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1 Introduction

1.1 Background

Low Reynolds number aerodynamics are important for both natural and man-made flying objects.

The complexity of the aerodynamics and flight of small birds,bats, insects has generated enormous

research interest among biologists and aerospace engineering community. Over last few decades there

is a growing interest in designing aircraft that are as smallas possible for special military and civil

missions. Many such aircraft are currently under development among them are the Micro Air Vehicle

(MAV) which have received special attention for both civil and military application. MAVs are un-

manned autonomous flying machines with linear dimension of 15cm, gross take-off weight of approx-

imately 100g carrying a payload of 20g and the expected loiter time is of the order of 60 minutes. Two

important challenging problems in design of MAV are (i) low Reynolds number (Re), which results in

unfavourable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions,

resulting in certain favorable scaling characteristics including structural strength, reduced stall speed,

and low inertia. MAVs generally fly in the Reynolds number ranging from 1000 to 1,20,000 (low

Reynolds number regime), whereas for the full size helicopoters and aeroplanes the Reynolds number

is around107. The growing interest in MAV and its aerodynamic challengeshas created the need

for improved understanding of the aerodynamics and relatedflow physics. Aerodynamic designs of

MAVs, reported so far, have employed different kind of efficient lift generation systems viz., fixed

wing [1, 2, 3], flapping wings [4], flexible wing [5, 6] and rotary wings [7, 8, 9] or their combinations.

The fixed-wing MAVs usually fly at the upper end of the low Reynolds number regimei.e. around

105 [10], rotary wing generally fly at Reynolds number ranging from 20,000 to 70,000. and flapping

wing fly at Reynolds number ranging from 1,000 to 10,000 in which the viscous effect is expected to

be prominant.

Fixed wing MAVs are simple and easy to implement. The aerodynamic performance is known to

deteriorate when the operating Reynolds number is less than105. The poor performance at low

Reynolds number is mainly because the flow separates at a relatively low angle of attack. This early

laminar separation is often formed on the upper surface of the aerofoil, leading to a lower lift to drag

ratio, with a delayed stall angle. Therefore the selection of aerofoil plays a key role in the designing of

MAV wings. The most commonly used low Reynolds number aerofoil sections are NACA, Wortman,

Althaus, Selig, Eppler, MH, Drela and Zimmerman.

Recently, National Aerospace Laboratories (CSIR) and Aeronautical Development Establishment

(DRDO) have initiated a joint effort to design and develop a fixed wing MAV in the next two years

and eventually demonstrate the technology developed in a flying unit with pre-defined mission. To

fulfill this mission CFD analysis of thin aerofoil sections and wings are required to be carried out

in order to understand the aerodynamic performance of thin aerofoil at low Reynolds numbers and

design a suitable wing configuration.

The present study is to understand the aerodynamic characteristics of NACA aerofoil sections at a low
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Reynolds number of 87000 for different geometrical parametersviz., thickness, camber and location

of maximum camber.

1.2 Scope of the present work

The Current work will be mainly focused on the two-dimensional numerical simulation of different

aerofoil sections to study their relative performance in terms of the lift-to-drag ratio. The parameter

investigated will be mainly on the thickness, camber and thelocation of maximum camber for NACA

series at a chord based flow Reynolds number,Re = 87, 000. The two-dimensional analysis will be

carried out using the in-house multiblock structured flow solution algorithm RANS3D [11, 12, 13,

14]. The RANS3D code developed at CTFD division NAL, Bangalore, is based on an implicit finite

volume algorithm to solve the time-averaged Navier Stokes equations for unsteady incompressible

turbulent flow with moving boundaries in an inertial frame ofreference. The RANS3D code has

been validated extensively for variety of low speed internal and external turbulent flow application

problems.

The flow code is coupled to an appropriate pre-processor for generation of boundary fitted curvilinear

grid around the aerofoil and a post-processing interface for numerical visualization of the flow and

calculation of the aerodynamic coefficeints.

1.3 Documentation outline

The present document consists of five different sections starting with this introduction as the first one.

Section 2 describes in brief the grid generation procedure for the body-fitted grid around the aerofoil.

The mathematical modelling of equations of turbulent fluid motion is described in Section 3. Results

on turbulent flow past various 4 digit NACA aerofoil sectionsfor flow Reynolds number of 87,000 at

different angles of attack varying from0◦ to the stall angle are discussed in Section 4, followed by

few important concluding remarks and the scope of future work in Section 5.
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2 Numerical grid generation procedure

Generation of smooth, body-fitted grids with approximate orthogonality at the boundaries is practi-

cally the first step towards the accurate numerical solutionof fluid flow equations for arbitrary con-

figuration, using finite volume, finite element and similar methods. The location and kind of phys-

ical boundaries, interpreted mathematically as the boundary conditions of the governing differential

equations of flow determine the spatial distribution of the flow variables in the domain of interest.

Therefore the distribution of grid points on domain boundaries, usually specified by the user, should

accurately reflect the geometrical boundaries of the domain. The grid should also have sufficient num-

ber of points distributed appropriately to detect the majorcharacteristics of the flow. Other desirable

features of a good grid generation methodology are the smoothness and the boundary-orthogonality

of the grid generated, an easy and direct control of grid-spacing and grid skewness at any desired

location and finally an efficient and fast numerical algorithm. A poorly constructed grid may yield

inaccurate results and may bring down the convergence rate of the numerical solution of the flow

equations also to a prohibitively low level.

2.1 Differential-algebraic Hybrid method for two dimensional plane

The present grid generation algorithm [15] developed at theCTFD Division, NAL involves the so-

lution of the elliptic type differential equations at a coarse level, followed by simple algebraic inter-

polation from the coarse to a finer level. The coarse grid is primarily generated by solving a system

of inverted Poisson equations for a given point distribution at all four boundaries of a two dimen-

sional computation domain. The control functions in the equations are automatically adjusted in an

iterative procedure to achieve boundary-orthogonality and need no ad-hoc adjustment of the problem-

dependent parameters. Finally, when the desired concentration of grid points is specified at the fine

level on one boundary along each direction, the fine level field grid coordinates is obtained by fitting

Bicubic Spline functions passing through the coarse level grid nodes. This Hybrid approach proposed

first by Zhu [16] makes a compromise between the simple algebraic and the expensive differential

approach and guarantees smooth grid of desired fineness and approximate boundary-orthogonality

for a very reasonable computation cost.

2.2 Typical O-grid topology around an aerofoil

The present flow computation has been carried out using O- topology for the different NACA series

aerofoil analysed. Figs. 2.1 and 2.2 show the typical 2-block O-grid topology around a symmetric

(NACA0002) and cambered (NACA4402) aerofoil with the zoomed views near the leading and trail-

ing edge of the aerofoil where the fine resolution near the important areas of the domain are clearly

demonstrated. For the present O-grid topology, the cut lineat the block interface is chosen to be a

vertical line passing through the mid-chord point of the aerofoil and the far field boundary is circular
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at a radius of15C, whereC is the chord of the aerofoil. Near the aerofoil surface, the grid lines are

specially stretched along the wall-normal direction in order to have a better resolution of the steep

flow variable gradients in the boundary layer. Number of gridnodes used along circumferential di-

rection is 321 and the number of nodes along radial directionis 101 in each block of the O-grid with

one overlapping control volume on either side all along the cut line. The advantage of the O-grid is

that one may use better resolution of the aerofoil surface since all the nodes along circumferential

direction are covered on one J= constant line.
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(a) Zoomed view of flow domain

(b) Zoomed view near leading edge (c) Zoomed view near trailing edge

Figure 2.1: Multiblock grid(321 × 101) around NACA0002 aerofoil
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(a) Zoomed view of flow domain

(b) Zoomed view near leading edge (c) Zoomed view near trailing edge

Figure 2.2: Multiblock grid(321 × 101) around NACA4402 aerofoil
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3 Mathematical Modelling of Flow Physics

3.1 Introduction

The analysis of flow around different aerofoil sections is carried out in this work through numerical

solution of the relevant Navier Stokes (NS) equation systemfor unsteady two dimensional flows. The

numerical simulation of the NS equation needs an appropriate mathematical model which can handle

the geometrical complexities like arbitrary shaped boundaries as well as the physical complexities like

simulating the effects of turbulence. The basic equations to be solved are a set of non-linear, strongly

coupled partial differential equations representing the conservation of mass and three momentum

components along the cartesian direction.

3.2 Governing equations for instantaneous fluid flow

The present pressure-based finite volume algorithm uses non-orthogonal coordinates with cartesian

velocities as dependent variables with the NS equations written in an inertial frame of reference. In

this generalized coordinate system with moving boundaries, the governing equations for conservation

of mass and momentum for instantaneous fluid motion for incompressible flow can be written as

follows :

Momentum transport for the Cartesian velocity componentUi:

∂(ρUi)

∂t
+

1

J

∂

∂xj

[

(ρUi(Uk − ẋk)β
j
k]
]

− µ

J

[

∂Ui

∂xm
Bj

m +
∂(Uk − ẋk)

∂xm
βm

i βk
j

]

+ pβj
i = SUi

(3.1)

where,J is the transformation Jacobian between cartesian and the curvilinear coordinates,βi
j andBi

j

are the relevant geometric coefficients related to the transformation,p is the pressure,µ is the fluid

viscosity andρ is the fluid density.j, k andm are used as repeated summing indices along the three

grid directions.Uk is the mean Cartesian velocity solved for along the ’k’ -direction, ẋk is the grid

velocity along thek-direction andSUi
is any other body forces appearing as source terms. These

momentum equations are further supplemented by the mass conservation or the so-called continuity

equation which, for incompressible flows, is just a kinematic constraint on the velocity field.
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Mass Conservation (Continuity):

∂

∂xj

[

ρ(Uk − ẋk)β
j
k

]

= 0 (3.2)

Analysis of any 3D unsteady flow situation requires the solution of the three non-linear strongly

coupled partial differential equations, given by Eqs. 3.1 and 3.2 (the three momentum equations for

the three cartesian velocity componentsUk, k = 1, 2 and 3 and the continuity) for the four unknowns

viz., U1, U2 U3 and p. The grid velocity components,̇xk for k = 1, 2, 3 are zero for the present

analysis. The details of the finite volume formulation, the initial and boundary conditions for the flow

past an aerofoil and the numerical solution procedure are provided in the following sections. For the

present analysis 2D simulations have been carried out by ingorning the effect due to the third direction

which will be described in Section 4.1.2.

3.3 Unsteady Reynolds Averaged Navier Stokes (URANS)

Equations

In this approach, the Reynolds averaging concept, illustrated in Fig. 3.1, is directly used to replace

the instantaneous flow variables (Eqs. 3.1 and 3.2) by the so-called Time-Averaged variables or

Phase-Averaged variables for the steady and time-dependent mean flow situations respectively. The

only assumption in this representation is that the time scale of the mean flow variation is quite large

compared to the time scale of the turbulent fluctuations.

3.3.1 Basic Concept of Averaging for Turbulent Flows

(a) Steady flow (b) Unsteady flow

Figure 3.1: Statistical averaging for turbulent flow

The concept of averaging is clearly explained based on the time record of any variableΦ (Fig. 3.1). In

case of stationary turbulence, shown in Fig. 3.1(a), the averaged variablēΦ does not change with time

whereas only the turbulent fluctuations(φ) are function of time and hence the mean flow is designated
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as a steady flow. For stationary turbulence flows, the instantaneous flow variables using the Reynolds

decomposition can be written as follows

Φ = Φ̄ + φ where Φ̄ = lim
1

T

∫ T

0
Φdt (3.3)

For solving the steady turbulent flow equations, the time averaged flow variables(Φ̄) are solved

and the turbulent fluctuations(φ) are simulated through turbulence models. On the other hand in

Fig. 3.1(b), the instantaneous value ofΦ consists of three different components - the time averaged

(Φ̄), the coherent(φ̃) and the turbulent fluctuations (φ) where the last one is the effect of the random-

ness of turbulence and hence stochastic in nature and coherent part however is deterministic. Using

the Reynolds decomposition, the instantaneous flow variables for unsteady or periodic turbulent flow

situation can be written as

Φ = 〈Φ〉 + φ where 〈Φ〉 = Φ̄ + (φ̃) (3.4)

and the time-dependent phase averaged flow variables are(〈Φ〉) solved and the stochastic (turbulent

fluctuations) part is simulated through turbulence models.Substituting the instantaneous flow variable

in the instantaneous Navier-Stokes equation (Eqs. 3.1 and 3.2) according to the Reynolds decomposi-

tion (Eq. 3.4) and averaging the equation, the RANS equations for unsteady turbulent incompressible

flow in non-orthogonal curvilinear coordinateswith cartesian velocities as dependent variables may

be written in a compact form as follows:

Momentum transport for the Cartesian velocity component〈Ui〉:

∂ (ρ〈Ui〉)
∂t

+
1

J

∂

∂xj

[

ρ〈Ui〉(〈Uk〉 − ẋk)β
j
k −

µ

J

(

∂〈Ui〉
∂xm

Bj
m +

∂(〈Uk〉 − ẋk)

∂xm
βm

i βj
k

)]

+
1

J

∂

∂xj

[

〈P 〉βj
i + ρ〈uiuj〉βj

k

]

= SUi
(3.5)

where,〈P 〉 is the phase averaged pressure,〈Ui〉 is the phase averaged velocity component solved for

and−ρ〈uiuj〉 is the turbulent stress term appearing as correlation between the unknown fluctuating

velocity componentsui and uj. ẋi is the grid velocity component which is zero for this analyses.

These momentum equations are further supplemented by the mass conservation or the so-called con-

tinuity equation.

Mass Conservation (Continuity):

∂

∂xj

(

ρ〈Uk − ẋi〉βj
k

)

= 0 (3.6)

However Eq. 3.5 and Eq. 3.6 do not form a closed system due to the presence of the unknown

turbulent stress term−ρ〈uiuj〉.
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3.4 Turbulence Modelling

3.4.1 Eddy Viscosity hypothesis

The task of the turbulence model is to provide a means for calculating the turbulent stresses appearing

in the Reynolds-Averaged equations. In Eddy Viscosity based models where the turbulent stress is

expressed in terms of the mean velocity gradients as following:

−ρ〈uiuj〉 = µt

(

∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)

− 1

3
ρδij〈ukuk〉 (3.7)

where,〈Ui〉 is the phase-averaged velocity,ui is the corresponding fluctuating component,ρ is the

density,δij is the Kronecker Delta andk is the summation index overk = 1, 2, 3. The term2
3
ρkδij

only ensures that the sum of the normal stresses is2k as per definition ofk , the turbulence kinetic

energyk = 1

2
uiuj . The eddy viscosityµt is assumed to be an isotropic scalar quantity whose value

depends on the local state of turbulence. Substituting the turbulent stress term in Eq. 3.5 and carrying

out some algebraic manipulation one may rewrite the mean momentum equation as following :

∂ (ρ〈Ui〉)
∂t

+
1

J

∂

∂xj

[

(

ρ〈〈Ui〉(〈Uk〉 − ẋk〉)βj
k

)

− (µ + µt)

J

(

∂〈Ui〉
∂xm

Bj
m +

∂〈Uk〉
∂xm

βm
i βj

k

)]

+
1

J

∂

∂xj

[

〈P 〉βj
i

]

= SUi
(3.8)

The algebraic or zero equation turbulence models [17, 18], employed very successfully for attached

boundary layer type flows, compute the eddy viscosity(µt) at any field point as an algebraic function

of the mean velocity gradients and the normal distance from the solid surface. These models are

computationally cheap but sometimes call for complicated interpolations to determine the normal

distance from wall for highly skewed grids near the body surface and cannot, in general, simulate

separated flows. On the other hand for one or two equation eddyviscosity based turbulence models,

transport equation are solved for one or more turbulence scalars. For the present study the SST model

has been used to simulate the effect of turbulence which is described briefly in following subsection.

3.4.2 SST model

The idea behind Shear Stress Transport (SST) model is to retain the robust and accurate formulation

of Wilcox k − ω [19] in the near wall region, and to take advantage of the freestream independence

of thek − ǫ model [20] in the outer part of the boundary layer. To achievethis, thek − ǫ model is

first transformed into ak − ω formulation. The difference between this formulation and the original

k − ω model is that whenǫ is replaced in its original transport equation of turbulentkientic energy

asǫ = ωk, an additional cross-diffusion term appears in theω-form of the equation and of course

with different modelling constants. The equations of the original k − ω model is then multiplied
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by a blending functionF1 and the transformedk − ǫ model equations by a function(1 − F1) and

the addition of the two transformed equations form a linear combination ofk − ω model near wall

(F1 = 1) andk − ǫ model near the far field(F1 = 0). In this model the turbulent or eddy viscosity,

µt, is evaluated in the following way using a limiter based on mean vorticityΩ and another damping

functionF2

µt =
ρa1k

max(a1ω, ΩF2)
(3.9)

wherek is the turbulence kinetic energy andω is the specific dissipation rate which are evaluated

spatially by solving the following transport equations. The above limiter has been validated for many

adverse pressure gradient flow situations and has been foundto be more accurate than the parent

models based onk − ǫ or k − ω only.

k- equation

∂(ρk)

∂t
+

1

J

∂

∂xj

[

(ρ〈Uj − ẋk〉βj
kk) − (µ + µt/σk)

J

(

∂k

∂xm
Bj

m

)]

= Pk − β⋆ρkω (3.10)

ω- equation

∂(ρω)

∂t
+

1

J

∂

∂xj

[

(ρ〈Uj − ẋk〉βj
kω) − (µ + µt/σω)

J

(

∂ω

∂xm
Bj

m

)]

= γ
ω

k
Pk − βρω2

+2ρ(1 − F1)σω2
1

ω

∂k

∂xm

Bj
m

∂ω

∂xm

Bj
m (3.11)

where the production of turbulent energy is expressed as :

Pk = 2µtSijSji =
µt

J2

(

∂〈Ui〉
∂xn

βn
j +

∂〈Uj〉
∂xm

βn
j

)

∂〈Ui〉
∂xn

βn
j (3.12)

Sij is the mean strain rate =
1

2

(

∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)

The model constants of SST model are evaluated following a linear combination of the constants used

in the standardk−ǫ and the Wilcoxk−ω model asφ = F1φ1+(1−F1)φ2, whereφ = σk, σw, γ or β

The constants of set 1(φ1) are (Wilcoxk − ω model)σk1 = 0.85, σω1 = 2.0, β1 = 0.075, β⋆ = 0.09,

κ = 0.41 andγ1 = β1/β
⋆ − σω1κ

2/
√

β⋆

The constants of set 2(φ2) are (Standardk − ǫ model)σk2 = 1.0, σω2 = 0.856, β2 = 0.0828,

β⋆ = 0.09, κ = 0.41 andγ2 = β2/β
⋆ − σω2κ

2/
√

β⋆ and the auxiliary relations are :

F1 = tanh(arg4
1) wherearg1 = min

[

max
( √

k
0.09ωy

; 500ν
y2ω

)

; 4σω2k
CDkωy2

]

, F2 = tanh(arg2
2) wherearg2 =
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max
(

2
√

k
0.09ωy

; 500ν
y2ω

)

, CDkω = max
(

2ρσω2
1
ω

∂k
∂xm

Bj
m

∂ω
∂xm

Bj
m, 10−10

)

Stagnation point Anomaly

The k − ǫ or SST model based on the concept of isotropic eddy viscosityusually produces an

excessive level ofk andµt near a stagnation point, often encountered in the vicinity of a stagnation

zone. Kato and Launder [21] suggested an ad-hoc measure to replace the original production term

(Eq. 3.12) byPk = 2ρµt|S||Ω| in the k-transport equation (Eq.3.10) where|S| and |Ω| are the

magnitude of the mean strain rateS and the vorticityΩ respectively. The vorticity near stagnation

zone is usually low due to almost irrotational bending of thefluid and hence the calculated values of

unrealistic high level of turbulence energy may be avoided.

3.5 Numerical Solution of Finite Volume Equation

Second order accurate central difference has been used for spatial discretisation of the convective

fluxes whereas the temporal derivatives are also discretised using the second order accurate three-

level fully implicit scheme. Using the relevant geometric factors, appropriate discretisation schemes

and linearisation of the source vector〈S〉, the flux balance equations for momentum and turbulence

scalars are expressed in an implicit manner as following :

(

1.5φn+1
p + 0.5φn−1

p − 2φn
p

) ∆V

∆t
=
∑

nb

Anbφ
n+1
p + SU − APφn+1

P (3.13)

hereAP =
∑

nb Anb − SP ; the coefficientAnb represents the combined effect of convection and

diffusion at the four faces of a computational cell denoted by the suffixnb; SUandSPare the com-

ponents of the linearised source term〈S〉, ∆V is the cell volume and∆t is the time step size. The

superscripts ofφ represent the respective time step. The continuity equation is also transformed to a

linearised equation for pressure correction in the form of Eq. 3.13 and the corrections for pressure

and velocity field obtained are added to the momentum-satisfying pressure and velocities respectively

at the cell centers and cell faces. The detailed derivation of Eq. 3.13 and the iterative decoupled

approach to handle the pressure-velocity link are reportedby elsewhere [12, 14, 22]. The system

of linearised equations (Eq. 3.13) for velocity, pressure and turbulence scalars is solved using the

implicit procedure of Stone [23].
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4 Results and Discussions

4.1 Turbulent flow past NACA aerofoil series

4.1.1 Motivation

Two dimensional flow simulation has been carried out for various NACA 4 digit aerofoils using the

in-house code RANS3D. This analysis is carried out in order to understand the performance of these

aerofoils at a relatively low chord based Reynolds number of87000. Though the two dimensional

analysis has its limitation, it is a good starting point whenone needs a broader understanding of the

aerodynamics and design of aerofoil sections for flight vehicles with limited computational resources.

This study will be helpful to understand the aerodynamic characteristics of aerofoils at low Reynolds

number that are not well understood from only limited literature available. Also the two-dimensional

analysis provides a better understanding of the flow behaviour as they are free from the complex

three-dimensional effects such as cross-flow and induced drag which are often difficult to discern and

isolate from the computational results.

Recently published experimental and computational results [2, 3, 24] show that at low Reynolds

number, the aerodynamic characteristics greatly depend onthe aerofoil geometry. It is therefore

important to undertake a parametric study to investigate the effect of geometrical parameters such

as aerofoil thickness, camber and location of maximum camber on the aerodynamics. The major

complexity at low Reynolds number is that the flow is dominated by large viscous effects which

is asscociated with thick boundary layers resulting in higher viscous drag and lower maximum lift

coefficient. The thickening of the boundary layer may cause the flow to undergo laminar to turbulent

transition which is computationally difficult to handle. The phenomenon of transition from laminar

to turbulent flow is not well understood and none of the presently available turbulence model can

satisfactorily predict this complex phenomenon. However,some of the available turbulence models

can be successfully employed for the comparitive study of the performance of aerofoils for different

geometric parameters of interest [2, 3] and the present investigation employs the SST turbulence

model [25].

4.1.2 Computational Details

For the different NACA series of aerofoils analysed, a 2-block O-grid consisting of320 × 100 × 2

control volumes has been employed with the far field placed ata radius of15C and the minimum wall

normal distance is maintained to be around2 × 10−4C, whereC is the chord of the aerofoil. This

grid has been fixed based on the earlier grid sensitivity study carried out by the NAL research team

[26] using the RANS3D code. The typical grid for symmetric aerofoil and cambered aerofoil used for

these analysis are already shown in Fig. 2.1 and Fig. 2.2 respectively. In order to accommodate the

three-dimensional flow solver for the two-dimensional flow situation, only one control volume formed
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by two grid nodes is considered along the span-wise direction. Symmetric boundary conditions are

used at the span-wise end planes to ensure two-dimensionality of the flow. For the present study

all the computations were carried out using the third order accurate QUICK [27] scheme coupled to

deferred correction prodcedure [28] (i.e. combinig 10% of Upwind fluxes and 90 % of QUICK fluxes)

for spatial discretisation scheme of convective flux. For all the aerofoil analysed the flow solution is

carried out at different angle of attack (α) ranging from 0 to the stall angle. The flow is expected to be

steady at smaller angles of attack and tends to become unsteady when the stall angle is approached.

Keeping this in view and also in order to reduce the computation time, the flow analysis are carried

out assuming the flow to be steady (i.e ∆t is assumed to be large) for smaller angles of attack. At

higherα’s (approaching the stall angle) time accurate analysis arecarried out using a second order

accurate temporal discretisation scheme with time step size∆t = 0.05.

The typical flow boundary conditions for flow around an aerofoil is shown in Fig. 4.1 with the ver-

tical cut boundary which divides the computation domain into two halves treated as separate blocks.

The farfield is treated either as an inflow where the flow is prescribed or an outflow with convective

boundary condition depending on the sign of the convective flux on the relevant face. At the aerofoil

wall, the velocity components are set to zero, the convective and diffusive fluxes across the boundary

are set to zero and the wall shear effect is simulated throughappropriate source terms in the momen-

tum equations. At the block (cut) boundary, one overlappingcontrol volume is provided on the either

side of the block interface boundary for appropriate transfer of the solution from the neighbouring

block.

Figure 4.1: Boundary condition for multi-block flow computation

4.1.3 Effect of Reynolds number

The aerodynamic performance of the aerofoil greatly depends on the flow Reynolds number. At higher

Reynolds number (Re ≥ 106) the aerodynamic characteristics of the aerofoil varies marginally with

the Reynolds number . However, for low Reynolds number regime (Re ≤ 105), the aerodynamic
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performance of the aerofoil varies rapidly as the configuration and/or Reynolds number changes. The

available experimental results [24, 29] conducted in a water tunnel have shown that the aerodynamic

performance of a thin flat plate is inferior to a conventionalaerofoil atRe = 1.2 × 105, but has a

superior performance atRe = 4 × 104. This indicates that the aerofoil performance is relatively

poor at low Reynolds number as compared to high Reynolds numbers. The poor performance at low

Reynolds number is mainly because the flow separates at a relatively low angle of attack. This laminar

separation which is often formed on the upper surface of the aerofoil at low Reynolds number leads

to a decrease in the performance (LowerL/D).

In order to understand the Reynolds number effect on the aerofoil performance, computations have

been carried out for the flow past NACA0012 aerofoil at two Reynolds numbers; one at high Reynolds

number (Re = 106) and another at low Reynolds number (Re = 87, 000). The flow results obtained

from these computations are presented in this section and compared with that of the measured values

reported by NASA [30].

Fig.4.2 shows the comparision of computed surface pressure(−Cp ) distributions over the NACA0012

aerofoil section at different angles of attack and different flow Reynolds numbersCp = (P−P∞)

1/2ρU∞

2 is

the non-dimensional pressure coefficient usingP∞ andU∞ as the freestream pressure and velocity

respectively. It is clear from the figure that the predicted results for the high Reynolds number agree

reasonably well with that of the experimental results confirming the adequacy of the mathematical

modelling, the numerical accurancy of the RANS3D code and the turbuelnce model used for the

present turbuelnt flow computation. The figure also shows that the pressure distributions for both the

Reynolds numbers considered do not differ significantly forlow angles of attack. However, the pres-

sure distributions for angle of attack at 8 degree show a significant effect of Reynolds number. It was

further observed that atα = 12◦ the flow becomes unsteady forRe = 87, 000 with St = 1.182146,

whereas atRe = 106 the flow remains steady. The plot of Cp (Fig.4.2(d)) and Cf (Fig. 4.3(d)) shows

the instantaneous surface pressure and skin-friction distributions respectively. For this case, the suc-

tion peak (minimum pressure) and the area enclosed by the presure distributions over the upper and

lower surfaces atRe = 106 is more than that at low Reynolds numberRe = 87, 000 indicating a lift

loss at the low Reynolds number due to flow separation. The chordwise variation of the computed

skin friction coefficient distribution (Cf = τwall

1

2
ρU

2 , whereτwall is the wall shear stress) presented in

Fig. 4.3 also confirms this flow separation.

The particle traces computed using the post-processing software Tecplot 9.0, from time integration of

the computed velocity field for different flow conditions atRe = 87, 000 andRe = 106 are presented

in Fig. 4.4. The particle traces around the NACA0012 aerofoil section clearly show that the flow

separation occurs at the low Reynolds number and it is confined to the aft portion of the upper surface

of the aerofoil atα = 8◦. However the instantaneous streamlines shows that ,the entire upper surface

experiences a separated flow atα = 12◦. This phenomenon of massive flow separation on the aerofoil

upper surface atα = 12◦ for Re = 87, 000 corroborates the observations from the predicted pressure

and skin friction distributions already discussed.
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Reynolds No. (L/D)max Stall Angle

106 34.05 14-15

3.6 × 106

Measurement[30]

48.49 14-15

87,000 21.80 10-12

Table 4.1: Relative performance of NACA0012 aerofoil atRe = 106 andRe = 87, 000

The aerodynamic coefficients like the lift, drag and pitching moment can easily be computed by

numerically integrating the surface forces viz., the pressure acting normal to the surface and the shear

stress acting along the surface. The drag and the lift coefficients represent the resultant forces on the

aerofoil in the direction of the incoming flow and its normal respectively, non-dimensionalised by

the product of the dynamic head1
2
ρU∞

2 and the aerofoil chord length (C)which is the projected area

of the curved aerofoil on which the surface forces act. The pitching moment is computed from the

resultant force and its location with respect to the quarterchord point. The variations of the computed

lift coefficient (Cl), drag coefficient (Cd) and pitching moment coefficient (Cm) with angle of attack

and the drag polar are shown in Fig. 4.5 forRe = 87, 000 andRe = 106 and compared with that

of the measured data [30] available forRe = 3.6 × 106. The agreement between the measurement

data and the present computation forRe = 106 is reasonably good upto the stall angle (α ≈ 14◦).

The small discrepancies observed in theCl plot beyond the stall angle may be attributed partly to

the uncertainty of the turbulence model used and partly to the approximations involved in the spatial

and temporal discretisation of the convective flux in the present computation scheme. The variation

of pitching moment (Fig. 4.5(c)) withα are observed to follow the physically expected trend (for a

symmetric aerofoil the pitching moment is zero and remains constant almost up to the stall angle).

The prediction also shows that the lift coefficient slope andthe stall angle for the aerofoil decreases

at the low Reynolds number and the drag coefficient increases. This results in the decrease of(L/D),

the efficiency of the aerofoil as it is evident from the drag polar and Table 4.1

4.1.4 Effect of maximum section thickness

The effect of the maximum thickness of NACA four digit symmetric aerofoil sections has been inves-

tigated and the results obtained for different thickness (2%, 6% and 12%) are presented and discussed

in this section.
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Figure 4.2: Effect of Reynolds number on the chordwise variation of surface pressure for flow past

NACA0012 aerofoil section at different angles of attack

The computed surface pressure (−Cp) distributions obtained for the three aerofoils considered are

compared in Fig.4.6 at different angles of atttack (α = 0, 4 and 8 degree) forRe = 87, 000. The

pressure distributions are observed to have distinctly different slope and suction peak. At this flow

Reynolds number, the aerofoil with maximum thickness has higher suction peak and also has a max-

imum area enclosed by the upper and lower surface of the pressure distribution as compared to the

aerofoil with lesser thickness indicating a higher lift coefficeint for thicker aerofoil section. Further,

the plateau-like distribution is observed for thinner aerofoil section atα = 8◦ (Fig. 4.6(c)) indicating

early flow separation as evident from the computed streamlines presented in (Fig. 4.9). The formation
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Figure 4.3: Effect of Reynolds number on the chordwise variation of skin friction for flow past

NACA0012 aerofoil section at different angles of attack

of early separation for thinner aerofoil section leads to a decrease in the lift coefficient.

Figs. 4.7 -4.9 shows the computed flow pattern at different angles of attack (α = 0, 4 and 8 degree)

for the three different thicknesses of the aerofoil section. For NACA0012 aerofoil section the flow

remains attached uptoα = 8◦, whereas for smaller thickness the flow separates at a lower angle of

attack. For NACA0006 the flow seperation is observed atα = 8◦ (Fig. 4.8) and as the thickness

is further reduced (NACA0002) the seperation occurs at a lower angle of attack and the separation

bubble covers the entire upper surface atα = 8◦ (Fig. 4.9).
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Aerofoil (L/D)max Stall Angle

NACA0012 21.75 10-12

NACA0006 6.15 9-10

NACA0002 5.32 9-10

Table 4.2: Relative performance of aerofoil section with varying thickness (Re = 87, 000)

The variation of lift coefficient (Cl), drag coefficient (Cd) and the pitching moment coefficient (Cm)

with angle of attack and the drag polar obtained for the threedifferent aerofoil sections are shown in

Fig. 4.10. It is clearly evident from (Fig. 4.10) and Table 4.2, that atRe = 87, 000, NACA0012 aero-

foil seems to have better aerodynamic performance when compared to NACA0006 and NACA0002

aerofoil sections. The computed pitching moment curve (Fig. 4.10(c)) shows that for thicker aerofoil

section the pitching moment remains zero uptoα = 12◦ whereas for the thinner aerofoil section the

deviation from zero is observed atα = 4◦ itself indicating that the thicker aerofoil section may be

more stable atRe = 87, 000. These computations atRe = 87, 000 show that the aerodynamic perfor-

mance of the aerofoil do not exhibit any specific trend with thickness. Hence further investigation is

needed to confirm these flow features and the aerodynamic performance at this Reynolds number.

In the present study we are interested in the analysis of the aerofoil sections for MAV application.

Since MAVs are very small in dimension and weighing less than100g with the payload, most of the

fixed wing MAVs use very thin aerofoil sections for their wings. Keeping this in view, the effect of

camber and location of maximum camber on the aerodynamic performance is analysed only for the

aerofoil with 2% thickness which are discussed in the following sub sections.

4.1.5 Effect of camber

The effect of camber for 2% thick aerofoil section with location of the camber fixed at 40% of the

chord from the leading edge has been investigated for three different magnitude of camber at 2%,

4% and 6% of the chord. The flow results obtained for NACA2402,NACA4402 and NACA6402 are

presented and their performance is discussed in this section

The computed surface pressure (−Cp) distributions obtained for the three different camber magni-

tudes as well as for symmetric aerofoil section (NACA0002) are compared in Fig.4.11 at different

angles of atttack forRe = 87, 000. The slope and suction peak of the pressure distribution curve is

observed to vary with the variation of the camber. Also, the flow pattern obtained (Fig. 4.12-4.14)
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Aerofoil (L/D)max Stall Angle

NACA0002 5.32 9-10

NACA2402 8.77 8-10

NACA4402 13.00 8-10

NACA6402 19.64 8-10

Table 4.3: Relative performance of 2% thick NACA aerofoil section with varying camber (Re =

87, 000)

with varying camber is observed to be distinctly different with NACA6402 having a smoother flow

compared to the other two aerofoil sections (NACA2402 and NACA4402).

The variation of lift coefficient (Cl), drag coefficient (Cd) and the pitching moment coefficient (Cm)

with angle of attack and the drag polar obtained for the threedifferent aerofoil sections are shown

in Fig. 4.15. The variation of pitching moment (4.15(c)) with α is observed to follow the physically

expected trend (for a cambered aerofoil the pitching momentis non-zero and remains constant almost

up to the stall angle). It is clearly evident from the drag polar curve (Fig. 4.15(d)) and Table 4.3, that

at Re = 87, 000 the aerofoil section with higher camber seems to have betteraerodynamic perfor-

mance when compared to aerofoil section with lower camber. This corroborates with the increased

smoothness of the flow for NACA6402 compared to NACA4402 and NACA2402.

4.1.6 Effect of maximum camber location

The effect of maximum camber location for 2 % thick aerofoil section with 4% camber are inves-

tigated for three different camber locations at 20%, 40% and60% of the chord measured from the

leading edge of the aerofoil. The flow results obtained for NACA4202, NACA4402 and NACA4602

are presented and their relative performance is discussed in this section.

The computed surface pressure (−Cp) obtained for the three different maximum camber location is

compared in Fig.4.16 at different angles of attack forRe = 87, 000. The pressure distribution curves

for various maximum camber locations are observed to have different slopes and suction peaks. The

computed flow patterns for different maximum camber locations are shown in Figs. 4.17, 4.13,4.18.

The variation of lift coefficient (Cl), drag coefficient (Cd), the pitching moment coefficient (Cm)

with angle of attack and the drag polar obtained for the threedifferent aerofoil sections are shown in
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Aerofoil (L/D)max Stall Angle

NACA4202 22.31 8-10

NACA4402 13.00 8-10

NACA4602 11.03 8-10

Table 4.4: Relative performance of 2% thick and 4% camber aerofoil sections with varying the loca-

tion of maximum camber (Re = 87, 000)

Fig. 4.19. It is clearly evident from the drag polar (Fig. 4.19(d)) and Table 4.4, that atRe = 87, 000

the aerodynmaic performance of the aerofoil section depends on the location of the maximum camber.

The NACA4202 is observed to have significantly higher(L/D)max as compared to NACA4402 and

NACA4602 indicating that NACA4202 may be a good choice when the flow Reynolds number is

87,000.
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

(d) α = 12
◦

Re = 106 Re = 87, 000

Figure 4.4: Computed streamlines for flow past NACA0012 aerofoil section at different angles of

attack forRe = 106 andRe = 87, 000
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Figure 4.5: Variation of different aerodynamic coefficients for turbulent flow past NACA0012 aerofoil

section forRe = 106 andRe = 87, 000
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Figure 4.6: Chordwise variation of surface pressure for flowpast symmetric NACA aerofoil section

with varying thickness at different angles of attack
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

Figure 4.7: Computed streamlines for flow past NACA0012 aerofoil section at different angles of

attack forRe = 87, 000
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

Figure 4.8: Computed streamlines for flow past NACA0006 aerofoil section at different angles of

attack forRe = 87, 000
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

Figure 4.9: Computed streamlines for flow past NACA0002 aerofoil section at different angles of

attack forRe = 87, 000
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Figure 4.10: Variation of different aerodynamic coefficients for turbulent flow past symmetric NACA

aerofoil section with different thickness
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Figure 4.11: Chordwise variation of surface pressure for flow past NACA aerofoil section with vary-

ing camber at different angles of attack
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

Figure 4.12: Computed streamlines for flow past NACA2402 aerofoil section at different angles of

attack forRe = 87, 000
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

Figure 4.13: Computed streamlines for flow past NACA4402 aerofoil section at different angles of

attack forRe = 87, 000
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

Figure 4.14: Computed streamlines for flow past NACA6402 aerofoil section at different angles of

attack forRe = 87, 000
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Figure 4.15: Variation of different aerodynamic coefficients for turbulent flow past NACA aerofoil

section with different camber
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Figure 4.16: Chordwise variation of surface pressure for flow past NACA aerofoil section with vary-

ing location of maximum camber at different angles of attack
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

Figure 4.17: Computed streamlines for flow past NACA4202 aerofoil section at different angles of

attack forRe = 87, 000
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(a)α = o◦

(b) α = 4
◦

(c) α = 8
◦

Figure 4.18: Computed streamlines for flow past NACA4602 aerofoil section at different angles of

attack forRe = 87, 000
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Figure 4.19: Variation of different aerodynamic coefficients for turbulent flow past aerofoil section

with different maximum camber location
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5 Concluding Remarks

The NAL-RANS3D code has been successfully used to generate multiblock curvilinear structured

grid around symmetric as well as cambered aerofoil sectionswith specified control of near wall reso-

lution.

The RANS3D flow solution code has been run successfully for turbulent flow past different 4-digits

NACA series aerofoil section at a chord based Reynolds number of 87,000 for different angles of

attack. The present analysis uses the third order accurate QUICK scheme for convective flux discreti-

sation and SST model to simulate the effect of turbulence.

The relative performance of different NACA series aerofoilsections are assessed by comparing their

surface pressure distribution, skin friction distribution, flow pattern, variation of aerodynamic coeffi-

cients with angle of attack and the drag polar curve.

Reasonable agreement between the present prediction and the experimental data [30] for Coefficient

of pressure and aerodynamic coefficients for the flow past NACA 0012 aerofoil atRe = 106 demon-

strate the adequacy and robustness of the present flow solution algorithm RANS3D and the turbulence

model used.

The present analysis has shown that (a) the NACA0012 aerofoil section has significantly better aero-

dynamic performace atRe = 106 as compared toRe = 87, 000, i.e. at higher Reynolds number the

NACA0012 has larger lift to drag ratio with delayed stall angle. (b) At Re = 87, 000 NACA0012

has better aerodynamic performance than the symmetric aerofoil with lesser thickness (NACA0006

and NACA0002). (c) the results obtained for the aerodynamicperformance for different camber and

location of maximum camber for 2% thick aerofoil section shows that larger the camber and closer

the location of maximum camber to the leading edge better is the lift to drag ratio forRe = 87, 000.

From the present analysis we may conclude that the choice of NACA4202 aerofoil section is benefi-

cial for MAV wing. The present trend also indicates that NACA6202 aerofoil section may also be a

good choice which will have to be confirmed through further investigation.

In future, advanced turbulence models with appropriate modeling of laminar to turbulent transition

in the present eddy viscosity framework may be incorporatedin the RANS3D code to generate more

accurate results for the low Reynolds number regime.
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