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Summary

We present a computational approach to infer DNA function based on eukaryotic  DNA sequence
information. Namely, we utilise an observation that exons, regulatory regions and non coding
non regulatory DNA exhibit different statistical information patterns. We suggest to capture and
measure these patterns with several independent mathematical tools such as rescaled analysis,
information entropy, density of low-entropy patches and similarity test.
Results: We introduce here a new optimization technique of which the outcome is independent of
the size of the sliding window and hence avoids averaging. This technique, which takes account
of the heterogeneity in the DNA sequence, performs an unsupervised search, without using
reference sets or cross genome comparison. We also introduce new way of measuring DNA local
heterogeneity, and a statistical test for abundance of similar words.
A preliminary application of our methods to the set of genes from six different species, namely
human, mouse, fugu, sea urchin, drosophila and yeast, reliably identifies the borders of the regions
of interest and thus reveals the potential of our approach.
We propose that this combination of established computational statistical methods, augmented
with our sliding window optimization technique, and our new statistical tests, might create a
powerful DNA sequence characterization and annotation tool that optimises the search for
differences in statistical properties between coding, non-coding and regulatory DNA.
Availability: The software is available from the authors on request.

Introduction

The unsupervised search methods for analysing the structure of the genome fall, broadly speaking,
in one of two categories: (i) methods for characterizing the composition of the genome and (ii)
those used for detecting sequential or serial dependency (i.e. that focus on the actual ordering of
nucleotides).
Nucleotide composition is commonly investigated with tools from information theory (i.e. various
ways to estimate the entropy of parts of the genome), self-organising maps (Abe et al., 2003),
complexity analysis (Wan et al., 2003; Li , 1997) and statistical linguistics (Mantegna et al., 1994).
Statistical dependencies between nucleotides/amino acids have been analysed using mutual
information functions (Azbel, 1995), Markov models (Krogh et al., 1994), spectra (Voss, 1992)
and methods derived from random walk dynamics such as detrended fluctuation- and rescaled
range analysis (Peng et al., 1994). In particular the detection of long range correlations (LRCs)
has attracted much attention (Li, 1997; Mantegna et al., 1994; Azbel, 1995; Peng et al., 1994;
Herzel et al., 1997) and correlations ranging from a few base pairs up to 1000 bp have been
found.
Results from the application of these methods seem to indicate that non-coding and coding DNA
have distinguishable statistical properties: long range correlations have been reported for non-
coding, but not for coding regions (Peng et al., 1994; Herzel et al., 1997; but see Voss, 1992).
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Unfortunately, when these techniques are used in the conventional way, their results will be
highly dependent on the size of the sliding window.

Methods and Result

Random walks and rescaled range analysis. One way to characterize the succession of nucleotides
is to imagine a “walk” along the DNA string by moving up each time a pyrimidine (a T or C) occurs
and by moving down whenever a purine (an A or G) is encountered. As a result, one may obtain a
fractal-looking “landscape”, in which probably long stretches of mainly purine alternate with stretches
that contain mostly pyrimidine. If the probability of the occurrence of a pyrimidine equals that of a
purine and is independent of the position in the string (i.e. P (pyrimidine) = P (purine)), then such a
“DNA walk” would actually be a “random walk”. The increments of the walk would form a series
of independent and identically distributed events with constant mean and finite variance that is
therefore stationary and furthermore characterised by a flat spectrum and the absence of
autocorrelations (“white noise”). The random walk itself, being integrated white noise, is typically
non-stationary. This is manifest in the largely non-vanishing spikes in the autocorrelation function
and the predominance of low frequency components in the power spectrum (Voss, 1992 ).
Another way to do find long range correlations in DNA sequence is to calculate the Hurst exponent
(H) by means of a “rescaled range analysis”. The Hurst exponent estimates the degree of
“persistence” of the system. Rescaled range analysis can be applied to any time or space series.
Setting x k = +1 for k = T, C and x k = -1 for k = A, G, the sequence {x k} can be characterised by:
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for any 2 ≤ n ≤ N.
For scale free data R(n)/S(n) ~ (n/2)H. Hence, the Hurst exponent (H) can be computed from the
least squares fit of the regression of log[R(n)/S(n)] on log[n]. In the above formulas, the test-
statistic (H) should be compared with a Hurst exponent obtained under the null-hypothesis that
the cumulative data (i.e. the time series after integration) are from a random walk and therefore
that the original data are white noise. In other words, Hobserved should be contrasted with Hexpected =
0.5 and not with Hexpected = -0.5 (which would be the Hurst exponent of the original data).
Obviously, changes in persistence are not accounted for by the conventional application of rescaled
range analysis, i.e. by using a too large, fixed window.  This might be detected as changes in the
slope of the log-log plot. We therefore suggest a window that increases until the Hurst exponent
reaches a minimum (H < 0.5): this window detects the most probable boards of exons.
Entropy-based DNA segmentation  with optimal window method. The conventional procedure
for measuring DNA entropy (Li, 1997) typically consists of calculating a frequency vector
describing the area’s nucleotide composition for a sufficiently large, but subjectively defined
area, and then subjecting it to the well-known Shannon function:
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where M is the length of the frequency vector, which in case of single nucleotides is 4, in case of di-
nucleotides is 16, etc. The entropy of a frequency vector is maximal when all elements occur with
equal probability, in which case H seq, M = log (1/M), and hence measures the “eveness” or the
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“diversity” of the composition. In contrast, low entropy indicates the “dominance” of a few of the
elements. Clearly, when increasingly larger fragments of the same stretch of DNA are used, the
entropy of the fragments will asymptotically approach the entropy of the entire stretch. Such an
overall estimate does not capture the possibly deviating entropy of small but functionally important
subparts. Too large and fixed windows therefore overlook local differences in nucleotide composition.
For a more powerful method, we therefore must optimise the length of the local windows. To this
aim, we move sliding window of varying length along the DNA sequence, optimising the length
of the window due to the local maximum of Entropy before it reaches asymptotic value. The most
high entropy regions are the most likely locations of exons.
Low entropy patches density as heterogeneity measure. There exit two visions of DNA
heterogeneity: 1) Heterogeneity is caused by gradual change (bias) of nucleotide composition in
different parts of the sequence; 2) Heterogeneity is caused by short runs of repetitive (low-entropy)
patterns. If you remove them, DNA will be homogeneous again. It is local heterogeneity.
To calculate the density of low entropy patches, we first developed an entropy-based algorithm
able to fish for these patches; this algorithm occurred to detect very weird patterns, which no
repeat masker could find. Thus, we used the density of these low entropy patches as a measure of
local heterogeneity of DNA.
As the result, we present an example of splitting fugu DNA into functional parts due to low-entropy
patches: exons typically have minimum density, non coding non regulatory DNA has maximum
density, and regulatory DNA has intermediate density, as one can see at the table below.
In the table, “diverged” denotes non coding non conserved DNA: they were picked up randomly
through out the Mayfolds fugu whole genome shotgun assembly v.3.0 (August 26, 2002); “cne”
(conserved non coding elements) are considered as putative regulatory regions: these elements
are collected due to ClustalW multiple alignment between fugu, mouse, rat and human in the
group of Greg Elgar (Woolfe et al., submitted 2004), short elements were concatenated together;
exons are randomly picked up in Scaffolds1 and 21 fugu whole genome shotgun assembly v.3.0
(August 26, 2002), www.ensembl.org (Table).
Measure of similar word abundance: similarity-tail test. There is well known observation that
there are unusually large (unexpectedly due to random multinomial model) number of some
similar words in the regulatory regions. To quantify this fact, we got the collection of known
functional regulatory regions from Drosophila genome. For each region, we computed the
distribution of clusters of similar words inside it, so called similarity-tail test. We calculated the
number of similar words of length m with few mismatches exhaustively for each m-word in the
given regulatory region. Due to the presence of unusually high number of over-represented words,
we expect to have more “fat” (containing a lot of similar words) clusters in comparison with
random chance.
To sample this random chance, we shuffled our given sequence 200 times keeping its original di-
nucleotide content. For each shuffled sequence we plotted the histograms of similar words
distribution. We could easily observe that the original sequence “tails” were significantly longer
than all randomised ones.
Almost all regulatory regions analysed (currently, 35) exhibit “fluffy” tails, in contrast with exon
regions where there is no significant tail exist. This observation gave raise to the algorithm,
which distinguish between exons and regulatory regions due to the presence of statistically
significant tails in the original distribution. The algorithm currently is applied for Drosophila
genome.
Conclusion: Our collection of tools: • Information entropy • Rescaled Range Analysis: Hurst
exponent• Density of low entropy patterns• Tests for frequency of similar words might help
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to infer the function of a given not yet annotated DNA stretch, and thus to distinguish between
different DNA functional parts when all the tools are combined.
In this work we propose an adaptive optimal windowing technique applied for two popular methods
which search for short and long range correlations in DNA: rescaled analysis to estimate long
distance dependency by the Hurst exponent, and entropy measurement. Both improved
techniques are capable to detect putative functional regions in DNA. In addition, we capture
DNA homogeneity and presence of repetitive words in other two independent ways: with density
of low-entropy patches, and similar words abundance in the DNA stretch. When we combine
results of these tests with adaptive window methods, we therefore increase likelihood of detecting
functional DNA regions.
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Type of 
sequence 
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low-entropy 
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to get cg 
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probability 
to get c 
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