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A general analytical model applicable to the vibration analysis of thin-walled composite I-beams

with arbitrary lay-ups is developed. Based on the classical lamination theory, this model has

been applied to the investigation of load-frequency interaction curves of thin-walled composite

beams under various loads. The governing differential equations are derived from the Hamilton’s

principle. A finite element model with seven degrees of freedoms per node is developed to solve

the problem. Numerical results are obtained for thin-walled composite I-beams under uniformly

distributed load, combined axial force and bending loads. The effects of fiber orientation, location

of applied load, and types of loads on the natural frequencies and load-frequency interaction curves

as well as vibration mode shapes are parametrically studied.
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2

NOMENCLATURE9

A Cross section area

ā Location of transverse load with respect to shear center

b1, b3 Width and height of I-section

Eij Stiffness coefficients of thin-walled composite beams

E1, E2 Young’s moduli in the 1- and 2-directions of lamina

(EA)com Axial rigidity of composite beam

(EIx)com, (EIy)com Flexural rigidity with respect to x- and y-axis

(EIω)com Warping rigidity

f(z), g(z) Polynomial functions which depend on the loading pattern

G12 Shear moduli in the 1-2 plane of lamina

(GJ)com Torsional rigidity

Ip Polar moment of inertia about the centroid

[K], [G1], [G2], [M ] Stiffness, geometric and mass matrix in finite element formulation

m0,mc,mp,ms,m2 Inertia coefficients

Mb External uniform bending moment

Mcrn Buckling moments for pure bending

Mt Torsional moment

Mx,My Bending moments with respect to x- and y-axis

Mω Warping moment

M cr,Mxn Nondimensional bending moment

N0 External axial force

Nz Axial force

p Transverse load

Pxn , Pyn , Pθn Flexural buckling loads in the x- and y-axis and torsional buckling load

P cr Nondimensional vertical concentrated load

P xn , P yn , P θn , N cr Nondimensional axial force

q, r Coordinate of point on the contour in the (n, s) coordinate system

qcr Nondimensional uniformly distributed load

(Q̄∗
ij)

k
Transformed reduced stiffness of the kth lamina

t Flange and web thickness of I-section
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3

T ,U ,V Kinetic energy, strain energy and potential energy

u, v, w Displacements of a point on the contour in the (n, s, z) coordinate system

U, V,W Displacement components of the pole in the (x, y, z) coordinate system

ū, v̄, w̄ Midsurface displacements of a point on the contour in the (s, z) coordinate system

xp, yp Coordinates of pole in the (x, y) coordinate system

α Angle between x and tangent axis

{∆} Eigenvector of nodal displacements corresponding to an eigenvalue

ϵz, ϵ
◦
z, ϵ̄z Axial strain in the (n, s, z) coordinate system

θ Fiber orientation

κx, κy Curvatures with respect to the x- and y-axis

κsz, κω Twisting and warping curvature

κ̄sz, κ̄z Midsurface curvatures

λ Buckling parameter

ν12 Poissons ratio

Π Total potential energy

ρ Density of composite material

σz, γsz Normal and shear stresses in the (n, s, z) coordinate system

Φ Angle of rotation of the cross section about the pole axis

Ψj , ψj Interpolation function in finite element formulation

ω(s) Warping function

ωxn , ωyn , ωθn Flexural natural frequencies with respect to the x- and y-axis and torsional natural frequencies

ωxxn , ωyan , ωybn Natural frequencies for simply supported composite beams under axial force and uniform bending

ω Nondimentional natural frequency

1. INTRODUCTION10

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Composites11

have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and12

magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced13
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4

by pultrusion, are being increasingly used in many civil, mechanical and aerospace engineering applications.14

Up to the present, investigation into the vibration and stability analysis of thin-walled members has received15

widespread attention and has been carried out extensively since the early works of Vlasov [1], Gjelsvik [2]. It is also16

well known that the vibration behavior of these members under various loads display complex response. Barsoum17

[3] studied the stability analysis of structural systems under non-conservative forces using Hamilton principle as18

basis and the dynamic criterion of stability. Attard and Somervaille [4] focused on free vibration analysis of straight19

prismatic beams of general thin-walled open cross-section, under conservative and nonconservative loads. Joshi and20

Suryanarayan [5] investigated coupled flexural-torsional vibrations of double-symmetric thin-wall beams under axial21

loads and end moments. They found that the problem could be reduced to a beam-column problem with a zero22

moment, so that it was possible to obtain simple algebraic expressions unifying numerical results for various boundary23

conditions. Based on the transfer matrix method, Ohga et al. [6, 7] estimated not only the natural frequencies but24

also vibration mode shapes of the thin-walled members under in-plane forces. Mohri et al. [8] presented a higher-25

order non shear deformable model to investigate the dynamic behavior of thin-walled open sections in the pre- and26

post-buckling state. In their numeric examples, they considered simply supported beams under axial and distributed27

transverse loads. Silvestre and Camotim [9] derived of a Generalised Beam Theory (GBT) to analyse the vibration28

behaviour of loaded cold-formed steel members. Later, they [10] continued to study local and global vibration of29

thin-walled members under compression and non-uniform bending. The geometrically nonlinear stiffness reduction30

caused by the presence of longitudinal stress gradients and the ensuing shear stresses was taken into account in the31

formulation. Voros [11] analyzed the free vibration and mode shapes of straight beams where the coupling between32

the bending and torsion was induced by steady state lateral loads. Closed form solution for the coupled frequencies33

and mode shapes of a symmetric beam with simply supported ends under uniform bending was derived. By using34

the power series method, Leung [12,13] developed the exact dynamic stiffness matrix including both the axial force,35

initial torque and bending moment for the interactive axial-torsional and axial-moment buckling analysis of framed36

structures. Recently, Leung [14] proposed a new concept of uniform torque for buckling of columns by biaxial moments37

and uniform end torque. Second-order effects of the axial force, biaxial moments and torque were considered in the38

analysis.39

For thin-walled composite beams, due to coupling effects from material anisotropy, these members under combined40

axial force and bending loads simultaneously exhibit strong coupling. Therefore, their dynamic characteristics and41

load-frequency interaction curves become very complicated. Several authors have investigated the free vibration42
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5

characteristics of axially loaded composite beams (Banerjee et al. [15,16], Li et al. [17,18] , Kaya and Ozgumus [19]43

and Emam and Nayfeh [20]) but only a few have taken into account the effects of axial force and bending loads.44

By extending GBT formulation, Silvestre and Camotim [21] investigated the local and global vibration behavior of45

loaded thin-walled composite members, focusing on issues dealing with the variation of the fundamental frequency46

and vibration mode nature with the member length and applied stress level. Machado and Cortinez [22] presented47

free vibration of thin-walled composite beams with static initial stresses and deformations. The analysis was based48

on a geometrically non-linear theory based on large displacements and rotations. However, it was strictly valid for49

symmetric balanced laminates and especially orthotropic laminates. It is clear that the research of the vibration50

of thin-walled composite beams with arbitrary lay-ups under combined axial force and bending loads in a unitary51

manner is limited. This complicated problem has received scant attention and there is a need for further studies.52

In this paper, which is an extension of the authors’ previous works [23-26], vibration analysis of thin-walled composite53

beams with arbitrary lay-ups under combined axial force and bending loads is presented. This model is based on the54

classical lamination theory, and accounts for all the structural coupling coming from the material anisotropy. The55

governing differential equations for flexural-torsional coupled vibration are derived from the Hamilton’s principle. A56

displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results are57

obtained for thin-walled composite beams to investigate the effects of axial force, bending loads, fiber orientation on58

the natural frequencies and load-frequency interaction curves as well as vibration mode shapes.59

2. KINEMATICS60

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually61

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and62

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second63

coordinate system is the local plate coordinate (n, s, z) as shown in Fig. 1, wherein the n axis is normal to the middle64

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the65

cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation α. As defined66

in Fig.1 a point P , called the pole, is placed at an arbitrary point xp, yp. A line through P parallel to the z axis is67

called the pole axis.68

To derive the analytical model for a thin-walled composite beam, the following assumptions are made69

1. The contour of the thin wall does not deform in its own plane.70
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2. The linear shear strain γ̄sz of the middle surface is zero in each element.71

3. The Kirchhoff-Love assumption in classical plate theory remains valid for laminated composite thin-walled72

beams.73

4. Each laminate is thin and perfectly bonded.74

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate75

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the76

rotation angle Φ about the pole axis,77

ū(s, z) = U(z) sinα(s)− V (z) cosα(s)− Φ(z)q(s) (1a)

v̄(s, z) = U(z) cosα(s) + V (z) sinα(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the78

assumption 2. For each element of middle surface, the shear strain become79

γ̄sz =
∂v̄

∂z
+
∂w̄

∂s
= 0 (2)

Eq.(2) can be integrated with respect to s from the origin to an arbitrary point on the contour,80

w̄(s, z) = W (z)− U ′(z)x(s)− V ′(z)y(s)− Φ′(z)ω(s) (3)

where differentiation with respect to the axial coordinate z is denoted by primes (′); W represents the average axial81

displacement of the beam in the z direction; x and y are the coordinates of the contour in the (x, y, z) coordinate82

system; and ω is the so-called sectorial coordinate or warping function given by83

ω(s) =

∫ s

s◦

r(s)ds (4a)

The displacement components u, v, w representing the deformation of any generic point on the profile section are84

given with respect to the midsurface displacements ū, v̄, w̄ by the assumption 3.85

u(s, z, n) = ū(s, z) (5a)

v(s, z, n) = v̄(s, z)− n
∂ū(s, z)

∂s
(5b)

w(s, z, n) = w̄(s, z)− n
∂ū(s, z)

∂z
(5c)

The strains associated with the small-displacement theory of elasticity are given by86

ϵz = ϵ̄z + nκ̄z (6a)

γsz = nκ̄sz (6b)
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where87

ϵ̄z =
∂w̄

∂z
(7a)

κ̄z = −∂
2ū

∂z2
(7b)

κ̄sz = −2
∂2ū

∂s∂z
(7c)

All the other strains are identically zero. In Eq.(7), ϵ̄z, κ̄z and κ̄sz are midsurface axial strain and biaxial curvature of88

the shell, respectively. The above shell strains can be converted to beam strain components by substituting Eqs.(1),89

(3) and (5) into Eq.(7) as90

ϵ̄z = ϵ◦z + xκy + yκx + ωκω (8a)

κ̄z = κy sinα− κx cosα− κωq (8b)

κ̄sz = κsz (8c)

where ϵ◦z, κx, κy, κω and κsz are axial strain, biaxial curvatures in the x and y direction, warping curvature with91

respect to the shear center, and twisting curvature in the beam, respectively defined as92

ϵ◦z = W ′ (9a)

κx = −V ′′ (9b)

κy = −U ′′ (9c)

κω = −Φ′′ (9d)

κsz = 2Φ′ (9e)

The resulting strains can be obtained from Eqs.(6) and (8) as93

ϵz = ϵ◦z + (x+ n sinα)κy + (y − n cosα)κx + (ω − nq)κω (10a)

γsz = nκsz (10b)

3. VARIATIONAL FORMULATION94

The total potential energy of the system can be stated, in its buckled shape, as95

Π = U + V (11)
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8

where U is the strain energy96

U =
1

2

∫
v

(σzϵz + σszγsz)dv (12)

After substituting Eq.(10) into Eq.(12), the variation of strain energy can be stated as97

δU =

∫ l

0

(Nzδϵz +Myδκy +Mxδκx +Mωδκω +Mtδκsz)dz (13)

where Nz,Mx,My,Mω,Mt are axial force, bending moments in the x- and y-direction, warping moment (bimoment),98

and torsional moment with respect to the centroid, respectively, defined by integrating over the cross-sectional area A99

as100

Nz =

∫
A

σzdsdn (14a)

My =

∫
A

σz(x+ n sinα)dsdn (14b)

Mx =

∫
A

σz(y − n cosα)dsdn (14c)

Mω =

∫
A

σz(ω − nq)dsdn (14d)

Mt =

∫
A

σszndsdn (14e)

The variation of the potential of the in-plane load N0 at the centroid and transverse load p acting on the cross101

section at a point a distance ā above the shear center can be found in Refs. [23, 24]102

δV =

∫ l

0

[
N0

[
δU ′(U ′ +Φ′yp) + δV ′(V ′ − Φ′xp) + δΦ′(Φ′ Ip

A
+ U ′yp − V ′xp)

]
− Mb(ΦδU

′′ + U ′′δΦ)− āpΦδΦ
]
dz (15)

where Mb is not the actual bending moment in the beam, but the simple beam moment due to transverse load p.103

The variation of the kinetic energy is expressed in Ref. [25] as104

δT =

∫ l

0

[
m0Ẇ δẆ +

[
m0U̇ + (mc +m0yp)Φ̇

]
δU̇ +

[
m0V̇ + (ms −m0xp)Φ̇

]
δV̇

+
[
(mc +m0yp)U̇ + (ms −m0xp)V̇ + (mp +m2 + 2mω)Φ̇

]
δΦ̇

]
dz (16)

where, m0,mc,mp,ms,m2 are inertia coefficients. In order to derive the equations of motion, Hamilton’s principle is105

used106

δ

∫ t2

t1

(T −Π)dt = 0 (17)
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Substituting Eqs.(13),(15) and (16) into Eq.(17), the following weak statement is obtained107

0 =

∫ t2

t1

∫ l

0

{
m0Ẇ δẆ +

[
m0U̇ + (mc +m0yp)Φ̇

]
δU̇ +

[
m0V̇ + (ms −m0xp)Φ̇

]
δV̇

+
[
(mc +m0yp)U̇ + (ms −m0xp)V̇ + (mp +m2 + 2mω)Φ̇

]
δΦ̇

−
[
N0

[
δU ′(U ′ +Φ′yp) + δV ′(V ′ − Φ′xp) + δΦ′(Φ′ Ip

A
+ U ′yp − V ′xp)

]
−Mb(ΦδU

′′ + U ′′δΦ)− āpΦδΦ
]

− NzδW
′ +MyδU

′′ +MxδV
′′ +MωδΦ

′′ − 2MtδΦ

}
dzdt (18)

In Eq.(18), Mb and p are the buckling moment and transverse load, and can be written for various types of loading108

as109

Mb = λf(z) (19a)

p = λg(z) (19b)

where λ is a buckling parameter and f(z) and g(z) are polynomial functions which depend on the loading pattern.110

These functions are given as follows for various types of loading:111 

f(z) = 1; g(z) = 0 for pure bending

f(z) =
1

2
(
l2

4
− z2); g(z) = 1 for uniformly distributed load

f(z) =
l

2
− z; g(z) =


0

1 at the loading point

 for point load at free end of a cantilever beam

(20)

4. CONSTITUTIVE EQUATIONS112

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of section are given by113 
σz

σsz


k

=

 Q̄∗
11 Q̄∗

16

Q̄∗
16 Q̄∗

66


k 

ϵz

γsz

 (21)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the114

transformed stiffnesses based on the plane stress (σs = 0) and plane strain (ϵs = 0) assumption. More detailed115

explanation can be found in Ref. [27].116
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The constitutive equations for bar forces and bar strains are obtained by using Eqs.(10), (14) and (21)117 

Nz

My

Mx

Mω

Mt


=



E11 E12 E13 E14 E15

E22 E23 E24 E25

E33 E34 E35

E44 E45

sym. E55





ϵ◦z

κy

κx

κω

κsz


(22)

where Eij are stiffnesses of thin-walled composite beams and given in Ref. [25].118

5. GOVERNING EQUATIONS OF MOTION119

The governing equations of motion of the present study can be derived by integrating the derivatives of the varied120

quantities by parts and collecting the coefficients of of δW, δU, δV and δΦ121

N ′
z = m0Ẅ (23a)

M ′′
y +N0

(
U ′′ +Φ′′yp

)
+ (MbΦ)

′′ = m0Ü + (mc +m0yp)Φ̈ (23b)

M ′′
x +N0

(
V ′′ − Φ′′xp

)
= m0V̈ + (ms −m0xp)Φ̈ (23c)

M ′′
ω + 2M ′

t +N0

(
Φ′′ Ip

A
+ U ′′yp − V ′′xp

)
+MbU

′′ + āpΦ = (mc +m0yp)Ü

+ (ms −m0xp)V̈

+ (mp +m2 + 2mω)Φ̈ (23d)

By substituting Eqs.(9) and (22) into Eq.(23), the explicit form of governing equations of motion can be expressed122
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with respect to the laminate stiffnesses Eij as123

E11W
′′ − E12U

′′′ − E13V
′′′ − E14Φ

′′′ + 2E15Φ
′′ = m0Ẅ (24a)

E12W
′′′ − E22U

iv − E23V
iv − E24Φ

iv + 2E25Φ
′′′

+N0(U
′′ +Φ′′yp) + (MbΦ)

′′ = m0Ü + (mc +m0yp)Φ̈ (24b)

E13W
′′′ − E23U

iv − E33V
iv − E34Φ

iv + 2E35Φ
′′′

+N0(V
′′ − Φ′′xp) = m0V̈ + (ms −m0xp)Φ̈ (24c)

E14W
′′′ + 2E15W

′′ − E24U
iv − 2E25U

′′′ − E34V
iv − 2E35V

′′′

−E44Φ
iv + 4E55Φ

′′ +N0(Φ
′′ Ip
A

+ U ′′yp − V ′′xp) +MbU
′′ + āpΦ = (mc +m0yp)Ü

+ (ms −m0xp)V̈

+ (mp +m2 + 2mω)Φ̈ (24d)

Eq.(24) is most general form for flexural-torsional coupled vibration of thin-walled composite beams with arbitrary124

lay-ups under axial and bending loads and the dependent variables, W , U , V and Φ are fully coupled. For the case of125

thin-walled composite beams under axial force and uniform bending, if all the coupling effects and the cross section is126

symmetrical with respect to both x- and the y-axes, Eq.(24) can be simplified to the uncoupled differential equations127

as128

(EA)comW
′′ = ρAẄ (25a)

−(EIy)comU
iv +N0U

′′ +MbΦ
′′ = ρAÜ (25b)

−(EIx)comV
iv +N0V

′′ = ρAV̈ (25c)

−(EIω)comΦiv +
[
(GJ)com +N0

Ip
A

]
Φ′′ +MbU

′′ = ρIpΦ̈ (25d)

From above equations, (EA)com represents axial rigidity, (EIx)com and (EIy)com represent flexural rigidities with129

respect to x- and y-axis, (EIω)com represents warping rigidity, and (GJ)com represents torsional rigidity of thin-130
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walled composite beams, respectively, written as131

(EA)com = E11 (26a)

(EIy)com = E22 (26b)

(EIx)com = E33 (26c)

(EIω)com = E44 (26d)

(GJ)com = 4E55 (26e)

6. ANALYTICAL SOLUTIONS FOR SIMPLY SUPPORTED COMPOSITE BEAMS UNDER AXIAL FORCE AND132

UNIFORM BENDING133

For simply supported beams with free warping, the overall displacements modes in bending and torsion are assumed134

as135

U(z, t) = U0 sin(
nπz

L
) sin(ωt) (27a)

V (z, t) = V0 sin(
nπz

L
) sin(ωt) (27b)

Φ(z, t) = Φ0 sin(
nπz

L
) sin(ωt) (27c)

Substituting Eq.(27) into Eq.(25), after integrations and some reductions, the resulting flexural and torsional equations136

of motion are obtained in compact form as137

ω2
xn
(1− P xn)− ω2

xxn
= 0 (28a)

A
[
ω2
yn
(1− P yn)− ω2

]
U0 −Mxn

√
AIpωynωθnΦ0 = 0 (28b)

−Mxn

√
AIpωynωθnU0 + Ip

[
ω2
θn(1− P θn)− ω2

]
Φ0 = 0 (28c)

For the above equations, it is well known that the flexural natural frequencies in the x-direction and bending138

moments are decoupled, while, the flexural natural frequencies in the y-direction, torsional natural frequencies and139

bending moments are coupled. They are given by the orthotropy solution for simply supported boundary condition140

ωxxn = ωxn

√
1− P xn (29a)

ωyan =

√√√√ω2
yn
(1− P yn) + ω2

θn
(1− P θn)

2
−

√[ω2
yn
(1− P yn)− ω2

θn
(1− P θn)

2

]2
+M

2

xn
ω2
yn
ω2
θn

(29b)

ωybn =

√√√√ω2
yn
(1− P yn

) + ω2
θn
(1− P θn)

2
+

√[ω2
yn
(1− P yn

)− ω2
θn
(1− P θn)

2

]2
+M

2

xn
ω2
yn
ω2
θn

(29c)
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in which ωxn , ωyn and ωθn are the flexural natural frequencies in the x- and y-direction, and torsional natural fre-141

quencies [28]142

ωxn =
n2π2

l2

√
(EIx)com

ρA
(30a)

ωyn =
n2π2

l2

√
(EIy)com

ρA
(30b)

ωθn =
nπ

l

√
1

ρIp

[n2π2

l2
(EIω)com + (GJ)com

]
(30c)

and P xn
, P yn

, P θn and Mxn
are nondimensional axial force and moment.143

P xn =
N0

Pxn

(31a)

P yn =
N0

Pyn

(31b)

P θn =
N0

Pθn

(31c)

Mxn =
Mb

Mcrn

(31d)

where Pxn , Pyn and Pθn are the flexural buckling loads in the x- and y-direction, and torsional buckling loads [29]144

Pxn =
n2π2(EIx)com

l2
(32a)

Pyn =
n2π2(EIy)com

l2
(32b)

Pθn =
A

Ip

[n2π2(EIω)com
l2

+ (GJ)com

]
(32c)

and Mcrn is the buckling moments for pure bending [29]145

Mcrn =

√
n2π2(EIy)com

l2

[n2π2(EIω)com
l2

+ (GJ)com

]
(33)

7. FINITE ELEMENT FORMULATION146

The present theory for thin-walled composite beams described in the previous section was implemented via a147

displacement based finite element method. The element has seven degrees of freedom at each node, three displacements148

W,U, V and three rotations U ′, V ′,Φ as well as one warping degree of freedom Φ′. The axial displacement W is149

interpolated using linear shape functions Ψj , whereas the lateral and vertical displacements U, V and axial rotation Φ150
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are interpolated using Hermite-cubic shape functions ψj associated with node j and the nodal values, respectively.151

W =
2∑

j=1

wjΨj (34a)

U =
4∑

j=1

ujψj (34b)

V =

4∑
j=1

vjψj (34c)

Φ =
4∑

j=1

ϕjψj (34d)

Substituting these expressions into the weak statement in Eq.(18), the finite element model of a typical element152

can be expressed as the standard eigenvalue problem153

([K]−N0[G1]− λ[G2]− ω2[M ]){∆} = {0} (35)

where [K], [G1], [G2] and [M ] are the element stiffness matrix, the element geometric stiffness matrix due to axial154

force and bending loads as well as the element mass matrix, respectively. The explicit forms of them are given in155

Refs. [23-26].156

In Eq.(35), {∆} is the eigenvector of nodal displacements corresponding to an eigenvalue157

{∆} = {W U V Φ}T (36)

8. NUMERICAL EXAMPLES158

A thin-walled composite I-beam with length l = 8m is considered to investigate the effects of axial force, bending159

loads, fiber orientation on the natural frequencies and load-frequency interaction curves as well as vibration mode160

shapes. The geometry of the I-section is shown in Fig. 2. Stacking sequence of this beam consists of two layers with161

equal thickness as follows: angle-ply laminate [θ/−θ] at the bottom flange, and unidirectional laminate [0]2 at the162

top flange and web, respectively. For this lay-up, all the coupling stiffnesses are zero, but E15 and E35 do not vanish.163

The following engineering constants are used164

E1/E2 = 25, G12/E2 = 0.6, ν12 = 0.25 (37)
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For convenience, the following nondimensional axial force, bending loads and natural frequency are used165

N cr =
Ncrl

2

E2tb33
(38a)

M cr =
Mcrl

E2tb33
(38b)

P cr =
Pcrl

2

E2tb33
(38c)

qcr =
qcrl

3

E2tb33
(38d)

ω =
ωl2

b3

√
ρ

E2
(38e)

As a first example, a simply-supported composite beam under under uniformly distributed load is analyzed. The166

load is applied at at the shear center, top flange and bottom flange. The first load-frequency interaction curves for167

three cases are plotted with respect to the fiber angle variation in Fig. 3. It is clear that the location of applied load168

has major effects of vibration of beams under transverse load. All three cases of groups show similar trends. That is,169

the smallest group is for the case of load at the top flange and the largest one is for the case of load at the bottom170

flange. The lowest three load-frequency interaction curves with fiber angles θ = 0◦, 30◦ and 60◦ for three cases are171

displayed in Figs. 4, 5 and 6. At θ = 0◦ (Fig. 4), the first and third natural frequencies decrease from ω1 = 5.05 and172

ω3 = 20.15 to zero, when the lateral buckling loads are reached, depending on the position of the load height, vice173

versa, the second one increases monotonically with the increase of load. As the fiber angle changes, this response is174

no longer visible. For example, at θ = 30◦, for the case of load at shear center, with the increase of load, the first175

and third natural frequencies increase and reach local maximum values around q = 0.39 and 0.51, they decrease and176

finally vanish at qcr1 = 0.45 and qcr2 = 1.64, respectively, which are corresponding to the first and second lateral177

buckling loads (Fig. 5). The decrease becomes more quickly when uniform loads are close to lateral buckling loads.178

The next example is a simply supported composite beam under combined axial force and bending moment. The179

lowest four natural frequencies are obtained by the finite element analysis and orthotropy solution, which neglects the180

coupling effects of E15 and E35 from Eqs.(29a)-(29c), are given in Table 1. The critical flexural-torsional buckling loads181

(N cr) and critical buckling moments (M cr) for pure bending agree completely with those of previous papers [23,24].182

With the same value of bending moment, it can be seen that the natural frequencies diminish when the axial force183

changes from tensile to compressive, as expected. For unidirectional fiber direction, the lowest four natural frequencies184

by the finite element analysis exactly corresponding to the flexural-torsional coupled modes and the first flexural mode185

in x-direction by the orthotropy solution, respectively. As the fiber angle is rotated off-axis, the orthotropy solution186

and finite element analysis solution show discrepancy indicating the coupling effects become significant. It can be187
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also explained partly by the typical normal mode shapes corresponding to the first four natural frequencies with fiber188

angle θ = 30◦ for the case (N = 0.5N cr, M = 0.5M cr) in Fig. 7. It should be noticed that although a coupling189

stiffness E15 between the axial mode and the torsional mode is not null, the magnitude of induced axial displacement190

W is much lower than U, V and Φ and thus, is not plotted in the mode shapes. As a result, the first three natural191

frequency exhibits doubly coupled modes (flexural mode in y-direction and torsional mode), whereas, the fourth one192

displays triply coupled modes (flexural mode in the x-, y-direction and torsional mode). Therefore, the orthotropy193

solution is no longer valid for unsymmetrically laminated beams due to coupling effects. In order to investigate these194

effects further in the large bending moment region, the lowest three moment-frequency interaction curves with the195

fiber angle θ = 30◦ for two cases (N = 0) and (N = 0.5N cr) are displayed in Figs. 8 and 9. These figures highlight196

the effects of coupling on the vibration of thin-walled composite beam under axial load and bending moment. It is197

very interesting to note that all moment-frequency interaction curves by finite element analysis are asymmetric. This198

response is never seen in isotropic beams with doubly symmetric cross-section because coupling terms are not present.199

For the case (N = 0.5N cr) in Fig. 9, due to asymmetric interaction curves, when the natural frequency vanishes,200

each branch always has two different buckling moments. For instance, at the lowest branch, the negative buckling201

moment, M cr1 = −2.50 × 10−2, occurs when the moment causes tension in the top flange, while the positive one,202

M cr2 = 3.72× 10−2, corresponds to a reversal in the sense of the moment which causes compression in the top flange.203

As a result, this branch is disappeared when M is slightly outside this range. As the bending moment changes, two204

interaction curves (ω2 −M2) and (ω3 −M3) intersect at M = −7.20× 10−2 and M = 12.20× 10−2, thus, after these205

values, vibration mode 2 and 3 change each other. The second branch will also be disappeared when M is slightly206

outside the range of [−12.88 14.10]× 10−2.207

The last example is the same as before except that in this case, boundary condition is clamped-free. A cantilever208

composite beam under combined axial force and vertical point load at shear center of free end is considered. Effect209

of axial force on the first load-frequency interaction curves of fiber angles 30◦ and 60◦ is investigated. Three cases210

of axial force is considered in Fig. 10. Both lateral buckling loads and natural frequencies increase when the axial211

force changes from compressive to tensile. It demonstrated again the fact that tensile forces stiffen the beam while212

compressive forces soften the beam. Three dimensional interaction diagram of the fundamental natural frequency,213

vertical load with respect to the axial compressive force change of these angles is plotted in Fig. 11. As expected,214

load-frequency interaction curves become smaller as the axial force increases and finally vanish at about N = 0.79 and215

0.57 for θ = 30◦ and 60◦, respectively, which implies that at these loads, the critical flexural-torsional buckling occur as216
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a degenerated case of natural vibration and vertical load at zero value. It is from this figure that illustrate clearly the217

characteristic of load-load-frequency interaction curve, which explains the duality between flexural-torsional buckling218

load, lateral buckling load and natural frequency.219

9. CONCLUDING REMARKS220

A one-dimensional finite element model was developed to study the vibration analysis of thin-walled composite221

beams with I-section. This model has been applied to the investigation of load-frequency interaction curves of beams222

under uniformly distributed load, combined axial force and bending loads. The effects of loading condition, location223

of applied load and fiber orientation on the natural frequencies, load-frequency interaction curves and mode shapes224

are investigated. Triply coupled vibration modes including the flexural mode in the x-, y-direction and torsional225

mode are included in the analysis. The present model is found to be appropriate and efficient in analyzing vibration226

problem of thin-walled composite beams under combined axial force and bending loads.227
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CAPTIONS OF TABLES284

Table 1: Effect of axial force and bending moment on the first four natural frequencies with respect to the fiber285

angle change in the bottom flange of a simply supported composite beam.286
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CAPTIONS OF FIGURES287

Figure 1: Definition of coordinates in thin-walled open sections.288

Figure 2: Geometry of thin-walled composite I-beam.289

Figure 3: Effect of load heights on the first load-frequency interaction curves with respect to the fiber angle change290

in the bottom flange of a simply supported composite beam under uniformly distributed load.291

Figure 4: Effect of load heights on the first three load-frequency interaction curves with the fiber angle 0◦ in the292

bottom flange of a simply supported composite beam under uniformly distributed load.293

Figure 5: Effect of load heights on the first three load-frequency interaction curves with the fiber angle 30◦ in the294

bottom flange of a simply supported composite beam under uniformly distributed load.295

Figure 6: Effect of load heights on the first three load-frequency interaction curves with the fiber angle 60◦ in the296

bottom flange of a simply supported composite beam under uniformly distributed load.297

Figure 7: The first four normal mode shapes of the flexural and torsional components with the fiber angle 30◦ in298

the bottom flange of a simply supported composite beam under combined axial compressive force (N = 0.5N cr) and299

bending moment (M = 0.5M cr).300

Figure 8: The first three moment-frequency interaction curves with the fiber angle 30◦ in the bottom flange of a301

simply supported composite beam.302

Figure 9: The first three moment-frequency interaction curves with the fiber angle 30◦ in the bottom flange of a303

simply supported composite beam under an axial compressive force (N = 0.5N cr).304

Figure 10: Effect of axial force on the first load-frequency interaction curves with fiber angles 30◦ and 60◦ in the305

bottom flange of a cantilever composite beam under point load at shear center of free end.306

Figure 11: The first load-frequency interaction curves with respect to the axial compressive force change with fiber307

angles 30◦ and 60◦ in the bottom flange of a cantilever composite beam under point load at shear center of free end.308
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TABLE 1 Effect of axial force and bending moment on the first four natural frequencies with respect to the fiber angle change

in the bottom flange of a simply supported composite beam.

Fiber Ncr Mcr Moment & Present Orthotropy

angle (×10−2) Axial force ω1 ω2 ω3 ω4 ωya1 ωyb1 ωya2 ωxx1

0 5.153 7.370 M = 0.5Mcr 2.914 6.204 18.657 19.830 2.914 6.204 18.657 19.830

30 2.771 4.895 N = 0.5Ncr 3.049 4.108 12.652 16.205 2.629 4.355 13.595 16.240

60 1.259 3.117 (compression) 2.050 3.655 5.990 12.317 1.836 3.353 6.019 14.596

90 1.112 2.905 1.895 3.674 5.450 11.146 1.695 3.360 5.453 14.523

0 5.153 7.370 M = 0.5Mcr 3.980 7.522 19.654 20.148 3.980 7.522 19.654 20.148

30 2.771 4.895 N = 0 3.672 4.772 14.120 16.429 3.102 5.471 14.034 16.449

60 1.259 3.117 (no axial force) 2.650 3.712 7.014 13.492 2.148 4.027 6.850 14.703

90 1.112 2.905 2.448 3.721 6.422 12.270 2.021 3.945 6.268 14.617

0 5.153 7.370 M = 0.5Mcr 4.769 8.666 20.461 20.518 4.769 8.666 20.461 20.518

30 2.771 4.895 N = −0.5Ncr 4.165 5.551 15.214 16.677 3.781 6.240 14.697 16.656

60 1.259 3.117 (tension) 3.068 4.066 7.855 14.513 2.639 4.481 7.647 14.808

90 1.112 2.905 2.857 4.022 7.226 13.254 2.487 4.353 7.040 14.710
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FIG. 1 Definition of coordinates in thin-walled open sections.
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FIG. 2 Geometry of thin-walled composite I-beam.
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FIG. 3 Effect of load heights on the first load-frequency interaction curves with respect to the fiber angle change in the bottom

flange of a simply supported composite beam under uniformly distributed load.
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FIG. 4 Effect of load heights on the first three load-frequency interaction curves with the fiber angle 0◦ in the bottom flange

of a simply supported composite beam under uniformly distributed load.
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FIG. 5 Effect of load heights on the first three load-frequency interaction curves with the fiber angle 30◦ in the bottom flange

of a simply supported composite beam under uniformly distributed load.
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FIG. 6 Effect of load heights on the first three load-frequency interaction curves with the fiber angle 60◦ in the bottom flange

of a simply supported composite beam under uniformly distributed load.
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FIG. 7 The first four normal mode shapes of the flexural and torsional components with the fiber angle 30◦ in the bottom

flange of a simply supported composite beam under combined axial compressive force (N = 0.5Ncr) and bending moment

(M = 0.5Mcr).
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FIG. 8 The first three moment-frequency interaction curves with the fiber angle 30◦ in the bottom flange of a simply supported

composite beam.
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FIG. 9 The first three moment-frequency interaction curves with the fiber angle 30◦ in the bottom flange of a simply supported

composite beam under an axial compressive force (N = 0.5Ncr).



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

32

0

0.4

0.8

1.2

1.6

2

2.4

0 0.025 0.05 0.075 0.1

ω

P

N = 0.5Ncr, θ = 30◦

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆
⋆
⋆

⋆

⋆

⋆
N = 0, θ = 30◦

N = −0.5Ncr, θ = 30◦

r r r r r r r r r r r r r r r r r r r
r

r
N = 0.5Ncr, θ = 60◦

⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆
⋆
⋆
⋆

⋆

⋆
N = 0, θ = 60◦

N = −0.5Ncr, θ = 60◦

r r r r r r r r r r r r r r r r r r r
r

r

FIG. 10 Effect of axial force on the first load-frequency interaction curves with fiber angles 30◦ and 60◦ in the bottom flange

of a cantilever composite beam under point load at shear center of free end.
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FIG. 11 The first load-frequency interaction curves with respect to the axial compressive force change with fiber angles 30◦

and 60◦ in the bottom flange of a cantilever composite beam under point load at shear center of free end.


