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Abstract

Static behaviour of composite beams with arbitrary lay-ups using various refined shear deformation

theories is presented. The developed theories, which do not require shear correction factor, account

for parabolical variation of shear strains and consequently shear stresses through the depth of the

beam. In addition, they have strong similarity with Euler-Bernoulli beam theory in some aspects

such as governing equations, boundary conditions, and stress resultant expressions. A two-noded C1

finite element with six degree-of-freedom per node which accounts for shear deformation effects and

all coupling coming from the material anisotropy is developed to solve the problem. Numerical results

are performed for symmetric and anti-symmetric cross-ply composite beams under the uniformly

distributed load and concentrated load. The effects of fiber angle and lay-ups on the shear deformation

parameter and extension-bending-shear-torsion response are investigated.

Keywords: Composite beams; higher-order theory; shear deformation parameter ; fourfold coupled

response.

1. Introduction

Composite materials are increasingly being used in various engineering applications due to their

attractive properties in strength, stiffness, and lightness. Finite element models originally developed for

one-layered isotropic structures were extended to laminated composite structures as equivalent single-

layer (ESL) models. These models are known to provide a sufficiently accurate description of the global

response of thin to moderately thick laminates [1] and considered in this paper. In company with the

increase in the application of composite materials in engineering structures, many beam theories have
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been developed for predicting the response of laminated composite beams. A review of different beam

theories for the analysis of isotropic and laminated beams was presented by Ghugal and Shimpi [2].

Assessments of several beam theories were performed by Aguiar et al. [3] and Zhen and Wanji [4] for

static, vibration, and stability analyses of composite beams. According to Ghugal and Shimpi [2], all of

these beam theories can be classified into three main categories: the classical beam theory (CBT), the

first-order beam theory (FOBT) and the higher-order beam theory (HOBT). The CBT known as Euler-

Bernoulli beam theory is the simplest one and is applicable to slender beams only. For moderately

deep beams, it underestimates deflection and overestimates buckling load and natural frequency due

to ignoring the transverse shear effects ([5]-[7]). The FOBT known as Timoshenko beam theory is

proposed to overcome the limitations of the CBT by accounting for the transverse shear effects. Since

the FOBT violates the zero shear stress conditions on the top and bottom surfaces of the beam, a

shear correction factor is required to account for the discrepancy between the actual stress state and

the assumed constant stress state. To remove the discrepancies in the CBT and FOBT, the HOBTs

are developed to avoid the use of shear correction factor and have a better prediction of response of

laminated beams. The HOBTs can be developed based on the assumption of the higher-order variation

of in-plane displacement ([8]-[12]) or both in-plane and transverse displacements ([13]-[20]) through the

depth of the beam. There is another type of higher-order theories which use trigonometric, hyperbolic

and exponential functions to represent the shear deformation effects. By using these higher-order

theories, although several authors have investigated the static, vibration and buckling behaviour of

composite plates ([21]-[26]), the existing literature reveals that studies of flexural analysis of composite

beams with arbitrary lay-ups are limited. Although the HOBTs offer a slight improvement in accuracy

compared to the FOBT, they are computationally more demanding due to higher-order terms included

in the theories. Hence, there is a scope to develop accurate refined shear deformation beam theories

which are simple to use to solve the problem.

In this paper, various refined shear deformation beam models are presented to study the static

responses of composite beams with arbitrary lay-ups under vertical loads. The displacement fields

of the present theories are chosen based on the following assumptions: (1) the axial and transverse

displacements consist of bending and shear components in which the bending components do not

contribute toward shear forces and, likewise, the shear components do not contribute toward bending

moments; (2) the bending component of axial displacement is similar to that given by the CBT;

and (3) the shear component of axial displacement gives rise to the higher-order variation of shear

strain and hence to shear stress through the depth of the beam in such a way that shear stress

vanishes on the top and bottom surfaces. The most interesting feature of these beam models is that
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it satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without

using shear correction factors. The governing equations are derived from the principle of virtual

displacements. A two-noded C1 finite element with six degree-of-freedom per node which accounts for

shear deformation effects and all coupling coming from the material anisotropy is developed to solve

the problem. Numerical results are performed for symmetric and anti-symmetric cross-ply composite

beams under the uniformly distributed load and concentrated load. The effects of fiber angle and lay-

ups on the shear deformation parameter and extension-bending-shear-torsion response are investigated.

2. Kinematics

A laminated composite beam made of many plies of orthotropic materials in different orientations

with respect to the x-axis, as shown in Fig. 1, is considered. For generality purpose, the displacement

field in the beam is assumed to be:

U(x, z) = u(x)− z
∂wb(x)

∂x
− f(z)

∂ws(x)

∂x
(1a)

V (x, z) = zφ(x) (1b)

W (x, z) = wb(x) + ws(x) (1c)

where u is the axial displacement along the mid-plane of the beam, wb and ws are the bending and

shear components of transverse displacement along the mid-plane of the beam, φ is rotation of the

normal to the mid-plane about x-axis and f(z) represents shape function determining the distribution

of the transverse shear strains and stress through the depth of the beam. Eq. (1) contains the

displacement field of the CBT, FOBT, HOBT based on Reddy [27] and the sinusoidal shear beam

theory (SSBT) based on Touratier [21]. Each displacement field can be obtained by using the function

f(z) given in Table 1.

The non-zero strains are given by:

ǫx =
∂u

∂x
= ǫ◦x + zκbx + fκsx (2a)

γxz =
∂w

∂x
+
∂u

∂z
= (1− f ′)γ◦xz = gγ◦xz (2b)

γxy =
∂u

∂y
+
∂v

∂x
= zκxy (2c)

where ǫ◦x, γ
◦

xz, κ
b
x, κ

s
x and κxy are axial strain, shear strains and curvatures in the beam, respectively

3
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defined as:

ǫ◦x = u′ (3a)

γ◦xz = w′

s (3b)

κbx = −w′′

b (3c)

κsx = −w′′

s (3d)

κxy = φ′ (3e)

where differentiation with respect to the x-axis is denoted by primes (′).

3. Variational Formulation

Total potential energy of the system is calculated by sum of strain energy and the work done by

external forces:

Π = U + V (4)

where U is the strain energy:

U =
1

2

∫

v

(σxǫx + σxzγxz + σxyγxy)dv (5)

The strain energy is calculated by substituting Eq. (2) into Eq. (5):

U =
1

2

∫

v

[

σx(ǫ
◦

x + zκbx + fκsx) + σxzgγ
◦

xz + σxyzκxy

]

dv (6)

The variation of the strain energy can be stated as:

δU =

∫ l

0

(Nxδǫ
◦

z +M b
xδκ

b
x +M s

xδκ
s
x +Qxzδγ

◦

xz +Mxyδκxy)dx (7)

where Nx,M
b
x,M

s
x, Qxz and Mxy are the axial force, bending moments, shear force and torsional

moment, respectively, defined by integrating over the cross-sectional area A as:

Nx =

∫

A

σxdA (8a)

M b
x =

∫

A

σxzdA (8b)

M s
x =

∫

A

σxfdA (8c)

Qxz =

∫

A

σxzgdA (8d)

Mxy =

∫

A

σxyzdA (8e)

4
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On the other hand, the variation of work done by external forces can be written as:

δV = −

∫ l

0

[

Pxδu+ Pz(δwb + δws)
]

dx (9)

Principle of total potential energy can be stated as:

0 = δΠ = δU + δV (10)

The weak form of the HOBT and SSBT for composite beams is given by substituting Eqs. (7) and

(9) into Eq. (10):

0 =

∫ l

0

[

Nzδu
′
−M b

xδw
′′

b −M s
xδw

′′

s +Mxyδφ
′ +Qxzδw

′

s − Pxδu− Pz(δwb + δws)
]

dx (11)

Due to the absence of function f(z) in Eq. (8c), the weak form of the FOBT becomes:

0 =

∫ l

0

[

Nzδu
′
−M b

xδw
′′

b +Mxyδφ
′ +Qxzδw

′

s − Pxδu− Pz(δwb + δws)
]

dx (12)

4. Constitutive Equations

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of section

are given by:







σx

σxy







k

=





Q̄∗

11 Q̄∗

16

Q̄∗

16 Q̄∗

66





k 





ǫx

γxy







(13)

where Q̄∗

ij are transformed reduced stiffnesses and can be calculated from the transformed stiff-

nesses based on the plane stress and plane strain assumption. More detailed explanation can be found

in Ref. [28].

The constitutive relation for out-of-plane stress and strain is given by:

σxz = Q̄55γxz (14)

The constitutive equations for bar forces and bar strains are obtained by using Eqs. (2), (8), (13)

and (14):











































Nx

M b
x

M s
x

Mxy

Qxz











































=























R11 R12 R13 R14 0

R22 R23 R24 0

R33 R34 0

R44 0

sym. R55

































































ǫ◦x

κbx

κsx

κxy

γ◦xz











































(15)
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where Rij are the laminate stiffnesses of general composite beams and given by:

R11 =

∫

A

Q̄∗

11dA (16a)

R12 =

∫

A

Q̄∗

11zdA (16b)

R13 =

∫

A

Q̄∗

11fdA (16c)

R14 =

∫

A

Q̄∗

16zdA (16d)

R22 =

∫

A

Q̄∗

11z
2dA (16e)

R23 =

∫

A

Q̄∗

11fzdA (16f)

R24 =

∫

A

Q̄∗

16z
2dA (16g)

R33 =

∫

A

Q̄∗

11f
2dA (16h)

R34 =

∫

A

Q̄∗

16fzdA (16i)

R44 =

∫

A

Q̄∗

66z
2dA (16j)

R55 =

∫

A

Q̄55g
2dA (16k)

It is from Eq. (16) that the difference between each theory can be found in the laminate stiffnesses

terms dealing with functions f(z) and g(z) as indicated in Table 1, these terms are Ri,3, i = 1..4 and

R55. The explicit of the laminate stiffnesses for each theory is given in Appendix A.

5. Governing Equations

The equilibrium equations of the present study can be obtained by integrating the derivatives of

the varied quantities by parts and collecting the coefficients of δu, δwb, δws and δφ:

N ′

x + Px = 0 (17a)

M b
x

′′

+ Pz = 0 (17b)

M s
x
′′
−Q′

xz + Pz = 0 (17c)

M ′

xy = 0 (17d)

The natural boundary conditions are of the form:

δu : Nx (18a)

6
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δwb : M b
x

′

(18b)

δw′

b : M b
x (18c)

δws : M s
x
′ +Qxz (18d)

δw′

s : M s
x (18e)

δφ : Mxy (18f)

By substituting Eqs. (3) and (15) into Eq. (17), the explicit form of the governing equations can

be expressed with respect to the laminate stiffnesses Rij:

R11u
′′
−R12w

′′′

b −R13w
′′′

s +R14φ
′′ + Px = 0 (19a)

R12u
′′′
−R22w

iv
b −R23w

iv
s +R24φ

′′′ + Pz = 0 (19b)

R13u
′′′
−R23w

iv
b −R33w

iv
s +R34φ

′′′
−R55w

′′

s + Pz = 0 (19c)

R14u
′′
−R24w

′′′

b −R34w
′′′

s +R44φ
′′ = 0 (19d)

Eq. (19) is the most general equilibrium equations for the extension, bending, shear and torsion

behaviour of composite beams under various types of loadings, and the dependent variables, u, wb, ws

and φ are fully coupled.

6. Finite Element Formulation

The present theory for composite beams described in the previous section was implemented via a

displacement based finite element method.

6.1. Interpolation function for the HOBT and SSBT

The variational statement in Eq. (11) requires that the bending and shear components of transverse

displacement wb and ws be twice differentiable and C1-continuous, whereas the axial displacement u

and rotation φ must be only once differentiable and C0-continuous. The generalized displacements are

expressed over each element as a combination of the linear interpolation function Ψj for u and φ and

Hermite-cubic interpolation function ψj for wb and ws associated with node j and the nodal values:

u =

2
∑

j=1

ujΨj (20a)

wb =

4
∑

j=1

wbjψj (20b)

7
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ws =
4

∑

j=1

wsjψj (20c)

φ =

2
∑

j=1

φjΨj (20d)

6.2. Interpolation function for the FOBT

The variational statement in Eq. (12) requires that bending component displacement wb be twice

differentiable and C1-continuous, whereas the axial displacement u, the shear component displacement

ws and rotation φ must be only once differentiable and C0-continuous. The generalized displacements

are expressed over each element as a combination of the linear interpolation function Ψj for u,ws and

φ and Hermite-cubic interpolation function ψj for wb associated with node j and the nodal values:

u =

2
∑

j=1

ujΨj (21a)

wb =

4
∑

j=1

wbjψj (21b)

ws =

2
∑

j=1

wsjΨj (21c)

φ =

2
∑

j=1

φjΨj (21d)

Substituting these expressions in Eqs. (20) and (21) into the corresponding weak statement in

Eqs. (11) and (12), the finite element model of a typical element can be expressed as:

















K11 K12 K13 K14

K22 K23 K24

K33 K34

sym. K44















































u

wb

ws

φ































=































F1

F2

F3

F4































(22a)

where [K] is the element stiffness matrix and [F ] is the element force vector. The explicit of them is

given in the Appendix B.

It is clear that for the HOBT and SSBT, a two-noded C1 finite element with six degree-of-freedom

per node is used, while five degree-of-freedom per node is used for the FOBT. Besides, since C1 finite

element is used, the shear locking can be avoided for the FOBT.

8
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7. Numerical Examples

For verification purpose, a number of numerical examples are presented and analysed using different

theory (CBT, FOBT, HOBT and SSBT). In the case of the FOBT, a value of 5/6 is used for the

shear correction factor. A cantilever isotropic beam under an end load P and a simply-supported

isotropic beam under a uniform load q are considered first. The exact solutions [29] for the maximum

displacements for these two cases, when using the higher-order theory, are given by:

wc =
1

3

PL3

EI
+

1

5

PL3

EI
(1 + ν)

h

L2
(1−

1

λL
tanhλL), λ =

420

(1 + ν)h
(23a)

wss =
5

384

qL4

EI
+

5

24

qL4

EI

[ 3

25
(1 + ν)

h

L2
−

2

875
(1 + ν)2

h

L4

]

(23b)

where the superscripts c and ss represent the cantilever and simply-supported beam solutions,

respectively. The material and geometric properties are E = 29000, ν = 0.3, b = 1, P = 100 and

q = 10. These problems are solved here to compare with other theories for several span-to-height

L/h ratios. The maximum displacements are calculated and given in Table 2, with the previous finite

elements results ([12], [30], [31] and [32]) and Euler, Timoshenko theory results [31]. The current

results are in excellent agreement with other researchers and the exact solutions for both cases.

In the next example, a cantilever unidirectional composite beam with L/h = 9 is performed for

two load cases: a uniformly distributed load, and a concentrated tip load (Fig. 2). The material

properties and loading cases are given in Table 3. The vertical displacements at the free end are given

in Table 4 with the previous result obtained based on the FOBT of Lin and Zhang [32] and Davalos et

al. [33] and the HOBT of Surana and Nguyen [34]. The table shows an excellent agreement between

the predictions of the present model and the results of the other models mentioned.

To demonstrate the accuracy and validity of this study further, symmetric [0◦/90◦/0◦] and anti-

symmetric cross-ply [0◦/90◦] composite beams under a uniformly distributed load are analysed. Beams

with cantilever and simply supported boundary conditions are considered. All laminate in the present

study are of equal thickness and made of the same orthotropic material, whose properties are:

E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25 (24)

For convenience, the following non-dimensional terms are used, the vertical displacement and in-

plane and transverse shear stresses of beams under the uniformly distributed load q:

w =
wbhE2h

2102

qL4
(25a)

σx =
bh2

qL2
σx(L/2, h/2) (25b)

σxz =
bh

qL
σxz(0, 0) (25c)
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and the axial, vertical and torsional displacements of beams under the concentrated tip load P :

u =
ubhE2

PL
(26a)

w =
wbhE2h

2

PL3
(26b)

φ =
φbhG12h

2

PL2
(26c)

as well as a parameter α is defined to assess the effect of shear deformation:

α =
ws

w
(27)

The mid-span displacements for different L/h ratios are compared with exact solutions [7] and the

finite elements results ([3], [12], [18], [35]) in Tables 5 and 6. Effect of span-to-height ratio on in-plane

and transverse shear stresses of a simply-supported composite beam is given in Table 7. Distribution

of these stresses through-the-thickness for L/h = 5 is also plotted in Figs. 3 and 4. An excellent

agreement between present models and the corresponding previous results, for each theory can be

observed. It can be noticed that displacements obtained from the HOBT and SSBT are very close in

all examples in present study. This is due simply to the form of function f(z) which in the case of the

HOBT corresponds to a development in series up to the order 3 of function sin in the SSBT. The shear

deformation parameter with respect to span-to-height ratio obtained by using the FOBT, HOBT and

SSBT is plotted in Figs. 5 and 6. This parameter depends not only on the span-to-height ratio but also

lay-up. It is clear that shear effect on symmetric cross-ply is more pronounced than anti-symmetric

one for a given span-to-height ratio. For symmetric cross-ply, the shear theories become very effective

in a relatively large region up to the point where span-to-height ratio reaches value of L/h = 25. The

shear deformation parameter increases in the order FOBT, HOBT and SSBT. It indicates that only

the last two theories are capable of revealing exactly the influence of shear deformation, especially for

lower span-to-height ratio.

The next example shows the effects of fiber orientation on the vertical displacements of simply

supported anti-symmetric angle-ply [θ/− θ]2 composite beams with L/h = 5 and L/h = 10 under the

uniformly distributed load. Variation of the bending and shear components of vertical displacement

at mid-span with respect to the fiber angle change using different theory is shown in Figs. 7 and 8. As

expected, the bending and shear components obtained using the HOBT and SSBT are nearly identical.

The bending component obtained using the SSBT is the smallest, whereas the shear one is the largest.

As the fiber angle increases, the bending components increase more rapidly than the shear ones. It

is clear that the shear effect is negligible in this lay-up even for L/h = 10 (Fig. 8). When using the

HOBT, the orthotropy solution or uncoupled solution, which neglects the coupling effects coming from

10
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the material anisotropy, are also given. Variation of the maximum vertical displacements at mid-span

of the beam with respect to the fiber angle change is shown in Fig. 9. For this stacking sequence,

the coupling stiffness R14 and R23 do not vanish while all the other coupling stiffnesses become zero.

That is, the orthotropy solution might not be accurate. However, since the coupling stiffness is small,

the coupling effects coming from the material anisotropy become negligible. Consequently, the present

solution and the orthotropy solution agrees well as shown in Fig. 9. It is indicated that the orthotropy

solution is sufficiently accurate for this lay-up.

In order to investigate the coupling and shear effects further on the axial-flexural-torsional response,

cantilever [0◦/θ]2 composite beams with L/h = 5 and L/h = 10 under the concentrated tip load are

analysed using the HOBT. For this lay-up, the coupling stiffnesses R12, R13, R14, R23 and R24 do not

vanish. Variation of the vertical displacements at mid-span with respect to the fiber angle change is

shown in Fig. 10. The finite element solution using the CBT is also displayed. The solution excluding

shear effect remarkably underestimates the displacement for all the range of the fiber angle. As the fiber

angle increases, the orthotropy solution disagree with the finite element solution as anisotropy of the

beam gets higher. Variation of the axial and torsional displacements at mid-span with respect to fiber

angle change is shown in Figs. 11 and 12. It is clear that the angle of twist is not affected by shear effect

since its value is identical for both L/h = 5 and L/h = 10. The maximum angle of twist occurs near

θ = 20◦, that is, because the torsional rigidity E44 becomes maximum value at this value. It is from

Figs. 11 and 12 that highlight the influence of coupling effects on the axial displacement and angle of

twist of the beam. These responses are never seen in isotropic material because the coupling terms are

not present. It implies that the structure under vertical load not only causes transverse displacement

as would be observed in isotropic material, but also causes additional responses due solely to coupling

effects. That is, the orthotropy solution is no longer valid for unsymmetrically laminated beams, and

and fourfold coupled extension-bending-shear-torsion equations should be considered simultaneously

for accurate analysis of composite beams.

8. Conclusions

A two-noded C1 finite element model with six degree-of-freedom per node which accounts for shear

deformation effects and anisotropy coupling is developed to study the static behaviour of composite

beams with arbitrary lay-ups under vertical loads. This model is capable of predicting accurately

static responses for various configuration including boundary conditions, span-to-height ratio and

laminate orientation. It accounts for parabolical variation of shear strains through the depth of the

beam, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam

11
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without using shear correction factor. The orthotropy solution is accurate for lower degrees of material

anisotropy, but, becomes inappropriate as the anisotropy of the beam gets higher, and fully coupled

equations should be considered for accurate analysis of composite beams. The present model is found

to be appropriate and efficient in analysing static problem of composite beams.

9. Appendix A

The laminate stiffnesses of composite beams in the present study can be divided by the common

terms for all theories and specific terms for each theory. The common terms for all theories can be

expressed by:

R11 =

∫

y

A11dy (28a)

R12 =

∫

y

B11dy (28b)

R14 =

∫

y

B16dy (28c)

R22 =

∫

y

D11dy (28d)

R24 =

∫

y

D16dy (28e)

R44 =

∫

y

D66dy (28f)

The specific terms for the FOBT can be expressed by:

R13 = R23 = R33 = R34 = 0 (29a)

R55 =

∫

y

A55dy (29b)

The specific terms for the HOBT can be expressed by:

R13 =

∫

y

4

3h2
E11dy (30a)

R23 =

∫

y

4

3h2
F11dy (30b)

R33 =

∫

y

16

9h4
H11dy (30c)

R34 =

∫

y

4

3h2
F16dy (30d)

R55 =

∫

y

(A55 −
8

h2
D55 +

16

h4
F55)dy (30e)

12
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The specific terms for the SSBT can be expressed by:

R13 =

∫

y

(B11 −
h

π
Es

11)dy (31a)

R23 =

∫

y

(D11 −
h

π
F s
11)dy (31b)

R33 =

∫

y

[

D11 − 2
h

π
F s
11 + (

h

π
)2Gs

11

]

dy (31c)

R34 =

∫

y

(D16 −
h

π
F s
16)dy (31d)

R55 =

∫

y

Hs
55dy (31e)

whereAij , Bij andDij matrices are extensional, coupling and bending stiffness as well as Eij , Fij , Gij ,Hij

and Es
ij , F

s
ij , G

s
ij ,H

s
ij matrices are higher order stiffnesses, respectively, defined by:

(Aij , Bij ,Dij , Eij , Fij , Gij ,Hij) =

∫

Q̄ij(1, z, z
2, z3, z4, z5, z6)dz (32a)

(Es
ij , F

s
ij , G

s
ij ,H

s
ij) =

∫

Q̄ij

[

sin(
πz

h
), z sin(

πz

h
), sin2(

πz

h
), cos2(

πz

h
)
]

dz (32b)

10. Appendix B

The element stiffness matrix for the HOBT and SSBT is given by:

K11
ij =

∫ l

0

R11Ψ
′

iΨ
′

jdz (33a)

K12
ij = −

∫ l

0

R12Ψ
′

iψ
′′

j dz (33b)

K13
ij = −

∫ l

0

R13Ψ
′

iψ
′′

j dz (33c)

K14
ij =

∫ l

0

R14Ψ
′

iΨ
′

jdz (33d)

K22
ij =

∫ l

0

R22ψ
′′

i ψ
′′

j dz (33e)

K23
ij =

∫ l

0

R23ψ
′′

i ψ
′′

j dz (33f)

K24
ij = −

∫ l

0

R24ψ
′′

i Ψ
′

jdz (33g)

K33
ij =

∫ l

0

(R33ψ
′′

i ψ
′′

j +R55ψ
′

iψ
′

j)dz (33h)

K34
ij = −

∫ l

0

R34ψ
′′

i Ψ
′

jdz (33i)

K44
ij =

∫ l

0

R44Ψ
′

iΨ
′

jdz (33j)
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The element stiffness matrix for the FOBT is given by:

K11
ij =

∫ l

0

R11Ψ
′

iΨ
′

jdz (34a)

K12
ij = −

∫ l

0

R12Ψ
′

iψ
′′

j dz (34b)

K13
ij = 0 (34c)

K14
ij =

∫ l

0

R14Ψ
′

iΨ
′

jdz (34d)

K22
ij =

∫ l

0

R22ψ
′′

i ψ
′′

j dz (34e)

K23
ij = 0 (34f)

K24
ij = −

∫ l

0

R24ψ
′′

i Ψ
′

jdz (34g)

K33
ij =

∫ l

0

R55Ψ
′

iΨ
′

jdz (34h)

K34
ij = 0 (34i)

K44
ij =

∫ l

0

R44Ψ
′

iΨ
′

jdz (34j)

The force vector is given by:

F 1
i =

∫ l

0

PxΨidz (35a)

F 2
i =

∫ l

0

PzΨidz (35b)

F 3
i =

∫ l

0

PzΨidz (35c)

F 4
i = 0 (35d)
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Figure 1: Geometry of a laminated composite beam.

Figure 2: Configuration and cross section of a cantilever composite beam.

Figure 3: Distribution of stress σx through-the-thickness of a symmetric and an anti-symmetric cross-ply simply-

supported composite beam with L/h = 5.

Figure 4: Distribution of stress σxz through-the-thickness of a symmetric and an anti-symmetric cross-ply simply-

supported composite beam with L/h = 5.

Figure 5: Effect of shear deformation on symmetric cross-ply beam under a uniformly distributed load with cantilever

and simply-supported boundary conditions.

Figure 6: Effect of shear deformation on anti-symmetric cross-ply beam under a uniformly distributed load with cantilever

and simply-supported boundary conditions.

Figure 7: Variation of the bending and shear components of vertical displacements at mid-span with respect to the fiber

angle change of a simply-supported composite beam with L/h = 5 under the uniformly distributed load.

Figure 8: Variation of the bending and shear components of vertical displacements at mid-span with respect to the fiber

angle change of a simply supported composite beam with L/h = 10 under the uniformly distributed load.

Figure 9: Variation of the vertical displacement at mid-span with respect to the fiber angle change of simply supported

composite beams with L/h = 5 and L/h = 10 under the uniformly distributed load.

Figure 10: Variation of the vertical displacement at mid-span with respect to the fiber angle change of cantilever composite

beams with L/h = 5 and L/h = 10 under the concentrated tip load.

Figure 11: Variation of the axial displacement at free end with respect to the fiber angle change of cantilever composite

beams with L/h = 5 and L/h = 10 under the concentrate load.

Figure 12: Variation of the angle of twist at free end with respect to the fiber angle change of cantilever composite beams

with L/h = 5 and L/h = 10 under the concentrate load.
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Table 1. Different transverse shear deformation functions. 

Theory ( )f z  ( ) 1 '( )g z f z   

The Classical Beam Theory (CBT) 0 0 

The First-order Beam Theory (FOBT) 0 1 

The Higher-order Beam Theory (HOBT) 2
4

3

z
z

h

  
  

   

 
2

2
1 4

z

h

 
 

 
 

The Sinusoidal Shear Beam Theory (SSBT) 
sin

h z
z

h





 
  

 
 cos

z

h

 
 
 
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Table 2: The maximum displacements of an isotropic cantilever beam and simply-supported 

beam. 

Theory Reference 
L=12 L=40 L=80 L=160 

h =12 h =12 h =12 h =12 

a. Cantilever beam 

CBT Euler theory [31] 0.013793 0.510855 4.0868 32.6948 

 

Present 0.013793 0.510860 4.0868 32.6950 

FOBT Timoshenko theory [31] 0.024552 0.546718 4.1586 32.8382 

 

Lin and Zhang [32] 0.024600 0.546700 4.1586 32.8380 

 

Present 0.024553 0.546720 4.1586 32.8380 

HOBT Murthy et al. [12] 0.023953 0.546119 4.1588 32.8376 

 

Heyliger and Reddy [30] 0.023931 0.545880 4.1567 32.8230 

 

Eisenberger [31] 0.023953 0.546119 4.1588 32.8376 

 

Present 0.023954 0.546120 4.1580 32.8380 

SSBT Present 0.023874 0.546000 4.1578 32.8370 

Elasticity Bickford [29] 0.024518 0.546680 4.1585 32.8380 

b. Simplysupported beam 

CBT Present 0.000647 0.079821 1.2771 20.4340 

FOBT Present 0.002261 0.097754 1.3489 20.7210 

HOBT Heyliger and Reddy [30] 0.002220 0.097703 1.3486 20.7170 

 

Present 0.002221 0.097714 1.3488 20.7210 

SSBT Present 0.002209 0.097679 1.3487 20.7210 

Elasticity Bickford [29] 0.002220 0.097712 1.3488 20.7210 
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Table 3: Material properties and loading case. 

Material Loading case 

Material 1 Material 2 Case A Case B 

E1/E2 = 30 E1/E2 = 5 
Q = 0 Q = 100 

E2 = 1.010
6 

E2 = 1.010
6 

G12/E2 = 0.5 G12/E2 = 0.5 
q =200 q = 0 

12 0.25   12 0.25   
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Table 4: Maximum displacement of a cantilever composite beam (mm). 

Theory Reference Case A Case B 

CBT Present 0.026285 0.4436 

FOBT Lin and Zhang [32] 0.030600 0.5410 

 

Davalos et al. [33] 0.030290 0.5520 

 

Present 0.030605 0.5408 

HOBT Surana and Nguyen [34] 0.030310 0.5350 

 

Present 0.030248 0.5305 

SSBT Present 0.030210 0.5295 
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Table 5: Non-dimensional mid-span displacements of a symmetric cross-ply beam under a 

uniformly distributed load with cantilever and simply-supported boundary conditions. 

 

 

Theory Reference 
L/h 

5 10 20 50 

a. Cantilever beam 

CBT Khdeir and Reddy [7] 2.198 2.198 2.198 2.198 

 

Present 2.203 2.203 2.203 2.203 

FOBT Khdeir and Reddy [7] 6.698 3.323 - 2.243 

 

Chakraborty et al. [35] 6.693 3.321 - 2.242 

 

Present 6.703 3.328 2.485 2.248 

HOBT Khdeir and Reddy [7] 6.824 3.455 - 2.251 

 

Murthy et al. [12] 6.836 3.466 - 2.262 

 

Present 6.830 3.461 2.530 2.257 

SSBT Present 6.842 3.478 2.536 2.258 

b. Simplysupported beam 

CBT Aguiar et al. [3] 0.646 0.646 0.646 0.646 

 

Khdeir and Reddy [7] 0.646 0.646 0.646 0.646 

 

Present 0.648 0.648 0.648 0.648 

FOBT Aguiar et al. [3] 2.146 1.021 0.740 0.661 

 

Khdeir and Reddy [7] 2.146 1.021 - 0.661 

 

Chakraborty et al. [35] 2.145 1.020 - 0.660 

 

Present 2.148 1.023 0.742 0.663 

HOBT Aguiar et al. [3] 2.426 1.105 0.762 0.665 

 

Khdeir and Reddy [7] 2.412 1.096 - 0.665 

 

Murthy et al. [12] 2.398 1.090 - 0.661 

 Zenkour [18] 2.414 1.098 - 0.666 

 Present 2.414 1.098 0.761 0.666 

SSBT Present 2.444 1.108 0.764 0.667 
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Table 6: Non-dimensional mid-span displacements of an anti-symmetric cross-ply beam 

under a uniformly distributed load with cantilever and simply-supported boundary conditions. 

Theory Reference 
L/h 

5 10 20 50 

a. Cantilever beam 

CBT Khdeir and Reddy [7] 11.293 11.293 11.293 11.293 

 

Present 11.319 11.319 11.319 11.319 

FOBT Khdeir and Reddy [7] 16.436 12.579 - 11.345 

 

Chakraborty et al. [35] 16.496 12.579 - 11.345 

 

Present 16.461 12.604 11.640 11.370 

HOBT Khdeir and Reddy [7] 15.279 12.343 - 11.337 

 

Murthy et al. [12] 15.334 12.398 - 11.392 

 

Present 15.305 12.369 11.588 11.363 

SSBT Present 15.173 12.340 11.582 11.362 

b. Simply-supported beam 

CBT Khdeir and Reddy [7] 3.322 3.322 3.322 3.322 

 

Present 3.329 3.329 3.329 3.329 

FOBT Khdeir and Reddy [7] 5.036 3.750 - 3.339 

 

Chakraborty et al. [35] 5.048 3.751 - 3.353 

 

Present 5.043 3.757 3.436 3.346 

HOBT Khdeir and Reddy [7] 4.777 3.688 - 3.336 

 

Murthy et al. [12] 4.750 3.668 - 3.318 

 Zenkour [18] 4.788 3.697 - 3.344 

 

Present 4.785 3.696 3.421 3.344 

SSBT Present 4.749 3.687 3.419 3.343 
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Table 7: Effect of span-to-height ratio on the non-dimensional stresses of a symmetric and an 

anti-symmetric cross-ply simply-supportedcomposite beam. 

Lay-ups Theory Reference 
x  xz  

L/h = 5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20 

[0
0
/90

0
/0

0
] 

CLT Zenkour [18] 0.7776 0.7776 - - - - 

 Present 0.7780 0.7780 0.7780 - - - 

FOBT Zenkour[18] 0.7776 0.7776 - 0.2994 0.2994 0.2994 

 Present 0.7780 0.7780 0.7780 0.2925 0.2925 0.2925 

HOBT Zenkour[18] 1.0669 0.8500 - 0.4057 0.4311 - 

 Present 1.0670 0.8503 0.7961 0.4057 0.4311 0.4438 

SSBT Present 1.0920 0.8566 0.7976 0.4233 0.4533 0.4683 

[0
0
/90

0
] 

CLT Zenkour[18] 0.2336 0.2336 - - - - 

 Present 0.2335 0.2335 0.2335 - - - 

FOBT Zenkour[18] 0.2336 0.2336 - 0.8553 0.8553 - 

 Present 0.2335 0.2335 0.2335 0.8357 0.8357 0.8357 

HOBT Zenkour[18] 0.2362 0.2343 - 0.9211 0.9572 - 

 Present 0.2361 0.2342 0.2337 0.9187 0.9484 0.9425 

SSBT Present 0.2357 0.2341 0.2337 0.9308 0.9653 0.9624 
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CAPTIONS OF FIGURES 

Figure 1: Geometry of a laminated composite beam. 

Figure 2: Configuration and cross section of a cantilever composite beam. 

Figure 3: Distribution of stress x through-the-thickness of a symmetric and an anti-

symmetric cross-ply simply-supported composite beam with L/h =5. 

Figure 4: Distribution of stress xz  through-the-thickness of a symmetric and an anti-

symmetric cross-ply simply-supported composite beam with L/h = 5. 

Figure 5: Effect of shear deformation on symmetric cross-ply beam under a uniformly 

distributed load with cantilever and simply-supported boundary conditions. 

Figure 6: Effect of shear deformation on anti-symmetric cross-ply beam under a uniformly 

distributed load with cantilever and simply-supported boundary conditions. 

Figure 7: Variation of the bending and shear components of vertical displacements at mid-

span with respect to the fiber angle change of a simply-supported composite beam with L/h = 

5 under the uniformly distributed load. 

Figure 8: Variation of the bending and shear components of vertical displacements at mid-

span with respect to the fiber angle change of a simply-supported composite beam with L/h = 

10 under the uniformly distributed load. 

Figure 9: Variation of the vertical displacements at mid-span with respect to the fiber angle 

change of simply-supported composite beams with L/h = 5 and L/h = 10 under the uniformly 

distributed load. 

Figure 10: Variation of the vertical displacement at free end with respect to the fiber angle 

change of cantilever composite beams with L/h = 5 and L/h = 10 under the concentrate load. 

Figure 11: Variation of the axial displacement at free end with respect to the fiber angle 

change of cantilever composite beams with L/h = 5 and L/h = 10 under the concentrate load. 

Figure 12: Variation of the angle of twist at free end with respect to the fiber angle change of 

cantilever composite beams with L/h = 5 and L/h = 10 under the concentrate load. 
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Figure 1: Geometry of a laminated composite beam. 
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Figure 2: Configuration and cross section of a cantilever composite beam. 

  



31 
 

 

a. Symmetric cross-ply. 

 

b. Anti-symmetric cross-ply. 

 

Figure 3: Distribution of stress x through-the-thickness of a symmetric and an anti-

symmetric cross-ply simply-supported composite beam with L/h =5. 
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a. Symmetric cross-ply 

 

b. Anti-symmetric cross-ply 

Figure 4: Distribution of stress xz  through-the-thickness of a symmetric and an anti-

symmetric cross-ply simply-supported composite beam with L/h = 5. 
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a. Cantilever beam 

 

b. Simply-supported beam 

Figure 5: Effect of shear deformation on symmetric cross-ply beam under a uniformly 

distributed load with cantilever and simply-supported boundary conditions. 
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a. Cantilever beam 

 

b. Simply-supported beam 

Figure 6: Effect of shear deformation on anti-symmetric cross-ply beam under a uniformly 

distributed load with cantilever and simply-supported boundary conditions. 
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Figure 7: Variation of the bending and shear components of vertical displacements at mid-

span with respect to the fiber angle change of a simply-supported composite beam with L/h = 

5 under the uniformly distributed load. 
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Figure 8: Variation of the bending and shear components of vertical displacements at mid-

span with respect to the fiber angle change of a simply-supported composite beam with L/h = 

10 under the uniformly distributed load. 
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Figure 9: Variation of the vertical displacements at mid-span with respect to the fiber angle 

change of simply-supported composite beams with L/h = 5 and L/h = 10 under the uniformly 

distributed load. 
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Figure 10: Variation of the vertical displacement at free end with respect to the fiber angle 

change of cantilever composite beams with L/h = 5 and L/h = 10 under the concentrate load.  
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Figure 11: Variation of the axial displacement at free end with respect to the fiber angle 

change of cantilever composite beams with L/h = 5 and L/h = 10 under the concentrate load. 
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Figure 12: Variation of the angle of twist at free end with respect to the fiber angle change of 

cantilever composite beams with L/h = 5 and L/h = 10 under the concentrate load. 
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