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Abstract

Vibration and buckling analysis of composite beams with arbitrary lay-ups using refined shear defor-

mation theory is presented. The theory accounts for the parabolical variation of shear strains through

the depth of beam. Three governing equations of motion are derived from the Hamilton’s principle.

The resulting coupling is referred to as triply coupled vibration and buckling. A two-noded C1 beam

element with five degree-of-freedom per node which accounts for shear deformation effects and all

coupling coming from the material anisotropy is developed to solve the problem. Numerical results

are obtained for composite beams to investigate effects of fiber orientation and modulus ratio on the

natural frequencies, critical buckling loads and corresponding mode shapes.

Keywords: Composite beams; refined shear deformation theory; triply coupled vibration and

buckling.

1. Introduction

Structural components made with composite materials are increasingly being used in various en-

gineering applications due to their attractive properties in strength, stiffness, and lightness. Under-

standing their dynamic and buckling behaviour is of increasing importance. The classical beam theory

(CBT) known as Euler-Bernoulli beam theory is the simplest one and is applicable to slender beams

only. For moderately deep beams, it overestimates buckling loads and natural frequencies due to ig-

noring the transverse shear effects. The first-order beam theory (FOBT) known as Timoshenko beam

theory is proposed to overcome the limitations of the CBT by accounting for the transverse shear

effects. Since the FOBT violates the zero shear stress conditions on the top and bottom surfaces of
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the beam, a shear correction factor is required to account for the discrepancy between the actual stress

state and the assumed constant stress state. To remove the discrepancies in the CBT and FOBT,

the higher-order beam theory (HOBT) is developed to avoid the use of shear correction factor and

have a better prediction of response of laminated beams. The HOBTs can be developed based on

the assumption of higher-order variations of in-plane displacement or both in-plane and transverse

displacements through the depth of the beam. Many numerical techniques have been used to solve the

dynamic and/or buckling analysis of composite beams using HOBTs. Some researchers studied the

free vibration characteristics of composite beams by using finite element ([1]-[7]). Khdeir and Reddy

([8], [9]) developed analytical solutions for free vibration and buckling of cross-ply composite beams

with arbitrary boundary conditions in conjunction with the state space approach. Analytical solutions

were also derived by Kant et al. ([10], [11]) and Zhen and Wanji [12] to study vibration and buckling

of composite beams. By using the method of power series expansion of displacement components,

Matsunaga [13] analysed the natural frequencies and buckling stresses of composite beams. Aydogdu

([14]-[16]) carried out the vibration and buckling analysis of cross-ply and angle-ply with different sets

of boundary conditions by using Ritz method. Jun et al. ([17],[18]) introduced the dynamic stiffness

matrix method to solve the free vibration and buckling problems of axially loaded composite beams

with arbitrary lay-ups.

In this paper, which is extended from previous research [19], vibration and buckling analysis

of composite beams using refined shear deformation theory is presented. The displacement field

is reduced from the so-called Refined Plate Theory developed by Shimpi ([20], [21]) and based on

the following assumptions: (1) the axial and transverse displacements consist of bending and shear

components in which the bending components do not contribute toward shear forces and, likewise, the

shear components do not contribute toward bending moments; (2) the bending component of axial

displacement is similar to that given by the CBT; and (3) the shear component of axial displacement

gives rise to the higher-order variation of shear strain and hence to shear stress through the depth of

the beam in such a way that shear stress vanishes on the top and bottom surfaces. The most interesting

feature of this theory is that it satisfies the zero traction boundary conditions on the top and bottom

surfaces of the beam without using shear correction factors. The three governing equations of motion

are derived from the Hamilton’s principle. The resulting coupling is referred to as triply coupled

vibration and buckling. A two-noded C1 beam element with five degree-of-freedom (DOF) per node

which accounts for shear deformation effects and all coupling coming from the material anisotropy is

developed to solve the problem. Numerical results are obtained for composite beams to investigate

effects of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads and
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corresponding mode shapes.

2. Kinematics

A laminated composite beam made of many plies of orthotropic materials in different orientations

with respect to the x-axis, as shown in Fig. 1, is considered. Based on the assumptions made in the

preceding section, the displacement field of the present theory can be obtained as:

U(x, z, t) = u(x, t)− z
∂wb(x, t)

∂x
+ z

[1
4
−

5

3

(z
h

)2]∂ws(x, t)

∂x
(1a)

W (x, z, t) = wb(x, t) + ws(x, t) (1b)

where u is the axial displacement along the mid-plane of the beam, wb and ws are the bending

and shear components of transverse displacement along the mid-plane of the beam, respectively. The

non-zero strains are given by:

ǫx =
∂U

∂x
= ǫ◦x + zκbx + fκsx (2a)

γxz =
∂W

∂x
+
∂U

∂z
= (1− f ′)γ◦xz = gγ◦xz (2b)

where

f = z
[
−

1

4
+

5

3

( z
h

)2]
(3a)

g = 1− f ′ =
5

4

[
1− 4

( z
h

)2]
(3b)

and ǫ◦x, γ
◦

xz, κ
b
x, κ

s
x and κxy are the axial strain, shear strains and curvatures in the beam, respec-

tively defined as:

ǫ◦x = u′ (4a)

γ◦xz = w′

s (4b)

κbx = −w′′

b (4c)

κsx = −w′′

s (4d)

where differentiation with respect to the x-axis is denoted by primes (′).

3. Variational Formulation

In order to derive the equations of motion, Hamilton’s principle is used:

δ

∫ t2

t1

(K − U − V)dt = 0 (5)

3
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where U is the strain energy, V is the potential energy, and K is the kinetic energy.

The variation of the strain energy can be stated as:

δU =

∫

v

(σxδǫx + σxzδγxz)dv =

∫ l

0

(Nxδǫ
◦

z +M b
xδκ

b
x +M s

xδκ
s
x +Qxzδγ

◦

xz)dx (6)

where Nx,M
b
x,M

s
x and Qxz are the axial force, bending moments and shear force, respectively,

defined by integrating over the cross-sectional area A as:

Nx =

∫

A

σxdA (7a)

M b
x =

∫

A

σxzdA (7b)

M s
x =

∫

A

σxfdA (7c)

Qxz =

∫

A

σxzgdA (7d)

The variation of the potential energy of the axial force P0, which is applied through the centroid,

can be expressed as:

δV = −

∫ l

0

P0

[
δw′

b(w
′

b + w′

s) + δw′

s(w
′

b + w′

s)
]
dx (8)

The variation of the kinetic energy is obtained as:

δK =

∫

v

ρk(U̇δU̇ + Ẇ δẆ )dv

=

∫ l

0

[
δu̇(m0u̇−m1ẇb

′ −mf ẇs
′) + δẇbm0(ẇb + ẇs) + δẇb

′(−m1u̇+m2ẇb
′ +mfzẇs

′)

+ δẇsm0(ẇb + ẇs) + δẇs
′(−mf u̇+mfzẇb

′ +mf2ẇs
′)
]
dx (9)

where the differentiation with respect to the time t is denoted by dot-superscript convention and

ρk is the density of a kth layer and m0,m1,m2,mf ,mfz and mf2 are the inertia coefficients, defined

by:

mf = −
m1

4
+

5

3h2
m3 (10a)

mfz = −
m2

4
+

5

3h2
m4 (10b)

mf2 =
m2

16
−

5

6h2
m4 +

25

9h4
m6 (10c)

where:

(m0,m1,m2,m3,m4,m6) =

∫

A

ρk(1, z, z
2, z3, z4, z6)dA (11)

4
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By substituting Eqs. (6), (8) and (9) into Eq. (5), the following weak statement is obtained:

0 =

∫ t2

t1

∫ l

0

[
δu̇(m0u̇−m1ẇb

′ −mf ẇs
′) + δẇbm0(ẇb + ẇs) + δẇb

′(−m1u̇+m2ẇb
′ +mfzẇs

′)

+ δẇsm0(ẇb + ẇs) + δẇs
′(−mf u̇+mfzẇb

′ +mf2ẇs
′)

+ P0

[
δw′

b(w
′

b + w′

s) + δw′

s(w
′

b + w′

s)
]
−Nxδu

′ +M b
xδw

′′

b +M s
xδw

′′

s −Qxzδw
′

s

]
dxdt (12)

4. Constitutive Equations

The stress-strain relations for the kth lamina are given by:

σx = Q̄11ǫx (13a)

σxz = Q̄55γxz (13b)

where Q̄11 and Q̄55 are the elastic stiffnesses transformed to the x direction. More detailed expla-

nation can be found in Ref. [22].

The constitutive equations for bar forces and bar strains are obtained by using Eqs. (2), (7) and

(13):





Nx

M b
x

M s
x

Qxz





=




R11 R12 R13 0

R22 R23 0

R33 0

sym. R44








ǫ◦x

κbx

κsx

γ◦xz





(14)

where Rij are the laminate stiffnesses of general composite beams and given by:

R11 =

∫

y

A11dy (15a)

R12 =

∫

y

B11dy (15b)

R13 =

∫

y

(−
B11

4
+

5

3h2
E11)dy (15c)

R22 =

∫

y

D11dy (15d)

R23 =

∫

y

(−
D11

4
+

5

3h2
F11)dy (15e)

R33 =

∫

y

(
D11

16
−

5

6h2
F11 +

25

9h4
H11)dy (15f)

R44 =

∫

y

(
25

16
A55 −

25

2h2
D55 +

25

h4
F55)dy (15g)

5
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where Aij, Bij andDij matrices are the extensional, coupling and bending stiffness and Eij, Fij ,Hij

matrices are the higher-order stiffnesses, respectively, defined by:

(Aij , Bij ,Dij , Eij , Fij ,Hij) =

∫

z

Q̄ij(1, z, z
2, z3, z4, z6)dz (16)

5. Governing equations of motion

The equilibrium equations of the present study can be obtained by integrating the derivatives of

the varied quantities by parts and collecting the coefficients of δu, δwb and δws:

N ′

x = m0ü−m1ẅb
′ −mf ẅs

′ (17a)

M b
x

′′

− P0(w
′′

b + w′′

s ) = m0(ẅb + ẅs) +m1ü
′ −m2ẅb

′′ −mfzẅs
′′ (17b)

M s
x
′′ +Q′

xz − P0(w
′′

b + w′′

s ) = m0(ẅb + ẅs) +mf ü
′ −mfzẅb

′′ −mf2ẅs
′′ (17c)

The natural boundary conditions are of the form:

δu : Nx (18a)

δwb : M b
x

′

− P0(wb
′ + ws′)−m1ü+m2ẅb

′ +mfzẅs
′ (18b)

δw′

b : M b
x (18c)

δws : M s
x
′ +Qxz − P0(wb

′ + ws′)−mf ü+mfzẅb
′ +mf2ẅs

′ (18d)

δw′

s : M s
x (18e)

By substituting Eqs. (4) and (14) into Eq. (17), the explicit form of the governing equations of

motion can be expressed with respect to the laminate stiffnesses Rij :

R11u
′′ −R12w

′′′

b −R13w
′′′

s = m0ü−m1ẅb
′ −mf ẅs

′ (19a)

R12u
′′′ −R22w

iv
b −R23w

iv
s − P0(w

′′

b +w′′

s ) = m0(ẅb + ẅs) +m1ü
′

− m2ẅb
′′ −mfzẅs

′′ (19b)

R13u
′′′ −R23w

iv
b −R33w

iv
s +R44w

′′

s − P0(w
′′

b +w′′

s ) = m0(ẅb + ẅs) +mf ü
′

− mfzẅb
′′ −mf2ẅs

′′ (19c)

Eq. (19) is the most general form for vibration and buckling of composite beams of composite

beams, and the dependent variables, u, wb and ws are fully coupled. The resulting coupling is referred

to as triply axial-flexural coupled vibration and buckling. It can be seen that the explicit solutions for

vibration and buckling of composite beams become complicated due to this triply coupling effect.

6
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6. Finite Element Formulation

The present theory for composite beams described in the previous section is implemented via a

displacement based finite element method. The variational statement in Eq. (12) requires that the

bending and shear components of transverse displacement wb and ws be twice differentiable and C1-

continuous, whereas the axial displacement u must be only once differentiable and C0-continuous. The

generalized displacements are expressed over each element as a combination of the linear interpolation

function Ψj for u and Hermite-cubic interpolation function ψ̂j for wb and ws associated with node j

and the nodal values:

u =

2∑

j=1

ujΨj (20a)

wb =

4∑

j=1

wbjψ̂j (20b)

ws =

4∑

j=1

wsjψ̂j (20c)

Substituting these expressions in Eq. (20) into the corresponding weak statement in Eq. (12), the

finite element model of a typical element can be expressed as the standard eigenvalue problem:

([K]− P0[G]− ω2[M ]){∆} = {0} (21)

where [K], [G] and [M ] are the element stiffness matrix, the element geometric stiffness matrix and

the element mass matrix, respectively. The explicit forms of [K] can be found in Ref. [19] and of [G]

and [M ] are given by:

G22
ij =

∫ l

0

ψ′

iψ
′

jdz (22a)

G23
ij =

∫ l

0

ψ′

iψ
′

jdz (22b)

G33
ij =

∫ l

0

ψ′

iψ
′

jdz (22c)

M11
ij =

∫ l

0

m0ΨiΨjdz (22d)

M12
ij = −

∫ l

0

m1Ψiψ
′

jdz (22e)

M13
ij = −

∫ l

0

mfΨiψ
′

jdz (22f)

M22
ij =

∫ l

0

m0ψiψj +m2ψ
′

iψ
′

jdz (22g)

7
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M23
ij =

∫ l

0

m0ψiψj +mfzψ
′

iψ
′

jdz (22h)

M33
ij =

∫ l

0

m0ψiψj +mf2ψ′

iψ
′

jdz (22i)

All other components are zero. In Eq.(21), {∆} is the eigenvector of nodal displacements correspond-

ing to an eigenvalue:

{∆} = {u wb ws}
T (23)

7. Numerical Examples

In this section, a number of numerical examples are presented and analysed for verification the

accuracy of the present theory and investigation the natural frequencies, critical buckling loads and

corresponding mode shapes of composite beams with arbitrary lay-ups. The boundary conditions of

beam are presented by C for clamped edge: u = wb = w′

b = ws = w′

s = 0, S for simply-supported

edge: u = wb = ws = 0 and F for free edge. All laminate are of equal thickness and made of the same

orthotropic material, whose properties are as follows:

Material I [3]:

E1 = 241.5GPa, E2 = 18.98GPa, G12 = G13 = 5.18GPa, G23 = 3.45GPa, ν12 = 0.24, ρ = 2015kg/m3(24)

Material II ([8], [9], [14], [15]):

E1/E2 = open, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25 (25)

Material III ([14], [15]):

E1/E2 = open, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25 (26)

Material IV [23]:

E1 = 144.9GPa, E2 = 9.65GPa, G12 = G13 = 4.14GPa, G23 = 3.45GPa, ν12 = 0.3, ρ = 1389kg/m3 (27)

For convenience, the following non-dimensional terms are used in presenting the numerical results:

P cr =





PcrL
2

E2bh3
for Material II and III

PcrL
2

E1bh3
for Material IV

(28a)

ω =





ωL2

h

√
ρ

E2

for Material II and III

ωL2

h

√
ρ

E1

for Material IV

(28b)

8
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As the first example, simply-supported symmetric cross-ply [90◦/0◦/0◦/90◦] composite beams with

two span-to-height ratios (L/h = 2.273 and 22.73) are considered. The material properties are assumed

to be Material I. The first five natural frequencies are tabulated in Table 1 along with numerical results

of previous studies ([3], [7], [18]). The ABAQUS solutions given in Ref. [3] were obtained by using

the plane stress element type CPS8 (quadrilateral element of eight node, 16 DOF per element). The

differences between the natural frequencies calculated by the present formulation and those using

different higher-order beam theories are very small.

In the next example, vibration and buckling analysis of simply-supported composite beams with

with symmetric cross-ply [0◦/90◦/0◦] and anti-symmetric cross-ply [0◦/90◦] lay-ups is performed. Ma-

terial II and III with E1/E2 = 10 and 40 are used. The fundamental natural frequencies and critical

buckling loads for different span-to-height ratios are compared with exact solutions ([8], [9]) and the

finite elements results ([5], [14], [15]) in Tables 2 and 3. In the case of the FOBT, a value of 5/6 is

used for the shear correction factor. An excellent agreement between the predictions of the present

model and the results of the other models mentioned (FOBT and HOBT) can be observed. Mate-

rial II with E1/E2 = 40 is chosen to show the effect of the axial force on the fundamental natural

frequencies of beam with various L/h ratios (Fig. 2). It can be seen that the change of the natural

frequency due to the axial force is noticeable. The natural frequency diminishes when the axial force

changes from tensile to compressive, as expected. It is obvious that the natural frequency decreases

with the increase of axial force, and the decrease becomes more quickly when the axial force is close to

critical buckling load. For an anti-symmetric cross-ply lay-up, with L/h = 5, 10 and 20, at about P =

3.903, 4.936 and 5.290, respectively, the natural frequencies become zero which implies that at these

loads, bucklings occur as a degenerate case of natural vibration at zero frequency. It also means that

the buckling loads of composite beams under the axial force can be also obtained indirectly through

vibration problem by increasing the axial force until the corresponding natural frequency vanishes. In

order to show the effect of material anisotropy (E1/E2) on the critical buckling loads and the first

four natural frequencies of a symmetric and an anti-symmetric cross-ply lay-up, a simply-supported

composite beam with L/h = 5 is performed. It is observed that the critical buckling loads and natural

frequencies increase with increasing orthotropy (Figs. 3 and 4). For a symmetric cross-ply lay-up, as

ratio of E1/E2 increases, the order of the second and third vibration mode as well as the third and

fourth vibration mode changes each other at E1/E2 = 7 and 27, respectively (Fig. 4).

To demonstrate the accuracy and validity of this study further, the fundamental natural frequencies

of symmetric angle-ply [θ/−θ]s composite beams are given in Table 4 to illustrate the effect of boundary

conditions and of fiber orientation. In the following examples, Material IV with L/h = 15 is used.
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Variation of the critical buckling loads with respect to the fiber angle change is plotted in Fig. 5. The

natural frequencies and buckling loads decrease monotonically with the increase of the fiber angle for

all the boundary conditions considered. As the fiber angle increases, the buckling loads decrease more

quickly than natural frequencies. For instant, the ratio between the buckling load at the fiber angle 0◦

and 90◦ is 9.8 and similar value for natural frequency is 3.0 for clamped-clamped boundary condition.

It is observed that the present results are in good agreement with previous studies ([16], [23], [24],

[25]) for all fiber angles.

In order to investigate the effects of fiber orientation on the natural frequencies, critical buckling

loads and corresponding mode shapes, a simply-supported anti-symmetric angle-ply [θ/−θ] composite

beam is considered. The first four natural frequencies and critical buckling loads with respect to the

fiber angle change are shown in Table 5 and Fig. 6. The uncoupled solution, which neglects the

coupling effects coming from the material anisotropy, is also given. Due to coupling effects, the

uncoupled solution might not be accurate. However, as the fiber angle increases, these effects become

negligible. Therefore, it can be seen in Table 5 and Fig. 6 that the results by uncoupled and coupled

solution are identical. For all fiber angles, the first four natural frequencies by the coupled solution

exactly correspond to the first, second, third and fourth flexural mode by the uncoupled solution,

respectively. It can be explained partly by the typical vibration mode shapes with the fiber angle

θ = 45◦ in Fig. 7. All the vibration modes exhibit double coupling (bending and shear components).

It is indicated that the uncoupled solution is sufficiently accurate for an anti-symmetric angle-ply

lay-up.

To investigate the coupling effects further, a clamped-clamped unsymmetric [0◦/θ] composite beam

is chosen. As the fiber angle increases, major effects of coupling on the natural frequencies and

critical buckling loads are seen in Table 6 and Fig. 8. The uncoupled and coupled solution shows

discrepancy indicating the coupling effects become significant, especially at the higher fiber angles.

The typical vibration mode shapes corresponding to the first four natural frequencies with the fiber

angle θ = 60◦ are illustrated in Fig. 9. The buckling mode shapes with various fiber angles θ =

30◦, 60◦ and 90◦ are also given in Fig. 10. Relative measures of the axial and flexural displacements

show that all the vibration and buckling modes are triply coupled mode (axial, bending and shear

components). This fact explains as the fiber angle changes, the uncoupled solution disagrees with

coupled solution as anisotropy of the beam gets higher. That is, the uncoupled solution is no longer

valid for unsymmetrically laminated composite beams, and triply extension-bending-shear coupled

vibration and buckling should be considered simultaneously for accurate analysis of composite beams.
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8. Conclusions

A two-noded C1 beam element of five degree-of-freedom per node is developed to study the vi-

bration and buckling behaviour of composite beams using refined shear deformation theory. This

model is capable of predicting accurately the natural frequencies, critical buckling loads and corre-

sponding mode shapes. It accounts for the parabolical variation of shear strains through the depth

of the beam, and satisfies the zero traction boundary conditions on the top and bottom surfaces of

the beam without using shear correction factor. The uncoupled solution is accurate for lower degrees

of material anisotropy, but, becomes inappropriate as the anisotropy of the beam gets higher, and

triply extension-bending-shear coupled vibration and buckling should be considered simultaneously

for accurate analysis of composite beams. The present model is found to be appropriate and efficient

in analyzing vibration and buckling problem of composite beams.
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Figure 1: Geometry of a laminated composite beam.

Figure 2: The interaction diagram between non-dimensional critical buckling load and fundamental natural frequency of

a simply supported symmetric and anti-symmetric cross-ply composite beam with L/h = 5, 10 and 20.

Figure 3: Effect of material anisotropy on the non-dimensional critical buckling loads of a simply supported symmetric

and anti-symmetric cross-ply composite beam with L/h = 5.

Figure 4: Effect of material anisotropy on the first five non-dimensional natural frequencies of a simply supported

symmetric and anti-symmetric cross-ply composite beam with L/h = 5.

Figure 5: Variation of the non-dimensional critical buckling loads of symmetric angle-ply [θ/− θ]s composite beams with

respect to the fiber angle change.

Figure 6: Variation of the non-dimensional critical buckling loads of a simply-supported anti-symmetric angle-ply [θ/−θ]

composite beam with respect to the fiber angle change.

Figure 7: Vibration mode shapes of the axial and flexural components of a simply-supported composite beam with the

fiber angle 45◦.

Figure 8: Variation of the non-dimensional critical buckling loads of a clamped-clamped unsymmetric [0◦/θ] composite

beam with respect to the fiber angle change.

Figure 9: Vibration mode shapes with the axial and flexural components of a clamped-clamped composite beam with

the fiber angle 60◦.

Figure 10: Bucking mode shapes with the axial and flexural components of a clamped-clamped composite beam with

the fiber angles 30◦, 60◦ and 90◦.
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Table 1: The first five fundamental natural frequencies (Hz) of simply-supported beams with a symmetric cross-ply

[90◦/0◦/0◦/90◦] lay-up (L/h=2.273 and 22.73, Material I).

Table 2: Effect of span-to-height ratios on the non-dimensional fundamental natural frequencies of a symmetric and an

anti-symmetric cross-ply composite beam with simply-supported boundary condition (Material II with E1/E2 = 40).

Table 3: Effect of span-to-height ratios on the non-dimensional critical buckling loads of a symmetric and an anti-

symmetric cross-ply composite beam with simply-supported boundary condition (Material II and III with E1/E2 = 10

and 40).

Table 4: The non-dimensional fundamental frequencies of symmetric angle-ply [θ/ − θ]s composite beams with respect

to the fiber angle change (L/h = 15, Material IV).

Table 5: The first four non-dimensional frequencies of anti-symmetric angle-ply [θ/ − θ] composite beams with respect

to the fiber angle change (L/h = 15, Material IV).

Table 6: The first four non-dimensional frequencies of unsymmetric [0◦/θ] composite beams with respect to the fiber

angle change (L/h = 15, Material IV).
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CAPTIONS OF TABLES 

Table 1: The first five natural frequencies (Hz) of simply-supported beams with a symmetric cross-

ply 
0 0 0 0[90 / 0 / 0 / 90 ]  lay-up (Material I with L/h=2.273 and 22.73). 

Table 2: Effect of span-to-height ratios on the non-dimensional fundamental natural frequencies of 

a symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II with E1/E2 = 40). 

Table 3: Effect of span-to-height ratios on the non-dimensional critical buckling loads of a 

symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II and III with E1/E2 = 10). 

Table 4: Effect of span-to-height ratios on the non-dimensional critical buckling loads of a 

symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II and III with E1/E2 = 40). 

Table 5: The non-dimensional fundamental natural frequencies of symmetric angle-ply  /
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composite beams with respect to the fiber angle change (Material IV with L/h = 15). 

Table 6: The first four non-dimensional natural frequencies of a simply-supported anti-symmetric 

angle-ply  /  composite beam with respect to the fiber angle change (Material IV with L/h = 

15). 

Table 7: The first four non-dimensional natural frequencies of an unsymmetric  0 / clamped-

clamped composite beam with respect to the fiber angle change (Material IV with L/h = 15). 
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Table 1: The first five natural frequencies (Hz) of simply-supported beams with a symmetric cross-

ply 
0 0 0 0[90 / 0 / 0 / 90 ]  lay-up (Material I with L/h=2.273 and 22.73). 

Mode 
L/h = 2.273 L/h = 22.73 

ABAQUS [3] Ref. [3] Ref. [7] Present ABAQUS [3] Ref. [3] Ref. [7] Ref. [18] Present 

1 82.90 83.70 82.81 82.42 14.95 14.96 14.97 14.97 14.42 

2 200.60 195.80 195.62 195.20 57.60 57.90 57.85 57.87 55.88 

3 324.30 313.40 319.36 315.88 122.80 123.70 123.55 123.58 119.76 

4 450.10 441.80 460.18 449.83 204.20 206.40 206.18 206.01 200.44 

5 576.40 583.80 515.41 578.65 296.60 300.60 300.71 299.68 292.73 
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Table 2: Effect of span-to-height ratios on the non-dimensional fundamental natural frequencies of 

a symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II with E1/E2 = 40). 

Lay-ups Theory Reference 
L/h 

5 10 20 50 

[0
0
/90

0
/0

0
] 

FOBT 
Khdeir and Reddy [8] 9.205 13.670 - - 

Present 9.205 13.665 16.359 17.456 

HOBT 

Murthy et al. [5] 9.207 13.614 - - 

Khdeir and Reddy [8] 9.208 13.614 - - 

Aydogdu [14] 9.207 - 16.337 - 

Present 9.206 13.607 16.327 17.449 

[0
0
/90

0
] 

FOBT 
Khdeir and Reddy [8] 5.953 6.886 - - 

Present 5.886 6.848 7.187 7.294 

HOBT 

Murthy et al. [5] 6.045 6.908 - - 

Khdeir and Reddy [8] 6.128 6.945 - - 

Aydogdu [14] 6.144 - 7.218 - 

Present 6.058 6.909 7.204 7.296 
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Table 3: Effect of span-to-height ratios on the non-dimensional critical buckling loads of a 

symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II and III with E1/E2 = 10). 

Lay-ups Theory Reference 
L/h 

5 10 20 50 

Material II 

[0
0
/90

0
/0

0
] 

FOBT Present 4.752 6.805 7.630 7.897 

HOBT 
Aydogdu [15] 4.726 - 7.666 - 

Present 4.709 6.778 7.620 7.896 

[0
0
/90

0
] 

FOBT Present 1.883 2.148 2.226 2.249 

HOBT 
Aydogdu [15] 1.919 - 2.241 - 

Present 1.910 2.156 2.228 2.249 

Material III 

[0
0
/90

0
/0

0
] 

FOBT Present 4.069 6.420 7.503 7.875 

HOBT 
Aydogdu [15] 3.728 - 7.459 - 

Present 3.717 6.176 7.416 7.860 

[0
0
/90

0
] 

FOBT Present 1.605 1.876 1.958 1.983 

HOBT 
Aydogdu [15] 1.765 - 2.226 - 

Present 1.758 2.104 2.214 2.247 
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Table 4: Effect of span-to-height ratios on the non-dimensional critical buckling loads of a 

symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II and III with E1/E2 = 40). 

Lay-ups Theory Reference 
L/h 

5 10 20 50 

Material II 

[0
0
/90

0
/0

0
] 

FOBT 
Khdeir and Reddy [9] 8.606 18.989 - - 

Present 8.604 18.974 27.154 30.882 

HOBT 

Khdeir and Reddy [9] 8.613 18.832 - - 

Aydogdu [15] 8.613 - 27.084 - 

Present 8.609 18.814 27.050 30.859 

[0
0
/90

0
] 

FOBT Present 3.680 4.848 5.265 5.395 

HOBT 
Aydogdu [15] 3.906 - 5.296 - 

Present 3.903 4.936 5.290 5.399 

Material III 

[0
0
/90

0
/0

0
] 

FOBT Present 6.600 16.253 25.620 30.549 

HOBT 
Aydogdu [15] 5.896 - 24.685 - 

Present 5.895 14.857 24.655 30.319 

[0
0
/90

0
] 

FOBT Present 3.110 4.571 5.180 5.381 

HOBT 
Aydogdu [15] 3.376 - 5.225 - 

Present 3.373 4.697 5.219 5.387 
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Table 5: The non-dimensional fundamental natural frequencies of symmetric angle-ply  /
s

 

composite beams with respect to the fiber angle change (Material IV with L/h = 15). 

Boundary 

conditions 
Reference 

Fiber angle   

0
0
 15

0
 30

0
 45

0
 60

0
 75

0
 90

0
 

CC 

Aydogdu [16] 4.9730 4.2940 2.1950 1.9290 1.6690 1.6120 1.6190 

Chandrashekhara et al. [23] 4.8487 4.6635 4.0981 3.1843 2.1984 1.6815 1.6200 

Krishnaswamy et al. [24] 4.8690 3.9880 2.8780 1.9470 1.6690 1.6120 1.6190 

Chen et al. [25] 4.8575 3.6484 2.3445 1.8383 1.6711 1.6161 1.6237 

Present 4.8969 4.5695 3.2355 1.9918 1.6309 1.6056 1.6152 

SS 

Aydogdu [16] 2.6510 1.8960 1.1410 0.8040 0.7360 0.7250 0.7290 

Chandrashekhara et al. [23] 2.6560 2.5105 2.1032 1.5368 1.0124 0.7611 0.7320 

Present 2.6494 2.4039 1.5540 0.9078 0.7361 0.7247 0.7295 

CF 

Aydogdu [16] 0.9810 0.6760 0.4140 0.2880 0.2620 0.2580 0.2600 

Chandrashekhara et al. [23] 0.9820 0.9249 0.7678 0.5551 0.3631 0.2723 0.2619 

Present 0.9801 0.8836 0.5614 0.3253 0.2634 0.2593 0.2611 

CS 

Aydogdu [16] 3.7750 2.9600 1.6710 1.1780 1.1500 1.1220 1.1290 

Chandrashekhara et al. [23] 3.7310 3.5590 3.0570 2.3030 1.5510 1.1750 1.1360 

Krishnaswamy et al. [24] 3.8370 3.2430 2.2130 1.3880 1.1460 1.1290 1.1310 

Present 3.8183 3.5079 2.3538 1.4019 1.1407 1.1231 1.1302 
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Table 6: The first four non-dimensional natural frequencies of a simply-supported anti-symmetric 

angle-ply  /  composite beam with respect to the fiber angle change (Material IV with L/h = 

15). 

Fiber 

angle 

No coupling With coupling 

1z
  

2z  
3z  

4z  
1  2  3  4  

0
0
 2.6494 8.9572 16.6431 24.7032 2.6494 8.9572 16.6431 24.7032 

15
0
 2.4039 8.3223 15.7685 23.7045 2.4039 8.3223 15.7685 23.7045 

30
0
 1.5540 5.7944 11.8313 18.8714 1.5540 5.7944 11.8313 18.8714 

45
0
 0.9078 3.5255 7.5850 12.7587 0.9078 3.5255 7.5850 12.7587 

60
0
 0.7361 2.8798 6.2616 10.6606 0.7361 2.8798 6.2616 10.6606 

75
0
 0.7247 2.8352 6.1639 10.4930 0.7247 2.8352 6.1639 10.4930 

90
0
 0.7295 2.8526 6.1977 10.5426 0.7295 2.8526 6.1977 10.5426 
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Table 7: The first four non-dimensional natural frequencies of an unsymmetric  0 / clamped-

clamped composite beam with respect to the fiber angle change (Material IV with L/h = 15). 

Fiber 

angle 

No coupling With coupling 

1z
  

2z  
3z  

4z  
1  2  3  4  

0
0
 4.897 11.493 18.400 26.448 4.897 11.493 18.400 26.448 

15
0
 4.742 11.212 18.037 26.011 4.730 11.192 18.015 25.988 

30
0
 4.272 10.330 16.901 24.637 3.957 9.744 16.218 23.893 

45
0
 4.009 9.802 16.192 23.743 3.108 7.967 13.886 21.042 

60
0
 3.950 9.665 15.977 23.437 2.859 7.400 13.071 19.975 

75
0
 3.938 9.625 15.896 23.306 2.840 7.351 12.984 19.841 

90
0
 3.935 9.615 15.872 23.264 2.846 7.361 12.992 19.844 
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CAPTIONS OF FIGURES 

Figure 1: Geometry of a laminated composite beam. 

Figure 2: The interaction diagram between non-dimensional critical buckling load and fundamental 

natural frequency of a symmetric and an anti-symmetric cross-ply composite beam with simply-

supported boundary condition (Material II with L/h = 5, 10 and 20). 

Figure 3: Effect of material anisotropy on the non-dimensional critical buckling loads of a 

symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II with L/h = 5). 

Figure 4: Effect of material anisotropy on the first four non-dimensional natural frequencies of a 

symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II with L/h = 5). 

Figure 5: Variation of the non-dimensional critical buckling loads of symmetric angle-ply  /
s

 

composite beams with respect to the fiber angle change (Material IV with L/h = 15). 

Figure 6: Variation of the non-dimensional critical buckling loads of a simply-supported anti-

symmetric angle-ply  /  composite beam with respect to the fiber angle change (Material IV 

with L/h = 15). 

Figure 7: Vibration mode shapes with the axial and flexural components of a simply-supported 

composite beam with the fiber angle 45
0
 

Figure 8: Variation of the non-dimensional critical buckling loads of a clamped-clamped 

unsymmetric  0 / composite beam with respect to the fiber angle change (Material IV with L/h = 

15). 

Figure 9: Vibration mode shapes with the axial and flexural components of a clamped-clamped 

composite beam with the fiber angle 60
0
. 

Figure 10: Bucking mode shapes with the axial and flexural components of a clamped-clamped 

composite beam with the fiber angles 30
0
, 60

0
 and 90

0
. 
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Figure 1: Geometry of a laminated composite beam. 
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a. Symmetric cross-ply lay-up ([0

0
/90

0
/0

0
]) 

 
b. Anti-symmetric cross-ply lay-up ([0

0
/90

0
]) 

 

Figure 2: The interaction diagram between non-dimensional critical buckling load and fundamental 

natural frequency of a symmetric and an anti-symmetric cross-ply composite beam with simply-

supported boundary condition (Material II with L/h = 5, 10 and 20). 
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Figure 3: Effect of material anisotropy on the non-dimensional critical buckling loads of a 

symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II with L/h = 5). 
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a. Symmetric cross-ply lay-up ([0
0
/90

0
/0

0
]) 

 

b. Anti-symmetric cross-ply lay-up ([0
0
/90

0
]) 

Figure 4: Effect of material anisotropy on the first four non-dimensional natural frequencies of a 

symmetric and an anti-symmetric cross-ply composite beam with simply-supported boundary 

condition (Material II with L/h = 5). 
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Figure 5: Variation of the non-dimensional critical buckling loads of symmetric angle-ply  /
s

 

composite beams with respect to the fiber angle change (Material IV with L/h = 15). 
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Figure 6: Variation of the non-dimensional critical buckling loads of a simply-supported anti-

symmetric angle-ply  /  composite beam with respect to the fiber angle change (Material IV 

with L/h = 15). 
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a. Fundamental mode shape 1 = 0.9078. 

 

b. Second mode shape 2 = 3.5255. 

 

c. Third mode shape 3 = 7.5850. 
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d. Fourth mode shape 4  12.7587 

Figure 7: Vibration mode shapes with the axial and flexural components of a simply-supported 

composite beam with the fiber angle 45
0
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Figure 8: Variation of the non-dimensional critical buckling loads of a clamped-clamped 

unsymmetric  0 / composite beam with respect to the fiber angle change (Material IV with L/h = 

15). 
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a. Fundamental mode shape 1 = 2.859. 

 

b. Second mode shape 2 = 7.400. 

 

c. Third mode shape 3 = 13.071. 
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d. Fourth mode shape 4  19.975 

Figure 9: Vibration mode shapes with the axial and flexural components of a clamped-clamped 

composite beam with the fiber angle 60
0
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a. Pcr = 1.3028 with the fiber angle 30
0
. 

 

b. Pcr = 0.7888 with the fiber angle 45
0
. 

 

c. Pcr = 0.6585 with the fiber angle 90
0
. 

Figure 10: Bucking mode shapes with the axial and flexural components of a clamped-clamped 

composite beam with the fiber angles 30
0
, 60

0
 and 90

0
. 
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