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1 Introduction

1.1 Background

Low Reynolds number aerodynamics are important for bothrahand man-made flying objects.
The complexity of the aerodynamics and flight of small bitolts, insects has generated enormous
research interest among biologists and aerospace engimeemmunity. Over last few decades there
is a growing interest in designing aircraft that are as s@slbossible for special military and civil
missions. Many such aircraft are currently under develogramong them are the Micro Air Vehicle
(MAV) which have received special attention for both ciuilcamilitary application. MAVs are un-
manned autonomous flying machines with linear dimensio®oifr, gross take-off weight of approx-
imately 100g carrying a payload of 20g and the expectedlbites is of the order of 60 minutes. Two
important challenging problems in design of MAV are (i) lowy®olds numberRe), which results in
unfavourable aerodynamic conditions to support contidlight, and (ii) small physical dimensions,
resulting in certain favorable scaling characteristicduding structural strength, reduced stall speed,
and low inertia. MAVs generally fly in the Reynolds numbergig from 1000 to 1,20,000 (low
Reynolds number regime), whereas for the full size helitenscand aeroplanes the Reynolds number
is around10”. The growing interest in MAV and its aerodynamic challenpas created the need
for improved understanding of the aerodynamics and relfd@dphysics. Aerodynamic designs of
MAVs, reported so far, have employed different kind of eéfii lift generation systems viz., fixed
wing [1, 2, 3], flapping wings [4], flexible wing [5, 6] and ratawings [7, 8, 9] or their combinations.
The fixed-wing MAVs usually fly at the upper end of the low Relglsonumber regimee. around
10° [10], rotary wing generally fly at Reynolds number rangingnfr20,000 to 70,000. and flapping
wing fly at Reynolds number ranging from 1,000 to 10,000 inchithe viscous effect is expected to
be prominant.

Fixed wing MAVs are simple and easy to implement. The aeradyin performance is known to
deteriorate when the operating Reynolds number is less tban The poor performance at low
Reynolds number is mainly because the flow separates attevebtdow angle of attack. This early

laminar separation is often formed on the upper surfaceeo&#rofoil, leading to a lower lift to drag

ratio, with a delayed stall angle. Therefore the selectiaeoofoil plays a key role in the designing of
MAV wings. The most commonly used low Reynolds number aérséxtions are NACA, Wortman,

Althaus, Selig, Eppler, MH, Drela and Zimmerman.

Recently, National Aerospace Laboratories (CSIR) and Aautical Development Establishment
(DRDO) have initiated a joint effort to design and developxadi wing MAV in the next two years
and eventually demonstrate the technology developed inrayflynit with pre-defined mission. To
fulfill this mission CFD analysis of thin aerofoil sectionsdawings are required to be carried out
in order to understand the aerodynamic performance of thiofail at low Reynolds numbers and
design a suitable wing configuration.

The present study is to understand the aerodynamic chasticteof NACA aerofoil sections at a low
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Reynolds number of 87000 for different geometrical paramsstiz., thickness, camber and location
of maximum camber.

1.2 Scope of the present work

The Current work will be mainly focused on the two-dimensibmumerical simulation of different
aerofoil sections to study their relative performance imteof the lift-to-drag ratio. The parameter
investigated will be mainly on the thickness, camber anddbation of maximum camber for NACA
series at a chord based flow Reynolds numBer= 87,000. The two-dimensional analysis will be
carried out using the in-house multiblock structured flowuson algorithm RANS3D [11, 12, 13,
14]. The RANS3D code developed at CTFD division NAL, Bangalas based on an implicit finite
volume algorithm to solve the time-averaged Navier Stokpstons for unsteady incompressible
turbulent flow with moving boundaries in an inertial framereference. The RANS3D code has
been validated extensively for variety of low speed intearal external turbulent flow application
problems.

The flow code is coupled to an appropriate pre-processoreioegtion of boundary fitted curvilinear
grid around the aerofoil and a post-processing interfac@donerical visualization of the flow and
calculation of the aerodynamic coefficeints.

1.3 Documentation outline

The present document consists of five different sectiomsragawith this introduction as the first one.
Section 2 describes in brief the grid generation procedurthke body-fitted grid around the aerofoil.
The mathematical modelling of equations of turbulent fluiokion is described in Section 3. Results
on turbulent flow past various 4 digit NACA aerofoil sectidosflow Reynolds number of 87,000 at
different angles of attack varying front to the stall angle are discussed in Section 4, followed by
few important concluding remarks and the scope of futurekwoSection 5.



2 Numerical grid generation procedure

Generation of smooth, body-fitted grids with approximat&a@gonality at the boundaries is practi-
cally the first step towards the accurate numerical solutidituid flow equations for arbitrary con-
figuration, using finite volume, finite element and similarthoals. The location and kind of phys-
ical boundaries, interpreted mathematically as the bayncanditions of the governing differential
equations of flow determine the spatial distribution of tlwsvflvariables in the domain of interest.
Therefore the distribution of grid points on domain boumekarusually specified by the user, should
accurately reflect the geometrical boundaries of the donfdia grid should also have sufficient num-
ber of points distributed appropriately to detect the majaracteristics of the flow. Other desirable
features of a good grid generation methodology are the dmess and the boundary-orthogonality
of the grid generated, an easy and direct control of grigtisgaand grid skewness at any desired
location and finally an efficient and fast numerical algarithA poorly constructed grid may vyield
inaccurate results and may bring down the convergence fateeamumerical solution of the flow
equations also to a prohibitively low level.

2.1 Differential-algebraic Hybrid method for two dimensional plane

The present grid generation algorithm [15] developed atGheD Division, NAL involves the so-
lution of the elliptic type differential equations at a ceailevel, followed by simple algebraic inter-
polation from the coarse to a finer level. The coarse gridimanily generated by solving a system
of inverted Poisson equations for a given point distributab all four boundaries of a two dimen-
sional computation domain. The control functions in theatiquns are automatically adjusted in an
iterative procedure to achieve boundary-orthogonalitymeed no ad-hoc adjustment of the problem-
dependent parameters. Finally, when the desired contientiat grid points is specified at the fine
level on one boundary along each direction, the fine leval field coordinates is obtained by fitting
Bicubic Spline functions passing through the coarse lenidigpdes. This Hybrid approach proposed
first by Zhu [16] makes a compromise between the simple atfgeland the expensive differential
approach and guarantees smooth grid of desired finenesspanakanate boundary-orthogonality
for a very reasonable computation cost.

2.2 Typical O-grid topology around an aerofoll

The present flow computation has been carried out using @idgp for the different NACA series
aerofoil analysed. Figs. 2.1 and 2.2 show the typical 24bl@egrid topology around a symmetric
(NACA0002) and cambered (NACA4402) aerofoil with the zoalwesws near the leading and trail-
ing edge of the aerofoil where the fine resolution near theomamt areas of the domain are clearly
demonstrated. For the present O-grid topology, the cutdintae block interface is chosen to be a
vertical line passing through the mid-chord point of theo&at and the far field boundary is circular
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at a radius ofl5C, whereC' is the chord of the aerofoil. Near the aerofoil surface, the bnes are
specially stretched along the wall-normal direction inesrtb have a better resolution of the steep
flow variable gradients in the boundary layer. Number of giadies used along circumferential di-
rection is 321 and the number of nodes along radial direeid®1 in each block of the O-grid with
one overlapping control volume on either side all along thielioe. The advantage of the O-grid is
that one may use better resolution of the aerofoil surfaceesall the nodes along circumferential
direction are covered on one J= constant line.
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Figure 2.1: Multiblock grid 321 x 101) around NACAO0002 aerofoil
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Figure 2.2: Multiblock grid 321 x 101) around NACA4402 aerofoil



3 Mathematical Modelling of Flow Physics

3.1 Introduction

The analysis of flow around different aerofoil sections igied out in this work through numerical
solution of the relevant Navier Stokes (NS) equation systeransteady two dimensional flows. The
numerical simulation of the NS equation needs an apprepmathematical model which can handle
the geometrical complexities like arbitrary shaped bouiedas well as the physical complexities like
simulating the effects of turbulence. The basic equatiofetsolved are a set of non-linear, strongly
coupled partial differential equations representing tbeservation of mass and three momentum
components along the cartesian direction.

3.2 Governing equations for instantaneous fluid flow

The present pressure-based finite volume algorithm use®mbagonal coordinates with cartesian
velocities as dependent variables with the NS equationsenrin an inertial frame of reference. In
this generalized coordinate system with moving boundattiesgoverning equations for conservation
of mass and momentum for instantaneous fluid motion for imessible flow can be written as
follows :

Momentum transport for the Cartesian velocity componentU;:

apU) 10 o
N e L |

oU;
0T,

Uy — ax)
Oz,

B, + G768 +pBl = Su, (3.1)
where,J is the transformation Jacobian between cartesian and thigicear coordinates@;i andB;i

are the relevant geometric coefficients related to the fioamstion,p is the pressurey is the fluid
viscosity andp is the fluid density,j, kK andm are used as repeated summing indices along the three
grid directions. U, is the mean Cartesian velocity solved for along tkiedirection, z;, is the grid
velocity along thek-direction andSy, is any other body forces appearing as source terms. These
momentum equations are further supplemented by the massm@tion or the so-called continuity
equation which, for incompressible flows, is just a kinematinstraint on the velocity field.



Mass Conservation (Continuity):

(U - i) =0 32)

Analysis of any 3D unsteady flow situation requires the sotubf the three non-linear strongly
coupled partial differential equations, given by Egs. $idl 8.2 (the three momentum equations for
the three cartesian velocity componebiis £ = 1, 2 and 3 and the continuity) for the four unknowns
viz, Uy, Us U3 andp. The grid velocity components;, for £ = 1,2,3 are zero for the present
analysis. The details of the finite volume formulation, thi#al and boundary conditions for the flow
past an aerofoil and the numerical solution procedure areiged in the following sections. For the
present analysis 2D simulations have been carried out lmymigg the effect due to the third direction
which will be described in Section 4.1.2.

3.3 Unsteady Reynolds Averaged Navier Stokes (URANS)
Equations

In this approach, the Reynolds averaging concept, illtetran Fig. 3.1, is directly used to replace
the instantaneous flow variables (Eqgs. 3.1 and 3.2) by theaked Time-Averaged variables or
Phase-Averaged variables for the steady and time-dependsn flow situations respectively. The
only assumption in this representation is that the timeesohthe mean flow variation is quite large
compared to the time scale of the turbulent fluctuations.

3.3.1 Basic Concept of Averaging for Turbulent Flows

D

S|

(a) Steady flow (b) Unsteady flow

Figure 3.1: Statistical averaging for turbulent flow

The concept of averaging is clearly explained based onitieriecord of any variablé (Fig. 3.1). In
case of stationary turbulence, shown in Fig. 3.1(a), thesaexl variabl@ does not change with time
whereas only the turbulent fluctuatiofys) are function of time and hence the mean flow is designated
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as a steady flow. For stationary turbulence flows, the insteadus flow variables using the Reynolds
decomposition can be written as follows

_ _ 1 T
® =&+ ¢ where & = lim T/ ot (3.3)
0

For solving the steady turbulent flow equations, the timeayed flow variableg®) are solved
and the turbulent fluctuation®) are simulated through turbulence models. On the other hand i
Fig. 3.1(b), the instantaneous valuedtconsists of three different components - the time averaged
(®), the coherentg) and the turbulent fluctuations)where the last one is the effect of the random-
ness of turbulence and hence stochastic in nature and cohuend however is deterministic. Using
the Reynolds decomposition, the instantaneous flow vasaiol unsteady or periodic turbulent flow
situation can be written as

® = (®) + ¢ where (®) = & + (¢) (3.4)

and the time-dependent phase averaged flow variablgg®resolved and the stochastic (turbulent
fluctuations) part is simulated through turbulence mod&lgstituting the instantaneous flow variable
in the instantaneous Navier-Stokes equation (Egs. 3.1 &)@d&cording to the Reynolds decomposi-
tion (Eg. 3.4) and averaging the equation, the RANS equafimnunsteady turbulent incompressible
flow in non-orthogonal curvilinear coordinatesith cartesian velocities as dependent variables may
be written in a compact form as follows:

Momentum transport for the Cartesian velocity component(U;):

2D 4 2o o) — st = (G2 g+ 2O =8 gy )

0T, 0T,
L Pyt gl = Su. 35)
J@xj 3 PAUUG ) P | = OU; .

where,(P) is the phase averaged pressyté) is the phase averaged velocity component solved for
and —p(u;u;) is the turbulent stress term appearing as correlation teetwlee unknown fluctuating
velocity components:; and u;. 2; is the grid velocity component which is zero for this anaf/se
These momentum equations are further supplemented by th®aoaservation or the so-called con-
tinuity equation.

Mass Conservation (Continuity):

0

oz, (/)<Uk - $z>5i) =0 (3.6)

However Eg. 3.5 and Eq. 3.6 do not form a closed system dueet@prbsence of the unknown
turbulent stress term p(u;u;).



3.4 Turbulence Modelling
3.4.1 Eddy Viscosity hypothesis

The task of the turbulence model is to provide a means foutatiog the turbulent stresses appearing
in the Reynolds-Averaged equations. In Eddy Viscosity Basedels where the turbulent stress is
expressed in terms of the mean velocity gradients as fallgwi

o(U;) o)

1
—p(uiug) = p ( oz, + oz, ) — §P5z'j<ukzukz> (3.7)

where, (U;) is the phase-averaged velocity, is the corresponding fluctuating componemis the
density,d,; is the Kronecker Delta anklis the summation index ovér = 1,2,3. The termgpkéij

only ensures that the sum of the normal stress@& &s per definition ok , the turbulence kinetic
energyk = éuzuj The eddy viscosity:; is assumed to be an isotropic scalar quantity whose value
depends on the local state of turbulence. Substitutinguttieilent stress term in Eq. 3.5 and carrying
out some algebraic manipulation one may rewrite the meanentum equation as following :

d(pUi)) 1.0

1 o)

[(ﬂ<<Ui>(<Uk> — i))B) — (e +J ) < (%s; B4 a<Uk>ﬁmi>]

0T,

+§6%] [(P)B]] = Su.  (38)

The algebraic or zero equation turbulence models [17, I8pleyed very successfully for attached

boundary layer type flows, compute the eddy viscogity at any field point as an algebraic function

of the mean velocity gradients and the normal distance filoensblid surface. These models are
computationally cheap but sometimes call for complicatedrpolations to determine the normal

distance from wall for highly skewed grids near the body atefand cannot, in general, simulate
separated flows. On the other hand for one or two equation eddygsity based turbulence models,

transport equation are solved for one or more turbulendarscad-or the present study the SST model
has been used to simulate the effect of turbulence whichsieritbeed briefly in following subsection.

3.4.2 SST model

The idea behind Shear Stress Transport (SST) model is to tee&robust and accurate formulation
of Wilcox £ — w [19] in the near wall region, and to take advantage of the $temam independence
of the k — ¢ model [20] in the outer part of the boundary layer. To achiNg, thek — ¢ model is
first transformed into & — w formulation. The difference between this formulation ane original
k — w model is that when is replaced in its original transport equation of turbulkientic energy
ase = wk, an additional cross-diffusion term appears in théorm of the equation and of course
with different modelling constants. The equations of thigioal £ — w model is then multiplied
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by a blending function®} and the transformeél — ¢ model equations by a functiofl — ;) and
the addition of the two transformed equations form a lin@anlgination ofs — w model near wall
(Fy = 1) andk — e model near the far field#; = 0). In this model the turbulent or eddy viscosity,
14, IS evaluated in the following way using a limiter based orameorticity (2 and another damping
function F,

k
P —L (3.9)

 maz(aw, QF)

wherek is the turbulence kinetic energy andis the specific dissipation rate which are evaluated
spatially by solving the following transport equations €ldbove limiter has been validated for many
adverse pressure gradient flow situations and has been toubel more accurate than the parent
models based oh — ¢ or k — w only.

k- equation
pk) 10 v /o) (O N,
BN + J oz, [(P<Ug Tr) k) 7 o B, || = P — B pkw (3.10)
w- equation
INpw) 1 0 A\ (4 p/ow) ([(Ow i \| _ w 5
o T J oz, [(P(UJ — k) Bw) — 7 e By || = VEPIC — Bpw
top(1 = ot g M pi (319

wOxy, "oxr,

where the production of turbulent energy is expressed as :

P = QMtSz‘ijz'

M OUi) o OU;) 0\ OUL)
E ( Oz, b+ 8x; 5j> oz, b (3.12)

S;; 1is the mean strain rate = — (i) + {U;)
The model constants of SST model are evaluated followingealicombination of the constants used

in the standar@ — e and the Wilcoxt —w model asp = Fi¢1 + (1 — F)po, Wherep = oy, 0, yor 3

The constants of set(,) are (Wilcoxk — w model)oy; = 0.85, 0,1 = 2.0, 51 = 0.075, * = 0.09,
k= 0.41 andy, = 81/6* — 0,1k /B

The constants of set @) are (Standard — ¢ model) oy, = 1.0, 0,2 = 0.856, B2 = 0.0828,
B* = 0.09, k = 0.41 and~y, = (32/3* — 0.2k /+/B* and the auxiliary relations are :

Fy = tanh(arg}) wherearg, = min [mam (0.8{5@; 51,/02%) ; %}, Fy = tanh(arg?) wherearg, =
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mae ( Wk . 500,/)' CDy, = max (QPUwgliBj O Bi 10—10)

0.09wy’ 142w w OTm M Oxm

Stagnation point Anomaly

Thek — ¢ or SST model based on the concept of isotropic eddy viscositplly produces an
excessive level ok andy; near a stagnation point, often encountered in the vicirity stagnation
zone. Kato and Launder [21] suggested an ad-hoc measurplé@eethe original production term
(Eq. 3.12) byP, = 2p|S||?] in the k-transport equation (EqQ.3.10) whelg| and |(2| are the
magnitude of the mean strain raBeand the vorticity() respectively. The vorticity near stagnation
zone is usually low due to almost irrotational bending offtb& and hence the calculated values of
unrealistic high level of turbulence energy may be avoided.

3.5 Numerical Solution of Finite Volume Equation

Second order accurate central difference has been usegdbalsdiscretisation of the convective
fluxes whereas the temporal derivatives are also discdetisang the second order accurate three-
level fully implicit scheme. Using the relevant geometactiors, appropriate discretisation schemes
and linearisation of the source vectat), the flux balance equations for momentum and turbulence
scalars are expressed in an implicit manner as following :

(156" + 050" — 247) AA—‘; = % At + SU — Apglp' (3.13)
hereAp = X°,, Ay — SP; the coefficientA,,, represents the combined effect of convection and
diffusion at the four faces of a computational cell denotedhe suffixnb; SUandSPare the com-
ponents of the linearised source te(f), AV is the cell volume and\¢ is the time step size. The
superscripts ob represent the respective time step. The continuity equatialso transformed to a
linearised equation for pressure correction in the form @f B.13 and the corrections for pressure
and velocity field obtained are added to the momentum-gatigpressure and velocities respectively
at the cell centers and cell faces. The detailed derivatidgo 3.13 and the iterative decoupled
approach to handle the pressure-velocity link are repdmtedisewhere [12, 14, 22]. The system
of linearised equations (Eq. 3.13) for velocity, pressurd turbulence scalars is solved using the
implicit procedure of Stone [23].
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4 Results and Discussions

4.1 Turbulent flow past NACA aerofoil series
4.1.1 Motivation

Two dimensional flow simulation has been carried out foraasiNACA 4 digit aerofoils using the
in-house code RANS3D. This analysis is carried out in ordemiderstand the performance of these
aerofoils at a relatively low chord based Reynolds numbe37@f00. Though the two dimensional
analysis has its limitation, it is a good starting point wiogre needs a broader understanding of the
aerodynamics and design of aerofoil sections for flighteleliwith limited computational resources.
This study will be helpful to understand the aerodynamiaatizristics of aerofoils at low Reynolds
number that are not well understood from only limited litera available. Also the two-dimensional
analysis provides a better understanding of the flow belbia\as they are free from the complex
three-dimensional effects such as cross-flow and induaglwlhich are often difficult to discern and
isolate from the computational results.

Recently published experimental and computational redalt 3, 24] show that at low Reynolds

number, the aerodynamic characteristics greatly depenth@merofoil geometry. It is therefore

important to undertake a parametric study to investigageetfect of geometrical parameters such
as aerofoil thickness, camber and location of maximum carmobehe aerodynamics. The major
complexity at low Reynolds number is that the flow is domidaby large viscous effects which

is asscociated with thick boundary layers resulting in bBrghiscous drag and lower maximum lift

coefficient. The thickening of the boundary layer may catedlow to undergo laminar to turbulent

transition which is computationally difficult to handle. & phenomenon of transition from laminar
to turbulent flow is not well understood and none of the pridgavailable turbulence model can

satisfactorily predict this complex phenomenon. Howeseme of the available turbulence models
can be successfully employed for the comparitive study efarformance of aerofoils for different

geometric parameters of interest [2, 3] and the presensiigation employs the SST turbulence
model [25].

4.1.2 Computational Details

For the different NACA series of aerofoils analysed, a 2ckl®-grid consisting o820 x 100 x 2
control volumes has been employed with the far field placedatlius ofl 5C and the minimum wall
normal distance is maintained to be aroung 10-*C, whereC is the chord of the aerofoil. This
grid has been fixed based on the earlier grid sensitivityystagried out by the NAL research team
[26] using the RANS3D code. The typical grid for symmetricadeil and cambered aerofoil used for
these analysis are already shown in Fig. 2.1 and Fig. 2.2ctsply. In order to accommodate the
three-dimensional flow solver for the two-dimensional flaiuation, only one control volume formed
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by two grid nodes is considered along the span-wise dinect8ymmetric boundary conditions are
used at the span-wise end planes to ensure two-dimensjonhlihe flow. For the present study
all the computations were carried out using the third ordeusate QUICK [27] scheme coupled to
deferred correction prodcedure [28E( combinig 10% of Upwind fluxes and 90 % of QUICK fluxes)
for spatial discretisation scheme of convective flux. Fbtred aerofoil analysed the flow solution is
carried out at different angle of attack)(ranging from 0 to the stall angle. The flow is expected to be
steady at smaller angles of attack and tends to become dgsideen the stall angle is approached.
Keeping this in view and also in order to reduce the computaime, the flow analysis are carried
out assuming the flow to be steadye(At is assumed to be large) for smaller angles of attack. At
highera’s (approaching the stall angle) time accurate analysicameed out using a second order
accurate temporal discretisation scheme with time steg/siz= 0.05.

The typical flow boundary conditions for flow around an aeflagoshown in Fig. 4.1 with the ver-
tical cut boundary which divides the computation domaiwn imto halves treated as separate blocks.
The farfield is treated either as an inflow where the flow isqibed or an outflow with convective
boundary condition depending on the sign of the convectivedh the relevant face. At the aerofoil
wall, the velocity components are set to zero, the conveetnd diffusive fluxes across the boundary
are set to zero and the wall shear effect is simulated thrapghopriate source terms in the momen-
tum equations. At the block (cut) boundary, one overlappmgrol volume is provided on the either
side of the block interface boundary for appropriate transf the solution from the neighbouring
block.

Cut
______ /-Solved
T LI R] ‘Irl
Duén\lzny/f / Sf’h{ed
\\‘ ,// ,,—""- ﬁ; Lz !
- Cut

e *Ry
Dummy CV+"".__/

Figure 4.1: Boundary condition for multi-block flow comptiten

4.1.3 Effect of Reynolds number

The aerodynamic performance of the aerofoil greatly dependhe flow Reynolds number. At higher
Reynolds numberKe > 10°) the aerodynamic characteristics of the aerofoil varieggimally with
the Reynolds number . However, for low Reynolds number regiRe < 10°), the aerodynamic
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performance of the aerofoil varies rapidly as the configoredind/or Reynolds number changes. The
available experimental results [24, 29] conducted in a imatenel have shown that the aerodynamic
performance of a thin flat plate is inferior to a conventioaatofoil atRe = 1.2 x 10°, but has a
superior performance ae = 4 x 10%. This indicates that the aerofoil performance is relagivel
poor at low Reynolds number as compared to high Reynolds atsniihe poor performance at low
Reynolds number is mainly because the flow separates atizedtdow angle of attack. This laminar
separation which is often formed on the upper surface of ¢hefail at low Reynolds number leads
to a decrease in the performance (LougD).

In order to understand the Reynolds number effect on thé@keperformance, computations have
been carried out for the flow past NACA0012 aerofoil at two Régs numbers; one at high Reynolds
number (e = 10°) and another at low Reynolds numbéte(= 87, 000). The flow results obtained
from these computations are presented in this section anga®d with that of the measured values
reported by NASA [30].

Fig.4.2 shows the comparision of computed surface pregsutg ) distributions over the NACA0012
aerofoil section at different angles of attack and differmw Reynolds numberg€’, = 1“/32;52% is
the non-dimensional pressure coefficient usiig andU,, as the freestream pressure and velocity
respectively. It is clear from the figure that the predictesluits for the high Reynolds number agree
reasonably well with that of the experimental results comfig the adequacy of the mathematical
modelling, the numerical accurancy of the RANS3D code armdttitbuelnce model used for the
present turbuelnt flow computation. The figure also showsstiigapressure distributions for both the
Reynolds numbers considered do not differ significantlydar angles of attack. However, the pres-
sure distributions for angle of attack at 8 degree show afgignt effect of Reynolds number. It was
further observed that at = 12° the flow becomes unsteady f& = 87,000 with St = 1.182146,
whereas af2e = 10° the flow remains steady. The plot of Cp (Fig.4.2(d)) and Cfi(Bi3(d)) shows
the instantaneous surface pressure and skin-frictiontalisions respectively. For this case, the suc-
tion peak (minimum pressure) and the area enclosed by tisegréistributions over the upper and
lower surfaces aRe = 10° is more than that at low Reynolds numbié¢# = 87, 000 indicating a lift
loss at the low Reynolds number due to flow separation. Thedehse variation of the computed
skin friction coefficient distribution; = % wherer,,; is the wall shear stress) presented in

Fig. 4.3 also confirms this flow separation2.

The particle traces computed using the post-processimga@ Tecplot 9.0, from time integration of
the computed velocity field for different flow conditions/t = 87,000 andRe = 10° are presented

in Fig. 4.4. The particle traces around the NACA0012 aetcfection clearly show that the flow
separation occurs at the low Reynolds number and it is cahfmthe aft portion of the upper surface

of the aerofoil atv = 8°. However the instantaneous streamlines shows that ,tire epper surface
experiences a separated flowat 12°. This phenomenon of massive flow separation on the aerofoil
upper surface at = 12° for Re = 87,000 corroborates the observations from the predicted pressure
and skin friction distributions already discussed.
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Reynolds No. (L/D)maz Stall Angle

108 34.05 14-15
3.6 x 108 48.49 14-15
Measurement[30]

87,000 21.80 10-12

Table 4.1: Relative performance of NACA0012 aerofoilzat= 10° and Re = 87, 000

The aerodynamic coefficients like the lift, drag and pitchmoment can easily be computed by
numerically integrating the surface forces viz., the puesscting normal to the surface and the shear
stress acting along the surface. The drag and the lift ceaife represent the resultant forces on the
aerofoil in the direction of the incoming flow and its normabpectively, non-dimensionalised by
the product of the dynamic hef%gszoo2 and the aerofoil chord lengti@jwhich is the projected area
of the curved aerofoil on which the surface forces act. Thehpig moment is computed from the
resultant force and its location with respect to the quatterd point. The variations of the computed
lift coefficient (C;), drag coefficient(;) and pitching moment coefficien€(,) with angle of attack
and the drag polar are shown in Fig. 4.5 #&¢ = 87,000 and Re = 10° and compared with that
of the measured data [30] available fBe = 3.6 x 10°. The agreement between the measurement
data and the present computation for = 10° is reasonably good upto the stall angte & 14°).
The small discrepancies observed in theplot beyond the stall angle may be attributed partly to
the uncertainty of the turbulence model used and partlygaghproximations involved in the spatial
and temporal discretisation of the convective flux in thespree computation scheme. The variation
of pitching moment (Fig. 4.5(c)) with are observed to follow the physically expected trend (for a
symmetric aerofoil the pitching moment is zero and remaorsstant almost up to the stall angle).
The prediction also shows that the lift coefficient slope #relstall angle for the aerofoil decreases
at the low Reynolds number and the drag coefficient incredswes results in the decrease(df/ D),

the efficiency of the aerofoil as it is evident from the dra¢ppand Table 4.1

4.1.4 Effect of maximum section thickness

The effect of the maximum thickness of NACA four digit symm@gaerofoil sections has been inves-
tigated and the results obtained for different thickne8s,(@% and 12%) are presented and discussed
in this section.
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Figure 4.2: Effect of Reynolds number on the chordwise waraof surface pressure for flow past
NACAO0012 aerofoil section at different angles of attack

The computed surface pressure{,) distributions obtained for the three aerofoils considesee
compared in Fig.4.6 at different angles of atttack=€ 0, 4 and 8 degree) fokRe = 87,000. The
pressure distributions are observed to have distinctfedint slope and suction peak. At this flow
Reynolds number, the aerofoil with maximum thickness hghdni suction peak and also has a max-
imum area enclosed by the upper and lower surface of theyreedsstribution as compared to the
aerofoil with lesser thickness indicating a higher lift ffameint for thicker aerofoil section. Further,
the plateau-like distribution is observed for thinner &eifcsection ate = 8° (Fig. 4.6(c)) indicating
early flow separation as evident from the computed streasfimesented in (Fig. 4.9). The formation
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Figure 4.3: Effect of Reynolds number on the chordwise viamaof skin friction for flow past
NACAO0012 aerofoil section at different angles of attack

of early separation for thinner aerofoil section leads teeréase in the lift coefficient.

Figs. 4.7 -4.9 shows the computed flow pattern at differegtesnof attack¢ = 0, 4 and 8 degree)
for the three different thicknesses of the aerofoil sectibar NACA0012 aerofoil section the flow
remains attached upte = 8°, whereas for smaller thickness the flow separates at a louwgge af
attack. For NACAQOO06 the flow seperation is observed at 8° (Fig. 4.8) and as the thickness
is further reduced (NACA0002) the seperation occurs at a&tamgle of attack and the separation
bubble covers the entire upper surfacerat 8° (Fig. 4.9).
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Aerofoil (L/D)maz Stall Angle

NACA0012 21.75 10-12
NACAO0006 6.15 9-10
NACA0002 5.32 9-10

Table 4.2: Relative performance of aerofoil section withyirgg thickness Re = 87, 000)

The variation of lift coefficient(}), drag coefficient;) and the pitching moment coefficient'(,)
with angle of attack and the drag polar obtained for the tkiéferent aerofoil sections are shown in
Fig. 4.10. Itis clearly evident from (Fig. 4.10) and Tabl2,4hat atRe = 87,000, NACA0012 aero-
foil seems to have better aerodynamic performance when amdgo NACA0006 and NACAO0002
aerofoil sections. The computed pitching moment curve. @ig0(c)) shows that for thicker aerofoll
section the pitching moment remains zero upte- 12° whereas for the thinner aerofoil section the
deviation from zero is observed at= 4° itself indicating that the thicker aerofoil section may be
more stable akze = 87, 000. These computations &te = 87, 000 show that the aerodynamic perfor-
mance of the aerofoil do not exhibit any specific trend witlskhess. Hence further investigation is
needed to confirm these flow features and the aerodynamurperhce at this Reynolds number.

In the present study we are interested in the analysis oféh&al sections for MAV application.
Since MAVs are very small in dimension and weighing less th@dg with the payload, most of the
fixed wing MAVs use very thin aerofoil sections for their wgigkeeping this in view, the effect of
camber and location of maximum camber on the aerodynamforpeaince is analysed only for the
aerofoil with 2% thickness which are discussed in the follmysub sections.

4.1.5 Effect of camber

The effect of camber for 2% thick aerofoil section with Iaoatof the camber fixed at 40% of the
chord from the leading edge has been investigated for thffsxzesht magnitude of camber at 2%,
4% and 6% of the chord. The flow results obtained for NACA2402CA4402 and NACA6402 are
presented and their performance is discussed in this sectio

The computed surface pressure({,) distributions obtained for the three different camber mag
tudes as well as for symmetric aerofoil section (NACAO002) eompared in Fig.4.11 at different
angles of atttack foRRe = 87,000. The slope and suction peak of the pressure distributiovecisr

observed to vary with the variation of the camber. Also, tbhe/fpattern obtained (Fig. 4.12-4.14)
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Aerofoil (L/D)maz Stall Angle

NACA0002 5.32 9-10
NACA2402 8.77 8-10
NACA4402 13.00 8-10
NACA6402 19.64 8-10

Table 4.3: Relative performance of 2% thick NACA aerofoittsen with varying camberRe =
87, 000)

with varying camber is observed to be distinctly differenthaNACA6402 having a smoother flow
compared to the other two aerofoil sections (NACA2402 ancCNA402).

The variation of lift coefficient(), drag coefficient;) and the pitching moment coefficient'(,)
with angle of attack and the drag polar obtained for the tldi6ferent aerofoil sections are shown
in Fig. 4.15. The variation of pitching moment (4.15(c)) hwit is observed to follow the physically
expected trend (for a cambered aerofoil the pitching monsamin-zero and remains constant almost
up to the stall angle). It is clearly evident from the draggpaurve (Fig. 4.15(d)) and Table 4.3, that
at Re = 87,000 the aerofoil section with higher camber seems to have ba#gerdynamic perfor-
mance when compared to aerofoil section with lower cambkis @orroborates with the increased
smoothness of the flow for NACA6402 compared to NACA4402 aACN2402.

4.1.6 Effect of maximum camber location

The effect of maximum camber location for 2 % thick aerof@ttson with 4% camber are inves-
tigated for three different camber locations at 20%, 40% @&0f&b of the chord measured from the
leading edge of the aerofoil. The flow results obtained fox4202, NACA4402 and NACA4602
are presented and their relative performance is discusg@dsisection.

The computed surface pressure(f,) obtained for the three different maximum camber locat®n i
compared in Fig.4.16 at different angles of attackfer= 87, 000. The pressure distribution curves
for various maximum camber locations are observed to hdferelt slopes and suction peaks. The
computed flow patterns for different maximum camber locetiare shown in Figs. 4.17, 4.13,4.18.

The variation of lift coefficient ), drag coefficient ¢;), the pitching moment coefficient’(,)
with angle of attack and the drag polar obtained for the tkiéferent aerofoil sections are shown in

20



Aerofoil (L/D)maz Stall Angle

NACA4202 22.31 8-10
NACA4402 13.00 8-10
NACA4602 11.03 8-10

Table 4.4: Relative performance of 2% thick and 4% cambefaiisections with varying the loca-
tion of maximum camberKe = 87, 000)

Fig. 4.19. It is clearly evident from the drag polar (Fig.9(d)) and Table 4.4, that dte = 87, 000
the aerodynmaic performance of the aerofoil section dependhe location of the maximum camber.
The NACA4202 is observed to have significantly higheéy D),,.... as compared to NACA4402 and
NACA4602 indicating that NACA4202 may be a good choice whaes low Reynolds number is
87,000.
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Figure 4.4: Computed streamlines for flow past NACA0012 fdrgection at different angles of

attack forRe = 10° andRe = 87, 000
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Figure 4.6: Chordwise variation of surface pressure for ff@st symmetric NACA aerofoil section
with varying thickness at different angles of attack
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(c)a=28°

Figure 4.7: Computed streamlines for flow past NACA0012 fdrgection at different angles of
attack forRe = 87,000
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Figure 4.8: Computed streamlines for flow past NACA0006 fdrsection at different angles of
attack forRe = 87,000
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Figure 4.9: Computed streamlines for flow past NACA0002 fdrgection at different angles of
attack forRe = 87,000
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Figure 4.11: Chordwise variation of surface pressure fav flast NACA aerofoil section with vary-
ing camber at different angles of attack
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(c)a=28°

Figure 4.12: Computed streamlines for flow past NACA2402fadrsection at different angles of
attack forRe = 87,000
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(c)a=28°

Figure 4.13: Computed streamlines for flow past NACA4402fadrsection at different angles of
attack forRe = 87,000
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(c)a=28°

Figure 4.14: Computed streamlines for flow past NACA6402fadrsection at different angles of
attack forRe = 87,000
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Figure 4.15: Variation of different aerodynamic coeffi¢dgefor turbulent flow past NACA aerofoil
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(c)a=28°

Figure 4.17: Computed streamlines for flow past NACA4202fadrsection at different angles of
attack forRe = 87,000
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(c)a=28°

Figure 4.18: Computed streamlines for flow past NACA4602fadrsection at different angles of
attack forRe = 87,000
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5 Concluding Remarks

The NAL-RANS3D code has been successfully used to generalbiock curvilinear structured
grid around symmetric as well as cambered aerofoil sectigtiisspecified control of near wall reso-
lution.

The RANS3D flow solution code has been run successfully fidouent flow past different 4-digits
NACA series aerofoil section at a chord based Reynolds numtb&7,000 for different angles of
attack. The present analysis uses the third order accukat€Qscheme for convective flux discreti-
sation and SST model to simulate the effect of turbulence.

The relative performance of different NACA series aerogeittions are assessed by comparing their
surface pressure distribution, skin friction distributidlow pattern, variation of aerodynamic coeffi-
cients with angle of attack and the drag polar curve.

Reasonable agreement between the present prediction@edphlrimental data [30] for Coefficient
of pressure and aerodynamic coefficients for the flow past NBC12 aerofoil atRe = 10° demon-
strate the adequacy and robustness of the present flowsoélgorithm RANS3D and the turbulence
model used.

The present analysis has shown that (a) the NACA0012 aésegfction has significantly better aero-
dynamic performace dte = 10° as compared tde = 87,000, i.e. at higher Reynolds number the
NACAO0012 has larger lift to drag ratio with delayed stall &ng(b) At Re = 87,000 NACA0012
has better aerodynamic performance than the symmetriéodlenath lesser thickness (NACA0006
and NACAO0002). (c) the results obtained for the aerodyngraréormance for different camber and
location of maximum camber for 2% thick aerofoil sectionwhdhat larger the camber and closer
the location of maximum camber to the leading edge bettéradift to drag ratio forRe = 87, 000.
From the present analysis we may conclude that the choic&GA4202 aerofoil section is benefi-
cial for MAV wing. The present trend also indicates that NAG2®2 aerofoil section may also be a
good choice which will have to be confirmed through furtheestigation.

In future, advanced turbulence models with appropriateetiog of laminar to turbulent transition
in the present eddy viscosity framework may be incorporateéde RANS3D code to generate more
accurate results for the low Reynolds number regime.
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