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Free vibration of thin-walled composite box beams

Thuc Phuong Vo∗ and Jaehong Lee†

Department of Architectural Engineering, Sejong University
98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea

(Dated: March 4, 2009)

Free vibration of a thin-walled laminated composite beam is studied. A general analytical model
applicable to the dynamic behavior of a thin-walled composite box section is developed. This
model is based on the classical lamination theory, and accounts for the coupling of flexural and
torsional modes for arbitrary laminate stacking sequence configuration, i.e. unsymmetric as well
as symmetric, and various boundary conditions. A displacement-based one-dimensional finite
element model is developed to predict natural frequencies and corresponding vibration modes for
a thin-walled composite beam. Equations of motion are derived from the Hamilton’s principle.
Numerical results are obtained for thin-walled composites addressing the effects of fiber angle,
modulus ratio, and boundary conditions on the vibration frequencies and mode shapes of the
composites.

Keywords: Thin-walled composite, classical lamination theory, flexural-torsional vibration

I. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Composites
have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and
magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced
by pultrusion, are being increasingly used in many engineering fields. In particular, the use of pultruded composites
in civil engineering structures await increased attention.
The theory of thin-walled closed section members made of isotropic materials was first developed by Vlasov [1] and

Gjelsvik [2]. Many researchers have shown that thin-walled bars are susceptible to instability in a variety of modes,
but a few publications have dealt with dynamic behavior of such members. Closed-form solution for flexural and
torsional natural frequencies of isotropic thin-walled bars are found in the literature [3-5]. For composite thin-walled
bars, the flexural and torsional vibrations are fully coupled in general even for a doubly symmetric cross-section due
to their material anisotropy. Chandra et al. [6] presented a theoretical-cum-experimental study of free vibration
characteristics of thin-walled composite box beams with bending-twist and extension-twist coupling under rotating
conditions. Song and Librescu [7] focused on the formulation of the dynamic problem of laminated composite thick-
and thin-walled, single-cell beams of arbitrary cross-section and on the investigation of their associated free vibration
behavior. Armanios and Badir [8] derived the equations of motion for free vibration analysis of anisotropic thin-walled
closed-section beams using a variational asymptotic approach and Hamilton’s principle. The analysis is applied two
kinds of laminated: the circumferentially uniform stiffness (CUS) and the circumferentially asymmetric stiffness
(CAS). Dancila and Armanios [9] used the governing equations provided by Armanios and Badir [8] to isolate the
influence of coupling on free vibration of closed-section beams exhibiting extension-twist, bending-twist coupling. Qin
and Librescu [10] incorporated non-classical effects such as transverse shear and non-uniformity of membrane shear
stiffness in anisotropic thin-walled beams. The solution methodology is based on the Extended Galerkin’s Method
and the non-classical effects on the static responses and natural frequencies are investigated. Recently, Cortinez and
Piovan [11] presented the stability analysis of composite thin-walled beams with open or closed cross-sections. This
model is based on the use of the Hellinger-Reissner principle, that considers shear flexibility in a full form, general
cross-section shapes and symmetric balanced or especially orthotropic laminates.
In the present study, the analytical model developed by Lee and Kim [12] and Vo and Lee [13] is extended to the

dynamic behavior of a thin-walled composite box beam with doubly symmetric section. This model accounts for the
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FIG. 1 Definition of coordinates in thin-walled closed sections

coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration, i.e. unsymmetric as
well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is
developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equa-
tions of motion are derived from the Hamilton’s principle. Numerical results are obtained for thin-walled composite
beams addressing the effects of fiber angle, modulus ratio, and boundary conditions on the vibration frequencies and
mode shapes of the composites.

II. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually
interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and
y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second
coordinate system is the local plate coordinate (n, s, z) as shown in Fig.1, wherein the n axis is normal to the middle
surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the
cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation θ as defined in
Fig.1. Point P is called the pole axis, through which the axis parallel to the z axis is called the pole axis.
To derive the analytical model for a thin-walled composite beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.

2. The linear shear strain γ̄sz of the middle surface is to have the same distribution in the contour direction as it
does in the St. Venant torsion in each element.

3. The Kirchhoff-Love assumption in classical plate theory remains valid for laminated composite thin-walled
beams.

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate
system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the
rotation angle Φ about the pole axis,

ū(s, z) = U(z) sin θ(s)− V (z) cos θ(s)− Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos θ(s) + V (z) sin θ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the
assumption 2. For each element of middle surface, the shear strain become

γ̄sz =
∂v̄

∂z
+
∂w̄

∂s
= Φ′(z)

F (s)

t(s)
(2)

where t(s) is thickness of contour box section, F (s) is the St. Venant circuit shear flow.
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After substituting for v̄ from Eq.(1) and considering the following geometric relations,

dx = ds cos θ (3a)

dy = ds sin θ (3b)

Eq.(2) can be integrated with respect to s from the origin to an arbitrary point on the contour,

w̄(s, z) = W (z)− U ′(z)x(s)− V ′(z)y(s)− Φ′(z)ω(s) (4)

where differentiation with respect to the axial coordinate z is denoted by primes (′); W represents the average axial
displacement of the beam in the z direction; x and y are the coordinates of the contour in the (x, y, z) coordinate
system; and ω is the so-called sectorial coordinate or warping function given by

ω(s) =

∫ s

s◦

[
r(s)− F (s)

t(s)

]
ds (5a)∮

i

F (s)

t(s)
ds = 2Ai i = 1, ..., n (5b)

where r(s) is height of a triangle with the base ds; Ai is the area circumscribed by the contour of the i circuit. The
explicit forms of ω(s) and F (s) for box section are given in Ref.[13].
The displacement components u, v, w representing the deformation of any generic point on the profile section are

given with respect to the midsurface displacements ū, v̄, w̄ by the assumption 3.

u(s, z, n) = ū(s, z) (6a)

v(s, z, n) = v̄(s, z)− n
∂ū(s, z)

∂s
(6b)

w(s, z, n) = w̄(s, z)− n
∂ū(s, z)

∂z
(6c)

The strains associated with the small-displacement theory of elasticity are given by

ϵs = ϵ̄s + nκ̄s (7a)

ϵz = ϵ̄z + nκ̄z (7b)

γsz = γ̄sz + nκ̄sz (7c)

where

ϵ̄s =
∂v̄

∂s
; ϵ̄z =

∂w̄

∂z
(8a)

κ̄s = −∂
2ū

∂z2
; κ̄z = −∂

2ū

∂z2
; κ̄sz = −2

∂2ū

∂s∂z
(8b)

All the other strains are identically zero. In Eq.(8), ϵ̄s and κ̄s are assumed to be zero. ϵ̄z, κ̄z and κ̄sz are midsurface
axial strain and biaxial curvature of the shell, respectively. The above shell strains can be converted to beam strain
components by substituting Eqs.(1), (4) and (6) into Eq.(8) as

ϵ̄z = ϵ◦z + xκy + yκx + ωκω (9a)

κ̄z = κy sin θ − κx cos θ − κωq (9b)

κ̄sz = 2χ̄sz = κsz (9c)

where ϵ◦z, κx, κy, κω and κsz are axial strain, biaxial curvatures in the x and y direction, warping curvature with
respect to the shear center, and twisting curvature in the beam, respectively defined as

ϵ◦z = W ′ (10a)

κx = −V ′′ (10b)

κy = −U ′′ (10c)

κω = −Φ′′ (10d)

κsz = 2Φ′ (10e)

The resulting strains can be obtained from Eqs.(7) and (9) as

ϵz = ϵ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω (11a)

γsz = (n+
F

2t
)κsz (11b)
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III. VARIATIONAL FORMULATION

Total potential energy of the system is calculated by,

Π =
1

2

∫
v

(σzϵz + σszγsz)dv (12)

After substituting Eq.(11) into Eq.(12)

Π =
1

2

∫
v

{
σz

[
ϵ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω

]
+ σsz(n+

F

2t
)κsz

}
dv (13)

The variation of total potential energy can be stated as

δΠ =

∫ l

0

(Nzδϵz +Myδκy +Mxδκx +Mωδκω +Mtδκsz)ds (14)

where Nz,Mx,My,Mω,Mt are axial force, bending moments in the x and y directions, warping moment (bimoment),
and torsional moment with respect to the centroid, respectively, defined by integrating over the cross-sectional area A
as

Nz =

∫
A

σzdsdn (15a)

My =

∫
A

σz(x+ n sin θ)dsdn (15b)

Mx =

∫
A

σz(y − n cos θ)dsdn (15c)

Mω =

∫
A

σz(ω − nq)dsdn (15d)

Mt =

∫
A

σsz(n+
F

2t
)dsdn (15e)

The kinetic energy of the system is given by

T =
1

2

∫
v

ρ(u̇2 + v̇2 + ẇ2)dv (16)

where ρ is a density.
The variation of the kinetic energy is expressed by substituting the assumed displacement field into Eq.(16) as

δT =

∫
v

ρ

{
U̇δU̇ + V̇ δV̇ + Ẇ δẆ + (q2 + r2 + 2rn+ n2)Φ̇δΦ̇ + (Φ̇δU̇ + U̇δΦ̇)

[
n cos θ − (y − yp)

]
+ (Φ̇δV̇ + V̇ δΦ̇)

[
n cos θ + (x− xp)

]}
dv (17)

In Eq. (17), the following geometric relations are used (Fig.1)

x− xp = q cos θ + r sin θ (18a)

y − yp = q sin θ − r cos θ (18b)

In order to derive the equations of motion, Hamilton’s principle is used

δ

∫ t2

t1

(T −Π)dt = 0 (19)

Substituting Eqs.(14) and (17) into Eq.(19), the following weak statement is obtained
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FIG. 2 Geometry of thin-walled composite box section

δT =

∫ t2

t1

∫ l

0

{
m0Ẇ δẆ +

[
m0U̇ + (mc −my +m0yp)Φ̇

]
δU̇ +

[
m0V̇ + (ms +mx −m0xp)Φ̇

]
δV̇

+
[
(mc −my +m0yp)U̇ + (ms +mx −m0xp)V̇ + (mp +m2 + 2mω)Φ̇

]
δΦ̇

− NzδW
′ +MyδU

′′ +MxδV
′′ +MωδΦ

′′ −MtδΦ

}
dzdt (20)

In Eq.(20), m0,mc,mp,ms,mx,my,mω,m2 are inertia coefficients respectively defined by

m0 = I0

∫
s

ds (21a)

mc = I1

∫
s

cos θds (21b)

mp = I0

∫
s

(q2 + r2)ds (21c)

ms = I1

∫
s

sin θds (21d)

mx = I0

∫
s

xds (21e)

my = I0

∫
s

yds (21f)

mω = I1

∫
s

rds (21g)

m2 = I2

∫
s

ds (21h)

where

(I0, I1, I2) =

∫
n

ρ(1, n, n2)dn (22)

The explicit expressions of inertia coefficients for composite box section in Fig.2 are given by

m0 = I10b1 + I20b2 + I30b1 + I40b2 (23a)

mc = I21b2 − I41b2 (23b)

mp = I10

[1
3
b31 + (−x1 + xp)

2b1

]
+ I20

[1
3
b32 + (−y2 + yp)

2b2

]
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+ I30

[1
3
b31 + (x3 − xp)

2b1

]
+ I40

[1
3
b32 + (y4 − yp)

2b2

]
(23c)

ms = −I11 b1 + I31b1 (23d)

mx = I10x1b1 + I20 (x1b2 +
1

2
b22) + I30x3b1 + I40 (x3b2 −

1

2
b22) (23e)

my = I10 (y4b1 −
1

2
b21) + I20y2b2 + I30 (y2b1 +

1

2
b21) + I40y4b2 (23f)

mω = I11 (−x1b1 + xpb1) + I21 (−y2b2 + ypb2) + I31 (x3b1 − xpb1) + I41 (y4b2 − ypb2) (23g)

m2 = I12b1 + I22b2 + I32b1 + I42b2 (23h)

IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of box section are given
by {

σz
σsz

}k

=

[
Q̄∗

11 Q̄∗
16

Q̄∗
16 Q̄∗

66

]k {
ϵz
γsz

}
(24)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the

transformed stiffnesses based on the plane stress assumption and plane strain assumption. More detailed explanation
can be found in Ref.[14]
The constitutive equations for bar forces and bar strains are obtained by using Eqs.(11), (15) and (24)

Nz

My

Mx

Mω

Mt

 =


E11 E12 E13 E14 E15

E22 E23 E24 E25

E33 E34 E35

E44 E45

sym. E55




ϵ◦z
κy
κx
κω
κsz

 (25)

where Eij are stiffnesses of the thin-walled composite, and can be defined by

E11 =

∫
s

A11ds (26a)

E12 =

∫
s

(A11x+B11 sin θ)ds (26b)

E13 =

∫
s

(A11y −B11 cos θ)ds (26c)

E14 =

∫
s

(A11ω −B11q)ds (26d)

E15 =

∫
s

(A16
F

2t
+B16)ds (26e)

E22 =

∫
s

(A11x
2 + 2B11x sin θ +D11 sin

2 θ)ds (26f)

E23 =

∫
s

[
A11xy +B11(y sin θ − x cos θ)−D11 sin θ cos θ

]
ds (26g)

E24 =

∫
s

[
A11xω +B11(ω sin θ − qx)−D11q sin θ

]
ds (26h)

E25 =

∫
s

[
A16

F

2t
x+B16(x+

F sin θ

2t
) +D16 sin θ

]
ds (26i)

E33 =

∫
s

(A11y
2 − 2B11y cos θ +D11 cos

2 θ)ds (26j)

E34 =

∫
s

[
A11yω −B11(ω cos θ + qy) +D11q cos θ

]
ds (26k)
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E35 =

∫
s

[
A16

F

2t
y +B16(y −

F cos θ

2t
)−D16 cos θ

]
ds (26l)

E44 =

∫
s

(A11ω
2 − 2B11ωq +D11q

2)ds (26m)

E45 =

∫
s

[
A16

F

2t
ω +B16(ω − Fq

2t
)−D16q

]
ds (26n)

E55 =

∫
s

(A66
F 2

4t2
+B66

F

t
+D66)ds (26o)

where Aij , Bij and Dij matrices are extensional, coupling and bending stiffness, respectively, defined by

(Aij , Bij , Dij) =

∫
n

Q̄ij(1, n, n
2)dn (27)

It appears that the laminate stiffnesses Eij depend on the cross section of the composites. The explicit forms of them
can be calculated for composite box section and given in the Ref.[13].

V. EQUATIONS OF MOTION

The equations of motion of the present study can be obtained by integrating the derivatives of the varied quantities
by parts and collecting the coefficients of δU, δV, δW and δΦ

N ′
z = m0Ẅ (28a)

M ′′
y = m0Ü + (mc −my +m0yp)Φ̈ (28b)

M ′′
x = m0V̈ + (ms +mx −m0xp)Φ̈ (28c)

M ′′
ω + 2M ′

t = (mc −my +m0yp)Ü + (ms +mx −m0xp)V̈ + (mp +m2 + 2mω)Φ̈ (28d)

The natural boundary conditions are of the form

δW : N ′
z (29a)

δU : M ′
y (29b)

δU ′ : My (29c)

δV : M ′
x (29d)

δV ′ : Mx (29e)

δΦ : M ′
ω + 2Mt (29f)

δΦ′ : Mω (29g)

By substituting Eqs.(10) and (25) into Eq.(28), the explicit form of the governing equations can be expressed with
respect to the laminate stiffnesses Eij as

E11W
′′ − E12U

′′′ − E13V
′′′ − E14Φ

′′′ + 2E15Φ
′′ = m0Ẅ (30a)

E12W
′′′ − E22U

iv − E23V
iv − E24Φ

iv + 2E25Φ
′′′ = m0Ü + (mc −my +m0yp)Φ̈ (30b)

E13W
′′′ − E23U

iv − E33V
iv − E34Φ

iv + 2E35Φ
′′′ = m0V̈ + (ms +mx −m0xp)Φ̈ (30c)

E14W
′′′ + 2E15W

′′ − E24U
iv − 2E25U

′′′ − E34V
iv

−2E35V
′′′ − E44Φ

iv + 4E55Φ
′′ = (mc −my +m0yp)Ü + (ms +mx −m0xp)V̈

+ (mp +m2 + 2mω)Φ̈ (30d)

Eq.(30) is most general form for flexural, torsional vibration of a thin-walled laminated composite with a box section,
and the dependent variables, U , V , W and Φ are fully coupled. If all the coupling effects are neglected and cross
section is symmetrical with respect to both x- and the y-axes, Eq.(30) can be simplified to the uncoupled differential
equations as

(EA)comW
′′ = ρAẄ (31a)

−(EIy)comU
iv = ρAÜ (31b)

−(EIx)comV
iv = ρAV̈ (31c)

−(EIω)comΦiv + (GJ)comΦ′′ = ρIpΦ̈ (31d)
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From above equations, (EA)com represents axial rigidity, (EIx)com and (EIy)com represent flexural rigidities with
respect to x and y axis, (EIω)com represents warping rigidity, and (GJ)com, represents torsional rigidity of the
thin-walled composite, respectively, written as

(EA)com = E11 (32a)

(EIy)com = E22 (32b)

(EIx)com = E33 (32c)

(EIω)com = E44 (32d)

(GJ)com = 4E55 (32e)

In Eq.(31), Ip denotes the polar moment of inertia. It is well known that the four distinct vibration modes, axial
and flexural vibration in the x and y direction and torsional vibration, are identified in this case and the corresponding
vibration frequencies are given by the orthotropy solution for simply supported boundary conditions [5]

ωzn =
nπ

l

√
(EA)com
ρA

(33a)

ωxn =
n2π2

l2

√
(EIy)com

ρA
(33b)

ωyn =
n2π2

l2

√
(EIx)com

ρA
(33c)

ω0n =
nπ

l

√
1

ρIp

[n2π2

l2
EIωcom + (GJ)com

]
(33d)

where ωzn , ωxn , ωyn , ω0n are axial and flexural frequencies in the x and y direction, and torsional vibration frequency
respectively.

VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a
displacement based finite element method. The generalized displacements are expressed over each element as a linear
combination of the one-dimensional Lagrange interpolation function Ψj and Hermite-cubic interpolation function ψj

associated with node j and the nodal values

W =
n∑

j=1

wjΨj (34a)

U =

n∑
j=1

ujψj (34b)

V =
n∑

j=1

vjψj (34c)

Φ =

n∑
j=1

ϕjψj (34d)

Substituting these expressions into the weak statement in Eq.(17), the finite element model of a typical element can
be expressed as

([K]− λ[M ]){∆} = {0} (35)

where [K] is the element stiffness matrix

[K] =

 K11 K12 K13 K14

K22 K23 K24

K33 K34

sym. K44

 (36)
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and [M ] is the element mass matrix

[M ] =

 M11 M12 M13 M14

M22 M23 M24

M33 M34

sym. M44

 (37)

The explicit forms of [K] and [M ] are given by

K11
ij =

∫ l

0

E11Ψ
′
iΨ

′
jdz (38a)

K12
ij = −

∫ l

0

E12Ψ
′
iψ

′′
j dz (38b)

K13
ij = −

∫ l

0

E13Ψ
′
iψ

′′
j dz (38c)

K14
ij =

∫ l

0

(2E15Ψ
′
iψ

′
j − E14Ψ

′
iψ

′′
j )dz (38d)

K22
ij =

∫ l

0

E22ψ
′′
i ψ

′′
j dz (38e)

K23
ij =

∫ l

0

E23ψ
′′
i ψ

′′
j dz (38f)

K24
ij =

∫ l

0

(E24ψ
′′
i ψ

′′
j − 2E25ψ

′′
i ψ

′
j)dz (38g)

K33
ij =

∫ l

0

E33ψ
′′
i ψ

′′
j dz (38h)

K34
ij =

∫ l

0

(E34ψ
′′
i ψ

′′
j − 2E35ψ

′′
i ψ

′
j)dz (38i)

K44
ij =

∫ l

0

(E44ψ
′′
i ψ

′′
j − 2E45(ψ

′
iψ

′′
j + ψ′′

i ψ
′
j) + 4E55ψ

′
iψ

′
j)dz (38j)

M11
ij =

∫ l

0

m0ΨiΨjdz (38k)

M22
ij = M33

ij =

∫ l

0

m0ψiψjdz (38l)

M24
ij =

∫ l

0

(mc −my +m0yp)ψiψjdz (38m)

M34
ij =

∫ l

0

(ms +mx −m0xp)ψiψjdz (38n)

M44
ij =

∫ l

0

(mp +m2 + 2mω)ψiψjdz (38o)

All other components are zero. In Eq.(35), {∆} is the eigenvector of nodal displacements corresponding to an
eigenvalue

{∆} = {W U V Φ}T (39)

VII. NUMERICAL EXAMPLES

For verification purpose, a cantilever composite box beam with length l = 844.5mm, height b1 = 12.838mm, width
b2 = 23.438mm and the thickness t = 0.762mm with stacking sequences is considered. Plane stress assumption
(σs = 0) is made in the analysis. The following material properties are used (Ref.[9])

E1 = 142GPa , E2 = 9.8GPa , G12 = 6.0GPa , ν12 = 0.42, ρ = 1.445× 103kg/m3 (40)



10

TABLE I Comparison of theoretical and experimental natural frequencies (Hz) of a cantilever composite beam

Lay-up Flanges Webs Mode Ref.[6] Ref.[10] Present

Top Bottom Left Right

CAS2 [30]6 [−30]6 [30/− 30]3 [30/− 30]3 1TV 20.96 21.80 22.07

2TV 128.36 123.28 138.21

1HB 38.06 41.46

CAS3 [45]6 [−45]6 [45/− 45]3 [45/− 45]3 1TV 16.67 15.04 15.13

2TV 96.15 92.39 94.83

1HB 29.48 26.18

CUS1 [15]6 [15]6 [15]6 [15]6 1VB 28.66 30.06 38.65

CUS2 [0/30]3 [0/30]3 [0/30]3 [0/30]3 1VB 30.66 34.58 35.53

CUS3 [0/45]3 [0/45]3 [0/45]3 [0/45]3 1VB 30.00 32.64 32.52

FIG. 3 Thin-walled composite box beam

The results using the present analysis are compared with previously available results in Table I. It is seen that
the results by the present finite element analysis are in good agreement with the solution in Ref.[6,10] for all cases of
lay-ups.
In order to investigate the effects of fiber orientation, modulus ratio, and boundary conditions on the natural

frequencies and mode shapes, a thin-walled composite box beam with length l = 8m is considered. The geometry of
the box section is shown in Fig.3, and the following engineering constants are used

E1/E2 = 25, G12/E2 = 0.6, ν12 = 0.25 (41)

For convenience, the following nondimensional natural frequency is used

ω̄ =
ωl2

b1

√
ρ

E2
(42)

A simply supported composite beam with the left and right webs are considered as angle-ply laminates [θ/−θ] and
[−θ/θ] and the flange laminates are assumed to be unidirectional. The coupling stiffnesses E13, E14, E23, E24, E35 are
zero, but E25 does not vanish due to unsymmetric stacking sequence of the webs. Accordingly, flexural vibration in
the y-direction is uncoupled, whereas the flexural vibration in the x-direction and torsional vibration are coupled. The
lowest four nondimensional natural frequencies by the finite element analysis (FEM) and the orthotropy solutions,
which neglects the coupling effects of E25 , from Eqs.(31a)-(31d) for each mode are given in Table.II. For unidirectional
fiber direction, the lowest four natural frequencies by the finite element analysis exactly correspond to the first flexural
mode in x-direction, the first flexural mode in y-direction, the second flexural mode in x-direction and the torsional
mode by the orthotropy solution, respectively. As the fiber angle changes, however, this order is changing. The mode
shapes corresponding to the first four lowest frequencies with fiber angle θ = 45◦ are illustrated in Figs.4, 5, 6, and 7.
It can be seen in Fig.4, 6 and 7 the vibration mode 1,3 and 4 exhibit double coupling (flexural mode in x-direction and
torsional mode). Due to the small coupling stiffnesses E25, these modes become predominantly flexural x-direction
mode, with a little contribution from torsion. Therefore, the results by the finite element analysis and orthotropy
solution show slight discrepancy in ω1, ω3 and ω4. Since the vibration mode 2 is pure flexural y-direction mode as can
be seen in Fig.5, the othotropy solution and the finite element analysis are identical .
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TABLE II Nondimensional natural frequencies respect to the fiber angle change in webs

Fiber angle Orthotropy solution FEM

wx1 wy1 wx2 wy2 w0 w1 w2 w3 w4

0 10.886 18.393 43.543 73.570 53.087 10.886 18.393 43.555 53.087

15 9.812 17.570 39.248 70.278 81.700 9.810 17.570 39.197 70.296

30 6.678 15.488 26.712 61.951 88.677 6.677 15.488 26.692 60.123

45 5.085 14.660 20.340 58.639 72.809 5.085 14.660 20.339 45.811

60 4.685 14.481 18.739 57.924 61.104 4.685 14.481 18.743 42.215

75 4.596 14.443 18.382 57.772 54.957 4.596 14.443 18.387 41.413

90 4.580 14.436 18.319 57.745 53.064 4.580 14.437 18.324 41.272
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FIG. 4 Mode shapes of the flexural and torsional components for the first mode ω1 = 5.085 of the composite beams with the
fiber angle 45◦ in the webs

The next example is the same as before except that in this case, the top flange and the left web are considered
as [θ2], while the bottom flange and web are unidirectional. For this stacking sequence, the coupling stiffnesses
E14, E15, E23, E25 and E35 become no more negligibly small. The mode shapes corresponding to the first four lowest
frequencies with fiber angle θ = 45◦ are illustrated in Figs.8, 9, 10 and 11. Relative measures of flexural displacements
and torsional rotation show that all the modes are triply coupled mode (flexural mode in the x and y directions
and torsional mode). Since the first and second modes are dominated by flexural mode rather than torsional mode
as shown in Figs.8 and 9, the othotropy solution and the finite element analysis solution of mode 1, 2 are slightly
different as in Table.III. However, the third and fourth modes show strong coupling as can be seen in Figs.10 and 11.
This fact explains as the fiber angle changes, the orthotropy solution and the finite element analysis solution show
discrepancy indicating the coupling effects become significant. That is, the orthotropy solution is no longer valid
for unsymmetrically laminated beams, and triply coupled flexural-torsional vibration should be considered even for a
double symmetric cross-section.
The next example shows the effects of modulus ratio (E1/E2) of composite beams on the lowest fifth natural

frequencies for a simply supported and a cantilever composite beams (Figs.12 and 13). The stacking sequence of the
flanges and webs are [0/90]s. For this stacking sequence, all the coupling stiffnesses vanish and thus, the three distinct
vibration mode, flexural vibration in the x and y direction and torsional vibration are identified. It is observed that
the natural frequencies ωx1, ωy1, ωx2 and ωy2 increase with increasing orthotropy (E1/E2) for both simply supported
and cantilever boundary conditions. However, torsional frequency is almost invariant for both boundary conditions.
It can be explained from Eqs.(31d), torsional frequency is dominated by torsional rigidity rather than warping rigidity.
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FIG. 5 Mode shapes of the flexural components for the second mode ω2 = 14.660 of the composite beams with the fiber angle
45◦ in the webs
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FIG. 6 Mode shapes of the flexural and torsional components for the third mode ω3 = 20.339 of the composite beams with the
fiber angle 45◦ in the webs

Moreover, effects of warping is negligibly small for box section. As ratio of E1/E2 changes, the order of the second
flexural mode in the y-direction, the torsional mode change each other.

VIII. CONCLUDING REMARKS

An analytical model was developed to study the flexural-torsional vibration of a laminated composite box beam. The
model is capable of predicting accurate natural frequencies as well as vibration mode shapes for various configuration
including boundary conditions, laminate orientation and ratio of elastic moduli of the composite beams. To formulate
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FIG. 7 Mode shapes of the flexural and torsional components for the fourth mode ω4 = 45.811 of the composite beams with
the fiber angle 45◦ in the webs

TABLE III Nondimensional natural frequencies respect to the fiber angle change in the left web and top flange

Fiber angle Orthotropy solution FEM

wx1 wy1 wx2 wy2 w0 w1 w2 w3 w4

0 10.896 18.396 43.583 73.582 53.207 10.896 18.396 43.594 53.207

15 10.238 17.334 40.953 69.336 75.736 9.992 17.197 34.779 61.010

30 7.840 14.186 31.361 56.744 81.384 7.502 14.133 26.116 54.415

45 6.224 12.579 24.894 50.318 68.349 5.719 12.752 21.870 48.974

60 5.761 12.185 23.045 48.740 59.005 5.117 12.430 20.331 45.779

75 5.655 12.098 22.618 48.392 54.269 4.965 12.355 19.853 44.714

90 5.636 12.083 22.543 48.331 52.841 4.937 12.340 19.753 44.490

the problem, a one-dimensional displacement-based finite element method is employed. All of the possible vibration
modes including the flexural mode in the x- and y-direction and the torsional mode, and fully coupled flexural-torsional
mode are included in the analysis. The model presented is found to be appropriate and efficient in analyzing free
vibration problem of a thin-walled laminated composite beam.
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FIG. 12 Variation of the nondimensional natural frequencies of a cantilever composite beam with respect to modulus ratio.
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FIG. 13 Variation of the nondimensional natural frequencies of a simply supported composite beam with respect to modulus
ratio.


