are needed by numerical optimization methods.

The main contribution of the paper is a new problem formulation which allows the optimal
number of occurrences of PM to be determined along with their optimal timings. This
formulation involves the global minimization of a non-smooth performance function. In
our numerical tests this is done via the algorithm DIRECT proposed by Jones et al [19].
We show results for a number of examples, involving different hazard rate models, to give
an indication of how PM schedules can vary in response to changes in relative costs of
maintenance, repair and replacement.
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1 Introduction

In this paper we consider the scheduling of preventive maintenance (PM). This
problem has been widely discussed in the literature over the last decade – see for
example Dekker [1], Pham & Wang [2], Miyamoto et al [3], Tsai et al [5], Lin et
al [6], Wang [7], Nakamura et al [8] and Qian et al [4], [9] and other references
contained therein. These papers consider models and solution algorithms that can
be used to determine PM schedules that optimize a measure of system performance
– e.g., minimizing mean cost over a lifetime or maximizing lifetime per unit-cost.

We begin with the idea that the frequency of breakdown in any system is a function
of its age. More precisely, we assume that the number of failures occurring between
times t = a and t = b is given by

Z b

a
h(t)dt

where h(t) is the hazard rate function . If h(t) is a monotonically increasing func-
tion of time then failures occur more often as the system ages.

There are two sorts of intervention that can occur during the operating lifetime
of a system. Minimal repair (e.g. replacement of broken components) can take
place whenever a failure happens and we shall suppose that this is always done in
such a way that the system is restored to the satisfactory state it was in just before
failure took place. Preventive maintenance (e.g. cleaning, oiling, re-calibration)
happens according to a pre-determined schedule and is not triggered by specific
events. Such maintenance can be viewed as causing the system to have an effective
age which is less than its calendar age. If PM could be so thoroughly performed as
to restore the system to the state at the beginning of its lifetime then the effective
age would be reduced to zero. This is referred to as perfect PM. On the other hand,
if PM were simply a matter of replacing broken components (as in minimal repair)
then there would be no reduction in effective age. In practice, PM can be thought
of as being imperfect in that it does decrease the effective age of the system without
making it as good as new.

These notions of effective age and imperfect maintenance have been discussed by
Nakagawa [10], [11], [12] and by Kijima et al [13]. Suppose that, for a system
entering service at time t = 0, the first PM occurs at time t1 = x1. Just before this
maintenance is carried out the system’s effective age y1 is the same as its calendar
age x1. We suppose that PM reduces the effective age to b1x1, where b1 is some
constant lying between 0 and 1. Then, during the period until the next maintenance
at time t2, the effective age of the system is

y = b1x1 + x; where 0 < x < t2� t1:

Perfect PM would imply b1 = 0 in the above equation while minimal repair corre-
sponds to b1 = 1. Hence imperfect PM is modelled by taking 0 < b1 < 1.
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In what follows, we shall follow the notation and models chosen by Lin et al [6].
They take the view that, even though its effective age has been reduced, the failure
rate after PM may not be precisely the same as for a genuinely younger system.
Therefore we shall assume that the number of failures occurring between t = 0 and
t = t2 is given by Z x1

0
h(x)dx+

Z x2

0
a1h(b1x1 + x)dx:

Here x2 = t2 � t1 is the interval between the first and second PM and a1(� 1) is
some system-dependent constant.

The effective age of the system just before the second PM at time t2 is

y2 = b1x1 + x2

and immediately after maintenance this is reduced to b2y2 for some b2 such that
b1 � b2 � 1. Thus, in the interval between the second and third PM (at time t3) the
effective age is

y = b2y2 + x = b2b1x1 +b2x2 + x; where 0 < x < x3 = t3� t2:

Moreover, the predicted number of failures between t = t2 and t = t3 is
Z x3

0
a2a1h(b2y2 + x)dx

for some a2 � 1.

We can now generalise the above ideas and, for k = 1; ::;n, we let yk denote the
effective age of the system just before the k-th PM at time tk. We also let xk denote
the time interval tk � tk�1. This implies the relationships

tk =
k

∑
i=1

xi (1.1)

yk = bk�1yk�1 + xk = (

k�1

∑
j=1

B jx j)+ xk where Bj = Πk�1
i= j bi: (1.2)

The intervals between PM are given in terms of the yk by

xk = yk �bk�1yk�1: (1.3)

For consistency with notation used in [6] we let Hk(t) denote the indefinite integral

Hk(t) =
Z

Akh(t)dt where Ak = Πk�1
i=1 ai:

Then the number of failures occurring between tk�1 and tk can be written as

Hk(yk)�Hk(bk�1yk�1):
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Hk(t) is the cumulative hazard rate between the (k� 1)-th and k-th PM – i.e., for
time t in the range

x1 + x2 + ::+ xk�1 � t � x1 + x2 + ::+ xk:

We can use the ideas outlined above to formulate the problem of determining an
optimal schedule for PM. Specifically we consider the the minimization of a per-
formance function of the form

C(y) =
Rc

T
=

γr +(n�1)+ γm ∑n
k=1[Hk(yk)�Hk(bk�1yk�1)]

yn +∑n�1
k=1(1�bk)yk

(1.4)

where

γr =
Cost of system replacement

Cost of PM
and γm =

Cost of minimal system repair
Cost of PM

:

The function (1.4) is given in [6] and assumes that PM takes place n� 1 times
with the n-th PM actually being a system replacement. The numerator Rc in (1.4)
represents the lifetime cost of the system, expressed as a multiple of the cost of
one PM. Rc includes the replacement cost plus the cost of n� 1 PMs plus the
cost of repairs for each breakdown predicted by the hazard-rate function. The
denominator, T , is simply the total life of the system. This follows because

yn +

n�1

∑
k=1

(1�bk)yk = y1 +

n

∑
k=1

yk+1�bkyk: (1.5)

Using (1.3) and x1 = y1, the right hand side of (1.5) is equivalent to

n

∑
k=1

xk = tn:

Hence (1.4) represents the mean cost of operating the system.

For the particular case when the hazard rates are Weibull functions of the form

h(t) = βtα�1 with β > 0 and α > 1 (1.6)

Lin et. al. [6] use a semi-analytic method for finding values of the yk to minimize
(1.4). By setting to zero the first partial derivatives ∂C=∂yk(k = 1; ::;n), they derive
a system of equations which can be solved explicitly to give y1; ::;yn�1 in terms
of yn. Thus C(y) is effectively reduced to a one-variable function which can be
minimized using a standard direct-search method (like bisection) or by a rapidly
convergent gradient-based approach like Newton’s method.

Approaches like the one proposed in [6] are succesful when the functions Hk(t) and
hk(t) are sufficiently simple to permit the formulation of analytical expressions for
y1; :::;yn�1 in terms of yn. In practice, however, it may not be realistic to restrict
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the hazard rate functions to such easily manageable forms as (1.6). Moreover, even
when the h(t) are given by relatively simple expressions, a solution algorithm like
that in [6] will need to be modified whenever the form of h(t) changes.

Analytic (or semi-analytic) approaches to the optimization of PM schedules are
quite commonly used (e.g. [8], [9]). Reliance on techniques which are tailored
to particular assumptions about the problem effectively ignores the existence of
powerful and efficient general minimization algorithms (see for instance [14], [15],
[16]). There are many numerical techniques which can be applied to minimize a
function like (1.4) and most of them do not require strong restrictions to be imposed
on the form of the Hk(t) functions. In later sections of this paper we shall describe
the use of some of these techniques.

In our remarks so far we have considered the minimization of C(y) with respect to
y1; :::;yn where n, the number of PMs applied, is fixed. In practice we may also
wish to determine an optimal value for n. One advantage of the approach in [6] is
that – in the special case where hazard rates are given by (1.6) – it allows n to be
treated as an independent optimzation variable. This is not so easy to do when ap-
plying a numerical optimization algorithm to (1.4) because n is an integer-valued
variable, in contrast to the continuously varying y1; :::;yn. Therefore, in sections
2–5 below we shall use standard optimization techniques to minimize mean cost
for several different values of n in order to obtain the optimum number of PM by
explicit enumeration. In section 6, however, we shall show how the maintenance
scheduling problem can be reformulated so that the optimal value of n can be ob-
tained by a general-purpose numerical optimization algorithm.

Before proceeding any further, we must now point out that the formulation above
has not proved completely satisfactory in practice. When applying numerical opti-
mization methods to (1.4), failures can occur when an iteration takes an exploratory
step which causes one or more of the yk to become negative. Such values for effec-
tive age of the system obviously have no physical meaning but there is nothing in
the mathematical formulation of the problem to prevent them from occurring. The
function C(y) is unbounded below if negative values of yk are allowed and hence an
optimization step which yields a negative C(y) may be accepted by the linesearch.
Once a solution estimate with one or more yk < 0 has been accepted, the optimiza-
tion process will never be able to recover to produce a practical solution with all
the yk positive.

It is also worth pointing out that if we use non-integer values for the shape param-
eter α in (1.6) then the iterations will fail if any yk becomes negative because then
C(y) is not computable.

One way to prevent such failures is to introduce the transformation yk = u2
k and

then carry out the optimization in terms of the new variables uk, which are free to
take positive or negative values. Thus, in sections 2 and 3, we shall consider the
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problem

Minimize C̃(u) =
γr +(n�1)+ γm ∑n

k=1[Hk(u2
k)�Hk(bk�1u2

k�1)]

u2
n +∑n

k=1(1�bk)u2
k

: (1.7)

In section 4 we shall deal with the positivity of the yk by adding constraints to the
minimization of (1.4).

Before proceeding to a discussion of numerical case-studies, it is worth stating
clearly that, for practical systems, the determination of a suitable hazard-rate func-
tion and values for the constants a1;a2; ::;b1;b2; :: is a non-trivial matter. We do
not propose to address it in this paper since our purpose is to explore some issues
in the numerical minimization of functions like (1.7). Therefore we shall consider
some demonstration examples involving artificial hazard rate functions of the form

h(t) = β1tα�1
+β2; with β1; β2 > 0 and α > 1; (1.8)

for various choices of α;β1 and β2. In all cases we shall use the same constants ak

and bk as are given in [6]. Thus, for k = 0;1;2; ::;n�1,

ak =
6k+1
5k+1

; bk =
k

2k+1
: (1.9)

We will use the cost ratios

γm = 10 and γr = 1000 (1.10)

corresponding to a system which is very much more expensive to replace than to
repair or maintain.

We shall consider four examples which are defined by (1.8) - (1.10) together with
particular values of α; β1 and β2.

Problem SPM0 has α = 2; β1 = 2; β2 = 1
Problem SPM1 has α = 2; β1 = 1; β2 = 2
Problem SPM2 has α = 2:5; β1 = 1; β2 = 2
Problem SPM3 has α = 1:5; β1 = 1; β2 = 2

For SPM0 and SPM1 the hazard rates are linear while for SPM2 and SPM3 they
are, respectively, convex and concave functions of time.

2 Minimizing (1.7) for fixed values of n

For each of the cases SPM0 – SPM3 we minimize (1.7) for various values of
n. These minimizations are done using Newton’s method and taking the arbitrary
initial guess

u1 = u2:::= un = 1: (2.1)
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Gradients and Hessians of C̃(u) are obtained using the fortran90 module oprad

[17] [18] which implements a reverse accumulation approach for automatic differ-
entiation (AD). The ideas and techniques of AD – which have become increasingly
widely known over the last decade – provide a means of evaluating derivatives of
numerical functions without the labour of forming and coding explicit analytical
expressions. It works by repeated use of the chain rule applied to numerical values
rather than symbolic expressions. In oprad this is achieved by operator overload-
ing (although it can also done by a pre-processing approach). We now give a brief
description of AD based on using overloaded operators in the code which evaluates
the function which is to be differentiated.

The forward accumulation version of AD associates with each program variable
v a vector v̇ which holds partial derivatives of v w.r.t. the independent variables
x1; ::;xn. A pair V = fv; v̇g is a new data type, often called a doublet. Doublets Xk

corresponding to each xk are initialised so that ẋk is the k-th column of the identity
matrix. Real arithmetic operations are overloaded as in

XiXj = fx jx j; xiẋ j + x jẋig; sin(Xj) = fsin(xj); cos(xj)ẋ) jg:

If code for evaluating f (x1; ::;xn) is re-written with real variables re-declared as
doublets then the result will be a doublet f f ; ḟ g where ḟ is the value of ∇ f .

In the reverse accumulation form of AD, used by oprad, floating point operations
are overloaded so as to create a trace of the program evaluation for f (x1; ::;xn). This
trace consists of a list of elementary arithmetic steps, in the order that they were
performed, together with addresses of the variables involved and values of their
partial derivatives at that stage of the computation. For instance, for the operation
w = u=v we would record values of u;v and w and also the information

∂w
∂u

=
1
v
;

∂w
∂v

=�

u
v2 :

A real-valued adjoint variable v̄ is then associated with each program variable v.
When f has been evaluated, its adjoint f̄ is set to 1 and all other adjoints are set to
zero. A reverse calculation through the program trace is then performed. For the
forward step w = u=v, this reverse calculation would be

ū = ū+
∂w
∂u

w̄; v̄ = v̄+
∂w
∂v

w̄

which causes ū to be equal to the partial derivative of f w.r.t. the program variable
u. It follows that, at the end of the reverse pass, the adjoints x̄k associated with the
independent variables will contain the partial derivatives ∂ f=∂xk.

To calculate second partial derivatives we need to combine the forward and reverse
approaches. This means that the program variables and their adjoints are of type
doublet. Christianson [17] shows that at the end of the reverse pass the doublet
adjoint X̄k = fx̄k; ˙̄xkg will contain the value of ∂ f=∂xk in its first component and
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the k-th column of ∇2 f in its second component. It is also shown in [17] that the
arithmetic cost of evaluating the Hessian in this way is less than 6n+ 4 times the
cost of evaluating the original function.

While analytical derivatives of (1.7) would not be particularly hard to obtain, the
use of oprad makes it very convenient to use the quadratically convergent Newton
technique. Moreover, it becomes virtually painless to do the coding modifications
which result from changes to the PM model and objective function that will be
described in later sections.

We now consider the solution to SPM1 when n = 7 in order to show a typical PM
schedule. Figure 1 shows the solution as a plot of effective age against time with
an instantaneous decrease taking place every time PM occurs. We can see that the
system becomes effectively younger at each successive PM. This is to compensate
for the fact that the hazard rate function is multiplied by a factor ak � 1 after each
PM. We also observe – as would probably be expected – that the intervals between
PM become shorter over the lifetime of the system.
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Figure 1: Optimal solution to SPM1 for n = 7

For SPM1 with n = 7, the Newton method minimizes (1.7) from the initial guess
(2.1) in eight iterations. On the first four of these iterations the Hessian matrix is
found to be non-positive-definite. This shows that the function (1.7) is non-convex
and may therefore have a number of local minima. In fact it certainly does have
several local minima since, for any optimal point u�, other equivalent optima can be
found simply by changing the sign of one or more of the elements of u�. However
all such local optima give the same value of C̃ and for practical purposes do not
represent alternative solutions to the scheduling problem. We need to consider
whether there are other local minima of (1.7) with different values ofC̃.
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To investigate whether the maintenance scheduling problem has multiple solutions,
we have applied the global optimization method DIRECT – as proposed by Jones
et al [19] – to the function (1.7). DIRECT is a derivative-free algorithm which
searches for the global minimum within a hyperbox defined by upper and lower
bounds on the variables. Being a deterministic method, it differs considerably
from well-known stochastic techniques such as Simulated Annealing or Genetic
Algorithms (which are used by Miyamoto et al [3] to solve a PM scheduling prob-
lem). DIRECT works by systematic subdivision of the initial box into smaller and
smaller regions, but is quite efficient because it concentrates its explorations on
regions which are judged potentially optimal. This technique has proved effective
on practical problems (see, for instance, [20], [21]). The original paper [19] does
not give a precise stopping rule and the usual practice is either simply to run the
algorithm for a fixed number of iterations or to terminate when no improvement in
the best function value is obtained over a specified number of subdivisions. It has
been observed [20] [21] that it can be beneficial to restart the algorithm periodi-
cally. This involves setting up a new hyperbox which is centred on the best point
found so far and beginning the subdivision process all over again. Quite often, the
estimate of the global minimum obtained after several such restarts is better than
the one reached by doing the same total number of DIRECT iterations from the
original starting point.

We have applied DIRECT to (1.7) in the following way. After obtaining a solution
u�1; ::;u

�

n (e.g. by Newton’s method) we have used DIRECT to explore the region

0 � ui � 2ū where ū =
1
n

n

∑
i=1

u�i :

To date we have not found any better local minimum of C̃ in such a region and
we therefore feel justified in assuming that Newton’s method is indeed finding the
global minimum of mean cost for each n. Therefore we now go on to consider the
effect of changing n, the number of applications of PM.

3 Minimizing (1.7) for varying n

The figures below show plots of minimum values of (1.7) against n. Figure 2 shows
that SPM0 has a unique minimum at n = 13. This agrees with behaviour reported
in [6] for hazard rate functions of the form (1.6).

Figures 3 - 5 show that, when there is a constant term in the definition of h, as in
(1.8), there may be more than one local minimum of optimal mean cost for varying
n. In problem SPM1 (Figure 3) there are two almost equal minima. Figures 4 and
5 show that for SPM2 the better result occurs at the larger value of n while for
SPM3 this situation is reversed.
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Figure 2: Solutions of SPM0 for various n
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Figure 3: Solutions of SPM1 for various n
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Figure 4: Solutions of SPM2 for various n
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Figure 5: Solutions of SPM3 for various n

This ambiguity about the optimal PM schedules is, however, more apparent than
real. At the optimum for SPM1 with n = 12, substitution of the yk values in (1.3)
gives some PM intervals, xk, which are negative. Thus it is only the solution with
n = 9 that provides a practical PM strategy. Similar remarks apply to the SPM2 re-
sult with n = 14 and the SPM3 result with n = 8. Hence we deduce that constraints
should be added to the problem of minimizing (1.7) in order to avoid spurious so-
lutions with negative PM intervals.

4 Adding constraints to the minimization of (1.7)

The time intervals between each PM are given by (1.3) and to keep these positive
we should consider the problem

Minimize C̃(u) s.t. u2
k �bk�1u2

k�1 � 0; k = 2; ::;n: (4.1)

We can solve (4.1) by applying a sequential quadratic programming algorithm (for
instance the quasi-Newton method described in [22]). The relationship between
solutions of (4.1) and n for SPM1 is shown in Figure 6. Solutions are unconstrained
when n < 11, but when n = 10+ j the last j of the inequalities in (4.1) are binding
and the optimal values of C̃ are such that the solution at n = 9 is clearly the best.

Similar behaviour can be seen at solutions of (4.1) for SPM2 and SPM3.

In practical terms, the constraint in (4.1) may be considered rather weak since we
would not want intervals between maintenance to become arbitrarily small. Hence
we could replace (4.1) by the more general problem

Minimize C̃(u) s.t. u2
k �bk�1u2

k�1 � αu2
1; k = 2; ::;n: (4.2)
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Figure 6: Solutions of SPM1 (with constraints) for various n

for some α < 1. This prevents PM intervals from becoming shorter than some
specified fraction of the time between the system enetering service and its first
scheduled maintenance.

5 Formulating the problem in terms of PM intervals

Another – and probably better – way of avoiding spurious solutions with some
xk < 0 is to treat the intervals between PM as the optimization variables rather than
the effective ages. More specifically, if we let v1; ::;vn be optimization variables we
can define a mean cost function C̄(v) as follows. First we set

y1 = x1 = v2
1 (5.1)

and then, for k = 2; :::;n

xk = v2
k ; yk = bk�1yk�1 + xk: (5.2)

This will ensure that the x’s and y’s are all non-negative. Now we can evaluate C(y)
by (1.4) and set

C̄(v) =C(y): (5.3)

We can solve the PM scheduling problem by finding the unconstrained minimum
of C̄(v) using the Newton method as we did for the problem involvingC̃ given by
(1.7). As mentioned earlier, the use of the automatic differentiation tool oprad
[17], [18] simplifies the process of obtaining ∇C̄ and ∇2C̄. As might be expected,
minimizing (5.3) gives the same PM schedules as those obtained by solving the
constrained formulation (4.1).
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We could use a similar approach when the intervals between PM are bounded be-
low. We would simply have to change the relationship between the xk and the
fictitious optimization variables vk by writing

xk = αu2
1 + v2

k (5.4)

instead of the first expression in (5.2). With this change, the minimum of (5.3)
would give the same PM schedule as the solution to (4.2).

6 Minimizing mean cost w.r.t. n

We now consider how to find the optimum number of PM intervals without resort-
ing to explicit enumeration. To do this we introduce an extra continuous variable
ν which represents the number of PMs. In order to compute mean cost we need to
consider how to deal with non-integer values of ν. In fact this can be done quite
straightforwardly.

We let n denote the integer part of ν and we set θ = ν� n. Obviously θ < 1
(but θ may become arbitrarily close to 1). We now suppose that n� 1 complete
PMs and one partial PM are performed before the replacement of the system. The
partial maintenance is regarded as the n-th PM and it can be supposed to reduce
the effective age of the system to

yn�θ(yn�bnyn) = (1�θ+θbn)yn = b̃nyn

instead of bnyn. The (n+1)-th PM is a system replacement and it takes place when
the effective age is yn+1. The (relative) cost of repairs between tn�1 and tn+1 is

γm[Hn(yn)�Hn(bn�1yn�1)+Hn+1(yn+1)�Hn+1(b̃nyn)]:

The time elapsed between the last full PM and the replacement of the system is

yn�bn�1yn�1 + yn+1� b̃nyn:

Using these ideas, the mean cost is determined as follows. We must choose a value
N which represents the maximum number of PMs that can take place. Taking the
optimization variables as y1; :::;yN and ν, we perform the following calculations.

n = bνc; θ = ν�n; b̃n = 1�θ+θbn (6.1)

Rc = γr +(ν�1)+ γm

n

∑
k=1

[Hk(yk)�Hk(bk�1yk�1)]+ γm[Hn+1(yn+1)�Hn+1(b̃nyn)]

(6.2)

T = yn +

n�1

∑
k=1

(1�bk)yk + yn+1� b̃nyn: (6.3)
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C(y;ν) =
Rc

T
: (6.4)

We want to minimize C(y;ν) subject to the constraint that PM intervals are non-
negative. Therefore we require

yk �bb�1yk�1 � 0 for k = 1; ::;n�1 and yn+1� b̃nyn � 0: (6.5)

Moreover we also want ν to be an integer value and so we require

θ(1�θ) = 0: (6.6)

Now C(y;ν) is a continuous but non-differentiable function of y1; ::;yN and ν.
Specifically, there are jumps in derivatives because

∂C
∂yk

= 0 for ν < k�1;
∂C
∂yk

6= 0 when ν � k�1: (6.7)

Moreover the number of constraints (6.5) depends on ν. Hence the problem of
minimizing (6.4) subject to (6.5), (6.6) cannot be solved by a standard sequen-
tial quadratic programming method. A possible alternative is to minimize a non-
differentiable exact penalty function of the form

C(y;ν)+ρ1

n

∑
k=2

j(yk �bk�1yk�1)�j+ρ1j(yn+1� b̃nyn)�j+ρ2jθ(1�θ)j: (6.8)

where (z)
�

denotes Min(0;z). For suitably large ρ1 and ρ2 a minimum of (6.8)
coincides with a minimum of (6.4) subject to constraints (6.5), (6.6).

To ensure the positivity of the y values we could employ the y = u2 transformation
and minimize

C̃(u;ν)+ρ1

n

∑
k=2

j(u2
k �bk�1u2

k�1)�j+ρ1j(u
2
n+1� b̃nu2

n)�j+ρ2jθ(1�θ)j: (6.9)

However, a more elegant approach which avoids the constraints (6.5) would be to
consider an extension of the cost function C̄(v) defined in (5.1) – (5.3) so as to
include the extra variable ν. We would calculateC̄ by first setting

x1 = v2
1; y1 = x1;

and then, for k = 2; ::;n,

xk = v2
k ; yk = bk�1yk�1 + xk:

We then use (6.1) – (6.3) and finally set

C̄(v;ν) =
Rc

T
: (6.10)
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Penalty terms to enforce non-negativity of the PM intervals are now not needed
and so the scheduling problem is to minimize (6.10) subject only to the equality
constraint (6.6). This can be solved by minimizing

C̄(v;ν)+ρ2jθ(1�θ)j: (6.11)

for suitably large ρ2. We can handle the (global) minimization of the non-smooth
functions (6.8), (6.9) or (6.11) by using the non-gradient algorithm DIRECT [19].
A global optimization method may be necessary because it is possible that func-
tions including a penalty term ρ2jθ(1�θ)j may have local minima when θ � 0 or
θ � 1 for different values of the variable ν.

6.1 Minimizing (6.11)

We now apply DIRECT to the minimization of (6.11). We propose a semi-heuristic
approach, based on restarts, which has proved quite effective in practice.

Algorithm A
Choose a range nmin � n � N
Choose starting values v̂k, k = 1; :::;N.
Set starting value

ν̂ =
nmin +N

2
:

Choose initial box-size �∆vk; �∆ν, for DIRECT as

∆vk = 0:99v̂k ; k = 1; ::;N; ∆ν =
N�nmin

2
:

After M iterations of DIRECT perform a restart by re-centering the search
on (v�k ;ν

�

) – the best point found so far. The box-size is then reset to

∆vk = Max(1;0:99v�k ); k = 1; ::;N; ∆ν = Min(ν��nmin;N�ν�)

Re-starts continue until a cycle of M iterations of DIRECT produces a change
less than 0:01% in the value of C̄.

Algorithm A was applied to SPM1 – SPM3 with nmin = 1; N = 20 and M = 100.
The starting guessed values for the v̂k were

v̂1 = 5; v̂k = Max(0:9v̂k�1;1); k = 2; ::;N

and the penalty parameter in (6.11) was ρ2 = 0:1. Results are shown in Table
1. In each case the optimum agrees with what was obtained by minimizingC̃ by
Newton’s method for successive fixed values of n.

Further trials with Algorithm A show that it is relatively insensitive to the choice of
nmin and N. Broadly speaking, if the range for n is increased (e.g. nmin = 1; N = 30)
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C̄ Number of PM DIRECT iterations Restarts
SPM1 124.59 9 400 3
SPM2 148.76 11 500 4
SPM3 82.665 5 300 2

Table 1: Scheduling solutions with Algorithm A

the number of restarts needed for cases SPM1 – SPM3 is one more than in Table
1. Similarly, the number of restarts can be reduced by one when n lies in a smaller
range such as 4 � n � 12.

In our examples, the mean-cost function (6.11) is rather flat in the vicinity of the
optimum. Thus, for SPM2, the minimum value of C̄ when n = 10 is 148.83 which
is only slightly worse than the global minimum 148.76 when n = 11. Because of
this, the arbitrary choices made in Algorithm A (such as M = 100) may sometimes
cause it to terminate with a value of ν corresponding to a number of PMs which
differs slightly from the true global solution. In practical terms this is unlikely to
represent a significant increase in mean-cost.

By means of Algorithm A we have been able to follow the spirit of the work de-
scribed in [6] and treat the number of PM applications as an optimization variable
(rather than using explicit enumeration). This numerical, rather than analytical,
approach should still be applicable when the hazard rate function has a less-simple
form than those considered in [6] and in this paper.

6.2 Sensitivity of PM to relative repair and replacement cost

We now consider what happens to the optimal number of PMs as γm, the relative
cost of minimal repair, increases and decreases. In particular we shall take γm =

100 and γm = 1 to compare with the choice γm = 10 used in the examples already
solved. Using Algorithm A we get the results in Table 2. The optimal number of
PM applications increases as the repair cost comes closer to the cost of preventive
maintenance. Conversely, the number of PMs decreases as the relative cost of
repair increases.

γm = 1 γm = 10 γm = 100
SPM1 32.426 (13) 124.59 (9) 572.03 (5)
SPM2 46.826 (17) 148.76 (11) 592.2 (6)
SPM3 15.123 (7) 82.665 (5) 500.64 (3)

Table 2: Optimum mean cost and number of PM intervals for varying γm

Table 3 shows how changes to the relative replacement cost influence the optimal
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number of PMs. As before we use γm = 10;γr = 1000 as a reference. Clearly n
increases and decreases with γr.

γr = 500 γr = 1000 γr = 2000
SPM1 96.65 (7) 124.59 (9) 163.35 (11)
SPM2 109.93 (9) 148.76 (11) 205.59 (13)
SPM3 70.27 (4) 82.665 (5) 98.16 (6)

Table 3: Optimum mean cost and number of PM intervals for varying γr

7 Conclusions and further work

In this paper we have considered maintenance scheduling problems similar to those
discussed in [6] but we have taken a numerical rather than analytical approach
to the optimization calculations. The potential benefit of this is to explore the
computational issues that might be involved when the hazard rate functions are not
such simple analytical expressions as the Weibull functions (1.6). In our numerical
experiments we have used automatic differentiation tools to obtain gradients and
Hessians of the performance functions. This has made it a very straightforward
matter to implement changes in problem formulation.

A main contribution of this paper is the formulation of the PM scheduling problem
given in section 6 which enables the number of PMs to be treated as a continuous
optimization variable. A method of dealing with this problem formulation is given
as Algorithm A which applies a global minimization technique to the non-smooth
function (6.11). This has been used successfully on demonstration examples.

An interesting area for future work concerns the replacement of the non-smooth
function (6.11) by a differentiable alternative. This would enable us to use a variant
of Algorithm A in which an approximate global minimum obtained by DIRECT is
refined using a fast gradient method (as suggested in [23], [24], [25], for instance).
Some initial work has been done in this area, which is summarised below.

Note first that both terms in (6.11) are non-differentiable. The non-differentiability
of (6.4) is discussed in the paragraph containing (6.7) and the second (absolute
value) term in (6.11) is also clearly non-differentiable when θ = 0 or 1. The cost
function (6.4) can be replaced by a differentiable alternativeC̃(y;θ) involving extra
optimization variables θ1; ::;θN (see [26] for details). Each θk is used – like θ in
section 6 – to allow the k-th PM to be treated as complete or partial. We then need
to solve

Minimizey;θ C̃(y;θ) s.t. θk(1�θk) = 0; k = 1; ::;N (7.1)
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in which both the objective function and the constraints are differentiable. In or-
der to avoid a non-smooth constraint penalty term like that in (6.11) we can use
Fletcher’s differentiable exact or ideal penalty function [27], [28]. This is designed
to solve the general problem

Minimize F(x) s.t. ci(x) = 0; i = 1; ::;m

by unconstrained minimization of

E(x) = F � cT
(AAT

)
�1Ag+ρcT c (7.2)

where g = ∇F(x) and A is the Jacobian matrix whose rows are the constraint nor-
mals ∇ck(x)T for k = 1; ::;m. For the particular problem (7.1) the calculation of the
second term in (7.2) is quite straightforward (see [26]) and we get

E(y;θ) = C̃(y;θ)�
N

∑
k=1

θk(1�θk)

1�2θk

∂C̃
∂θk

+ρ
N

∑
k=1

θ2
k(1�θk)

2
: (7.3)

as a differentiable function whose global minimum determines an optimal PM
schedule. In principle, the global minimum of this function can be estimated using
DIRECT and then refined by a fast local gradient method. In practice, however,
matters are still not completely straightforward because the penalty function (7.3)
involves first derivatives of C̃. Therefore second and higher derivatives of C̃ are
involved in computing ∇E or ∇2E for use by quasi-Newton or Newton techniques.
Fortunately oprad can be used to obtain both ∇C̃ and ∇2C̃ by reverse AD and
therefore we have the means to calculate ∇E and use a quasi-Newton method to
minimize E(y;θ).

Our use of (7.2) in the preceding paragraph has taken advantage of the relatively
simple form of the equality constraints in (7.1). It is worth noting that, for more
general problems, Christianson [29] has considered a parameter-free form of the
Fletcher penalty function and has shown in [30] and [31] how AD can be used to
obtain its derivatives.
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