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Abstract

Attachment bonds and positive affect help
cognitive development and social interactions
in infants and animals. In this paper we
present a neural architecture to enable a robot
to develop an attachment bond with a person
or an object, and to discover the correct sen-
sorimotor associations to maintain a desired
affective state of well-being using a minimum
amount of prior knowledge about the possible
interactions with this object. We also discuss
how our research on attachment bonds could
further developmental robotics in the near fu-
ture.

1. Introduction

The question of how autonomous robots could be
integrated in our everyday life is gaining increas-
ing attention. To that end, robots will have to
be able to exhibit adaptive and complex behav-
iors, and our view is that they should be able to
learn without constant instruction from a teacher,
and rather develop in interaction with humans and
learn from this interaction (Cañamero et al., 2006).
Robots will need to constantly learn how to re-
act in different situations and environments with
a minimal amount of prior knowledge present in
their behavioral systems. A key element towards
this goal is the integration of emotional and affec-
tive factors in these interactions (Cañamero, 2001,
Breazeal, 2003) as a way to guide development and
learning. Adding emotional values to different con-
texts is for example a way to facilitate decision-
making (Blanchard and Cañamero, 2005). The for-
mation of attachment bonds is another important
aspect, not only to improve human-robot interaction
but also as a way to develop further cognitive and
emotional capabilities (Nadel and Muir, 2005). Ac-
cording to Bowlby’s theory (Bowlby, 1969), a secure
attachment bond helps infants during their devel-

opment. It is known to foster exploratory behav-
iors, which are essential for the infant to build a
coherent and stable internal model of the environ-
ment. Furthermore, as stressed in (Kaplan, 2001),
it would be possible to build architectures for au-
tonomous robots that could allow us to compare
and study the consequences on the development of
such attachment bonds using the “Strange Situation
Test” (Ainsworth, 1969). From a human-robot in-
teraction point of view, a robot that explores its
environment with confidence thanks to its history
of affective interactions with humans has the ad-
vantage of being self-driven since the robot would
have an internal motivation urging it to discover
and later understand its environment. A success-
ful robotic implementation of an early model of at-
tachment and its implication in exploratory behavior
was presented in (Blanchard and Cañamero, 2005,
Blanchard and Cañamero, 2006). This work took
inspiration from the imprinting phenomenon first
described by Konrad Lorenz in the case of birds
(Lorenz, 1935). During the early days of life, an at-
tachment bond develops between young birds and
persons or objects to which the animals have been
exposed. As a consequence, the birds follow the
movements of the imprinted object or person. In
this early attachment experience, the imprinted ob-
ject acts as a sort of security mechanism for birds
during exploration; moreover, the simple fact of fol-
lowing the imprinted object helps them discover their
environment faster and without any explicit teaching
by the imprinted object or person. Modeling this
phenomenon with autonomous robots showed that
they could benefit from the advantages provided by
imprinting to guide their first steps in an unknown
environment and as a mechanism to bootstrap af-
fective interactions with humans. However, in our
previous model, the robot had already hardcoded or
“pre-wired” in its system the know-how to follow the
imprinted object. From an epigenetic perspective of
development, letting the robot discover and learn by
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itself how to maintain the imprinted perception—
being at the “right” distance from the imprinted ob-
ject in our case—would be a more plausible approach
to model early attachment in humans and other com-
plex mammals, which is closely related to imprinting
in birds but slightly different. Indeed, in more com-
plex species in which newborns are less developed
when they leave the maternal environment, learning
from experience and interactions with the environ-
ment plays a crucial role to achieve normal devel-
opment. In the remainder of this paper, we present
such an architecture that allows a robot to imprint
a person (or a moving object) present in front of it
when it is turned on and then to learn, without any
external reinforcement, how to follow the imprinted
object. We tested this architecture using two types of
robots—an Aibo and a Koala—and here we present
and discuss in detail the results obtained in the latter
experimental setting.

2. Robot Architecture

Our architecture follows a “Perception-Action” ap-
proach (Gaussier and Zrehen, 1995), which postu-
lates that perception and action are tightly coupled
and coded at the same level. Action is thus exe-
cuted as a “side-effect” of wanting to achieve, im-
prove or correct some perception. The perception-
action loop can be seen in terms of homeostatic
control, according to which behavior is executed
to correct perceptual errors. Actions that al-
low to correct different perceptual errors are se-
lected on the grounds of sensorimotor associations
that can be “hardcoded” by the designer (e.g., in
a look-up table, as in (Gaussier and Zrehen, 1995,
Blanchard and Cañamero, 2005) or learned from ex-
perience by the robot, as it is our case here—our
robot extracts sensorimotor associations led by its
motivation to keep the imprinted object at a con-
stant distance, and using a combination of associa-
tive learning and action selection. We have also
taken inspiration from (Panksepp, 1998) regarding
ideas on the relation between affective states and
homeostasis. Figure 1 shows the components of our
architecture, implemented using a neural network
consisting of neural groups that fulfill different func-
tions, as explained in the remainder of this section.

2.1 Imprinting System

The imprinting system learns the value of the dis-
tance sensors. This neural group (Imprinted Per-
ception in Figure 1) contains as many neurons as
the number of distance sensors used (in this case
two, as shown in Figure 2), which outputs equal
to the learned distance value. The imprinting
group uses a modified Rescorla-Wagner conditioning
rule (Rescorla and Wagner, 1972) with a decreasing
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Figure 1: Our architecture for imprinting.
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Figure 2: Our detailed architecture with the number of

neuronal units in each group.

global learning rate to achieve stabilization:

wij(t) = wij(t − 1) +
α

(β · t)
· (Pd − Pc) (1)

with:

wij(t) the weight of the link between input neuron
i of the Distance Sensors group and neuron j of
the Imprinted Perception group.

α the learning rate here equal to 0.2

β the learning rate’s decay rate equal to 0.05

Pd the current output of the ith neuron of the Dis-
tance Sensors group

Pc the current output of the jth neuron of the Im-
printed Perception group

When the global learning rate, α
(β·t) , reaches a

value below 0.001, the output of the imprinting group



remains unchanged until the end of the experiment,
thus achieving stability in the computation of the
perceptual error and its derivative.

2.2 Perceptual Categorization System

Our robot must learn to associate its relative position
with respect to the imprinted object to the action to
be taken to correct its perceptual error. For this, it
must first calculate its perceptual error, then eval-
uate in which category of perception it is (Distance
perceived), to be able to choose the right corrective
action.

To modulate the response of the system according
to the discrepancy between the current perception
and the imprinted one, we compute the current per-
ceptual error (Ep) between the imprinted perception
(a distance) and the current one:

Ep =
∑

Pi − Pc (2)

with:

Pc the current perception value (the current value
of the distance sensors in the case of the Koala
setup)

Pi the imprinted perception value (the value of the
distance sensors during the imprinting phase)

The neuronal group computing these values has 1
output neuron for the perceptual error, Ep and is
linked to the perceptual error derivative group which
contains three units, two that are computing an aver-
age of the perceptual error on two different time win-
dows and the discrepancy between these two units is
used to evaluate the derivative of the perceptual er-
ror. First the perceptual error is thresholded like :

Ēp =
{

0 if |Ep| < θ1

Ep otherwise

where θ1 is chosen to provide an interval where the
system considers its perception to be the correct one,
i.e. the imprinted perception.

We now use this value to evaluate the two average
values of the error on two time windows :
e(τ) = e(τ−1)·τ+Ēp

τ+1 the average value of Ēp over τ
time steps. Then we calculate the derivative of the
error:

dEp

dt
= e(τ1) − e(τ2) (3)

with τ1 = 2, and τ2 = 4, the two time windows.
Since we want our robot to be able to associate

its relative position with respect to the imprinted
object to the action to be taken in order to correct
its perceptual error, we project the actual value of
the distance sensors into three categories: too far
from the object, too close to it, and correct distance

(the distance for which Ēp = 0). Therefore this neu-
ral group (Distance Perception in Figure 1) contains
three neurons, one for each category, and only one
neuron is activated at each timestep. Although this
categorization could have been achieved on line by
the system itself, we decided to use a fixed one in
this case in order to focus on the problem that is our
object of study here—the perception-action pairing.
The output of this neural group is used as input for
the action selection one.

2.3 Action Selection and Learning

The task of the action selection module is to learn
how to maintain the desired perception learned by
the imprinting module. Therefore, it needs to se-
lect the correct action according to the actual per-
ceived distance category. To this end, the latter is
fully connected to a Winner-Take-All (WTA) group
of neurons (Action Selection Group in Figure 1).
This group receives also a modulatory input from
the perceptual error group, dEp, and proprioceptive
feedback from a motor output group which displays
the real action that has been executed. This sig-
nal acts as the teaching signal for the learning mod-
ule. The input dEp is used as a kind of reinforcer
helping the system to learn associations between the
active perceptual category and the action that has
been produced. The association between a percep-
tual category (Perceived Distance in Figures 1 and
2) and an action that makes the perceptive error de-
crease (dEp < 0) will be strengthened, whereas the
association between a perception and an action that
makes the perceptive error increase (dEp > 0) will
be weakened. The initial weights between the per-
ceptual categories and the WTA are initialized to
small random values. The WTA group contains two
output neurons, one for the action of going forward
and one for going backward. Hence the WTA group
learns using a modified Hebbian rule and produces
outputs as follows:

wij(t) = wij(t − 1) − α · dEp · Oj · xi (4)

with:

wij(t) the weight of the link between input neuron
i of the distance system group and neuron j of
the WTA action selection group initialized with
random positive values between 0 and 1.

α the learning rate, here equal to 0.2

dEp the derivative of the perceptual error

Oj the proprioceptive feedback from the motor out-
put group

xi the output value of the ith neuron of the Perceived
Distance group



The group (Executed Action) uses the output of
the WTA to compute the speed of the robot, in this
case the direction of the movement. However, if the
perceptual error is null, we want the system to re-
main static, as in (Blanchard and Cañamero, 2006).
For this, we use the value of Ē to modulate the value
of the motor output. The motor output value is a
real number, and will have the effect of going forward
when positive, backward when negative. In order to
avoid abrupt changes in the speed of the robot, we
need to produce a smooth motor output; the value
of the motor output is filtered as follows:

M(t) = M(t − 1) + α(Md − M(t − 1)) (5)

with the selected motor output Md computed as:

Md = Ē · V (6)

where V , the current direction of the robot, equals
−1 when going backwards, 1 when going forward.
This value is directly computed using the outputs of
the WTA group. The two output neurons of this
group are then updated to provide feedback to the
Action Selection group, so if the current motor out-
put Md is negative, one neuron is going to be ac-
tivated and if it is positive, the other one will be
activated; both neurons will be inhibited if the per-
ceptual error is null.

At the beginning of the “life” of the robot (for a
short period after it is turned on) no action is taken
in order to allow imprinting to take place. Then the
system works in two phases. During the first (ac-
tion selection) phase, all groups have their outputs
updated and then an action is executed. During the
second (learning) phase, the perceptual error and its
derivative are updated, and the WTA Action Selec-
tion group learns the consequences of its last action—
the weights from the Perceived Distance group to the
Action Selection are updated.

3. First Experiments and Results

3.1 Experimental setup

To test our system, we used two different types of
robots and settings: an Aibo, Figure 3, and a Koala
Figure 4. In both cases, we used a one-dimensional
task in which the robot became imprinted to an ex-
perimenter playing the role of a caretaker placed in
front of it. In the case of the Aibo, using the cam-
era, the robot became imprinted to a ball held and
moved by the experimenter and it learned to follow
the ball with movements of its head, while attempt-
ing to correct the perceptual error—the difference
between the actual position of the ball in its visual
field, and the position it had when it was imprinted.
Using the Koala, the experimenter was standing and
moved forward and backwards in front of the robot;

the Koala used its infrared sensors to detect the ex-
perimenter and had to learn to move with (follow or
back up from) the experimenter while trying to main-
tain the distance at which it had been imprinted. In
this paper we report our experiments and results us-
ing the Koala scenario.

Figure 3: Setup using Aibo learning to follow laterally

the ball.

Figure 4: Setup using a Koala robot learning to follow

the experimenter.

The experiment starts by turning on the robot in
front of the caretaker, and none of them moves1 for
a small period of time during which the initial im-
printing takes place. After this phase, if the care-
taker doesn’t move, the perceptual error of the robot
remains equal to 0 and therefore no movement is
produced. Then, after a few seconds, the caretaker

1We haven’t discussed here the case in which the experi-
menter moves during the imprinting period, the obvious result
being that the imprinted perception stabilizes at an average
value of the distances experienced during this period.



moves away from the robot. The robot will then exe-
cute the action selected as winner output by the Ac-
tion Selection group. If the action executed makes
the perceptual error decrease, then the robot will
learn that this action is the correct one to execute in
that situation—in this particular example approach
the caretaker, resulting in a following behavior. If
the action executed is not the correct one, after few
timesteps the robot will choose to execute another
action and, if it corrects the perceptual error, it will
learn that it is the correct action to execute in that
situation.

During this experience, we recorded the values
of the distance sensors, the perceptual error be-
tween the desired perception and the current one, the
derivative of the latter and the values of the weights
between the categorized perception (Distance Per-
ceived) and the action to do. Figure 5 shows an ex-
ample in which the caretaker approached the robot,
getting closer than the distance the robot was im-
printed to. As we can see, the weight value, asso-
ciated here with the action of backing up from the
caretaker, increased correctly during the experiment.
More specifically, if we look closer in the rectangular
boxes labeled 1 in the figure, we can observe that
the weight value increases when the derivative of the
perceptual error is negative, which happens when the
square perceptual error decreases—in this case, when
the caretaker slowly approached the robot. The care-
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Figure 5: Evolution of (from top to bottom): perception

of the distance, square and derivative of the perceptual

error, and the association weight between perception and

action, producing in this case the behavior of backing up

from the imprinted object as it gets too close.

taker then stopped moving, the robot went slowly
backwards and, since the derivative of the error was
negative, the association between this situation and
the action of going backwards was strengthened, and
the robot reached again the desired perception and

stopped moving. When the caretaker tried again
to move closer to the robot—the moment inside
the rectangular box labeled 1′—the robot quickly
reached the desired perception again, showing us
that the correct association had been learned. The
caretaker then moved closer to the robot again, but
this time very quickly. We can see in the box labeled
2 that inducing this quick perturbation provoked a
decrease in the association learned, the weight value
decreases first. But since no other action had been
associated as the correct action in that situation, the
robot moved backward again, and the association is
again reinforced with an even higher value than be-
fore. The same effects were observed with the op-
posite perturbation—the caretaker quickly moving
away from the robot. It is interesting to note that
our learning system is influenced by the intensity
of the perturbation and its length. If the experi-
menter were to move further and further away from
the robot, this system would not be able to learn
how to follow her/him. But in a step-by-step man-
ner, it learns with increasing accuracy the correla-
tions between the perception it wants to reach and
the correct action to do.

4. Increasing Complexity: Experi-
ments and Results

After we successfully tested our architecture on a
one-dimensional problem, we modified the experi-
ment to test how the capabilities of such a system
could be extended. We added a second dimension to
the experiment by allowing the robot to turn. Since
the purpose of these experiments was to provide the
smallest amount of prior knowledge, duplicating the
whole system on the other dimension would not be
an adequate challenge for the system. Therefore we
modified the system components as follows:

• The sensory input is a vector including four
components—the values of the two frontal sen-
sors and of the two side sensors; thus the Sensory
Group and the Imprinting Group have each four
components now.

• The perceptual categorization (previously Per-
ceived Distance) group has 5 categories; the two
new ones are activated by the sign of the differ-
ence between the two sides sensors.

• There are four possible actions in the Action Se-
lection group—going backward, forward, turning
left and turning right.

• The Executed Action is still chosen according to
the Action Selection group winner, but the in-
hibiting system is also driven by the perceptual
error derivative. When the squared perceptual
error (Ē) is null, all motor actions are inhibited
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but when the absolute value of the derivative of
the perceptual error is below a low threshold, the
other degree of freedom of the action that has not
yet been tried—frontal or lateral—is the only one
that can be activated.

We introduced this modification in the inhibition of
the actions in order to let the robot switch to other
actions when no progress in reaching the homeostasis
is experienced during a fixed amount of timesteps.
This helps the robot try another action when the
perceptual error is high and stable, e.g., when the
caretaker/experimenter is out of the range of its sen-
sors.

The experimental setup to test this was the same
as in the one dimension experiment. The weights are
initialized to random values within a close interval
(between 0.2 and 0.6). We recorded the same data as
in the first experiment. In Figure 6, we show the evo-
lution of the squared perceptual error, the derivative
of it, and what we call the score of the robot, which is
1 when the correct perception is reached, 0 otherwise.
We can observe that the robot is still able to reach
the correct perception rapidly. However, it now has
several ways to achieve it and some configurations
need the experimenter to move toward an easier po-
sition for the robot to solve the problem. For in-
stance, when the experimenter backs away from the
robot, depending on the initial weights, this some-
times causes the robot to alternate between turning
left and right, which results in reaching the correct
perception in a non-optimal manner. We observed
the same effects when the experimenter moved to the
sides: the non-optimal solution that appeared here

was to go backwards for a few timesteps, then for-
ward during the same amount of time, and the robot
got stuck into a local minima where the error cannot
be reduced to its ideal value below the fixed thresh-
old, and since the derivative is still fluctuating the
system does not switch the action to another degree
of freedom. This also affects the stability of the as-
sociation weights: like in the first experiment, when
the experimenter moves, the perturbation rapidly in-
duces a decrease of the weights and there is no guar-
antee that the robot will converge to the correct per-
ception.

5. Related Work

The architecture presented develops simple sensori-
motor associations using a modified Hebbian learn-
ing rule modulated by the derivative of the percep-
tual error. In previous experiments by Andry and
colleagues (Andry et al., 2001), a similar architec-
ture was used to learn new sensorimotor associations
without any explicit reinforcement in the case of a
teacher-student interaction. The system had to re-
act to inputs produced by the teacher, with the sole
guidance of the quality of its prediction of the rhythm
of the teacher’s input. The prediction error was
then used to compute a reinforcer in order to signal
the system whether the current sensorimotor associ-
ations were likely to be more or less accurate. More
precisely, the temporal derivative of this reward was
directly modulating the probabilities, named cred-
ibility, for each weight to change using the Proba-
bilistic Conditioning Rule (Gaussier et al., 1997). In
their contribution, Andry and colleagues note prob-
lem that using a simple correlation rule (e.g. a Heb-
bian rule) would require the teacher to wait until the
student gives a correct output according to the in-
put. They point that, since that was not the aim of
their experiment, using the prediction of the rhythm
to tune the sensorimotor associations would ease and
speed up the interactions. However, in our experi-
ment this type of learning rule is particularly suit-
able since we want to build the sensorimotor associ-
ation according to the behavior of the caretaker. If
the caretaker does not wait for the robot to acquire
the correct associations, then this caretaker would
not be able to stand as a good reference for the
robot to explore and learn from its environment cor-
rectly; hence, the attachment bond with this partic-
ular caretaker would not be classified as a secure one
according to Bowlby’s categorization. Meanwhile it
is interesting to see that using a reinforcer computed
with the derivative of the perceptual error—in our
case the perceived distance, in theirs the rhythm of
the interaction—helps to solve sensorimotor associa-
tions learning problem during human robot interac-
tions.
Furthermore, the use of the derivative of a pre-



diction error has been described by Oudeyer and
Kaplan as a way to help a robot exhibit a
curious behavior in an open-ended environment.
In (Oudeyer and Kaplan, 2004), these authors pre-
sented an architecture permitting the robot to choose
to move towards a situation were actual learning
could be achieved. To this end, the system learned
from each situation (categorized in similar sensori-
motor states) the value of its learning progress (e.g.
the opposite of the derivative of its prediction error)
and then decided which next states would assure the
higher decrease of its prediction error. It was the
value of this prediction error that acted as an inter-
nal reward. The architecture we present here uses a
similar approach to correct the sensorimotor associ-
ations using the opposite of the derivative of the per-
ceptual error, therefore, we can note that this kind of
reinforcer can be applied to address several problems
in autonomous robotics. Moreover, it might be pos-
sible to unify these results to come up with a more
complete architecture allowing a robot to exhibit a
curious behavior emerging from the experience of its
interactions with the caretaker. Since in our experi-
ment the robot is learning to correct its sensorimotor
associations in order to maintain its proximity to the
caretaker, in the meantime it is actually reducing its
prediction error, even though the notion of prediction
is not explicitly used in our system. Indeed, after
having learned the correct associations and decreased
its perceptual error, the robot has managed to reach
a desirable position in terms of affective state. A
simple associative architecture would thus allow it
to learn that correcting its prediction error has lead
to a desirable state, and that, continuing to decrease
this predictive error would have a positive emotional
value. Moreover, letting a robot develop an attach-
ment bond with a caretaker as a desirable perception
to reach to feel secure, could also help to deal with
the problem of choosing between several situations
that predict the same learning progress during the
exploration phase. Indeed, if a conflict during explo-
ration arises, instead of picking one action randomly,
the robot could choose the action that would lead it
to the perception that is the closer to the desirable
one.

6. Conclusion and Future Work

We have shown that the system presented in this pa-
per is able to learn the consequences of its actions led
only by the tendency to maintain a perception associ-
ated with the presence of a caretaker. Our robot can
learn to maintain a desired perception, and there-
fore to follow its caretaker around, without any prior
knowledge of how to do so, rather than having this
knowledge “pre-wired” like in previous and related
work. We have seen that the robot learns fast rela-
tively to the complexity of the task to learn. How-

ever, each time a perturbation in the homeostasis
of the system is induced by the experimenter, there
is no way for the robot to distinguish whether this
perturbation is a consequence of its own action or
not. That is why the association weights decrease
during this perturbation. When the task to learn
is more sensitive to these perturbations (i.e. when
the weights of the associations have values which
are very close among them), our system has to learn
again the associations after each external perturba-
tion. Adding a way for our robot to discriminate be-
tween perturbations due to external causes (e.g. the
actions of the caretaker) or internal causes (typically
the actions of the robot), although far from being a
trivial problem, would be a natural future extension
to our system from a developmental perspective.

This problem of external perturbations is also re-
lated to how caretakers respond to infants’ demands.
It seems natural that the experimenter acting as a
caretaker would have to adapt his/her behavior to
that of the robot. For example, if the caretaker
were not to wait for the robot to learn how to fol-
low him/her, we could say that the caretaker would
not be responding correctly to the needs of the robot
in terms of interactions. The appropriate behavior
for the caretaker would be to wait for the robot to
reach the desired perception and to have the time to
learn how to reach that perception (i.e. which ac-
tion to execute to do so in that situation), and to
follow the caretaker at a constant distance, by try-
ing different actions in a sort of “motor babbling”,
so that the robot can be in a good emotional state,
without the distress of the absence of the caretaker.
The interactions involved in these simple learning
tasks are comparable to mother/infant interactions
during the first year, and are particularly relevant
to investigate Bowlby’s notion of secure-insecure at-
tachment (Bowlby, 1969) and its influence in the de-
velopment of emotional and cognitive capabilities,
such as openness towards the world and curiosity.
The use of such an architecture to build stable and
relevant low sensorimotor associations does not ap-
pear to be biologically plausible as it is. We studied
this system in a real robot/human interaction in or-
der to evaluate its dynamics. Using a real continu-
ous value—the derivative of the perceptual error —
to reinforce behavioral responses could be compared
to the effects of specific chemicals released in the
brain during infant/mother interactions. It is known
that comfort and proximity of the mother induces
significant release of opioids in the infants’ brains
(Panksepp, 1998), which inhibits the effects of corti-
sol, the hormone released during stressful episodes.
These mother/infants interactions are believed to
shape the brain areas responsible for coping with
emotional situations (Schore, 2001). The behavioral
responses the infant will exhibit are a consequence



of this emotional learning process and the interac-
tions between hormones and neural substrates. In
future work, our architecture could prove itself useful
in biasing more complex behavior, gazing at some-
one, exploring the environment or looking for the
attachment figure.
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