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Abstract

Mass stranding of several species of beaked whales (family Ziphiidae) associated with exposure to anthropogenic sounds
has raised concern for the conservation of these species. However, little is known about the species’ life histories, prey or
habitat requirements. Without this knowledge, it becomes difficult to assess the effects of anthropogenic sound, since there
is no way to determine whether the disturbance is impacting the species’ physical or environmental requirements. Here we
take a bioenergetics approach to address this gap in our knowledge, as the elusive, deep-diving nature of beaked whales
has made it hard to study these effects directly. We develop a model for Ziphiidae linking feeding energetics to the species’
requirements for survival and reproduction, since these life history traits would be the most likely to be impacted by non-
lethal disturbances. Our models suggest that beaked whale reproduction requires energy dense prey, and that poor
resource availability would lead to an extension of the inter-calving interval. Further, given current information, it seems that
some beaked whale species require relatively high quality habitat in order to meet their requirements for survival and
reproduction. As a result, even a small non-lethal disturbance that results in displacement of whales from preferred habitats
could potentially impact a population if a significant proportion of that population was affected. We explored the impact of
varying ecological parameters and model assumptions on survival and reproduction, and find that calf and fetus survival
appear more readily affected than the survival of adult females.
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Introduction

Beaked whales (family Ziphiidae) have become a conservation

priority following the species’ responses to military sonar and

seismic surveys, which range from changes in behavior to

stranding and death [1-5]. As a result, there is a need to

understand how beaked whales respond to disturbance. There

have been several studies investigating short-term behavioral

responses to sound, e.g., [6]. However, to link such immediate

responses to long-term impacts we require improved knowledge of

their life history traits, such as survival and reproduction. One

approach to better understanding the potential effects of

disturbance on marine mammals is to develop a bioenergetics

model that integrates short-term behavior, such as foraging, with

reproductive output [7], [8]. Development of such a bioenergetics

model can improve our understanding of the species’ life history

requirements and provide an important framework to understand

the response of animal populations to both natural and

anthropogenic disturbance.

The six genera and 21 species of beaked whales comprise one of

the most diverse and least known families of marine mammals.

Some species, such as Hector’s beaked whale (Mesoplodon peruvianus)

are known from only a few specimens [9], [10]. Necropsies of

stranded individuals and historic whaling data, e.g., [11], [12],

provide the majority of knowledge on beaked whale biology and

physical characteristics (size, weight and sexual dimorphism), and

the species’ diets are mostly informed from stomach contents [13].

It is only recently that detailed studies of living individuals and

populations have taken place, e.g., [14-16]. Due to the develop-

ment of small data loggers that can acquire information on the

whales’ acoustics and their remarkable deep-diving behavior we

now have incredibly detailed information on their habitat use,

foraging behavior and ecology, e.g., [6], [17], [18]. However, since

the geographic distribution of many Ziphiidae species are little

known and individuals spend only a brief time on the surface,

finding and attaching tags to many species of beaked whales

remains a challenge [17], [19], [20].

Despite these recent increases in our understanding of Ziphiidae

movements and foraging behavior, there are still large gaps in our

knowledge of their life-history traits. The complications of

observing beaked whales in situ limit our knowledge of vital rates.

It is therefore difficult to estimate population trends, limiting our

ability to successfully manage beaked whales or determine the

long-term effectiveness of conservation measures [21]. Here, we

seek to address many of these issues by synthesizing available data

and linking the species’ energetic requirements with knowledge of

beaked whale ecology. We develop a general energetics model for

Ziphiidae to estimate life history traits and threshold requirements

for survival and reproduction, as well as their response to any

changes in the relevant ecological parameters. By developing a
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general model for the Ziphiidae family, we test known or suggested

parameters across beaked whale species, helping to determine the

model’s efficacy in identifying gaps and refining the population

parameters suggested for the different species; future applications

to establish the impacts of disturbance on individual species will

then be better informed.

The Model

Energetics models have previously been used to examine beaked

whales’ conservation needs in a spatial context [21]. We use the

same class of model to study the species’ life history traits,

specifically investigating the percentage of adult females, fetuses,

and calves to survive and the relative duration of lactation, given

the ecological parameters. In their simplest form energetics models

balance energy intake with energy output. Individuals must intake

energy to maintain their physical structure, grow and improve

condition (i.e., lay down lipid stores). Energy enters the body

through feeding, can be mobilized from lipid stores and is output

through activity, heat loss and bodily functions [22]. In addition to

the daily energetic requirements defined by individual metabolic

rate, we are also interested in the resources available for female

reproduction (i.e., gestation and lactation), which is another form

of energy output.

Accounting for energy intake relies on knowledge of prey species

consumed and the energetic content of that prey. Details of prey

requirements for parents provisioning offspring are limited [23].

Drent and Daan [24] argue that a parent provisioning its young

should not exceed four times their basal metabolic rate. Among

marine mammals, differences in the stomach contents of lactating

and non-lactating northern fur seals led Perez and Mooney [25] to

suggest that provisioning a pup requires a female fur seal to

consume 1.6 times as much food as a non-lactating female, and

other species are known to increase their prey intake during

lactation [26], [27], [28].

Adult Growth and Maintenance
Given the lack of information for cetaceans we chose to use a

conservative estimate of energy intake derived from the allometric

relationship between mass (M, kg), and biomass ingestion for

odontocetes [29]. Therefore, accounting for the percentage of

accessible energy (A) in the consumed prey, the maximum total

Table 1. The model parameters, their definitions, and the distributions from which parameter values are drawn in the absence of
data or biological knowledge.

Parameter Definition Distribution

A Assimilation efficiency U(0.60, 0.94)

P Prey energetic content (kJ g21) U(4.5, 9.0)

L Length (cm) –

Lb Neonate’s proportion of maternal length at birth (%) U(0.41, 0.54)

Lw Calf’s proportion of maternal length at weaning (%) U(0.55, 0.86)

M Adult mass (kg) –

Mg Mass of the neonate (kg) –

Mc Mass of the calf (kg) –

A Parameter relating length to mass –

B Parameter relating length to mass –

C Adult constant for determining active metabolic rate –

cc Calf constant for determining active metabolic rate –

Q Basel metabolic rate for adults (kCal day21) –

Qc Basel metabolic rate for calves (kCal day21) –

pw Proportion of calf’s daily energy requirements provided by the mother (%) –

Q Habitat quality –

Ea Maximum adult energy intake (kCal) –

EI Actual adult energy intake (kCal) –

Ec Daily calf energy requirement (kCal) –

Es Energy stored in lipids in an adult female (kCal) –

Es,l Lower limit of an adult’s energy stores for calf survival (kCal) U(104, 2cQ)

Es,p Energy in storage at the start of pregnancy (kCal) U(10Es,l, 20Es,l)

Es,c Energy in storage at the start of lactation (kCal) U(Es,p, 2Es,p)

Er Energy required by the calf, from the mother (kCal) –

Em Actual maternal contribution to the calf’s daily energy requirements (kCal) –

Ej Calf’s contribution to their own energy requirements (kCal) –

G Total energetic cost of gestation (kCal) –

gt Length of gestation (days) –

W Time to weaning (days) –

doi:10.1371/journal.pone.0068725.t001

Beaked Whale Energetic Model
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adult energy intake is obtained (Ea, kCal day21) using the average

energetic content of the whale’s prey (P, kCal kg21) (for a list of

model parameters see Table 1, while measured parameter values

are given in Tables 2–3),

Ea~0:313M0:66PA: ð1Þ

The large size of beaked whales tends to preclude direct

measurements of body mass. However, length data are usually

available, so information on M can be obtained from length-

weight relationships,

M~aLb, ð2Þ

where L is length in centimeters (Table 2). Two sets of values for a

and b have been estimated, one for northern bottlenose whales

(Hyperoodon ampullatus) (a = 1.3*1025, b = 3.07) [30] and one for

Baird’s beaked whales (Berarduis bairdii) (a = 6.339*1026, b = 3.081)

[31]. We assign parameter values for species without direct

estimates of a and b based on parsimony with the species’

characteristics. Baird’s beaked whales are the largest species at 10–

13 m [32], [33], while the majority of Ziphiidae are between 4–7 m

in size [34]. Therefore, the parameter values for the northern

bottlenose whale, which average 6.5 m in length [21], will

generally be more appropriate for these smaller species.

Body mass is also used to estimate base energy expenditure [22],

Q~70M0:75, ð3Þ

for an adult, where Q is the basal metabolic rate (kCal day21). To

scale for active metabolism and thus derive the basic energy

required for an individual female’s personal growth and mainte-

nance, the value Q is multiplied by a constant, c, which we set

equal to 2.5 [21], [35] (Table 1). Although supported by the

literature, the chosen value for c is somewhat arbitrary.

Gestation
In addition to growth and maintenance, energy is required for

reproduction. For females, the extra cost is due to gestation (G,

kCal) and lactation. Gestation costs can be calculated [36] as,

G~4400M1:2
g , ð4Þ

where Mg is the mass of the neonate in kilograms. The length of

beaked whale neonates ranges from as little as 1.9 m in Hector’s

beaked whale (Mesoplodon hectori) [37] to as much as 4.6 m in

Baird’s beaked whale [38], so estimates of Mg can be obtained

(Eqn. 2).

Lactation
The cost of lactation depends on the time since parturition and

the mother’s provisioning strategy. Since calves are less dependent

on their mothers’ milk closer to weaning the simplest assumption is

that the proportion of the calf’s daily energy requirements

provided by the mother (pw) declines linearly with time, from

100% at birth to 0% at weaning (W),

pw~1{
w

W
, ð5Þ

Table 2. The length (L), group size (N), prey and prey energetic values (P) for the 21 beaked whale species, with references.

Species L (m) N Prey Items P (kJ g21)a

Hyperoodon ampullatus 6.5[21] 7[16] Gonatus sp.[21] 7.8[21]

H. planifrons 6.5[60] 5[61] Gonatus sp.[62] 7.8[21]

Mesoplodon densirostris 4.6[63] 9[64] Hake[13] 5[65]

M. hectori 4.4[66] 6 pelagic squid[66] –

M. mirus 4.8[60] 3[67], [68] Teuthowenia sp., fish[13] –

M. europaeus 4.5[60] 4[69] fish, crustaceans, squid[13] –

M. bidens 5[63] 8[17] Diaphus sp.[70] 9[65]

M. grayi 4.6[60] 7[71] Hake[13] 5[65]

M. peruvianus 3.4[72] 5[10] Nemipteridae[13] 4.5[73]

M. bowdoini 4.3[56] 6 mesopelagic squid –

M. traversii 4.6[63] 6 mesopelagic squid –

M. carlhubbsi 4.9[60] 6 Gonatus, Onychoteuthis borealijaponica[74] 7[21], [75]

M. ginkodens 4.9[63] 6 mesopelagic squid –

M. stejnegeri 4.8[60] 15[76] Gonatus sp., Gonatopsis-Berrytuethi [77] 7.2[21], [75]

M. layardii 5.8[60] 5[61] Squid[78] –

M. perrini 4.4[79] 6 pelagic squid –

Indopacetus pacificus 7[80] 7[80] Onychoteuthis borealijaponica[81] 6.1[75]

Ziphius cavirostris 5.5[60] 5[64] Gonatus sp.[13] 7.8[21]

Tasmacetus shepherdi 6.6[51], [82] 6[83] Merluccius hubbsi[51] 5.3[65]

Berardius bairdii 11[32] 10[31] Pollock[52] 5.7[75]

B. arnuxii 7.8[33] 15[33], [84] Squid –

aThe listed prey items are those for which P were available, although many of the whale species consume additional prey [13].
doi:10.1371/journal.pone.0068725.t002
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where w is the age of a nursing calf in days. We also investigated

approximates of asymptotic, step and sigmoidal functions for

maternal provisioning of the calf.

As with adult females, the metabolic requirement of calves can

be calculated using body mass [39], so the total energy required by

the calf from birth to weaning (Ec, kCal) is,

Ec~cc

XW

w~0
Qc,w~cc

XW

w~0
70M0:82

c,w , ð6Þ

where Mc,w is calf mass at age w, based on growth curves, e.g., [32]

(Eqn. 2), Qc,w is the basal metabolic rate for a calf of age w, and cc is

the constant used to account for the calf’s active metabolism

(Table 1). This value will be higher than the adult metabolic

constant (c), due to calves’ rapid growth from birth to weaning. In

addition, since calves have greater metabolic requirements than

adults, the slope (0.82) of the allometric relationship is also

adjusted accordingly [40]. The mother’s total required contribu-

tion (Er) to Ec is dependent on her provisioning strategy and is

calculated as,

Er~cc

XW

w~0
pwQc,w: ð7Þ

The remainder of the energy required by the calf to reach weaning

(Ej, kCal) is assumed to come from the calf foraging on the same

prey species as the adults, so that,

Ej~Ec{Er: ð8Þ

In the absence of other information, weaning for beaked whales,

and other odontocetes, is often assumed to take one year [41],

although associations between mothers and calves have been

known to last longer [42]. We assume that normal time to weaning

takes one year, unless there is evidence to the contrary [32], [43].

Energy Stores
Beaked whales accumulate lipid stores prior to and between

(recovery phase) reproductive events (capital breeding), as well as

taking in energy throughout the breeding cycle (income breeding)

[44]. Therefore, a proportion of the energy mobilized for

reproduction is derived from lipid stores (Es, kCal). These stores

will be laid down during gestation and anytime the females’ energy

intake is greater than that required for reproduction, growth and

maintenance (this is inherent in our calculations of Ea). The

relationships between energy intake, growth and maintenance,

lipid stores and reproduction can be summarized in an energy flow

diagram (Fig. 1) (which follows that proposed by Lockyer [45]) and

a decision tree (Fig. 2). An important aspect of this relationship is

that as prey resources become less available, due to natural

variation or to disturbance, the ability of the female to take in

excess energy is reduced. This has two outcomes. First, during

reproduction, and especially lactation when her energy require-

ments are greatest, the female will either reduce the amount of

energy she transfers to her calf or she will have to utilize her stored

energy reserves. This will prolong the duration of lactation or the

post-reproduction recovery period, since the female will have to

recoup the resources she expended on the calf. Either way this will

increase the inter-calf interval and have a direct effect on

demography. Second, there will also be a threshold at which

there is insufficient energy for the female to do anything other than

maintain herself and she will have to terminate lactation or

gestation. This energetic threshold is higher (i.e., female requires

greater surplus energy) for lactation as it is significantly more costly

than gestation.

The energy contributed to Es will vary with females’ actual

energy intake (EI). If EI,cQ, then females will metabolize energy

from their lipid stores. We assume adult females prioritize their

own survival and this may result in a reduction in the energy

available to a calf, which may lead to an increased inter-calving

interval by two possible mechanisms. First, if a female has a calf,

low Es would result in her daily contribution to the calf’s energy

needs (Em,w) being lower than the calf’s daily requirement (Er,w).

Lactation is assumed to be extended by a day if the reduction in

Em,w results in the total energy intake by the calf on day w being

less than cQc,w, since cc.c this would indicate that calf did not

receive enough energy for growth. If this disruption to calf growth

occurs regularly, then the calf will take longer to wean, extending

the inter-calf interval. Furthermore, if beaked whales have a fixed

or primary breeding season, then delayed weaning could inhibit

the female from becoming pregnant, thus extending the inter-calf

interval. Second, if the female is pregnant, we assume that from

Table 3. The gestation time (gt), calf’s percentage of mother’s
length at birth (Lb) and weaning (Lw), and time to weaning
(W), (i.e., duration of lactation) for all 21 beaked whale species,
with references.

Species gt (days)a Lb (%) Lw (%) W (days)a

Hyperoodon
ampullatus

365[41] 0.46[14] 0.86[41] 365[41]

H. planifrons 365[41] 0.45[85] 0.56[85] 365[85]

Mesoplodon
densirostris

365 0.42[63] 0.58* 986*

M. hectori 365 0.43[9] 0.56[66] 365

M. mirus 365 0.49[63] – 365

M. europaeus 365 0.47[63] – 365

M. bidens 365 0.48[63] 0.77[70]
(immature)

365

M. grayi 365 0.53[63] – 365

M. peruvianus 365 0.45[9] 0.71[9] 365

M. bowdoini 365 0.49[56] – 365[56]

M. traversii 365 – – 365

M. carlhubbsi 365 0.51[74] – 365[74]

M. ginkodens 365 – – 365

M. stejnegeri 365 0.5[86] 0.62[87] (2 year
old)

365[77]

M. layardii 365 0.48[88] – 365

M. perrini 365 0.47[79] 0.56[79] 365

Indopacetus
pacificus

365 0.48[53] 0.61[53] 365

Ziphius cavirostris 365 0.4[89] 0.78[90]
(subadult)

365

Tasmacetus
shepherdi

365 0.46[51] 0.57[37] 365

Berardius
bairdii

515[32] 0.41[38] 0.55[91] 183[43]

B. arnuxii 515 0.54[92] – 183

aWhere a value is given with no reference, best biological knowledge was used.
*Claridge D pers. comm.
doi:10.1371/journal.pone.0068725.t003
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the third trimester, the fetus will be aborted if the adult’s combined

energy reserves and maximum potential energy intake are less

than the total amount of energy needed to bring the fetus to term

and wean the calf. If the fetus is aborted the adult’s ‘surplus’

energy will be placed in storage and another pregnancy will occur

at the next breeding opportunity.

Simulations

We accounted for heterogeneity by drawing an individual

female’s length (Li) from a normal distribution centered on the

average length of a mature female for each species (Table 2),

Li*N(L,s2
L), ð9Þ

where the variance (s2
L) was tuned to ensure that Li did not take

biologically unrealistic values. Since we were interested in

investigating beaked whale reproduction, the simulation limited

female reproductive status to pregnant or lactating (i.e., breeding),

which was determined through a Bernoulli distribution where

p = 0.5. Variability in energy intake was included by drawing the

value for actual daily adult female energy intake, EI, from a

normal distribution truncated between zero and Ea,

EI*N(cQq,s2
E),EI[(0,Ea), ð10Þ

where s2
E is equal to the variance of the Ea values within a species’

group and q represents habitat quality. Since knowledge of beaked

whale habitat is limited, q can be representative of either greater

prey density, or the availability of prey of greater energetic value.

Values of q greater than one indicate that a female’s average

energy intake will be greater than required for personal growth

and maintenance (cQ). In contrast, values of q less than one

indicate that, on average, females’ daily energy intake will be less

than daily energy requirements for growth and maintenance,

which would require them to metabolize energy from their lipid

stores.

Each female has energy reserves (i.e., lipid stores) at the start of

the simulation (for a list of the parameters and their distributions

see Table 1), the value of which is dependent on her reproductive

status. Females are assumed to have a minimal threshold of energy

storage (Es,l) drawn from U(104, 2cQ). If this value is reached

lactating females will prioritize their own survival by abandoning

their calves, which results in calf mortality. The lower limit

minimizes the probability of calf abandonment, since it is less than

cQ for all species, while the upper limit requires females to

maintain at least two days’ worth of energy in storage. Energy

reserves at the start of gestation (Es,p) should always be higher than

Es,l if a fetus is to be brought to term. Therefore, Es,p is drawn from

U(10Es,l, 20Es,l), giving the females a week and a half to three

weeks of reserves at the start of gestation. Finally, lactation requires

greater energy inputs than gestation, so the initial energy reserves

for a female with a calf (Es,c) are drawn from U(Es,p, 2Es,p). What we

refer to as lipid stores or energy reserves includes only those tissues

that can be metabolized by the female and therefore excludes

structural tissue. As a result, Es can be equal to zero, although this

is assumed to cause the death of the female and her calf or fetus.

To incorporate variation in calf size we calculated calf length at

birth and weaning as a proportion of mother’s length (Lb and Lw,

respectively, Table 3). Calves will therefore vary in size with the

Figure 1. A flow chart representing the movement of energy in adult female beaked whales. Accepting that energy transfer from one
state to another is imperfect, the largest proportion of energy will go to growth, activity and maintenance, then pregnancy. Any ‘‘surplus’’ energy
(energy not used for cQ or G) with either go to lactation (Er) or storage. The relationships between energy stores and lactation, growth and
maintenance are dashed lines, since these links will only come into play when food intake can’t supply Er, cQ or G.
doi:10.1371/journal.pone.0068725.g001
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females, although the proportion of the length of the mother is

constant within each species. For each species, the number of

individuals in the simulation was equal to an observed group size

for each species (Table 2), so that we can assume individuals are

affected equally by habitat quality (q). This assumption does not

affect the current model outputs, but can be relaxed to allow for

spatial or temporal variation in q, when dealing with larger

populations and individual species in more detail.

The simulation starts at either breeding or birth, assuming the

two events occur in relative synchrony. For pregnant females, the

cost of gestation is assumed to be unavoidable and equally spread

over the gestation period, so the daily energy requirements are

equal to,

cQzG=gt, ð11Þ

where gt is the gestation time. ‘Surplus’ energy can be placed in

storage, or storage can be metabolized to meet a female’s energy

needs. For females with calves, any ‘surplus’ energy ingested is

placed into milk production; any additional energy required by the

calf is metabolized from Es. If there is energy remaining after

providing Er,w, it will be placed in Es. Since adult females are

assumed to prioritize their own survival, a female forced to

metabolize her energy stores to meet her own energy demands will

only supply energy to the calf if her reserves are greater than,

cQzccQc,w, ð12Þ

and will otherwise under-provision her calf. Should a female’s

energy reserves fall below Es,l, she will abandon her calf. After the

abandonment, all ‘surplus’ energy will go to the female’s stores and

she will become pregnant again at the next breeding opportunity.

This assumes that the cost of gestation is low in comparison to the

fitness cost of missing a breeding opportunity. However, if the gap

between calf abandonment and breeding opportunity is brief, it is

possible that a female will choose to delay pregnancy in order to

increase her condition and the chance of successful future

reproduction.

We used the model structure described above (Fig. 2) to run

simulations of beaked whale energy budgets in the statistical

Figure 2. A decision tree representing one time step (a day) in the model simulations for the energy budget of an adult female
beaked whale. While all individuals ingest energy (EI) at the start of a time step, how that energy is used and partitioned depends on the female’s
reproductive status and her energy stores (Es). The square is the starting point of the decision process, diamonds represent decision points and circles
are a possible outcome for the time step, given the previous decisions.
doi:10.1371/journal.pone.0068725.g002

Beaked Whale Energetic Model
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programming language R [46]. The focus of the simulations was

to investigate the different possible functional forms for maternal

calf provisioning and determine the general energetic require-

ments of beaked whales for female, calf and fetus survival and

hence reproduction.

Functional Forms for Maternal Provisioning
Four different functional forms of declining maternal investment

strategies were considered; a) the linear relationship in Eqn. 5, b)

an approximated asymptote, c) a step function and d) an

approximated sigmoidal (Fig. 3). The value of Er,w will depend

on the stage of lactation and calf size. Since beaked whales grow

most rapidly from birth to weaning, we treat this relationship as

linear, acknowledging that the rate of growth would decrease after

separation from the mother. Therefore, we have almost linear

growth in calf mass over the lactation period (Eqn. 2). The growth

curve and provisioning curve, when combined, describe the

mother’s expected required energy contribution to calf growth

(Fig. 3). Of the four possible provisioning strategies, only the linear

function results in biologically reasonable estimates of the

provisioning curve, based on the fat content of milk [47]. We do

not suggest that the linear assumption is the actual maternal

provisioning strategy for beaked whales, especially given the lack

of evidence for this functional form in other cetaceans. However,

since the output of the linear assumption is the most biologically

realistic, we use this provisioning strategy when investigating

survival and reproduction.

Beaked Whale Energetics
We applied our model to all 21 species of beaked whales.

Parameter values for each species were taken from the literature

where possible (Tables 2 and 3), but there were some limitations.

In many cases, the average energetic value of prey (P) was only

known for one or two of the species consumed. Furthermore, not

all parameter values were available for each species, with P and the

calf’s proportion of the mother’s length at birth (Lb) and weaning

(Lw) being the three values most commonly missing. When

unknown, these parameters were drawn from a uniform distribu-

tion whose range was equal to the lowest and highest known values

for these parameters, as identified for other beaked whale species

Figure 3. Four maternal provisioning strategies (left column), when combined with calf growth (middle column) give the actual
energy expenditure required by the mother each day (right column) over the duration of lactation. The four provisioning strategies are
linear (top row), asymptotic (second row), step function (third row) and sigmoidal (bottom row).
doi:10.1371/journal.pone.0068725.g003
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(Table 1). In addition, habitat quality is an unknown quantity, and

was therefore chosen from a U(0.5,2) distribution (Table 1). This

range allows habit quality to vary from extremely poor to

superlative. Lastly, the percentage of accessible energy (A)

available to beaked whales after the consumption of prey is also

unknown. This parameter value was drawn from a U(0.60,0.94)

distribution (Table 1), since these are upper and lower estimates

available for assimilation efficiency of squid for other species, e.g.,

[48], [49]. The lower limit of 0.60 is conservative in this case, since

the actual assimilation efficiency for squid is likely to be 70–80%

[50]. However, although assimilation efficiencies are used to

inform the limits of the distribution for A, accessible energy also

encompasses metabolic efficiency (energy available for metabolism

after fecal and urinary energy loss is removed), so the proportion of

energy that can be utilized by the beaked whales will be lower than

implied by assimilation efficiency alone. We ran 1000 simulations

for each species, recording the simulated values for the parameters

drawn from distributions (Table 1), time to weaning and the

percentage of adults, calves and fetuses in each group to survive.

Some parameter values will never allow for adult survival.

Therefore, starting with Es,c we identified the lowest value for

which adult survival is greater than zero and discarded the results

from any simulation whose Es,c value was below this threshold. We

then did the same for Es,p, Es,l, A and q, in that order. However, for

Es,l we identified the maximum, rather than the minimum, value

at which survival was greater than zero, since higher values

indicate that females are more sensitive to their own need for

survival. This left us with the outputs from 7–76% of the

simulations and provided us with lower limits on these parameter

values for which survival is never possible for the adult females

(Table 4). The species’ response to these parameters can be

ascertained from the number of simulation results remaining after

the discard process had taken place: the fewer the remaining

simulation results, the more affected the species is by parameter

variability.

The simulations resulted in certain patterns across multiple

species of beaked whale. For many species (Figs. 4, S1), there is a

distinct parameter space in which adults, calves and fetuses will all

survive, usually consisting of good habitat quality (q) and mid- to

high-accessible energy. Unsurprisingly, there is an inverse

relationship between the energetic content of the whales’ prey

(P) and their accessible energy (A), with survival at low P values

requiring high A (Figs. 5, S2). For all species, adults survive, but do

not produce offspring when A, q and P are low. Calves start to

survive at slightly higher values of these parameters, and fetuses

are the most sensitive, requiring good quality habitat and mid- to

high values of A in order to reach parturition (Figs. 4–5, S1–S2).

High offspring mortality, fetal and calf, will increase the interval

between successful calving events. The inter-calving interval can

also be extended if a female is required to suckle her calf past the

expected weaning time (W). This is assumed to delay implantation

of another fetus, since pregnancy and lactation are treated as

mutually exclusive in order to minimize the energetic burden on

the mother. Although the two mechanisms for increasing inter-

calving interval are very different, both will result in a decrease in a

female’s lifetime reproductive output and are therefore of interest

when examining the life history traits of Ziphiidae. When the

simulated average duration of lactation for the population is less

than W (Table 3, Figs. 6–7, S3–S4), some proportion of the

females abandoned their calves prior to weaning. A simulated

value of the average duration of lactation greater than W indicates

that females struggled to provide sufficient energy to their calves to

allow for growth, but were not energetically stressed to the point of

calf abandonment. The average duration of lactation for the

population was most strongly affected by our assumptions

regarding accessible energy, requiring higher values of A in order

for the average duration of lactation derived from the simulations

to be equal to the expected time of weaning (W). Habitat quality

had less of an impact, although survival of calves was generally

rare when q,1.2 (Figs. 6, S3). A combination of high A and P also

resulted in the average duration of lactation from these simulations

being equal to W (Fig. 7, S4).

In our model for six species, Blainvilles, Grey’s (M. greyi), pygmy

(M. peruvianus), Longman’s (Indopacetus pacificus), Shepherd’s (Tas-

macetus shepherdi) and Baird’s beaked whales, adult survival was

rare; calf and fetus survival even more so (Figs. 4–5, S1–S2). The

duration of lactation was also extended in each of these species,

and for pygmy beaked whales, no calves ever survived (Figs. 6–7,

S3–S4). These six species all had the greatest number of discarded

simulations and were the only ones where the lower limit on A is

not only greater than 0.60, but in all but two cases was also greater

than a less conservative value of 0.80, and all were greater than

0.70 [50] (Table 4). They were therefore more affected by the

background parameter variability, since their ‘known’ parameters

place them on the knife edge of survival. Of these species

Blainville’s, Grey’s, Shepherd’s and pygmy beaked whales had the

highest limits on q and the lowest estimated energetic content of

prey, all with values #5.3 kJ g21 (Tables 2 and 4). For species

Table 4. The lower bound for parameters Es,p, Es,c, A and q,
below which adult survival does not occur, the upper bound
for Es,l, above which survival does not occur, and the
percentage of the simulations retained (%).

Whale Es,p (*105)
Es,c

(*105) Es,l (*105) A q %

Hyperoodon
ampullatus

1.89 1.40 3.73 0.60 0.93 72

H. planifrons 1.83 1.24 3.74 0.60 0.94 70

Mesoplodon
densirostris

1.18 1.13 1.17 0.88 1.12 11

M. hectori 1.27 1.09 1.79 0.60 0.86 74

M. mirus 1.16 1.15 1.89 0.60 0.94 70

M. europaeus 1.67 1.21 2.22 0.60 0.89 76

M. bidens 1.83 1.36 2.59 0.60 0.88 76

M. grayi 2.17 1.46 1.29 0.85 1.05 18

M. peruvianus 4.63 3.35 6.55 0.86 1.28 7

M. bowdoini 1.86 1.39 1.77 0.60 0.95 68

M. traversii 1.49 1.19 2.09 0.60 0.91 73

M. carlhubbsi 1.47 1.08 1.80 0.60 0.97 67

M. ginkodens 1.42 1.16 2.13 0.60 0.89 72

M. stejnegeri 1.40 1.08 1.89 0.60 0.87 75

M. layardii 1.86 1.46 3.17 0.60 0.97 70

M. perrini 1.79 1.28 1.75 0.60 0.94 74

Indopacetus
pacificus

2.02 1.47 3.47 0.75 1.01 38

Ziphius cavirostris 1.68 1.32 2.65 0.60 0.89 75

Tasmacetus
shepherdi

2.97 1.70 2.54 0.87 1.13 12

Berardius
bairdii

2.28 2.02 5.18 0.79 0.90 34

B. arnuxii 1.08 1.08 3.68 0.60 0.86 77

doi:10.1371/journal.pone.0068725.t004
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where P was unknown, adults rarely survived when energetic

content was ,5 kJ g21, even at high values of A (Figs. 5, S2). The

sensitivity of Longman’s and Baird’s beaked whales likely resulted

from their large size, making it difficult for the females to build and

maintain the required energy reserves for both gestation and

lactation. This was especially pronounced in Baird’s beaked whale,

which has an estimated six months from birth to weaning [43],

requiring high immediate energy input from the mothers.

Discussion

By combining our knowledge of beaked whales across different

species in the family Ziphiidae we were able to construct a detailed

mathematical model exploring the species’ energetics, survival and

reproduction. Modeling all 21 species enabled us to assess our

model more fully, helping us to understand the relationship

between our assumptions and parameter values over a range of

biological inputs that would not be apparent if each species was

studied in isolation. Our model takes advantage of current

biological knowledge and is flexible enough to incorporate new

information as it becomes available. Larger population sizes and

variability in habitat over space and time also could readily be

incorporated into the model framework if investigating individual

species in greater detail.

Despite the uncertainty around some parameter values, by

testing a variety of different assumptions we obtained a measure of

biological sensitivity to these parameters and were able to

determine a range of conditions over which beaked whale survival

and reproduction could occur. Combined, this information will

help guide future research. Of particular interest are the

population consequences of impaired foraging, whether caused

by behavioral change or habitat displacement in response to

environmental or anthropogenic disturbance. Key data needs

include more comprehensive determination of prey species and

more accurate determination of reproductive parameters, such as

the duration of gestation and lactation, as the model results are

particularly affected by these assumptions. While different

assumptions for the duration of gestation and lactation can affect

the percentage of females, calves and fetus to survive, as well as

relative duration of lactation, the relative relationship between the

species, their response to parameter variability and the observed

patterns in survival and reproduction remained unchanged.

Our simulations accounted for the survival and reproduction of

more than two-thirds of the beaked whale species, giving us

reasonable confidence in our underlying model. For the six species

Figure 4. The relationship between habitat quality, available energy and the percentage of adult females (black), calves (dark grey)
and fetuses (light grey) in a group to survive, as indicated by the size of the circle. Calves and fetuses can’t survive without their mothers,
so adult female survival is not shown when it is equal to that of their offspring. Similarly, if only fetus survival is visible then calf and maternal survival
has occurred at the same intensity. Only four species are shown to provide detailed examples of species with high (B. arnuxii, H. ampullatus) and low
(M. densirostris, T. shepherdi) survival and reproduction. Each point is the result from a single simulation.
doi:10.1371/journal.pone.0068725.g004

Beaked Whale Energetic Model

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e68725



modeled that regularly failed to survive or reproduce, there may

be inaccuracies in the underlying parameters. The main driver of

depressed survival and reproduction for these species is the

apparently low average energetic content of the beaked whales’

prey. The values for P were based on stomach content data, which

is often biased or unrepresentative of the whales’ actual diets [13].

For all six of these species, fish formed the majority of the prey

items [13], [51], [52], so our results imply that the whales are

consuming more energy dense prey than is recorded in the

stomach contents in order to persist.

The other driver of low survival and reproduction appeared to

be tied to the duration of lactation. Baird’s beaked whale is

estimated to wean its young in six months [43], which results in a

high daily cost of lactation because of the compressed time to calf

independence. Although the gestation period is longer than that of

other beaked whales [32], the low W meant that female Baird’s

beaked whales in our simulations could not ingest enough energy

to maintain themselves, grow the fetus and build lipid stores for

lactation prior to parturition, and therefore aborted their fetuses.

There is some evidence for alloparental care in this species [31],

which is not accounted for in our models and may help increase a

calf’s independent foraging faster than currently assumed. Long-

man’s beaked whales face a similar energetic challenge, due to

birthing large calves that are 61% of maternal body size at

weaning [53]. Therefore, even though they have a longer duration

of lactation than Baird’s beaked whales, they apparently suffer

similar difficulties in accumulating the energy required for

themselves, the fetus and the calf during gestation. Interestingly,

in our simulations Longman’s beaked whales did not survive when

habitat quality, q,1.01, implying that despite a relatively high

energetic prey content (P.5.3 kJ g21), they had difficulty meeting

their metabolic requirements.

The lack of successful calf and fetus production, especially in the

larger members of the beaked whale family, may also be a result of

our assumption of a two year inter-calving interval for most species

(the combined duration of gestation and lactation). Although not

explicitly modeled, the assumption is inherent in our choices for

the distributions used to define maternal energy stores at the start

of gestation and lactation (Table 1). Assuming a two year inter-

calving interval does not allow for a recovery period in which

females could build energy stores in the absence of gestation or

lactation, which would increase a female’s probability of success-

fully birthing and rearing her next calf. To have a recovery period,

a female would need to skip mating opportunities, which would

have functionally the same effect as offspring mortality or

increased lactation duration, in terms of increasing the inter-calf

Figure 5. The relationship between the energetic content of prey, available energy and the percentage of adult females (black),
calves (dark grey) and fetuses (light grey) in a group to survive, as indicated by the size of the circle. Calves and fetuses can’t survive
without their mothers, so adult female survival is not shown when it is equal to that of their offspring. Similarly, if only fetus survival is visible then calf
and maternal survival has occurred at the same intensity. Only four species are shown to provide detailed examples of species with high (B. arnuxii, H.
ampullatus) and low (M. densirostris, T. shepherdi) survival and reproduction. Each point is the result from a single simulation.
doi:10.1371/journal.pone.0068725.g005
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interval. Given the possibility of a recovery period and the

apparently limited successful reproduction in the larger members

of Ziphiidae, it is possible that these species may have more of a

capital breeding strategy, similar to elephant seals [54] or

mysticetes [55]. In general, our results raise questions about the

appropriateness of assuming that beaked whale reproduction is

similar to that of other odontocetes, as has been done in the past,

e.g., [56], and highlight the need for further investigation.

The remaining 15 species of beaked whales survived and

reproduced over a wide range of parameter values. Some results,

such as the requirement for q.1 for successful reproduction are

unsurprising, since females who are unable to meet their own

energy needs cannot provision a calf or meet the cost of gestation,

no matter their breeding strategy. There is an apparent flexibility

in adult survival across a wide range of habitat quality, accessible

energy and prey energetic contents, but more narrow require-

ments for successful reproduction. Maternal ability to consume

and process energy therefore appears to be the primary driver of

these vital rates.

Our results suggest that adult female beaked whales are able to

survive, but not reproduce, in times or areas of lower habitat

quality, and will extend the duration of lactation in mediocre

conditions in order to increase the probability of their own

survival, but still reproduce. This is biologically reasonable, since

resource availability will not be constant through space and time,

females are unlikely to successfully reproduce every breeding cycle,

and extended lactation periods have been observed in other

species, e.g., [57]. This may have demographic consequences,

since the lifetime reproductive output of females will decrease with

an increasing inter-calf interval. The apparent flexibility of adult

survival, but not reproduction implies that anthropogenic distur-

bances that cause a consistent, minor reduction in energy intake

over an extended period of time could potentially impact

reproduction just as strongly as disturbances that completely halt

energy acquisition over a shorter period. This has implications for

conservation and management, due to industry and military

activity in beaked whale habitat, which can have seemingly minor

impacts on beaked whale behavior or habitat in the short-term,

[4], [6], [58], [59]. The use of the energetics model developed here

in combination with more detailed research into individual species

could elucidate their specific sensitivity to disturbance and the

effects of management and conservation action on that species’

persistence within an area.

Figure 6. The relationship between available energy, habitat quality and the relative duration of lactation. Light grey points indicate
that the relative duration of lactation was less than expected, which means that not all calves survived to weaning. Black points indicate that the
duration of lactation was equal to the assumed value and dark grey points indicate that the duration of lactation was longer than expected. Only four
species are shown to provide detailed examples of species with high (B. arnuxii, H. ampullatus) and low (M. densirostris, T. shepherdi) survival and
reproduction. Each point is the result from a single simulation.
doi:10.1371/journal.pone.0068725.g006
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Supporting Information

Figure S1 The relationship between habitat quality,
available energy and the percentage of adult females
(black), calves (dark grey) and fetuses (light grey) in the
population to survive, as indicated by the size of the
circle. Calves and fetuses can’t survive without their mothers, so

adult female survival is not shown when it is equal to that of their

offspring. Similarly, if only fetus survival is visible then calf and

maternal survival has occurred at the same intensity. Each point is

the result from a single simulation.

(TIF)

Figure S2 The relationship between the energetic
content of prey, available energy and the percentage of
adult females (black), calves (dark grey) and fetuses
(light grey) in the population to survive, as indicated by
the size of the circle. Calves and fetuses can’t survive without

their mothers, so adult female survival is not shown when it is

equal to that of their offspring. Similarly, if only fetus survival is

visible then calf and maternal survival has occurred at the same

intensity. Each point is the result from a single simulation.

(TIF)

Figure S3 The relationship between available energy,
habitat quality and the relative duration of lactation.
Light grey dots indicate that the relative duration of lactation was

less than expected, which means that not all calves survived to

weaning. Black dots indicate that the duration of lactation was

equal to the assumed value and dark grey dots indicate that the

duration of lactation was longer than expected. M. peruvianus is not

shown, since no simulation estimated successfully weaned calves.

Each point is the result from a single simulation.

(TIF)

Figure S4 The relationship between available energy,
prey energetic content and the relative duration of
lactation. Light grey points indicate that the relative duration

of lactation was less than expected, which means that not all calves

survived to weaning. Black points indicate that the duration of

lactation was equal to the assumed value and dark grey points

indicate that the duration of lactation was longer than expected.

M. peruvianus is not shown, since no simulation estimated

successfully weaned calves. Each point is the result from a single

simulation.

(TIF)

Figure 7. The relationship between available energy, prey energetic content and the relative duration of lactation. Light grey points
indicate that the relative duration of lactation was less than expected, which means that not all calves survived to weaning. Black points indicate that
the duration of lactation was equal to the assumed value and dark grey points indicate that the duration of lactation was longer than expected. Only
four species are shown to provide detailed examples of species with high (B. arnuxii, H. ampullatus) and low (M. densirostris, T. shepherdi) survival and
reproduction. Each point is the result from a single simulation.
doi:10.1371/journal.pone.0068725.g007
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