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Abstract 16 

There has been a significant increase in municipal solid waste (MSW) generation in India 17 

during the last few decades and its management has become a major issue because the poor waste 18 

management practices affect the health and amenity of the cities. In the present study various 19 

physico-chemical parameters of the MSW were analyzed to characterize the waste dumped at 20 

Gazipur landfill site in Delhi, India, which shows that it contains a high fraction of degradable 21 

organic components. The decomposition of organic components produces methane, a significant 22 

contributor to global warming. Based on the waste composition, waste age and the amount of 23 

total MSW dumped, a first order decay model (FOD) was applied to estimate the methane 24 

generation potential of Gazipur landfill site, which yields a maximum value of 15.3 Gg per year. 25 

This value accounts about 1-3 % of the Indian landfill methane emission. Further a comparison of 26 

FOD with a recently proposed triangular model was also performed and it shows that both 27 

models can be used for the estimation of methane generation. However the decrease of the 28 

emission after closure is more gradual in the case of the first order model, leading to larger gas 29 

production prediction after more than ten years of closure. The regional and global implications 30 

of national landfill methane emission were also discussed. 31 

 32 

Keywords: landfill, landfill gas, methane, solid waste, waste characterization.  33 

 34 

*Corresponding author: Suman Mor ( Sumanmor@yahoo.com or Khaiwal@yahoo.com )  35 

36 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1638145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sumanmor@yahoo.com
mailto:Khaiwal@yahoo.com


 

 2 

Introduction 37 

Landfilling is one of the most common ways of municipal solid waste (MSW) disposal. 38 

MSW is made up of different organic and inorganic fractions like food, vegetables, paper, wood, 39 

plastics, glass, metal and other inert materials. In cities it is collected by respective municipalities 40 

and transported to designated disposal sites. The insanitary methods adopted for disposal of waste 41 

cause serious health and environmental problems. The poorly maintained landfill sites are prone 42 

to groundwater contamination because of leachate percolation (Mor et al., 2006a). Further they 43 

cause bad odors and risks of explosion of methane gas that can accumulate at the landfill site 44 

(Tchobanoglous et al., 1993). Typically the landfill gas consists of 50-60 vol% of methane and 45 

30-40 vol% carbon dioxide with numerous chemical compounds such as aromatics, chlorinated 46 

organic compounds and sulfur compounds (Khalil, 1999).  47 

Landfills comprise the principal source of anthropogenic methane emission and are 48 

estimated to account for 3-19% of anthropogenic emission globally (US EPA, 1994). Recent 49 

estimates are in the range of 19-40 Tg yr
–1

 (Bogner and Matthews, 2003). There is an increasing 50 

concern for methane, because it is a very potent greenhouse gas and accont about 23 times more 51 

powerful than carbon dioxide on a 100-year time horizon (Crutzen, 1991, IPCC, 2001). The 52 

methane emissions from municipal solid waste landfills depend on the quantity and composition 53 

of the solid waste dumped at the site (Hoeks, 1983; US EPA, 1994) and a significant amount of 54 

landfill gas eventually makes its way to the atmosphere (Mor et al., 2006b).. The composition of 55 

the waste deposited at the landfill site should, therefore, be ascertained for the estimation of gas 56 

emission potential of the landfill site.  57 

The objective of the present study was to characterize the MSW in order to assess the 58 

methane generation potential of the Gazipur landfill site. The estimate of the amount of methane 59 
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produced from this landfill site may provide an aid to potential use of methane as an alternative 60 

source of energy, hazard control and/ or for the contribution to the global climate change. Further 61 

on the basis of waste composition, waste age and the amount of total waste dumped, a first order 62 

decay model (FOD) was applied to estimate the amount of methane produced from the Gazipur 63 

landfill site. The results obtained from the FOD model have been compared with predictions of 64 

the recently proposed modified triangular model (MTM) by Kumar et al., 2004.  65 

Material and Methods 66 

Site Specification  67 

 Delhi, with a population approaching to 14 million is estimated to generate about 7000 68 

metric tons of garbage daily. The per capita generation of solid waste in Delhi ranges from 150 g 69 

to 600 g day depending upon the economic status of the community involved and it mainly 70 

includes waste from households, industry and medical establishments (Devi and Satyanarayan, 71 

2001).  72 

The earliest landfill was started in 1975 in Delhi near Ring road. In 1978 two other 73 

landfills were started at Timarpur and Kailash Nagar. To date 17 landfill sites have been filled 74 

and closed. At present there are three large functioning landfill sites at Ghazipur, Okhla and 75 

Bhalswa (Fig. 1). These sites are spread over an area of about 1.5 x 10
6
 m

2
.  76 

The Gazipur landfill site covers an area of 73 acres (3.0×10
5
 m

2
) and is operational since 77 

1983 (Fig 2). The average waste depth is estimated around 12 m and it mainly comprises of the 78 

waste from slaughterhouse, hospital, municipal, residential, construction and demolition waste, 79 

and dairy industry. A computerized scale of 25 metric ton weighs all the vehicles transporting the 80 

waste to the site.  81 

Collection of Samples 82 
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The samples were collected using augers/drillers from 9 boreholes at different locations 83 

(Fig 2). The landfill drilling makes it possible to collect samples at various depths and hence 84 

from each location 4 samples were collected for each depth-slab. The samples from same location 85 

but from different borehole with a similar depth slab were mixed to make one representative 86 

sample hence in total 25 samples were collected from different depths to get a representative 87 

profile (both horizontally and vertically) of the MSW.  The collected samples were passed 88 

through a 15 mm sieve as an aid to physical segregation of MSW into different inorganic and 89 

organic components.  90 

Analytical Methods 91 

The collected samples were transferred to the laboratory on the day of sampling for their 92 

physico-chemical analysis. The moisture content and total solids were determined 93 

gravimetrically. For this purpose the samples were oven dried for 48 hours at 105 °C. One of the 94 

fractions obtained in the segregation process was a mixture of Kitchen/ food waste, plants and 95 

soil, and will be referred as compostable matter in this paper. The dried biodegradable fraction of 96 

MSW was analysed for pH, volatile solids, potassium, phosphorus, sulfur, oxygen, carbon, 97 

hydrogen and nitrogen. pH was analyzed by shaking 50 g of waste in 250 ml of water for 24 98 

hours and analyzing by pH meter. Organic matter, volatile solids and ash content were 99 

determined by weight loss on ignition methods. In this 25 g of dry waste was ignited at 360
o
C for 100 

evaluating the organic matter and at 550°C for 24 hours to determining the quantity of volatile 101 

solids and ash content (US EPA, 2001). Further, flame photometry was used for potassium 102 

analysis while phosphorus and sulfur were determined by gravimetric methods. The fraction of 103 

carbon, hydrogen, nitrogen and oxygen were determined by CHN/O analyser (2400 Perkin 104 

Elmer). 105 
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Landfill Gas Production Modeling 106 

First Order Decay Model 107 

Several methods have been described for modeling landfill gas formation. (Augenstein and 108 

Pacey, 1991; Popov and Power, 1999). In general, landfill gas formation models are not based on 109 

microbiological or biochemical principles, but more on a practical description of formation, as 110 

observed in laboratory experiments or in full-scale recovery projects. 111 

 Landfill gas is formed as a result of biodegradation of the organic carbon in the waste: per 112 

kg of organic carbon that degrades, about 1.87 m
3
 of landfill gas normalized to 1 atm and 0°C is 113 

produced (Oonk et al., 1994). The gas formation on a landfill at some moment in time t is 114 

proportional to the decay of organic material at that time: 115 

      t     =  
dt

dC
A87.1       (1) 116 

Where t is the landfill gas formation at a certain time (m
3
/year),  A is amount of waste 117 

deposited (ton) and 
dt

dC
 is rate of carbon degradation; where C (kg/ton) is the amount of organic 118 

carbon which can be converted into gas per ton of waste.  119 

The effect of age is accounted for in the first order decay model. The organic carbon in a 120 

certain amount of waste is assumed to decay exponentially with time. The degradation of organic 121 

material can be described as an  n
th

 order reaction equation: 122 

n
Ck

dt

dC
.1        (2) 123 

For a first order model, n = 1 and k1 is the rate of degradation per year. Equation 2 states 124 

that the rate of loss of the decomposable matter is proportional to the amount of decomposable 125 

matter. 126 
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The model assumes that the factor limiting the rate of methane production at a landfill is the 127 

amount of material remaining in the landfill that will ultimately form methane. It assumes that 128 

other variables and factors affecting the decomposition process are not limiting the rate of 129 

methane production. However, it has already been seen that certain other factors certainly have 130 

an impact on methane formation in a landfill. This indicates that the rate of gas production is 131 

lower than that determined on the availability of substrate alone (Christensen et al., 1989). To 132 

eliminate this uncertainty into the model a formation factor or generation factor ( ) is added due 133 

to the heterogeneity of the waste composition as shown in equation 3. Anaerobic decomposition 134 

can be hindered in specific microenvironments due to unsuitable environmental conditions; the 135 

formation factor takes that into account. 136 

Assuming that a certain fraction ( ) of the waste is converted into landfill gas, and 137 

subsequently solving the differential equation (2), results in a description of C as a function of C0 138 

and time. Substitution of these solutions of relation (2) in (1), results in the first order model- 139 

t =  
tk

ekAC 1

1087.1


       (3) 140 

Where t is the landfill gas formation at a certain time (m
3
 per year),  is the formation 141 

factor, k1 is the degradation rate constant (year
–1

), A is the amount of waste deposited (ton), C0 is 142 

the amount of degradable organic carbon in the waste (kg/ton) at the time of deposition, t is time 143 

elapsed in years since deposition (year), and the factor 1.87 has the dimension m
3 

kg
-1

. The Hoeks 144 

(1983) and US EPA (1994) models are also basically the same as the model outlined above. 145 

Modified Triangular Model (MTM) 146 

The gas generation rate can also be estimated with the triangular model (Kumar et al. 2004). 147 

This model assumes that the degradation takes place in two phases. The first phase starts after 1 148 

year of deposition and the rate increases linearly from zero at 1 year after deposition to a 149 
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maximum value at 6 years after deposition and then decreases linearly to zero at 16 years after 150 

deposition. The total gas generation (G) during the period t +1 to t +16, with t the year of waste 151 

deposition is given by:  152 

G =  
087.1 CAt        (4) 153 

Where At  is the amount of waste deposited in year t.  154 

The gas production pattern assumed in this model has a triangular shape, as illustrated in 155 

Fig. 3 of Kumar et al. (2004). By equating the area of the triangle to the total gas generation, the 156 

gas generation in each of years t + 1 to t + 16 can be calculated. Estimates of landfill gas 157 

generation based on both methods will be presented in the next section. 158 

Results and Discussion 159 

Waste Characterization 160 

Physical and chemical analysis of the waste is important to characterize and classify the 161 

municipal solid waste for its proper management and for accurate estimation of the amount of 162 

landfill gas produced from the municipal solid waste. The physical survey of Gazipur landfill site 163 

shows that the non-degradable fraction dumped at the site includes ferrous and non-ferrous 164 

metals, earthenware, stones and brickbats, plastics, glass and ceramics etc. The organic fraction 165 

includes paper/cardboard, rubber/leather and compostable matter. Table 1 shows the physical 166 

properties of Gazipur MSW on wet weight basis, whereas chemical composition of MSW at 167 

various depths is depicted in Table 2.  168 

The compostable material forms a major fraction of MSW and is found to increase with 169 

depth. The chemical parameters do not show significant variations with depth except for the 170 

moisture content, which increases from an average value of 30 % in the top 3 meter to 45 % in 171 

the bottom 3 meter of the waste (Table 2), whereas the average total soild content was 59.4 ±13.6 172 
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%.  The increase in moisture content in deeper layer may be related to the leachate accumulation 173 

and it provide the basis for the hydrolysis of organic materials. Once the organic matter is 174 

hydrolyzed and dissolved in water, landfill gas forms quickly (Tchobanoglous et al., 1993).  175 

The variation of the moisture content of MSW is also dependent on the composition of 176 

the waste and the climatic conditions. Moisture content in the landfill is very important, if 177 

sufficient moisture is not available then gas formation will not proceed and in some cases will not 178 

start at all. Thus methane production rate is very dependent on the moisture content of the waste. 179 

Dach et al., 1995 have also reported that water content is the most important parameter for 180 

kinetics of degradation. Reduced biodegradation or no biodegradation takes place when moisture 181 

content is below 25%.  182 

The optimum pH for landfill gas production has been reported to be near 7.0 and gas 183 

production ceased at a pH of 5.5 (Farquhar and Rovers, 1973). During the methane fermentation 184 

phase of decomposition acids and hydrogen gas are converted to methane and carbon dioxide; 185 

and pH rises to a more neutrals value. In the present study all the samples had a slightly alkaline 186 

pH in the range of 7.4 - 8.4 and a shift toward more alkaline pH (from low pH to high pH) was 187 

observed in the samples withdrawn at suitable distance from surface to bottom, indicating the 188 

presence of methane fermentation phase.  189 

Volatile solids also play an important role in landfill gas formation and their content at 190 

Gazipur landfill varies from 24.6 to 31.6 % with an average value of 28.2 ±2.5 % on wet weight 191 

basis, whereas the average ash content of the waste was 71.8 ±2.5 %. The presence of carbon 192 

content is also essential for landfill gas formation. The lesser the carbon content the lower will be 193 

the gas formation. The carbon content of MSW at Gazipur varied from 5 to 11 %, with an 194 

average value of 8.35 ±1.6 %. Following carbon, the nitrogen and phosphorus in particular are 195 

also essential for microbial activity in a landfill. The anaerobic ecosystem assimilates only a 196 
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small part of the substrate into the new cells and therefore requires much less nitrogen and 197 

phosphorus, than the aerobic system. The average nitrogen content in the sample was 0.94 ±0.13 198 

%, while phosphorus content was 0.62 ±0.1 % on dry weight basis.  199 

Recommendations for MSW Management in Delhi 200 

 Based on the waste characteristics at Gazipur landfill site, the following recommendations 201 

are made for the proper management of MSW in Delhi, which of course follow the rule of 202 

reduce, reuse and recycle. 203 

a.) Segregation of waste at the source is always a best practice as waste characteristics 204 

show that plastic (7.3±7 %), paper (3.7±3 %), cloths (23.3±4.5 %) and metal (2.7±1.7 %) form a 205 

significant fraction of the MSW and this fraction can be recycled. Frequent movement of 206 

scavengers and rag-pickers can be seen at the landfill site. However, the figures above are based 207 

on measurements of the buried waste, after such scavenging activity, which shows that a 208 

significant amount of recyclable waste remains dumped at the landfill. Furthermore with this 209 

strategy, the quality of compost will be much better b.) Construction and demolition waste can 210 

also be recycled. We suggest reuse of such material in construction activity and as raw material 211 

for the formation of roads and highways. Considering that lots of construction activities are going 212 

in and around Delhi the reuse of such material should not be a problem. c.) On the basis of type 213 

of waste different categories of waste should be landfilled separately at the sites e.g compostable 214 

waste. d.)  The use of biodegradable material as compost is recommended as MSW in Delhi 215 

contains a significant amount of compostable waste (59.2±10 %). This will not only help the 216 

municipalities in an economical way but also will reduce the dependence on synthetic fertilizers. 217 

If we are able to use a landfill in an optimal way, it will not only help to operate it in 218 

economical way but also we can also use it for a long duration. Land price has increased 219 

significantly during last decades and it is increasingly difficult to find a suitable place for a 220 
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landfill. Further to this some campaign should also be organized by the respective municipalities 221 

to create general awareness among people for the proper disposal of waste. 222 

Estimation of Methane Production at Gazipur Landfill Site 223 

First-Order Decay Model Estimation 224 

The first order decay model is most widely used for the prediction of landfill gas because it 225 

accounts for the effect of age (Hoeks, 1983; Van Amstel et al., 1993; Oonk and Boom, 1995). 226 

Oonk et al (1994) have validated the landfill gas formation model. Nine landfill sites in The 227 

Netherlands were included for the verification and the predicted values of gas formation by the 228 

first order model were compared with the observed ones. A majority of the results showed 229 

relative errors of less than 22%. 230 

In the present study the first order kinetic model has been used to estimate the methane 231 

generation and has been compared with the triangular model. The estimation of methane 232 

generation was calculated based on the amount of waste dumped at Gazipur landfill site. The 233 

waste contains an average moisture content of 40 % (wet weight basis) and the carbon fraction of 234 

the waste is 8.35 % on dry weight basis (Table 2).   is typically of the order of 0.5 to 0.6 and the 235 

value of 0.58 has been used in this study (Oonk et al., 1994), whereas k1 = 0.094 year
-1

 was used 236 

from Oonk et al., 1994, who have validated these values for the first order model.  237 

The records of waste dumped at the Gazipur landfill site were available only for the years 238 

1997-2001. The amount of waste dumped from year 1996 to 1983 were extrapolated assuming 239 

that the waste dumped in 1983 was zero, as the start year for this landfill site was 1984, and 240 

increased linearly between 1983 and 1996. The estimated total landfill gas emission is 42.76×10
6
 241 

m
3
 year

–1
, as can be seen in Table 3. As the Gazipur landfill site is spread over an area of 3 x 10

5
 242 

m
2
 it will yield a landfill gas potential of 142.5 m

3
/m

2
/year. Typical methane fraction of landfill 243 
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gas is 50 %, implying that the landfill will produce 71.3 m
3
/m

2
/year or 21.38 x 10

6
 m

3
/year or 244 

954.5 x 10
6
 mol/ year or 15.3 x 10

6
 kg /year of methane. 245 

However, frequently scavengers remove some of the waste deposited. This can reduce the 246 

garbage by around 20 % (Agarwal et al., 2005). Since the carbon percentage was calculated as a 247 

percent of the waste in its final form, the amount of carbon and hence the amount of methane 248 

generated will also be lesser by approximately 20 % i.e. 57 m
3
/m

2
/year.  249 

On the other hand, our calculation underestimates the actual methane emission because the 250 

current carbon content of the landfill was used in equation (3) instead of C0, the carbon content at 251 

the time of disposal. As an alternative calculation we estimated C0 as: 252 

C0 = C/(1 –  –  exp(–k1 t))       (5) 253 

Thus different values of C0 were obtained for each year of disposal. Using these values an 254 

estimate of the 2001 landfill gas emission was calculated. The result was 52 x 10
6
 m

3
 year

–1
 (or 255 

26 x 10
6
 m

3
/year of methane), about 20% than the calculation outlined in Table 3. We conclude 256 

that the influence of scavengers and the influence of a changing carbon concentration on the 257 

estimate cancel each other, and 21 x 10
6
 m

3
/year methane is the most realistic estimate. 258 

Further, we only have recorded waste dumped data for the year 1996 to 2001 and have 259 

extrapolated this to obtain the data for the years 1984-1995; this could also lead to an error in the 260 

estimate. 261 

However, we can see from Table 3 that the waste from the year 1996- 2001 contributes 262 

nearly 63 % of the landfill gas or methane generated.  As there is no historical record of the waste 263 

dumped, waste deposited may have a nearly exponential increasing characteristic rather than a 264 

linear increase one, we can assume that figures generated for 1984-1995 are an overestimate. 265 

Assuming that no waste was deposited during this period, we can assume that our methane 266 
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generation can be lesser by a maximum of 37 %, i.e. the value could be as low as 44.9 267 

m
3
/m

2
/year. But this is a limit assuming no garbage deposited during 1984-1995 and the actual 268 

would be more than this and approximately will range between 44.9 and 71.3 m
3
/m

2
/year.  269 

The scarcity of historical data may mislead the estimation of methane, which is very 270 

important for methane emission inventories with relation to global warming. Our study provides 271 

an aid for the estimation of methane and reduces the uncertainty of the estimation of methane 272 

emissions. 273 

Modified Triangular Model (MTM) Estimation 274 

The gas generation between years 1983 and 2019 is computed for every year of deposition. 275 

The methane emission estimated using equation 4 is equated to the area of the triangle. The peak 276 

value (h) of methane emission shown in Fig. 3 of Kumar et al. (2004) is calculated knowing the 277 

volume of gas and the base of the triangle (15 years). Using the peak value, other ordinates were 278 

calculated. This procedure is applied for every year from 1983 to 2019 and the gas emission 279 

values for consecutive years are added up to get the volume of methane emission for every year. 280 

The value obtained for 2001 was 75.57 m
3
/m

2
/year, very similar to the value obtained with the 281 

first-order model. 282 

Gazipur landfill site has almost reached its maximum capacity for waste dumped, so it is 283 

expected that there will be no waste deposited after 2005. Fig. 4 shows the methane production of 284 

the landfill, as calculated from the first order model and the triangular model. Total methane 285 

generation is the same for both models and they give similar predictions during the active phase 286 

of the landfill. After closure the first order model predicts an immediate decrease of the landfill 287 

gas production rate, whereas the triangular model predicts maximum production three years later. 288 

However, the decrease is more gradual in the case of the first order model, leading to larger gas 289 

production prediction after more than ten years of closure. If the rate of gas production is known 290 
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for given period of time, this can be used for design and feasibility studies for landfill gas 291 

utilization systems. 292 

Regional and Global Implication of Gazipur Methane Emission 293 

 The global maximum landfill methane emission ranges from 19 to 40 Tg per year, with 294 

value towards the lower end of this range being most realistic (Bogner and Matthews, 2003). 295 

India figures among the top ten contributors to the greenhouse gas emissions, although the 296 

current gross emissions per capita in India are only one sixth of the world average (ADB, 1994). 297 

Garg et al. (2001) has estimated that methane emission in India contributed 27 % to carbon 298 

dioxide equivalent greenhouse gases in 2000 and it amounted to approximately 18.63 Tg of 299 

methane in 2000, while MSW contribute 10 % to this. Kumar et al. (2004) found considerably 300 

lower values. They estimated national methane emission from solid waste disposal sites using the 301 

IPCC default methodology, and found values increasing from 263 Gg in year 1980 to 502 Gg in 302 

year 1999, less than a third of the Garg et al. (2001) estimate. Gurjar et al. (2004) estimates that 303 

total methane emission for Delhi have increased over by about 40 % from 133 Gg in 1990 to 192 304 

Gg in 2000, the solid waste disposal being the main source of methane in Delhi, contributing to 305 

about 80 % of the emission. Based on our practical evaluation of MSW at Gazipur landfill, the 306 

maximum methane emission was estimated at 15.3 Gg per year.  307 

Based on these estimations it can be concluded that the maximum methane emission from 308 

Gazipur landfill site is around 0.08 % of the global landfill methane emission. The contribution 309 

of Gazipur landfill to waste disposal in Delhi has increased over the years and is roughly one 310 

third at present of total waste. So it is reasonable to assume that roughly one fourth of the landfill 311 

methane emissions in Delhi occur at Gazipur. Bearing that in mind, the estimate of Gurjar et al. 312 

(2004) mentioned above is probably an overestimate. Our methane emission estimate for Gazipur 313 
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landfill represents 0.8 % of the landfill methane emission in India as estimated by Garg et al. 314 

(2001), and 3 % of the landfill methane emission in India as estimated by Kumar et al. (2004).  315 

Waste disposal in Gazipur represents an urban population of 3-4 million people, which is 316 

approximately 1-1.4% of the urban population in India. Given the pronounced influence of 317 

economical status on waste generation, it can be expected that the contribution of Gazipur landfill 318 

to the landfill methane emission in India is somewhat more than 1-1.4%. At present the Indian 319 

population is around 1027 million and the urban population form 27.78 % of it 320 

(http://www.censusindia.net/results/). Considering Gazipur landfill emission as representative, 321 

our estimation yields a value of 1.25 Tg of methane per year from Indian MSW. This value lies in 322 

between the estimate of Garg et al. (2001) and Kumar et al. (2004), with more close to Garg et 323 

al., 2001. Further, it has to be noticed that with the increase in economical and social status of 324 

small towns and cities, an increase in total MSW is expected and thus in future the methane 325 

emission form MSW will increase. It demands for safe disposal of MSW and abatement of 326 

methane emission. 327 

As the Gazipur landfill site is not planned and it has no collection system for methane 328 

recovery, the landfill gas is emitted to the atmosphere. Considering the impact of methane in 329 

global warming it is necessary to take some action to reduce methane emission from landfill sites.  330 

The collection of landfill gas as a potential source of energy can be applied to reduce such 331 

emissions but it requires proper design and planning for a landfill.  332 

Optimization of this integral efficiency implies that landfill gas recovery should be started 333 

as soon as possible. High efficiency landfill gas recovery is possible and will be economical, if 334 

one takes landfill gas formation and recovery into consideration when the landfill is designed. 335 

Recovery is best done in a combination of compartment-wise landfilling and construction of well 336 

systems.  337 

http://www.censusindia.net/results/
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Other approaches may include the reduction of the organic fraction (may be done by 338 

increased combustion or separate collection and treatment of vegetable, fruits, garden waste, 339 

paper and textile waste) and by increasing the oxidation capacity of the cover layer. Mor et al. 340 

(2006b), for instance, have studied compost as cover material to increase the oxidation capacity 341 

of the landfill cover. Such practice is realistic, when no other option is feasible for the mitigation 342 

of greenhouse gas emission from landfills. Mor et al. (2006b) calculated that a compost layer of 343 

28-55 cm can theoretically oxidize all methane emitted by the Gazipur landfill site. 344 

Conclusion 345 

Physical and chemical characterization of Gazipur MSW shows that it contains a high 346 

proportion of degradable organic matter, which likely indicate that there is a vital scope for the 347 

development of landfill gas technology in India. At present there is no planned landfill in India 348 

with collection system for methane recovery and hence it is eventually emitted to the atmosphere, 349 

contributing to the global warming. Based on waste characteristics and amount of waste dumped, 350 

the application of FOD and MTM was applied for the estimation of methane emission from 351 

Gazipur MSW. Both models yield very similar values and can be used for the estimation of 352 

methane emission, where a scarcity of historical data exist. These estimations amount to a 353 

maximum value of 15.3 Gg of methane per year from Gazipur landfill.  Considering the Gazipur 354 

as a case, we also tested if the existing inventories for total national methane emission are 355 

realistic. As our study is based on the characterization of waste in an actual landfill, it is more 356 

reliable than other estimate, and the total projected emission falls in between the other inventories 357 

and hence limits the uncertainties. Further, the estimates of methane emission by these models 358 

shows that the Gazipur landfill site significantly contributes to the atmospheric methane 359 

emission, although it could be reduced if the site was systematically planned and the landfill gas 360 
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formation and recovery was taken into account when the landfill was designed. To reduce the 361 

greenhouse gas emission from the Gazipur landfill site, increasing the oxidizing capacity of the 362 

top layer or collection of methane to flare it, are recommended.  363 
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 452 

Fig. 1: Location of Gazipur and other landfill sites in Delhi. 453 

 454 
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 460 

Fig. 2: Sketch map of sampling sites near and around Gazipur landfill site. 461 
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 462 

 463 

Fig. 3: Triangular form for gas production (from Kumar et al., 2004). 464 
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Fig 4: Estimation of landfill gas formation over time at Gazipur landfill site. 473 

474 
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 Table 1: Physical composition of Gazipur landfill MSW at various depth (% on a wet weight 475 

basis). 476 

 477 

Borehole No. Depth (m) Plastic
1
 Paper

2
 Cloth Metal

3
 Stone

4
 Compostable

5
 

1 0 to 3 8.7 14.1 21.4 0 8.5 47.3 

1 3 to 6 7.6 14.5 13.6 6 0 53.9 

1 6 to 9 0 5.2 7.5 0 8.2 79.1 

2 0 to 3 35.1 5.8 32.2 0 0 16.9 

3 0 to 3 5.2 2.1 17.7 2.9 0 72.1 

3 3 to 6 0 0 9 0 15.4 76.6 

3 6 to 9 0 0 20.1 0 0 79.9 

4 0 to 3 6.4 6.4 11.1 4.2 0 71.9 

4 3 to 6 5.2 0 16.4 13.2 6.6 58.2 

4 6 to 9 0 0 20.7 4.6 0 74.7 

5 0 to 3 29.7 12 34.8 1.9 0.9 20.7 

5 3 to 6 38.4 5.8 14.7 17.9 0 23.2 

5 6 to 9 0 0 32.7 0 0 67.3 

6 0 to 3 7 11.5 27.5 1.8 1.5 50.7 

6 3 to 6 0 0 14.9 0 4.7 79.4 

6 6 to 9 0 0 43 0 1 56 

7 0 to 3 5 3.8 35.6 1.9 0 53.7 

7 3 to 6 2.6 2.6 10.1 0 9.7 75 

7 6 to 9 0 0 17.8 0 5.5 76.7 

7 9 to 12 0 0 36.4 0 2.7 60.9 

8 0 to 3 12.2 3.2 19.2 0 0.6 64.8 

8 3 to 6 0 0 46.7 0 1.1 52.2 

8 6 to 9 0 0 44.8 6.8 0 48.4 

9 0 to 3 20.5 8.1 24.8 2.9 0.4 43.3 

9 3 to 6 5 1.1 20 0 15.4 58.5 

Average 0 to 3 14.3±11.3 7.4±4.3 24.9±8.4 1.7±1.5 1.3±2.7 49±20 

 3 to 6 7.4±12.9 3.0±5.1 18.2±12 4.6±7.2 6.6±6.4 59.6±18.3 

 6 to 9 0±0 0.7±2 26.7±13.9 1.6±2.9 2.1±3.4 68.9±12.3 

∑Average  7.3±7.2 3.7±3.4 23.3±4.5 2.7±1.7 3.3±2.9 59.2±9.9 
1
 Plastic bags, plastic bottles, packaging material 478 

2 
Paper, wrapper, cardboard, packaging paper 479 

3 
Cables, foils, ferrous and non- ferrous material 480 

 
4
 Stones, bricks, construction material 481 

 
5
 Vegetables, food, garden waste, wood 482 

           483 
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Table 2: Chemical composition of MSW at various depth at Gazipur landfill. 

        * on wet weight basis and recorded as percentage of total mass except for pH. 

Borehole No. 

 

Depth (m) 

 

pH 

 

Moisture 

content* 

Volatile 

Solid* 

Organic 

matter* 

N* 

 

C* 

 

H* 

 

P* 

 

K* 

 

S* 

 

1 0 to3 7.8 23.9 27.2 23.6 0.84 6.1 0.9 0.8 0.7 <0.01 

1 3 to 6 8.2 30.3 31.6 27 0.79 7.6 0.96 0.7 0.5 <0.01 

1 6 to 9 8.2 21.4 27 22.6 0.99 8.98 1.17 0.6 1 <0.01 

2 0 to 3 7.9 27.2 31.6 26.7 0.74 6.02 0.84 0.7 1 <0.01 

3 0 to 3 8.6 10.7 26.3 21.8 0.96 9.67 1.15 0.6 1.2 <0.01 

3 3 to 6 8.4 51.2 26.9 22.1 0.97 9.32 1.22 0.5 1.2 <0.01 

3 6 to 9 7.6 38.9 25.3 21.8 0.75 5.74 0.79 0.6 1.5 <0.01 

4 0 to 3 7.8 40.5 31.1 26.4 0.78 5.89 0.87 0.8 1 <0.01 

4 3 to 6 8.1 45.6 29.6 26.7 0.94 8.91 1.25 0.7 1 <0.01 

4 6 to 9 8.1 53.2 30.1 27.1 1.20 9.37 1.35 0.7 0.7 <0.01 

5 0 to 3 7.9 31.9 29.1 23.4 0.89 9.30 1.25 0.6 1 <0.01 

5 3 to 6 8.6 42.6 27.1 23 0.83 8.36 1.04 0.8 0.5 <0.01 

5 6 to 9 8.4 40.2 25.6 21.5 0.94 8.52 1.14 0.7 0.5 <0.01 

6 0 to 3 8.2 37.1 30.8 25.9 1.05 8.85 1.25 0.6 1.2 <0.01 

6 3 to 6 7.8 60.9 24.6 20.8 0.95 9.58 1.35 0.6 1 <0.01 

6 6 to 9 8.1 52.6 26.9 21.1 0.84. 6.92 0.98 0.6 0.7 <0.01 

7 0 to 3 8 27.2 24.6 20.8 1.11 10.63 1.55 0.5 0.7 <0.01 

7 3 to 6 8.2 43.6 24.9 21 1.16 10.46 1.53 0.6 0.7 <0.01 

7 6 to 9 8.4 54.5 31.6 27.9 0.99 7.38 1.11 0.6 1 <0.01 

7 9 to 12 7.9 57.7 26.6 23.5 1.08 8.79 1.36 0.6 1 <0.01 

8 0 to 3 8.1 30.2 24.9 20.5 0.97 8.39 1.32 0.4 1 <0.01 

8 3 to 6 8.6 53.5 31.2 26.8 0.95 9.90 1.38 0.5 1.2 <0.01 

8 6 to 9 8.4 54.3 28.9 23.1 1.02 10.8 1.40 0.5 1 <0.01 

9 0 to 3 8.4 30.2 30.2 26.9 0.92 8.05 0.96 0.7 1.2 <0.01 

9 3 to 6 8.2 43.8 31.4 28.2 0.78 5.00 0.83 0.6 1 <0.01 

Average 0 to 3 8.1±0.3 28.8±8.5 28.4±2.7 24±2.6 0.92±0.12 8.11±1.7 1.13±0.24 0.63±0.13 1.0±0.19 - 

 3 to 6 8.3±0.3 46.4±9 28.4±2.9 24.5±3 0.92±0.12 8.66±1.7 1.2±0.23 0.62±0.1 0.89±0.29 - 

 6 to 9 8.2±0.3 45±12.4 27.9±2.4 23.6±2.8 0.99±0.15 8.26±1.7 1.14±0.21 0.6±0.07 0.91±0.32 - 

∑Average  8.2±0.3 40.1±12.9 28.2±2.5 24±2.6 0.94±0.13 8.35±1.6 1.16±0.22 0.62±0.1 0.94±0.25 - 
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Table 3: Estimation of Methane generation at Gazipur Landfill Site, Delhi, for the year 2001 

according to the first-order decay model. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Year of 

disposal 

 

t 

(Year) 

 

A 

(ton) 

 

A.C0 

(ton) 

 

LFG 

(m
3
/yr) 

 

CH4 

(m
3
/yr) 

 

2001 0 83.85 x 10
4
 7.01 x 10

4
 7.14 x 10

6
 3.57 x 10

6
 

2000 1 78.64 x 10
4
 6.57 x 10

4
 6.10 x 10

6
 3.05 x 10

6
 

1999 2 74.12 x 10
4
 6.19 x 10

4
 5.23 x 10

6
 2.62 x 10

6
 

1998 3 68.67 x 10
4
 5.74 x 10

4
 4.41 x 10

6
 2.21 x 10

6
 

1997 4 68.17 x 10
4
 5.70 x 10

4
 3.99 x 10

6
 1.99 x 10

6
 

1996 5 59.52 x 10
4
 4.97 x 10

4
 3.17 x 10

6
 1.58 x 10

6
 

1995 6 54.94 x 10
4
 4.59 x 10

4
 2.66 x 10

6
 1.33 x 10

6
 

1994 7 50.36 x 10
4
 4.21 x 10

4
 2.22 x 10

6
 1.11 x 10

6
 

1993 8 45.78 x 10
4
 3.83 x 10

4
 1.84 x 10

6
 0.92 x 10

6
 

1992 9 41.20 x 10
4
 3.44 x 10

4
 1.51 x 10

6
 0.75 x 10

6
 

1991 10 36.63 x 10
4
 3.06 x 10

4
 1.22 x 10

6
 0.61 x 10

6
 

1990 11 32.05 x 10
4
 2.68 x 10

4
 0.97 x 10

6
 0.49 x 10

6
 

1989 12 27.47 x 10
4
 2.30 x 10

4
 0.76 x 10

6
 0.38 x 10

6
 

1988 13 22.89 x 10
4
 1.91 x 10

4
 0.57 x 10

6
 0.29 x 10

6
 

1987 14 18.31 x 10
4
 1.53 x 10

4
 0.42 x 10

6
 0.21 x 10

6
 

1986 15 13.73 x 10
4
 1.15 x 10

4
 0.29 x 10

6
 0.14 x 10

6
 

1985 16 9.16 x 10
4
 0.77 x 10

4
 0.17 x 10

6
 0.09 x 10

6
 

1984 17 4.58 x 10
4
 0.38 x 10

4
 0.08 x 10

6
 0.04 x 10

6
 

Total: - 790.06 x 10
4
 66.04 x 10

4
 42.76 x 10

6
 21.38 x 10

6
 


