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ABSTRACT
We describe a global optimization problem which arises in the calculation of flight
paths and discuss the performance of a number of recently proposed solution algo-
rithms when applied to some demonstration examples. In particular we compare
a deterministic approach (DIRECT) with two others (TSHJ and ECTS) which use
random searching. Numerical results show that, while all three techniques can
sometimes be successful, the deterministic method is generally more reliable for
the type of problem we are concerned with.

Keywords Global optimization, direct search techniques, deterministic and ran-
dom search methods, aircraft routing

1 Introduction

This paper deals with the Aircraft Routing Problem which involves finding an “op-
timum” flight path between various obstacles from a given origin to a given des-
tination. These obstacles could be geographical features, but might also be more
general “no-fly zones” separating incoming and outgoing traffic near an airport.
In military terms, we might wish to avoid regions around some threat, such as an
enemy radar or missile site. In practice, the routing problem will usually also in-
clude manoeuvrability limits together with constraints on rendezvous time at the
destination (and perhaps at other points on the path). Further refinements of the
problem are possible: for instance, in the military context, an optimum route could
take account of “visibility”, exploiting the terrain to hide the aircraft as much as
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possible. In a more sophisticated form, the routing problem would be posed for
multiple aircraft, possibly of various types and flying different missions, in the
same geographical area.

More discussion about practical aspects of aircraft routing can be found in [8] and
[9] in which a heuristic routing algorithm is described. As in the work reported
in the following sections, this algorithm seeks to minimise a “route cost” which
is made up of elements such as distance, fuel usage and measures of exposure to
threats and proximity to obstacles. The approach in [8] can can broadly be de-
scribed as a “genetic” algorithm which builds up routes in a step-by-step fashion.
New trial branches are formed which “fan-out” from the current position and those
which seem more promising are held in a list of candidate routes. These candidates
are also subjected to randomly chosen modifications such as the addition or dele-
tion of extra turning points. If such modifications lead to an improved route they
are retained; otherwise they are discarded. Convergence of this approach has not
been studied; and in practice it is expected to provide good feasible routes rather
than optimal ones. This, however, is regarded as sufficient for many situations.

In this paper we shall consider approaches which are more closely related to clas-
sical nonlinear optimization than those described in [8]. In order to demonstrate
these approaches we shall confine ourselves to a rather simple two-dimensional
form of the problem to show how it can be expressed as an optimization calcula-
tion and then tackled by general-purpose methods. the problem that we formulate
turns out to have several local minima; and, moreover, its objective function may
not be (easily) differentiable. Therefore we shall need to employ a direct-search
global optimization method. A number of such techniques have been proposed in
recent years, and the main purpose of this paper is to present computational experi-
ence with some of these and to assess their suitability for use in more complicated
representations of the routing problem.

2 A basic 2D representation

We shall consider the problem of finding the the ground-plan (flat earth) of an
optimum route which avoids a number of no-fly zones that we shall henceforth refer
to as “threats”. A route will be defined by its (given) start and end points and by
a number of intermediate waypoints. The co-ordinates of these waypoints will be
our optimization variables; and we shall assume that the flight path follows straight
lines between waypoints. Suppose that there are n waypoints wj = (w j1;w j2) for
j = 1; ::;n and that, for consistency, we denote the starting point by w0 and the
destination by wn+1. We can then consider the whole route in terms of stages from
point wj�1 to wj for j = 1; :::;n+1. We let ∆ j denote wj �w j�1.

In order to characterize optimality of a route we shall suppose that we want the
distance flown to be as short as possible, subject to suitable avoidance of the threats.
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Therefore, for any choice of waypoints, we must calculate first the Euclidian length
of the corresponding route

L =

n+1

∑
j=1

l j where l j = jj∆ jjj2:

We must then determine whether the route passes through any of the threats; and,
if so, we calculate how much of the route is infeasible. If the j-th leg of a route
passes through the i-th threat, remaining inside it for a distance lji, say, then the
“cost” of that route C can be expressed as

C = L+∑
i

ρi ∑
j

l p
ji (2.1)

where ρi is a penalty parameter associated with the i-th threat and p is an integer
exponent to be discussed below. Our aim will be to choose the waypoints so as
to minimize C, hence taking into account both the need to reduce the flight path
length and to respect the threats. The balance between these two considerations
will depend on the choice of the parameters ρi. If the i-th threat is a geographical
feature such as a mountain then ρi will need to be given a large value; but if threat
i represents some risky but not impossible region then a more moderate value of ρi

may be appropriate because it will allow a physically shorter route which makes
an acceptably brief incursion into some danger area.

In the examples considered later, it will be convenient to represent the threats as
circles with given centres and radii. This means that the calculation of path lengths
l ji lying inside each threat could be done analytically. This would ensure that C is a
continuously differentiable function of the waypoints provided p� 3 (as explained
more fully in [14]). However, in order to be able to deal with more realistic threats
with irregularly shaped boundaries we shall, in practice, calculate the lengths lji by
a sampling method which will now be described. We suppose that it is possible to
determine whether any point (x; y) is inside or outside a threat but that no explicit
expression is available for the threat boundary. (For example, if a threat is simply
an area of high ground then a geographical database which provides terrain height
for given longitude and latitude will enable us to determine whether some constant
altitude flight-path is feasible or not.)

In the algorithm below we use linear interpolation to estimate the points at which
the leg intersects threat i. We let σmax be a maximum step size to be used in
sampling a leg of a route. This will imply that the number of sampling points in
stage j can be taken as Kmax = 1+dl j=σmaxe. We let δλ = 1=Kmax and suppose that
uk denotes a sampled point in stage j, i.e.

uk = w j�1 + kδλ(w j�w j�1)

for some k; 0 � k � Kmax. Suppose that Ti is a function of position such that
Ti(uk) � 0 when uk is inside threat i while Ti(uk) > 0 whenever uk is outside. We
can then calculate the “in threat” length lji is as follows.
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Compute l j as length of leg j. Set lji = 0, k = 0, Kmax = (δλ)�1

If Ti(u0)� 0 then λb = 0
For k = 1; ::;Kmax

If Ti(uk)� 0 and Ti(uk�1)> 0 then
set κ = Ti(uk)=(Ti(uk)�Ti(uk�1)), λb = (k�κ)δλ

If Ti(uk)> 0 and Ti(uk�1)� 0 then
set κ = Ti(uk)=(Ti(uk)�Ti(uk�1)), λe = (k�κ)δλ
set l ji = l ji +(λe�λb)l j

If Ti(uKmax)� 0 then
set l ji = l ji +(1�λb)l j

In what follows, we augment the function (2.1) by considering two more features to
increase the realism of our examples. In practice we cannot permit routes to make
sharp turns; and furthermore we might want to impose some minimum separation
on the waypoints. Hence we can include in C some penalty terms connected with
these quantities.

The angles φ j between successive stages are given by

φ j = cos�1
f

∆T
j ∆ j+1

jj∆ jjjjj∆ j+1jj
g

If φmax is the limiting turn angle and if lmin denotes the least acceptable stage length
then we can extend the cost function definition (2.1) as

C =

n+1

∑
j=1

(l j +

m

∑
i=1

ρil
p
ji)+

n

∑
j=1

ν(φmax �φ j)
2
�

+

n+1

∑
j=1

µ(l j � lmin)
2
�

(2.2)

where µ and ν are penalty parameters and the subscript “
�

” indicates that the ex-
pression in brackets is regarded as having the value zero unless it is negative. Hence
we are handling the stage-length and turn angle constraints by a standard quadratic-
loss term. In the examples appearing later, we shall choose p = 3 in the penalty
term for threat violations.

Numerical experiments have shown that the function (2.2) can admit several local
minima. This is not unexpected: in practical terms it means that, once we have
found a “good” route which passes on one side of a threat there may be no contin-
uously improving sequence of perturbations of that route which result in a “better”
one passing on the other side of the same threat. It follows that we need to use opti-
mization methods which actively seek global, rather than local, optima. Moreover,
since (2.2) may not be differentiable when threats are non-circular we must con-
sider direct-search optimization techniques. In the next section we describe some
candidate methods.
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3 Direct search optimization methods

In this section we consider some direct search methods for the general uncon-
strained minimization problem

Min f (x)

where x 2 Rn. (In practice the search will usually be confined to some region
defined by simple bounds on the elements of x.) Most of the methods we discuss
are quite recent proposals from the literature, representing some alternatives to
the popular genetic algorithm approaches (such as that outlined in section 1). In
particular, the chosen methods can be characterized as follows. One is obtained
by adding randomization and tabu search ideas to an existing deterministic local
search method; another is based on a (controlled) random exploration; and the third
is a deterministic algorithm which systematically searches the region of interest in
a quite effcient way, on the basis of information gathered abouyt the objective.

3.1 The Hooke and Jeeves method

The Hooke and Jeeves algorithm [7] is a local optimization technique, but we in-
clude it here because it is the basis for a global method to be discussed later. The
algorithm consists of two major sections – exploratory moves and pattern moves.
It begins with exploration to acquire information about the objective function in
the neighbourhood of the current solution estimate x(k), say. Moves with fixed step
length κ are made along coordinate axis directions. If a move finds a better point
x+, say, (i.e. with lower function value) then it is termed successful and further
exploratory moves are based upon x+. If a move is unsuccessful then an explo-
ration is made with step length �κ. If some explorations are successful and yield
the overall result x++ then the new solution estimate for the next exploration cycle
involves a pattern step

xpat
= x(k)+(x++� x(k));

and the new base point is given by

x(k+1)
=

�
xpat if f (xpat

)< f (x++)
x++ otherwise

On the other hand, if all the explorations fail then a new exploration cycle is started
about x(k) with κ halved. The algorithm terminates when κ becomes less than a
pre-set tolerance δ.

3.2 Tabu search

Tabu searches can be used to guide local techniques (like the Hooke and Jeeves
method) away from local minima and hence assist in the search for the global
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optimum. The basic approach (see Glover, [5], [6]) is based on keeping a tabu list
of forbidden search directions; and each iteration involves a move to a new point
which lies in the restricted region which can be reached only by non-tabu steps.
The tabu list could, for instance, be based on the most recent t moves, as a simple
way of preventing recently explored regions from being revisited.

Glover gives a comprehensive discussion of techniques that can be used to create
and update tabu lists. He also considers refinements such as the use of “aspiration
levels” to allow tabu lists to be sometimes over-ridden – e.g., if a tabu move turns
out to yield an appreciable reduction in function value. Moreover, he notes that
the careful use of probabilistic ideas in the selection of moves can introduce a
useful element of randomness to provide what he calls an “escape hatch” from a
too systematic set of exploration rules.

Tabu search ideas have mainly been used in optimization problems involving discrete-
valued variables; but they may also be applied to global oprimization of functions
of continuous variables. We describe below two algorithms which employ tabu
search ideas in combination with both deterministic and random explorations.

3.3 Tabu search Hooke and Jeeves (THJ)

The algorithm described in [1] resembles the standard Hooke and Jeeves method in
that it uses both exploration and pattern phases. In order to seek global, rather than
local, optima it (a) makes use of exploratory search directions that are randomly
chosen rather than being parallel to the axes; (b) performs a one-dimensional global
minimization along each such direction; and (c) uses tabu search ideas to prevent
iterates returning to a neighbourhood of a local optimum that has already been
sampled.

Specifically, the k-th iteration of the algorithm begins by performing m cycles, each
of which involves r global minimizations along randomly generated directions.
The first cycle explores random directions away from x(k); and if z1 is the point
with lowest function value given by the r global searches then the second cycle
centres its explorations upon z1 and yields a further point z2, and so on. After all m
cycles are complete the algorithm does a pattern move of the form

x(k+1)
= x(k)+λ(zm� x(k))

where λ is found by another global line search. The generation and use of random
search directions is modified by use of a “tabu list”. This records the t most recently
used exploration directions; and a new random direction is rejected if it is the
negative of a member of the current tabu list. The motivation for this is obviously
to prevent the exploration returning to a region it has just visited. In fact, this simple
tabu list idea can be over-ridden if it is found that a potentially tabu direction can
actually produce a lower function value than the best that has been found so far;
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but for more details the reader is referred to [1].

The main algorithm parameter choices used in the numerical tests described later
are given below. These are values recommended in [1], after experimentation with
the method on a range of test proeblems. In a later section we shall make some
comments about sensitivity with respect to these parameter choices.
number of random directions per cycle r = 2n;
number of cycles m = 4;
tabu list size, t = 20.

In the global minimization along each random exploration direction and along the
pattern search direction, the step length λ is allowed to be in the range [�5;5]. The
authors make no recommendation about these limits (but see [1] for other details
of the global line search.)

The algorithm stops either when jjx(k)� zmjj is less than some tolerance ε (which
we have taken as 10�4); or else it terminates after a fixed number of iterations Kmax,
and we have used Kmax = 2

3.4 ECTS

The acronym ECTS denotes Enhanced Continuous Tabu Search. The algorithm is
based on ideas described in [12] and [2]; and it resembles the one outlined in the
previous section both in its use of tabu search ideas and its reliance on randomly
generated points.

ECTS begins with a randomly generated initial guess for a solution x(1). In general,
on iteration k it begins with a diversification phase. This can involve either a set
of hyperspheres with radii h1;h2; :::;hη centred upon x(k) (as in [12]) or else a set
of concentric hyper-rectangles about x(k) (as in [2]). In our implementation we
have used hyperspheres. Neighbouring points x01;x

0

2; :::;x
0

η are then genrated in the
“shells” between the hyperspheres. This choice of neighbours is largely random,
but it does take account of a tabu list containing the last t solution estimates. No
neighbouring point of x(k) is permitted to lie within a distance dt of a point in the
tabu list. The neighbour x0j, say, which has the lowest function value becomes the

next iterate x(k+1) even if f (x0j)> f (x(k)).

If in fact f (x0j) >> f (x(k)) then x(k) is considered to be “promising” since our
sampling of neighbouring points suggests it could be close to a local minimum. It
is therefore added to a “promising list” – provided it is not within a certain distance
dp of an existing member of the list.

After a specified number of diversification stages have taken place without yield-
ing a new promising point, ECTS proceeds to an intensification stage centred upon
the element in the promising list with least function value. Intensification is essen-
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tially the same process as diversification except that it is carried out within smaller
hyperspheres.

Parameter choices for ECTS that have been used in the numerical experiments are
given below. As with THJ, these choices are guided by the recommendations made
in [2] which are said to be based on comprehensive experimentation by the inven-
tors of the method. In order to tune these parameters to a particular problem, the
authors express some values in terms of δ, the shortest edge of the original search
domain. We have made a few changes, mostly based on knowledge of the ranges of
the variables appearing in the test examples considered below. In a later section of
this paper we shall comment on the sensitivity of the method to different parameter
choices.
number of hyperspheres used in diversification and intensification, η= min(10;2n);
diversification outer radius hη = δ=4
(which we have found to be slightly better than the author’s suggestion δ=5);
diversification inner radius h1 = hη=1000 = intensification outer radius;
([2] gives no suggestion for this parameter)
tabu ball radius dt = h1;
(found to be better than the suggestion δ=100 given in [2])
promising ball radius dp = h1;
(found to be better than the suggestion δ=50 given in [2])
tabu list size = 7;
promising list size = 10;
number of diversification iterations = 50n.

3.5 DIRECT

Unlike the previous two global search methods, DIRECT is a deterministic ap-
proach which, at first sight, resembles an exhaustive search. it is described in [10]
and the noteworthy feature of the approach is the way in which it uses Lipschitz
constant arguments to decide, at each iteration, which regions of the solution space
are worth exploring.

DIRECT begins with a given “hyperbox” defined by its centre point, c0, the value
of the objective function, f0 = f (c0), and the n vector of displacements s0. Thus
the initial hyperbox covers the range (c0i� s0i) for i = 1; :::n The initial region is
then split into smaller hyperboxes, using the procedure subdivide described below.
For each hyperbox, j;(= 1; :::;J) we have a centre cj (where the function value is
f j) and a vector of semi-sides sj. Hyperboxes are grouped according to a size
parameter δ j, which is the distance from centre to any corner,

δ j =
p

(

n

∑
i=1

s2
ji):

We shall suppose that among the J hyperboxes there are only KJ � J different size
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values.

When the procedure subdivide is applied to an existing hyperbox characterized
by (cj; f j;s j;δ j) it only shrinks the longest edges. If there is a unique longest
edge then DIRECT replaces the existing box j by three new ones, constructed by
trisecting the appropriate side. If several edges of hyperbox j which all have the
same “longest” length, then the trisection process is repeated for each of them.
It should be noted, however, that the boxes created by establishing new centres
parallel to the second and subsequent sides will be smaller than the boxes created
by division along the first one. It is suggested in [10] that the order in which long
edges are dealt with should be based on some exploratory function evaluations,
with a view to enclosing the smallest new function values in the largest of the new
hyperboxes.

At each iteration of DIRECT, some of the current hyperboxes j = 1; :::;J are se-
lected for further subdivision. The aim is to explore the whole region efficiently by
only computing extra function values in regions which can be termed “potentially
optimal”. Potentially optimal hyperboxes are chosen via the procedure identify
given below. We note first of all, however, that we need only examine KJ of the hy-
perboxes – i.e. for each of the different δj-sized candidates we need only consider
the one whose centre has the least function value.

We now explain how the procedure identify selects from the current set of hyper-
boxes those which are worth further exploration. Suppose first that Ω is a Lipschitz
constant for the function f – i.e. that jj∇ f jj<Ω. Then a lower bound upon f inside
the hyperbox j is given by f

j
= f j �Ωδ j. Hence the most promising box would

be the one for which f
j

is smallest. This argument, of course, assumes that a valid
Lipschitz constant Ω is known – which will not usually be the case. The basis of
DIRECT is therefore to consider whether there exists any Lipschitz constant such
that box j could contain a lower function value than any other box. Thus, box j is
more promising than box k if there exists a positive Ω such that

f j �Ωδ j < fk �Ωδk:

We note that no such Ω exists if δj = δk and f j � fk. Hence, as mentioned above,
we only need to test the potential optimality of the boxes which have the smallest
f value for any size parameter δ. If δj > δk then box j can only be potentially
optimal if

Ω > Ωmink =
f j � fk

δ j �δk
;

while if δ j < δk then box j can only be optimal if

Ω < Ωmaxk =
f j � fk

δ j �δk
:

We can calculate the above quantities for the smallest-valued hyperbox for each
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size ( 6= δ j) and then set Ωmin = maxfΩminkg; Ωmax = minfΩmaxkg. Box j can
then only be potentially optimal if Ωmax > 0 and Ωmin < Ωmax.

Even if there is a valid range Ωmin;Ωmax] we can apply a further filter to try and
reduce the number of boxes to be subdivided. We only treat box j as potentially
optimal if

f j �Ωmaxδ j < fmin� εj fminj:

If this inequality fails then box j is not judged to be worth further subdivision.

The selection process in DIRECT can be likened to the use of a tabu list except
that it works to predict regions to be avoided rather than working on the basis of
not re-visiting previously explored regions.

In the original version of DIRECT, the value of the parameter ε is the only user-
choice to be made. In the examples described below we have used ε = 10�4, which
seems to be more successful than the value ε = 10�2 suggested in [10].

No automatic convergence test for DIRECT is proposed in [10]; instead it is sug-
gested that the algorithm should simply be run for a fixed number of iterations,
Imax. In the examples quoted below we have set Imax = 64.

3.5.1 Refinements to DIRECT

DIRECT has been used with some success on practical optimization problems,
such as aircraft design [3]. In the light of experience, various improvements to the
algorithm have been proposed [4], [11] and a parallel version is outlined in [13].

One idea suggested in [4] is to save possibly wasteful function evaluations by pre-
venting subdivisions from taking place when box j has δj � δmin, where δmin is
a user-specified minimum box-size. Another proposal is to perform periodic “ag-
gressive searches” in which all the KJ candidate hyperboxes are subdivided, with-
out using the filter on potential optimality. In the tests reported below we include
results from an implementation DIRECT-1. This employs the minimum box-size
idea with δmin = 10�3 and also uses an aggressive search if 100n function evalua-
tions have not yielded a significant improvement to fmin. At most two aggressive
searches are allowed; and after that the algorithm terminates if no reduction in fmin

is observed after 100n evaluations. In the tests reported below, the value of Imax for
DIRECT-1 iterations has been set to be 64 (although of course the algorithm may
terminate earlier than this).

A second implementation DIRECT-2 is also used in our experiments. This has
all the features introduced in DIRECT-1 but, following [11], it performs only one
subdivision of each potentially optimal box per iteration (rather than tri-secting
parallel to all the longest sides). DIRECT-2 is therefore less expensive per iteration
than DIRECT-1; and because of this we typically set a higher value of Imax than for
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DIRECT and DIRECT-1. Unless otherwise stated, Imax is taken to be 128.

4 Numerical experience

The problems we consider are all based on a set of ten circular threats, given below.
(Distances are given in km.)
Centre (6,5); radius 3
Centre (10, 15); radius 2
Centre (14, 11); radius 1
Centre (22, 5); radius 4
Centre (22, 13); radius 2
Centre (29, 11); radius 2
Centre (28, 17); radius 3
Centre(32, 17); radius 1
Centre(35, 5); radius 3
Centre(34, 10); radius 4

In the evaluation of the cost function (2.2) for routes through these threats we have
used the algorithm given in section 2 with σmax = 1 km.

We consider two missions. Mission 1 has start- and end-points at (3,12) and (40,
13), respectively; Mission 2 also starts at (3,12) but ends at (40,5). For both mis-
sions we shall (sometimes) impose extra constraints φmax = 31o

; lmin = 1 km in
constructing the cost function.

First, we consider some problems based on Mission 1. Figure 1 illustrates the
global and (some of) the locally optimal routes for for Mission 1. All three routes
satisfy the stage length and turn angle limits. We shall seek an optimal route for
each mission via a classical penalty function approach in which the methods de-
scribed in Section 3 are used to minimize C for an increasing sequence of values
for ρi (and for µ and ν if additional constraints are involved). Specifically we shall
perform the first minimization with all ρi = 0:01 (and with µ = 0:01;ν = 0:0001
if applicable). All these values will be increased by a factor of 4 before each sub-
sequent minimization. The choice of a relatively smaller value for ν is based on
experience but represents a subjective decision to regard a 10o violation of turn
angle constraint to be about as serious as a 1 km incursion into a threat.

For the purposes of the examples which follow we shall regard a route as accept-
able if it spends less than 0.1 km inside threat boundaries.

We now present some results for Problem 1 which is to find an optimal route for
Mission 1 without constraints on stage length and turn angle beginning with the
initial guessed route with waypoints at

(11;18); (17;18); (23;18); (29;18); (35;18) (4.1)
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This guess is rather close to Route 3 – the worst of the three routes illustrated in
Figure 1. The initial box-size used for the three implementations of DIRECT al-
lows a �15 km movement on all these waypoint coordinates. Table 1 shows the
value of C after each cycle of unconstrained minimization together with a cumula-
tive count of function evaluations.

ρi THJ ECTS DIRECT DIRECT-1 DIRECT-2
C� n f C� n f C� n f C� n f C� n f

0.01 37.2 3480 37.7 2544 38.1 4826 37.3 6479 37.4 2957
0.04 37.4 6904 37.7 7038 37.5 9749 37.3 12506 37.4 6098
0.16 37.4 10320 37.7 9932 37.6 14888 37.5 15029 37.6 9107
0.64 37.4 13735 37.7 15325 37.5 20349 37.5 18314 37.5 12102

Table 1: Performance on Problem 1

The results for this problem stop when ρi = 0:64 because the computed routes at
this stage are all acceptable. THJ gets closest to the globally optimum route for
this example while ECTS seems to be trapped at the second best of the local op-
tima. All three versions of DIRECT return better routes than ECTS but without
quite reaching the global optimum. In terms of the computing cost of solutions,
DIRECT-2 and THJ use the smallest numbers of function evaluations. On the first
few cycles DIRECT-1 is more expensive than the original DIRECT because of the
use of aggressive searches; but overall it uses fewer function calls than DIRECT
because its stopping rule sometimes allows it to terminate in fewer than Imax itera-
tions.

It is worth noting that if we apply the essentially local procedure HJ to this problem
it seems to become trapped at the worst local minimum for the first three cycles put
then make a (fortuitous) jump into the region of the second local minimum when
ρi is 0.64. The computing cost is 11528 function calls.

Some of the routes computed for Problem 1 have stage lengths less than 1 km
and so we now consider Problem 2 which is the same as Problem 1 except that a
penalty term on stage length is included in (2.2). Results from the various methods
are shown in Table 2.

ρi;µ THJ ECTS DIRECT DIRECT-1 DIRECT-2
C� n f C� n f C� n f C� n f C� n f

0.01 37.3 3480 37.7 2574 38.1 4779 37.3 6479 37.4 3049
0.04 37.4 6903 37.8 6328 37.6 9901 37.6 12128 37.6 6266
0.16 37.4 10319 37.9 11942 37.7 14770 37.5 15755 37.5 9225
0.64 37.4 13734 38.0 17335 37.5 20597 37.5 19234 37.5 11462

Table 2: Performance on Problem 2

Even though the optimal route is not affected by the stage-length constraint, we
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should understand that the extra penalty term in C does affect the progress of all
the algorithms to some extent. This is because the function value at some of the
trial points will be larger than it would have been for the previous problem and
this could, for instance, mean that different boxes will be regarded as potentially
optimal by DIRECT. On the whole, however, performance of the algorithms seems
similar to that in Table 1, which suggests that the stage-length penalty term is not
very significant for this problem. One effect worth mentioning is that ECTS seesm
to be forced further away from the global minimum.

When applied to this problem HJ also finds the global minimum using a total of
11334 function evaluations. However the history of C values obtained during the
sequential minimizations is more erratic than those shown in the table above, and it
must again be concluded that this good result by a local-search method is probably
fortuitous!

Next we consider Problem 3 which is the same as Problem 1 but with a different
starting guess, given by the waypoints

(6;12); (14;12:2); (22;12:5); (30;12:7); (38;12:9) (4.2)

These points lie roughly on the straight line between the prescribed start and finish
points for Mission 1 which – for this problem – places them quite close to the
optimal route. In Table 3 we show results for the various methods. We note that
the value of Imax for DIRECT-2 has been increased to 256.

For this problem – and for subsequent examples – we shall present results in an
abbreviated form. For each method, we show the number of minimization cycles
(nc) needed to reduce threat violation to an acceptable level, together with the
corresponding value of C and the total number of function evaluations needed. It is
interesting to note that, in order to make threat violations acceptably small, some of
the methods require more unconstrained minimization cycles (and hence use larger
values of ρi) on this problem than was the case on Problems 1 and 2. This must
be a reflection of the fact that they have not obtained good estimates of the global
minimum of C for the smaller values of ρi.

THJ ECTS DIRECT DIRECT-1 DIRECT-2
nc C� n f nc C� n f nc C� n f nc C� n f nc C� n f

4 37.7 13692 5 37.8 23218 5 37.5 25082 6 37.4 22356 7 37.7 13843

Table 3: Performance on Problem 3

Here only DIRECT-1 and DIRECT come close to the global optimum and the
other methods have done no better than find the second best local solution. ECTS
performs worst, using quite a large number of function evaluations; but DIRECT
and DIRECT-1 are also quite expensive.

Table 4 gives results for Problem 4 which is the same as Problem 3 but with penal-
ties on stage lengths of less than 1 km.
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THJ ECTS DIRECT DIRECT-1 DIRECT-2
nc C� n f nc C� n f nc C� n f nc C� n f nc C� n f

4 37.7 13692 4 37.7 15645 4 37.5 23137 6 37.4 22364 5 37.7 12260

Table 4: Performance on Problem 4

DIRECT and DIRECT-1 are again the only methods to approach the global solu-
tion.

We now turn to some examples based upon Mission 2. Figure 2 shows some locally
optimal routes for this mission. It will be relevant to note that Routes 1 and 3 both
involve turn angles greater than 31o while Route 2 does not. Therefore Route 1
is the desired solution to Problem 5 which seeks the optimum route, based only
on threat avoidance and applying no restrictions on stage length or turn angle.
The starting guess is given by the waypoints (4.1), which is in fact quite a “bad”
estimate of the optimum.

THJ ECTS DIRECT DIRECT-1 DIRECT-2
nc C� n f nc C� n f nc C� n f nc C� n f nc C� n f

4 42.2 13834 5 63.5 22161 4 40.8 22099 6 44.3 26636 7 40.3 20385

Table 5: Performance on Problem 5

We observe from Table 5 that there is much more variation among the routes ob-
tained by the various methods than was the case in the previous examples based
on Mission 1. DIRECT and DIRECT-2 come close to the global optimum, but
DIRECT-1 has been trapped at the locally optimal Route 3. THJ and ECTS have
terminated with feasible routes which are non-optimal. Figure 3 illustrates these
outcomes (although the DIRECT route has not been plotted because it is virtually
identical with that found by DIRECT-2).

Problem 6 adds turn angle penalties to Problem 5, since some of the solutions
recorded in Table 5 involve turn angles very much greater than 31o.

THJ ECTS DIRECT DIRECT-1 DIRECT-2
nc C� n f nc C� n f nc C� n f nc C� n f nc C� n f

fail - see text fail - see text 4 42.8 21917 5 41.8 25551 5 44.6 18021

Table 6: Performance on Problem 6

On this example neither THJ nor ECTS can find a feasible route through the threats,
presumably because the penalties for excessive turn angles mean that there are
more regions where C takes large values and the 10-dimensional “valley” contain-
ing the optimum route is sufficiently narrow that the random explorations do not
locate it. All three versions of DIRECT find feasible routes, however, although
only the DIRECT-1 solution is optimal. Figure 4 illustrates the routes obtained.
The DIRECT and DIRECT-2 routes are actually similar to the second best local
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optimum in that they pass below most of the threats; but the optimization has not
been very successful in driving them close to the threat boundaries, resulting in a
greater distances being covered.

Our final examples involving Mission 2 take a different starting guess

(6;12); (14;10:25); (22;8:5); (30;6:75); (38;5) (4.3)

which, like (4.2) for Problem 3, defines a roughly straight line route between the
prescribed end-points of the mission. Routes like (4.3) are easily constructed auto-
matically and this might be useful, in practice, for providing initial guessed solu-
tions. Problem 7 seeks the optimum route without considering stage-length or turn
angle constraints (and so Route 1 from Figure 2 is the required solution). Problem
8 imposes penalties on stage lengths less than 1 km and turn angles of more than
31o (and hence its correct solution is Route 2 from Figure 2).

THJ ECTS DIRECT DIRECT-1 DIRECT-2
nc C� n f nc C� n f nc C� n f nc C� n f nc C� n f

4 41.8 13712 5 49.8 24181 4 42.3 19819 6 40.9 23338 7 40.3 16443

Table 7: Performance on Problem 7

Table 7 shows that, on Problem 7, THJ is trapped in the locally optimal Route 2
while the best route found by ECTS does not seem to be optimal at all. DIRECT
appears to be homing in on Route 2 but has not yet found it. Only DIRECT-1 and
DIRECT-2 are close to the global solution.

THJ ECTS DIRECT DIRECT-1 DIRECT-2
nc C� n f nc C� n f nc C� n f nc C� n f nc C� n f

4 44:4a 13707 fails - see text 4 45.2 20717 5 45.2 16599 5 41.7 15377

Table 8: Performance on Problem 8

From Table 8 we see that THJ obtains a route for Problem 8 which is feasible with
respect to the threats but does not satisfy the turn angle constraint. As in Problem 6,
ECTS does not even find a feasible path through the threats. The solutions returned
by DIRECT and DIRECT-1 are feasible but, like those illustrated in Figure 4, they
are in the vicinity of the optimal Route 2 but are still above the minimum length
because they pass too wide of the threats. Only DIRECT-2 provides the correct
solution.

From these experiments we can see that no single one of the algorithms tested has
been completely successful. In the next section we seek to draw some conclusions
about the underlying methods; and in particular we make some comments about
their sensitivity to user-specified parameters.
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5 Discussion and conclusions

On the basis of the numerical results reported above we can make a number of
observations.

� The tabu search form of Hooke and Jeeves method THJ [1] usually provides
a good solution and is consistently among the most economical of the methods
in terms of function evaluations. On two of the eight problems it fails to find a
feasible solution; but on the rest it finds either the global optimum or the second
best local one.

� The ECTS method has shown the most erratic behaviour. Like THJ it has failed
to find a feasible route on Problems 6 and 8. Moreover, on Problems 5 and 7, the
best feasible routes it does obtain are very far from optimal. Furthermore, ECTS is
usually more expensive than THJ.

� At least one of the variants of DIRECT has found – or at least come close to –
the global solution of all the problems. Unfortunately there is no particular ver-
sion that regularly outperforms the others. DIRECT-2, by virtue of doing fewer
subdivisions, is the most economical and is usually competitive with THJ in this
respect. The aggressive search option in DIRECT-1 often, but by no means always,
means that it obtains a better solution than DIRECT but at a cost of more function
evaluations.

� In terms of reliability, the purely deterministic approach of DIRECT seems more
successful than the purely random sampling method used in ECTS. Interestingly,
the fairly reliable method THJ can be viewed as a compromise between the two
extremes, since it uses randomly generated search directions along with a deter-
ministic method for one dimensional global minimization.

An obvious question concerns the extent to which the relative performances of the
methods can be affected by the choice of the algorithm parameters. We shall dis-
cuss this (and some other features of the methods) in the following subsections;
but we can remark that all the methods are likely to be sensitive to the values se-
lected for maximum numbers of iterations or function evaluations. The chances
of success for a (random or systematic) search for a global minimum are bound to
increase if the exploration is made more exhaustive. We shall therefore be more in-
terested in those parameters which may have a more subtle effect on performance.

5.1 Tabu Search Hooke and Jeeves

Some of the parameters used by this algorithm are connected with the exploration
phase others are used in the line search.

The number of random exploration directions per cycle suggested in [1] is 2n. Nu-
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merical tests using r = n and r = n2 show that the reduction in the number of ran-
dom directions typically produces a reduction in computational cost without much
loss of quality in the solution. An increase in the number of directions, however,
increases the number of function evaluations without producing any consistent im-
provement in the estimate of the global optimum.

Tabu list size t (for rejecting repeated exploration directions) seems to have no
effect on the performance of the algorithm. For a 10 variable problem the method
given in [1] (see below for more details) can produce 100 possible directions and
even if we increase t to 30 there is seldom, if ever, a match with one that is in the
current tabu list.

We now consider the range [a;b] which defines limits for the step length in the
global search along each random direction. The range we used, [�5;5], seems
consistent with the scale of the example problems we have looked at; and if we
increase or decrease the size of the search interval we typically produce a corre-
sponding increase or decrease in the number of function evaluations used without
getting any significant change in the estimated solution.

THJ appears to be successful in our examples more because of its global line search
than its use of tabu search ideas. The one dimensional global minimization algo-
rithm given in [1] is based on fairly intensive sampling of the objective function
along the direction of search and this can be quite expensive. The approach used
in DIRECT for n-variable minimization also exists in simplified form for one di-
mensional global minimization; and it is possible that using this approach inside
the THJ framework would make it more economical.

The pseudo-random search directions used in [1] are in fact selected from a finite
set of possible vectors whose components are 0, 1 and -1 so that the choice of
exploration moves is more limited than might be supposed. Moreover it is not
clear that the adopted tabu list strategy (disallowing the negative of a recently used
exploration direction) is particularly effective. If a point x+ is reached by a move
from a previous point x and if x++ is obtained by an optimal step away from x+

then it is not obvious that a step from x++ in a direction parallel to (x+�x) is likely
to return the search to an already visited region.

A better strategy for THJ might be to allow a richer set of random exploration
directions (e.g. by letting all the elements of the search direction be pseudo random
numbers between -1 and +1). If x, x+ and x++ are successive points reached during
exploration then suitable tabu directions for the move away from x++ would be
(x++� x+) and (x++� x). In practice, of course, this idea could be implemented
over a history of more than two steps; and the tabu would apply to any directions
which made too small an angle with the ones in the list.
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5.2 ECTS

The relatively poor performance of ECTS in our tests is somewhat at variance with
results reported by its authors in [2]. One reason for this may lie in the number
of user-specified parameters on which the algorithm depends – for instance, the
number and size of the hyperspheres used in diversification and intensification, the
tabu- and promising-ball radii etc. etc. Tuning these parameters is not easy for a
user who is unfamiliar with the algorithm; and in practice the time available for
trying to do this may be very limited. As already mentioned, we have used the
parameter settings recommended by the authors; but now we consider whether any
changes would have been beneficial for the route-finding examples.

Decreasing η, the number of hyperspheres used during diversification and intensi-
fication, is counter-productive and can produce much worse estimates of the global
optimum. The standard choice η = 10 is in fact the maximum recommended in
[2] and if we use a larger η the hyperspheres become too close together, leading to
difficulties with the generation and placement of random trial points.

For the standard choice η = 10, performance seems relatively insensitive to the
radii of the inner and outer hyperspheres.

The size of the tabu list in ECTS has a little more effect than was the case for THJ.
This effect is quite variable, however. Increasing the length of the tabu list some-
times reduces the number of function evaluations (but may also leave it unchanged)
yet has not been seen to make much change in the estimated solution. Decreasing
the size of the list sometmes reduces and sometimes increases the number of func-
tion evaluations and has been observed to cause a global optimum to be found that
was not reached with the standard list size.

The effect of changes to the promising list size are easier to describe. Making
the promising list smaller causes the number of function evaluations to decrease.
Making the promising list larger produces an increase in numbers of function eval-
uation. In neither case is there a significant change in the estimated solution. A
possible inference is that the promising list is not particularly effective feature of
the algorithm.

5.3 DIRECT

DIRECT is the only one of the methods considered here for which a proof of
convergence is offered. Although this inspires a certain amount of confidence,
it is only of limited relevance to the practical performance of the method since it
merely guarantees that the selection and subdivision of hyperboxes will cover the
entire search region if continued for long enough – i.e. no regions will be ignored.

A weakness of the original method is its lack of a stopping rule. In the results
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quoted above, DIRECT has simply been allowed to continue for a fixed number of
iterations (64 for each unconstrained minimization). The only other parameter of
the basic DIRECT approach is the threshold ε. We have preferred to use ε = 10�4

instead of the value 10�2 suggested in [10]. We have not found that this has a
major effect on the algorithm – typically it does not result in finding a global rather
than a local minimum in a fixed number of iterations. However, at the cost of
perhaps 20% more function evaluations it can produce more accurate estimates of
the optimum that DIRECT is homing-in upon.

The modified versions of DIRECT introduce some new parameter choices, namely
the minimum box-size and the number of “unsuccessful” iterations which trig-
ger the use of an aggressive search or termination of the algorithm. We have not
found that these have a very strong effect upon the estimate of the minimum that
is obtained, but the threshold on unsuccessful iterations can, if carefully or luckily
chosen, lead to worthwhile savings in function evaluations.

5.4 Concluding remarks

It has not been possible to test the heuristic approach [8] on the test examples
given in this paper. However we have been able to make a limited comparison of
this approach and DIRECT when applied to a more realistic version of the routing
problem which involves actual terrain data (so that the threats are certainly not
simple circular regions!). In two out of three test cases DIRECT and the method of
[8] find very similar estimates of a globally optimal route, while in the third case
DIRECT finds a solution whose cost is about 10% better than the one reached by
the heuristic approach. Further experiments with such practical examples are in
progress and will involve the THJ and ECTS algorithms as well.
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