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Summary

Many theories of cerebellar function assume that long-term depression (LTD) of 

parallel fiber (PF) synapses enables Purkinje cells to learn to recognize PF activity 

patterns. We have studied the LTD based recognition of PF patterns in a biophysically 

realistic Purkinje cell model. With simple spike firing as observed in vivo, the 

presentation of a pattern resulted in a burst of spikes followed by a pause. 

Surprisingly, the best criterion to distinguish learned patterns was the duration of this 

pause. Moreover, our simulations predicted that learned patterns elicited shorter 

pauses, thus increasing Purkinje cell output. We tested this prediction in Purkinje cell 

recordings both in vitro and in vivo. In vitro, we found a shortening of pauses when 

decreasing the number of active PFs or after inducing LTD. In vivo, we observed 

longer pauses in LTD deficient mice. Our results suggest a novel form of neural

coding in the cerebellar cortex. 
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Introduction

A fundamental assumption in neuroscience is that activity-dependent synaptic 

modifications represent a mechanism for storing information in the brain. One 

example of synaptic plasticity that has been implicated in learning and received much 

attention is long-term depression (LTD) of synapses between parallel fibers (PFs) and 

Purkinje cells in the cerebellar cortex. PF LTD can be induced by repeated coincident 

PF and climbing fiber (CF) input to the Purkinje cell (Ito, 2001; Ito et al., 1982; 

Sakurai, 1987). Thus, a PF activity pattern that is paired repeatedly with CF input will 

lead to LTD of the PF synapses activated by the pattern. According to the classical 

view, this results in reduced simple spike firing in the Purkinje cell when the PF 

activity pattern is presented again, leading to reduced inhibitory input to neurons in 

the deep cerebellar nuclei (DCN), increased output from the cerebellum and execution 

of a movement (Boyden et al., 2006; Hansel et al., 2001; Ito, 1984; Ito, 2001; Jorntell 

and Hansel, 2006; Koekkoek et al., 2003; Mauk et al., 1998; Ohyama et al., 2003). 

The hypothesis that PF LTD implements motor learning dates back to theoretical 

work by Marr and Albus (Albus, 1971; Marr, 1969), published long before Ito and 

collaborators found experimental evidence for the existence of LTD (Ito et al., 1982). 

This hypothesis has become known as the Marr-Albus theory (Ito, 1984) and forms 

the basis of many theoretical studies of cerebellar learning (for example (Gilbert, 

1974; Medina et al., 2000; Schweighofer and Ferriol, 2000). All of these studies use 

very simplified Purkinje cell models. In real Purkinje cells, the recognition of PF 

patterns is influenced by many factors, including the spatial distribution of inputs 

across the dendritic tree, the activation of voltage-gated ion channels, their 

modulation by cytoplasmic calcium elevations and the rate of simple spike firing. 

Purkinje cells in vivo receive a background level of PF activity, which interact with 

intrinsic pacemaker currents to generate simple spike firing at an average frequency 

between 10 and 100 Hz (Armstrong and Rawson, 1979; Goossens et al., 2001). Thus, 

the weakening of the PF synapses by LTD must affect Purkinje cell output in the 

context of continuous spiking. This raises the question which features of the Purkinje 

cell spike train could be used to recognize learned PF patterns.
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We studied the LTD-based recognition of PF activity patterns by analyzing simple 

spike responses in a multi-compartmental Purkinje cell model with active dendrites 

and soma (De Schutter and Bower, 1994a; De Schutter and Bower, 1994b). We found 

that the best criterion for the recognition of patterns that had been learned by LTD 

was the duration of the silent period following the pattern presentation, with learned 

patterns resulting in shorter pauses. These modeling predictions were confirmed using 

Purkinje cell recordings in acute slices. As predicted, the length of the pause increased 

with PF stimulation strength and was shortened by an LTD induction protocol based 

on co-activation of PF and CF inputs. In agreement with this, a larger fraction of 

longer pauses in Purkinje cell activity were observed in awake behaving mice 

deficient in LTD.

Results

Pattern recognition in the Purkinje cell model

Figures 1 and 2 show the results of simulations where the Purkinje cell model 

received a continuous background level of activation that caused it to fire simple 

spikes with an average frequency of 48 Hz, similar to mean firing rates observed in 

vivo. Learning of patterns was implemented as a reduction of the AMPA receptor 

conductances of activated PF synapses, as is the case after induction of LTD (see 

Procedures). All patterns comprised a set of PF inputs that were distributed randomly 

across the Purkinje cell dendritic tree. In the first instance, we studied patterns where

1000 randomly distributed PF synapses were activated synchronously. The model was 

presented with 75 of such PF patterns that had been learned by LTD, and its response 

was compared to the response to 75 novel patterns. As shown for the individual 

spiking patterns (Fig. 1A) and the raster plot (Fig. 1B), the Purkinje cell responded to 

both learned as well as novel patterns with a short burst of two or three simple spikes, 

followed by a silent period of several tens of milliseconds. 

Based on this characteristic response pattern, different features of the spike train were 

identified that could be used to discriminate between the responses to learned and 

novel PF input patterns. Figure 2 shows typical response distributions for three 
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possible features: (a) the latency of the first spike fired in response to a pattern, (b) the 

number of simple spikes fired in a 25 ms time window after presentation of a pattern 

and (c) the length of the simple spike pause that followed the pattern presentation. For 

both the latency of the first spike (Fig. 2A) and the number of spikes fired 

immediately after pattern presentation (Fig. 2B), the distributions of responses to 

learned and novel PF patterns overlapped to a large degree. These overlapping 

response distributions resulted in low s/n ratios of 0.33 ± 0.17 for the spike latency 

and 0.21 ± 0.19 for the spike number (for n = 10 sets of 75 learned patterns). The best 

criterion to distinguish learned and novel patterns was the length of the simple spike 

pause. The two distributions of the pause durations in response to learned and novel 

patterns were clearly separated (Fig. 2C), resulting in an s/n ratio of 15.6 ± 2.6 (n = 

10). Surprisingly, learned PF patterns resulted in shorter pauses (37.8 ± 6.0 ms) than 

novel patterns (56.6 ± 3.1 ms). 

Experimental verification 

We carried out experiments on Purkinje cells in cerebellar slices to test these 

modeling predictions. If, as the model predicts, the weakening of PF inputs by LTD 

results in shorter pauses following PF activation, stimuli which activate decreasing 

numbers of PFs should also lead to a decrease in the length of the pause. We made 

non-invasive extracellular recordings from spontaneously spiking Purkinje cells 

(Häusser and Clark, 1997; Walter et al., 2006; Womack and Khodakhah, 2003) and 

activated different numbers of PFs by using a range of stimulation strengths. To avoid 

pauses in spiking associated with feed-forward inhibition (Mittmann et al., 2005; 

Walter and Khodakhah, 2006), we blocked inhibition with SR95531 (10 M). 

At lower PF stimulation intensities (Fig. 3A) the evoked burst of three or four spikes 

was followed by the normal spontaneous spiking of the Purkinje cell. When PF 

stimulation intensities were increased, a pause developed after the burst, which 

lengthened as stimulation strength was further increased. These pauses were of 

durations similar to those observed in the computer model (Fig. 2C). Because 

extracellular recordings cannot resolve the size and properties of the underlying 

EPSPs we subsequently made a whole-cell patch-clamp recording from the same 

Purkinje cell and recorded the EPSP (during hyperpolarizing current steps; Fig. 3B). 
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These whole-cell experiments also allowed us to rule out that the spike response was 

due to activation of the CF. In this (Fig. 3C) and other cells (Fig. 3D,E) we 

consistently found that the amplitude of the PF EPSP determined the length of the 

pause, quantified either as an absolute duration or normalized by the spontaneous ISI. 

In all cells at least two different stimulation strengths produced pauses of different 

length (p < 0.01, n = 10) that were longer than the spontaneous ISI. All but one cell 

(9/10) responded to the next smaller EPSP with a significantly shorter pause (red 

connections in Fig. 3D and E). The average increase in pause duration was 43 ± 10% 

for an underlying increase in EPSP amplitude of 52 ± 23 % (n = 24 stimulation 

strengths in 9 cells). Conversely, pauses triggered by different EPSP sizes did not 

differ significantly if the change in the underlying EPSP was small (-6 ± 2 %, n = 10 

stimulation strengths in 5 cells). It is possible that pauses, recorded extracellularly, 

were caused by synaptically induced transitions to silent downstates (Williams et al 

2002, Loewenstein et al 2005). We tested this possibility by making whole cell 

recordings, which showed a prolonged weak hyperpolarization associated with the 

pause, similar to the model and inconsistent with a downstate (Fig. 3F, n = 4).

Under physiological conditions, the activation of a beam of PFs not only results in 

excitation of Purkinje cells, but also activates inhibitory interneurons that make 

contacts with Purkinje cells situated on the same (Mittmann et al., 2005; Sultan and 

Bower, 1998) and on neighboring (Cohen and Yarom, 2000; Eccles et al., 1967) PF 

beams. It has recently been shown that PF stimulation in cerebellar slices activates 

feed-forward inhibitory input to Purkinje cells that arrives approximately 1 ms after 

the onset of the excitatory input (Brunel et al., 2004; Mittmann et al., 2005). In order 

to test if feed-forward inhibition interfered with the positive relationship between 

EPSP amplitude and pause duration, we repeated the experiment in the presence of 

inhibition (i.e. without SR95531 in the bath). We found that when inhibition was 

intact the length of the pauses in Purkinje cell spiking increased with the magnitude of 

the EPSPs subsequently measured in whole-cell mode (Fig. 3G, H). In all cells (7/7) 

one or more EPSPs evoked a significantly longer pause than the next smaller EPSP (p 

< 0.01). On average the pause increased by 55 ± 19% for an underlying change in 

EPSP amplitude of 82 ± 13% (n = 23 stimulation strengths in 7 cells). These 

experiments provide proof of principle that the pause in spiking following 

synchronous PF inputs provides a sensitive readout of PF EPSP size.
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We next addressed the key prediction of the model by testing whether the same PF 

input would lead to a shorter pause after induction of LTD. Complex spikes were 

triggered by selectively activating the CF with an additional stimulation electrode. 

After a baseline period of 8 – 10 minutes we paired PF and CF input with a temporal 

delay of +1 ms for 300 times at 1 Hz (Sims and Hartell, 2005). This standard LTD 

induction protocol resulted in a reduction of the pause (Fig. 4A,B), which developed 

in the first few minutes after LTD induction (Fig. 4C). The average pause duration 

decreased from 82 ± 22 ms to 43 ± 9 ms after LTD induction, corresponding to a 65 ± 

14% reduction (n = 6; Fig. 4C). The change in the length of the pause was statistically 

significant in all but one case (p < 0.001; Fig. 4D, left) where the pause length 

increased. Excluding this outlier, the s/n ratio for discrimination of pauses before and 

after the LTD induction protocol was 5.6 ± 1.3 (Fig. 4D, right). Consistent with the 

model, other features of the spike train were poorer candidates for pattern recognition. 

The s/n ratios for the number of spikes in the burst (baseline: 3.8 ± 0.6 spikes; after 

induction: 3.4 ± 0.6 spikes) or the first spike latency (baseline: 1.8 ± 0.2 ms; after 

induction: 2.0 ± 0.2 ms) were below 2 in all but one cell. The average s/n ratio was 

1.0 ± 0.4 (outlier excluded) for the number of spikes in the burst and 0.34 ± 0.2 

(outlier excluded) for the first spike latencies (Fig. 4D). PF-evoked bursts (Fig. 4E top 

left) and CF responses (Fig. 4E top right) could be easily distinguished by the 

characteristic features of the CF response (including smaller spike amplitude, brief 

ISIs within the burst, low variability and their all-or-none nature). Following the 

induction protocol we monitored pause duration for 30 – 40 minutes then re-patched 

the same cell and recorded PF EPSPs (Fig. 4E bottom left) and CF responses (Fig. 4E 

bottom right) in whole-cell mode. This approach verified the nature of the 

extracellularly recorded spike responses (Fig. 4E top left). These experiments 

therefore confirm that an LTD induction protocol changes the pause in spiking as 

predicted by the model.

Floccular Purkinje cell activity in vivo

Our model and the in vitro experiments described above suggest that the absence of 

LTD should lead to a higher incidence of longer ISIs in simple spike firing. To find 

out whether such a correlation occurs in vivo we analyzed simple spike activity of 

floccular Purkinje cells in awake behaving LTD-deficient L7-PKCi mutant mice 
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responding to optokinetic stimuli (De Zeeuw et al., 1998; Goossens et al., 2004). 

Figure 5 shows that the simple spike activity of LTD-deficient mutant mice indeed 

show increased probabilities for longer ISIs as compared to those of wild type 

littermates. These differences were significant at optokinetic stimulation frequencies 

of both 0.05 Hz and 0.2 Hz (Fig. 5A,B) and they held true both when tested for all ISI 

data represented in the probability distributions and when tested for an ISI range of 20 

– 60 ms corresponding to the pause durations (in all cases p < 0.001; Kolmogorov 

Smirnov test; Fig. 5A,B). Moreover, although smaller, the same difference also 

occurred at rest (p < 0.01; Kolmogorov Smirnov test; Fig. 5C,D). Thus, a Purkinje 

cell - specific impairment of induction of LTD is associated with the expected altered 

simple spike firing patterns at rest and is even more pronounced during natural 

sensory stimulation.

Mechanism of pause generation and parameter sensitivity

A possible mechanism for the generation of simple spike pauses following PF 

activation was revealed by studying the Purkinje cell model. In the compartmental 

model, the basis of the pause generation is a negative feedback process originating in 

the Purkinje cell dendritic tree when sufficiently strong PF inputs trigger activation of 

dendritic voltage-gated calcium channels (De Schutter and Bower, 1994c). This 

causes a short burst of somatic spikes (Figs. 1, 3A and 4A) and calcium influx into the 

Purkinje cell dendrites (Eilers et al., 1995). Dendritic calcium responses to a learned 

and a novel pattern in the computer model are compared in Fig. 6, and a movie 

showing the temporal evolution of the calcium concentration in the dendritic tree is 

provided as supplementary material. PF patterns that had been learned by LTD 

resulted in less calcium influx into the dendritic tree of the model. The calcium influx 

led to activation of calcium dependent potassium channels and to a prolonged 

afterhyperpolarization (AHP, Fig. 1A) (Cingolani et al., 2002; Etzion and Grossman, 

1998; Fox and Gruol, 1993) that caused the pause by inhibiting spike generation. As 

the amplitude and duration of the AHP was related to the amount of voltage-gated 

calcium influx, LTD of AMPA receptor conductances resulted in shorter simple spike 

pauses in the model.

Given that the generation of pauses in the model required sufficient calcium influx 

into the dendritic tree, pattern recognition based on pause duration is only expected to 
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work for PF patterns with a sufficiently large number of synchronously active 

synapses. In the simulations that were described previously (Figs. 1-2 and Fig. 6), we 

presented PF activity patterns where 1000 of the 147,400 synapses were activated 

synchronously. This synchronous activity level of approximately 0.7% is similar to 

previous estimates of about 1% (Albus, 1971; Marr, 1969; Schweighofer and Ferriol, 

2000) and in agreement with a recent study showing optimal performance for activity 

levels of 0.2 – 1% (Brunel et al., 2004). We studied the robustness of our predictions 

by varying the PF activity level and found that the predictions of the model held for 

patterns with at least 750 and not more than 8000 synchronously active synapses 

(Supplementary Fig. 1). Patterns where the number of active PFs fell outside this 

range could not be discriminated.

Simulated feed-forward inhibition

Our recordings from Purkinje cells in cerebellar slices with inhibition intact (Fig. 3G, 

H) have shown that the presence of inhibition does not interfere with the positive 

relationship between effective PF input strength and pause duration. To explore 

systematically the parameter dependence of the effect of feed-forward inhibition on 

pattern recognition, we performed a set of simulations with varying inhibitory input 

strengths. Mittmann and collaborators (2005) have demonstrated that PF stimulation 

in cerebellar slices results in activation of a feed-forward inhibitory input to Purkinje 

cells that varies considerably in amplitude from cell to cell and follows the PF 

mediated excitatory input with a latency of 1.4  0.2 ms. In our simulations, we 

presented the standard Purkinje cell model with 75 learned and 75 novel PF patterns, 

each followed by inhibitory input with a delay of 1.4 ms, a rise time constant of 1 ms 

and a decay time constant of 8 ms (Mittmann and Häusser, unpublished observations). 

Figure 7 shows results of simulations where the strength of the inhibitory input was 

varied by activating a variable number of inhibitory synapses on the soma and main 

dendrite (De Schutter and Bower, 1994b). The dependence of the inhibition / 

excitation ratio on the number of activated inhibitory synapses in these simulations 

was linear (Fig. 7A, see Procedures). Moreover, inhibition / excitation ratios of up to 

two, which exceed the range of experimental observations for EPSPs > 4 mV 

(Mittmann et al 2005), still resulted in good pattern recognition performance based on 

pause duration (Fig. 7B). For larger inhibition / excitation ratios, the feed-forward 
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inhibition caused the deletion of spikes from the initial burst, which led to 

increasingly variable pause durations and therefore smaller s/n ratios (Fig. 7B-D). 

Due to the deletion of spikes from the burst, increasing the level of inhibition initially 

increased the pause duration slightly both for learned and novel patterns (Fig. 7C). A 

further increase in the inhibition / excitation ratio then resulted in shortening of 

pauses, presumably due to the decreased excitatory drive and reduced calcium influx. 

However, these effects were small and the length of the pause (Fig. 7C) was much 

less affected by the presence of feed-forward inhibition than the number of spikes in 

the burst (Fig. 7D).  As demonstrated in previous studies (Häusser and Clark, 1997; 

Solinas et al., 2006) larger inhibition led to increased variability of responses (Fig. 

7C,D). We conclude that pattern recognition based on the duration of pauses is robust 

in the presence of feed-forward inhibition.

Pattern recognition performance and comparison with simplified models

An important issue in learning theory is the capacity of the storage system (Marr, 

1969). We first evaluated this in the fully active Purkinje cell model by computing s/n 

ratios for the three selected features of the spike response after having learned 10-300 

patterns. Figure 8 shows that for learning of up to 150 patterns, the duration of simple 

spike pauses resulted in s/n ratios of 10 or more and it was clearly a better pattern 

classification criterion than spike number and latency. For more than 150 learned 

patterns, the s/n ratio dropped under 10 and the pattern recognition performance 

deteriorated. Figure 8 also compares the performance of the fully active model to that 

of a corresponding artificial neural network (ANN, see Procedures) and to pattern 

recognition based on EPSP amplitudes in a non-spiking Purkinje cell model where the 

soma had been made passive by removing all voltage-gated ion channels (Steuber and 

De Schutter, 2001). Both the ANN and the non-spiking Purkinje cell model had much 

higher s/n ratios and therefore larger storage capacities than the more realistic active 

Purkinje cell model with a full set of voltage dependent ion channels. 

Robust pause-based pattern recognition in the presence of spiking

Purkinje cells in vivo are characterized by their continuous irregular spiking, caused 

by a combination of intrinsic pacemaker currents and bombardment by PF 

background activity, and they show a wide spectrum of simple spike rates between 10 

and 100 Hz (Armstrong and Rawson, 1979; Goossens et al., 2001; Kahlon and 
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Lisberger, 2000; Loewenstein et al., 2005; Murphy and Sabah, 1970; Shin et al., 

2007). In order to determine the effect of the simple spike firing rate on the 

recognition of patterns that had been learned by PF LTD, we presented 75 learned and 

75 novel PF patterns to Purkinje cell models that received background levels of PF 

activity between 0.20 and 0.56 Hz, resulting in simple spike firing with average 

frequencies between 0 and 130 Hz (Fig. 9A). We found an interesting dichotomy 

between the silent and firing modes of the Purkinje cell model. Only models where 

the PF background rate was too low to result in simple spike firing behaved in 

agreement with classic cerebellar learning theories. In these unphysiologically silent 

models, both the latency of the first spike and the number of spikes in the first 25 ms 

after presentation of a pattern could be used to distinguish between learned and novel 

patterns, with longer latencies and less spikes in response to learned patterns. In 

contrast, in firing Purkinje cell models, only the length of the simple spike pause 

could be a criterion for pattern classification. Under these conditions, which mimic 

the in vivo situation, an increase in simple spike firing rates resulted in larger s/n 

ratios. Thus, the duration of pauses provides a robust pattern recognition criterion in 

the presence of ongoing neuronal activity, with an increasing amount of PF 

background input leading to better performance. This is in direct contrast to pattern 

recognition in an ANN, where increasing the level of noise by increasing the 

background input caused a degradation of performance (Fig. 9B).

Sensitivity to noise

We then studied the effect of different types of noise that could interfere with pattern 

recognition in Purkinje cells in vivo. An important source of noise is fluctuations in 

the size of postsynaptic responses (Kreitzer and Regehr, 2000; Nusser et al., 2001; 

Silver et al., 1998; Wall and Usowicz, 1998). In Purkinje cell recordings in cerebellar 

slices, both spontaneous glutamatergic currents and currents evoked by stimulation of 

individual granule cells are highly variable (Barbour, 1993; Isope and Barbour, 2002). 

This trial-to-trial variability of postsynaptic responses is expected to have an influence 

on the recognition of PF patterns. Moreover, another source of noise that could 

influence pattern recognition in Purkinje cells is the variable extent of AMPA 

receptor LTD induced for each of the active PF inputs in a pattern (see e.g. Figs. 5 

and 6 in (Wang et al., 2000) and Figs. 3-5 in (Xia et al., 2000)). The effects of both 

quantal variance of the AMPA receptor conductance and variability of AMPA 
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receptor LTD are shown in Fig. 9C. Neither quantal variance with a coefficient of 

variation (CV) of 0.5, nor variable LTD with a CV of 0.5, nor a combination of both 

caused a significant drop in pattern recognition performance.

In addition to noise in the amplitude of the individual postsynaptic responses, there 

could also be noise in the timing of the afferent input. Up to now we have assumed 

that a Purkinje cell has to recognize PF activity patterns comprised of the synchronous 

activation of a number of PF synapses. Figure 9D demonstrates the effect of temporal 

jitter in the PF input patterns. The individual PF inputs in a pattern could be 

desynchronized over a time window of up to 8 ms before the discrimination between 

learned and novel PF pattern became impossible.

Discussion

Our simulations and experimental results suggest a novel readout of information 

storage in cerebellar Purkinje neurons, in which synaptic weights are encoded in a 

pause in spiking following synchronous synaptic activation. Surprisingly, this 

mechanism more sensitively reflects the strength of PF synapses than do the spikes 

directly triggered by the synaptic input. This is in contrast to prevailing theories of 

cerebellar learning and provides a new perspective on the cellular basis of motor 

learning.

LTD decreases the duration of simple spike pauses

LTD of the synapses between PFs and Purkinje cells is assumed to be one of the 

substrates of learning in the cerebellar cortex. According to classic theories of 

cerebellar learning, a Purkinje cell can store and learn to distinguish PF activity 

patterns that have been presented repeatedly together with CF input to the cell (Albus, 

1971; Ito, 1984; Marr, 1969). The resulting LTD of the PF synapses is assumed to 

lead to a decreased rate of Purkinje cell simple spike firing, a reduction in the 

inhibition of their target neurons in the deep cerebellar nuclei (DCN) and thus an 

increased output from the cerebellum (Boyden et al., 2006; Hansel et al., 2001; Ito, 

1984; Ito, 1989; Ito, 2001; Jorntell and Hansel, 2006; Koekkoek et al., 2003; Mauk et 
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al., 1998; Ohyama et al., 2003; Thompson and Krupa, 1994). The main prediction of 

our combined computer modeling and experimental study is that the readout of 

learned patterns in Purkinje cells may operate in a fundamentally different way. 

We first studied the recognition of PF activity patterns that had been learned by LTD 

of AMPA receptor conductances in a biophysically realistic Purkinje cell model. 

Based on simulations where combined excitatory and inhibitory background input 

resulted in continuous simple spike firing as observed in vivo (De Schutter and 

Bower, 1994b; Jaeger et al., 1997), the model predicted that synchronized PF inputs 

trigger a short burst of spikes followed by a pause. The dominant effect of LTD based 

on a decrease of the AMPA receptor conductances was a shortening of the pause. This 

prediction was confirmed using non-invasive extracellular recordings from Purkinje 

cells in cerebellar slices. We first verified that strong synchronous stimulation of PF 

input triggers subsequent pauses in spontaneous firing, in agreement with a recent 

report (Lev-Ram et al., 2003), as well as with in vivo extracellular recordings from 

Purkinje neurons (Bower and Woolston, 1983). Next we showed directly that LTD 

induction reduced post-burst pause duration and that the first spike latency and the 

number of spikes in the burst are poorer candidates for pattern recognition compared 

to the pause. Although consistent with the model, this is a somewhat surprising result 

given that Lev-Ram and colleagues used the number of spikes in the burst to monitor 

amplitudes of PF EPSPs (Lev-Ram et al., 2003). The smaller reduction in the number 

of spikes in the burst following LTD induction we have observed (15% compared to 

35% in their study) may be related to the different induction protocol or the more 

physiological temperatures used in our experiments. Our in vitro experiments thus 

support the modeling results, showing that the duration of the pause is the best 

candidate for pattern recognition. 

Further support for the predicted shortening of pauses by LTD was found in simple 

spike activity of Purkinje cells from awake behaving mice during optokinetic 

stimulation. LTD deficient mice showed higher probabilities for longer pauses than 

wild type mice, which is in agreement with our simulation results and in vitro data. 

Moreover, the difference between the mutant mice and their wild type littermates was 

more pronounced during optokinetic stimulation than during rest, which could fit with 

a possible behavioral relevance of the pauses. Future in vivo studies, in which pauses 
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are measured during a learning task such as visuovestibular training (see eg. 

Schonewille et al., 2006), will be needed to provide more direct evidence for the 

relevance of pauses in vivo and their shortening by LTD induction. 

Mechanism of pause generation and parameter sensitivity

The generation of simple spike pauses in the model was based on calcium influx 

through high voltage activated P-type calcium (Ca) channels, which activated calcium 

dependent potassium (KCa) channels. This resulted in a prolonged AHP, which 

inhibited spike generation and caused a pause in firing. In the model, the amount of 

calcium influx and therefore the duration of pauses increased with the effective PF 

input strength and was reduced by LTD (Fig. 6). In the experiments, the activation of 

KCa channels could not only be observed as an AHP in super-threshold responses 

(Fig. 3F) but was also reflected by the faster initial decay of larger EPSPs (Fig. 3B,G). 

Pauses only occurred in the model when sufficiently strong PF inputs triggered 

sufficient calcium influx into the dendritic tree. Similarly, weak PF stimulation did 

not result in pauses in our experiments (Fig. 3A). This is in agreement with a recent 

study showing that pauses were only generated for larger PF stimulation intensities, 

with increasing stimulation strengths resulting in longer pause durations (Walter and 

Khodakhah, 2006). Interestingly, this study also reported AHPs in response to strong 

PF inputs (their Supplementary Fig. 3). It is conceivable that Purkinje cells decode 

weak and strong PF inputs in different ways. In our model, pause based pattern 

recognition was possible for PF patterns where at least 750 out of all 147,400 

synapses were activated (Supplementary Fig. 1). This corresponds to an activation 

probability of approximately 0.5%, which is similarly sparse as the patterns that have 

been used in other models of cerebellar learning (Albus, 1971; Brunel et al., 2004; 

Marr, 1969; Schweighofer and Ferriol, 2000). While it is difficult to estimate exactly 

how many PFs were activated in the experiments, a unitary EPSP of 0.07 mV (Isope 

& Barbor 2002) would suggest about 290 PFs are required for a 20 mV EPSP. 

However, this linear estimate is likely to be a lower limit given that shunting effects 

and reductions in driving force are associated with large inputs.

Pattern recognition based on pauses required roughly similar numbers of active PFs in 

model and experiment. However, the spatial pattern of the inputs in the model and 
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experiments may be different. Inputs were randomly distributed over the dendritic 

tree in the model, but PF stimulation is likely to result in the activation of PF synapses 

confined to a smaller area of the Purkinje cell dendrite. Such clustered input has been 

suggested to result in higher local glutamate concentrations (Marcaggi & Attwell 

2005) and stronger local depolarization and Ca2+ influx (Wang et al 2000). Clustered 

input could therefore result in a lower threshold for pause generation and pause 

signaling. Such a reduction in threshold is also likely to be accompanied by a 

reduction in the dynamic range as saturation effects will be more pronounced for 

clustered inputs. Consistent with this speculation we found that in the model the s/n 

ratio rapidly decreased when inputs were clustered (data not shown). This suggests 

that Purkinje cells in vivo, which are likely to receive a distributed input, can 

outperform the average s/n ratio of 6 we observed with focal stimulation in vitro.

We also studied the effect of feed-forward inhibition on pattern recognition and found 

that the pattern recognition performance was very robust against the presence of feed-

forward inhibition. Physiologically relevant inhibition / excitation ratios of up to two 

(Mittmann et al., 2005; Walter and Khodakhah, 2006) still resulted in good pattern 

separation (Fig. 7). These simulation results are consistent with our experimental data 

showing that the dependence of pause duration on effective PF input strength is 

unaffected by the presence of feed-forward inhibition (Fig. 3G, H). We did not 

include plasticity of the synapses between PFs and inhibitory interneurons (Jorntell 

and Ekerot, 2002; Jorntell and Ekerot, 2003; Rancillac and Crepel, 2004; Smith and 

Otis, 2005) in our simulations, as there is currently insufficient data available to build 

realistic models of these synaptic mechanisms and their potential involvement are 

beyond the scope of this study. 

The role of Purkinje cell spiking and noise 

Existing theories of cerebellar learning tend to underestimate the amount of noise and 

often fail to take the continuous simple spike firing in Purkinje cells into account. A 

recent study of pattern storage in Purkinje cells (Brunel et al., 2004) has suggested 

that each Purkinje cell could learn to recognize approximately 40,000 different PF 

input patterns. However, this is based on the assumptions that the Purkinje cell output 

is binary and that the combined noise sources result in a standard deviation of  ≤ 0.4 
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mV. The presence of PF background input and continuous firing drastically reduces 

the number of associations that can be learned in the more realistic Purkinje cell 

model used in this study and makes it necessary to analyze its response over a longer 

time period, invalidating the assumption that a Purkinje cell can be simplified to a 

binary threshold unit. Moreover, in a situation where the relevant Purkinje cell output 

is the duration of simple spike pauses, different types of noise can have very different 

and sometimes counterintuitive effects. Our simulations predict that pattern 

recognition based on the duration of pauses is very robust in the presence of 

continuous spiking. Furthermore, an increasing amount of PF background activity led 

to an improved pattern recognition performance. Although surprising at first glance, 

the beneficial effect of this kind of noisy synaptic input can be understood by 

considering that a higher PF background rate decreases the variance in the length of 

simple spike pauses, which results in an increased s/n ratio. Our study demonstrates 

that a biophysically realistic Purkinje cell model that has been tuned to reproduce 

realistic in vivo behavior leads to completely different predictions than for simplified 

ANNs and for models that do not fire spontaneously. 

In the presence of tonic firing the influence of other kinds of noise was rather weak. It 

has been argued that the commonly observed trial-to-trial fluctuations in the 

amplitude of postsynaptic responses present a problem for the storage of information 

in synaptic weights (Poirazi and Mel, 2001). Contrary to this suggestion, we found 

that quantal variance of the AMPA receptor conductance resulted in a surprisingly 

small decrease in pattern recognition performance. A similarly small drop in 

performance was observed in the presence of variable AMPA receptor LTD. The 

predictions of the model are very robust against these forms of synaptic noise. 

Decoding simple spike pauses

Our study suggests that the duration of simple spike pauses provides a better coding 

mechanism than spike number or latency. Similarly, another feature of the spike 

response, the rate of simple spikes in the burst after pattern presentation, also resulted 

in poor pattern separation with an s/n ratio of 1.4 ± 0.6. Apart from the low s/n ratio, 

the intra burst frequency is likely to be too high to reliably propagate along the 

Purkinje cell axon (Monsivais et al., 2005). This supports the view that spike 

frequency within the burst as well as the number of spikes are less useful than pauses 
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for distinguishing between learned and novel patterns over the range of PF excitation 

examined in this study.

Our prediction that the duration of simple spike pauses could provide an important 

output from the cerebellar cortex raises the question how simple spike pauses can be 

decoded by neurons in the DCN. DCN neurons follow hyperpolarizing current pulses 

with a rebound depolarization (RD), which often triggers a burst of action potentials 

(Aizenman and Linden, 1999; Aizenman et al., 1998; Czubayko et al., 2000; Jahnsen, 

1986; Llinas and Muhlethaler, 1988; Mouginot and Gahwiler, 1995; Muri and 

Knopfel, 1994). Even stronger RDs can be elicited by trains of inhibitory postsynaptic 

potentials (IPSPs) that originate from Purkinje cell inputs (Aizenman and Linden, 

1999; Aizenman et al., 1998; Gardette et al., 1985; Llinas and Muhlethaler, 1988). 

Aizenman and Linden (1999) have suggested that DCN neurons could use the RD to 

distinguish between PF and CF input to their presynaptic Purkinje cells. They propose 

that the continuous simple spike firing in the Purkinje cells results in tonic inhibition 

of the DCN neurons. In contrast, CF input leads to a complex spike followed by a 

silent period in the Purkinje cell and could elicit a RD. Similarly, a RD in a DCN cell 

would be expected when the presynaptic Purkinje cells are presented with a pattern of 

synchronous PF inputs. Given that learned PF patterns lead to shorter simple spike 

pauses than novel patterns, they should also trigger RDs with shorter bursts of action 

potentials. Thus, we expect PF activity patterns that have been learned by LTD at the 

PF – Purkinje cell synapses to result in decreased output from the DCN. 

Further predictions

We have shown that PF LTD can result in a shortening of simple spike pauses evoked 

by PF input, and that this shortening of the pauses is the most significant consequence 

of LTD induction. If our predictions are correct and cerebellar learning is based on a 

modulation of the duration of silent periods, any pharmacological intervention that 

interferes with the generation or modulation of the pauses should also inhibit learning. 

Interestingly, a recent study (Koekkoek et al., 2005) has shown that eye-blink 

conditioning can be impaired by increasing the magnitude of LTD. A possible 

explanation based on our results is that an excessive shortening of pauses due to 

strong LTD makes them indistinguishable from normal ISIs.
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In order for the modulated pauses to have any effect on cerebellar output, pauses in 

Purkinje cells converging onto common DCN neurons would have to be 

synchronized. Consistent with this, in vivo recordings of nearby Purkinje cells in 

anaesthetized rats have revealed that more than 10% of pauses are synchronized (Shin 

and De Schutter, 2006). However, it has been shown that anesthesia can affect the 

Purkinje cell firing pattern (Schonewille et al., 2006). Further studies, both in 

anaesthetized and awake behaving animals, are required to investigate the 

synchronization of Purkinje cell pauses and the output of the DCN following LTD 

and how they contribute to cerebellar learning.
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Procedures

The Purkinje cell model

Unless stated otherwise, we used the multi-compartmental Purkinje cell model with 

active dendrites and soma that has been previously described in detail (De Schutter 

and Bower, 1994a; De Schutter and Bower, 1994b). Simulations were performed 

using the GENESIS simulator (Bower and Beeman, 1998). The model is based on a 

morphological reconstruction of a horseradish peroxidase injected Purkinje cell (Rapp 

et al., 1994). Ten different types of voltage dependent channels were modeled using 

Hodgkin-Huxley like equations. The soma compartment included a fast and a 

persistent Na+ conductance, a delayed rectifier, a transient A-type K+ conductance, a 

non-inactivating M-type K+ conductance, an anomalous rectifier and a low-threshold 

T-type Ca2+ conductance. The dendrite compartments contained a Purkinje cell 

specific high-threshold P-type and a low-threshold T-type Ca2+ conductance, two 

different types of Ca2+ activated K+ (KCa) conductances and an M-type K+

conductance. To link the Ca2+ influx through the Ca2+ channels with the activation of 

the KCa channels, Ca2+ concentrations were calculated in a thin submembrane shell 

using an exponentially decaying pool. The behavior of the model reproduced the 

behavior of Purkinje cells in experiments (De Schutter and Bower, 1994a; 

De Schutter and Bower, 1994b). The presence of random PF background activity 

caused the model to fire simple spikes continuously in all cases, with one exception 

where the PF background rate was set to zero and the model was silent (Fig. 8A). 

Purkinje cells receive PF synapses on approximately 150,000 dendritic spines 

(Harvey and Napper, 1991). Given that it is computationally very expensive to 

simulate such a large number of spines, we used two different versions of the Purkinje 

cell model. In an initial set of simulations, 147,400 spines were modeled. All spines 

were activated independently by a random sequence of PF inputs with an average rate 

of 0.28 Hz. This background excitation was balanced by tonic background inhibition, 

and the standard model fired simple spikes at an average frequency of 48 Hz. The 

model was then simplified by reducing the number of spines while at the same time 

increasing the rate of PF background excitation. In the simplified model, only 1,474 

spines were represented explicitly. Each of these spines was activated at an average 

frequency of 28 Hz, and like the full model, the simplified model fired simple spikes 
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at an average rate of 48 Hz. The initial pattern recognition simulations (Figs. 1 and 2) 

were run for both models. Given that the simplified model and the full model 

produced identical results, only the simplified model was used for the parameter 

search simulations (Figs. 6-9). The validity of this simplification has also been shown 

previously (De Schutter and Bower, 1994b).

In a set of control simulations, the effect of different levels of feed-forward inhibition 

was studied by activating a variable number of inhibitory synapses on the soma and 

main dendrite (De Schutter and Bower, 1994b). In these simulations, the inhibition / 

excitation ratios were verified by voltage-clamping the model to -40 mV, i.e. half way 

between the excitatory and inhibitory reversal potentials, and measuring the ratios of 

the mean IPSC peak to the mean EPSC peak.

Pattern recognition

Learning of PF activity patterns in the Purkinje cell model was simulated in two steps. 

In the first step, binary input patterns were generated and learned by a corresponding 

artificial neural network (ANN). The resulting vector w of synaptic weights was then 

transferred to the Purkinje cell model. This two-step procedure mimics the direct 

learning of PF patterns by depressing the AMPA receptor conductances in the 

Purkinje cell model and makes it easier to compare the performance of the two 

models. The ANN and the analysis of the results were implemented in C++.

Storage and recognition of input patterns in the ANN

The ANN has been described previously in a study of pattern recognition in non-

spiking Purkinje cell models with a passive soma (Steuber and De Schutter, 2001). It 

is a modified version of an associative network (Willshaw et al., 1969) with real 

valued synapses and an LTD learning rule and resembles the models that have been 

used in classical studies of cerebellar learning (Albus, 1971; Gilbert, 1974; Marr, 

1969). We used a network with 147,400 synapses, corresponding to the number of PF 

inputs in the Purkinje cell model, and stored (learned) between 10 and 300 binary PF 

input patterns. Each of the binary input patterns was a vector with N elements in 

randomly chosen locations that represented active PFs and were set to 1, and (147,400 

– N) elements that represented inactive PFs and were set to 0. Initially, all PF synaptic 

weights were set to 1. When a PF input pattern was presented together with a CF 
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signal, the pattern was learned by decreasing the synaptic weights wi that were 

associated with active PFs to 50% of their previous values. Learned PF patterns were 

encoded in the resulting vector w and could be recalled in the absence of CF input. 

The response of the ANN was given by the sum of the weights of all synapses that 

receive PF input. The ANN was presented with the patterns that have been learned 

and with the same number of novel patterns which also contained N elements in 

randomly chosen locations that were set to 1 and (147,400 – N) elements that were set 

to 0. The average response to learned patterns was lower than the response to novel 

patterns, and the ability of the net to discriminate between learned and novel patterns 

could be described by calculating a signal-to-noise ratio (Dayan and Willshaw, 1991; 

Graham, 2001):

22

2)(2
/

nl

nlns








where l and n are the mean values and l2 and n2 the variances of the response to 

learned and novel patterns, respectively.

Pattern recognition in the Purkinje cell model

Before learning all PF synapses of the Purkinje cell model activated the same 

maximum AMPA receptor conductance g0  0.7nS  (De Schutter and Bower 1994b). 

Copying the synaptic weights wi from the ANN to the Purkinje cell model to mimic 

learning resulted in synapse specific AMPA receptor conductances that were given by 

0gwg ii  . In analogy to the ANN, the learned PF patterns in the Purkinje cell model 

were encoded by the synaptic conductances and could be recalled without coincident 

CF input. For each of the binary input patterns in the ANN, the Purkinje cell model 

was presented with a corresponding pattern of AMPA receptor activation by PF input, 

and the pattern recognition performance was evaluated by calculating s/n ratios for 

different features of the spike response.  

In a previous study of LTD based pattern recognition in a non-spiking Purkinje cell 

model with a passive soma, we observed the best performance for PF patterns where 

N = 1000 inputs (i.e. approximately 0.7 % of the 147,400 inputs) were active 

synchronously (Steuber and De Schutter, 2001). This number of active inputs is very 

similar to previous estimates (Marr, 1969; Albus, 1971; Schweighofer et al., 2000; 
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Brunel et al., 2004). Most of the simulations presented here also used PF patterns 

consisting of the synchronous activation of 1000 synapses. In a set of control 

simulations, the number of active PF synapses per pattern was varied, and in another 

set of simulations, the active inputs were desynchronized by randomly distributing 

them over time windows of up to 25 ms. In the full Purkinje cell model, each of the 

147,400 spine heads contained one PF synapse. In the simplified model with 1474 

spines, each of the spine heads received input from 100 PFs with different synaptic 

weights. Pattern recognition simulations with both models produced the same results.

Noise in the ANN

A series of simulations compared the effect of noise in the form of PF background 

input in the ANN and the Purkinje cell model (Fig. 9B). Based on the duration of the 

voltage response to pattern presentation in a non-spiking Purkinje cell model with a 

passive soma (Steuber and De Schutter, 2001), it was estimated that the effective time 

window during which PF background inputs interfered strongly with pattern 

recognition comprised at least the first 10 ms after a pattern is presented. This 

estimated effective time window was in agreement with the fact that the PF inputs in a 

pattern can be desynchronized over 8 ms without any noticeable effect on pattern 

recognition performance (Fig. 9D). Thus, PF background noise in the ANN was 

approximated by adding a false positive PF input to each of the PF input lines in a 

pattern with a probability of p = fPF t where  fPF  is the PF background rate and t = 

10 ms is the estimated effective time window.

Purkinje cell recordings in vitro

We recorded from visually identified neurons in 300 µm thick sagittal slices of the 

cerebellar vermis. Slices were prepared from 18 – 24 days old Sprague–Dawley rats 

anaesthetized via isoflurane inhalation as previously described (Häusser and Clark, 

1997; Stuart et al., 1993), in accordance with institutional and national regulations. 

Slices were continuously perfused with artificial cerebrospinal fluid (ACSF) 

containing (in mM) 125 NaCl, 26 NaHCO3, 25 glucose, 2.5 KCl, 1.25 NaH2PO4, 2 

CaCl2, 1 MgCl2 bubbled with 95% O2 / 5% CO2. Neurons were identified and 

recordings were made under direct visual control using infrared differential 

interference contrast optics on an upright microscope (Axioskop, Zeiss). All 
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experiments were performed at 34.2 ± 0.2 C. 

Electrophysiological recordings from Purkinje cells were made using a Multiclamp 

700A amplifier (Axon Instruments, Foster City, CA). Pipettes were pulled to a 

resistance of 2 – 6 M and used for loose cell-attached and whole-cell current-clamp 

recordings and filled with ACSF or a solution containing 130 methanesulfonic acid, 

10 HEPES, 7 KCl, 2 Na2ATP, 2 MgATP, 0.4 Na2GTP, 0.05 EGTA, biocytin (0.4%), 

respectively. In whole-cell recordings pauses following bursts evoked by PF 

stimulation decreased gradually with time. Pause durations did not change 

systematically in cell-attached recordings with seal resistances between 10 – 100 M. 

Tight seals were avoided because they often resulted in spontaneous transitions to the 

whole-cell configuration. Liquid junction potentials were not corrected for. Parallel 

fibers were stimulated with pipettes containing ACSF placed >50 µm below the 

dendritic tree of the recorded cell to avoid activation of the CF. CFs were activated 

with a second ACSF-filled electrode placed in the granule cell layer. GABAA

receptors were blocked by bath application of the specific antagonist SR95531 (‘SR’) 

(Hamann et al., 1988), except when otherwise noted. Data was low-pass filtered at 4 

to 10 kHz and sampled at 20 kHz using a 1321A Digidata A/D converter (Axon 

Instruments). Data were analyzed offline using Igor Pro (Wavemetrics, Lake Oswego, 

OR). Data are presented as mean ± standard error and statistical significance was 

tested with student’s unpaired t-test. Data in Fig. 4C was averaged over 2 minute bins 

and statistical significance was calculated from the binned data.

Single unit recordings of floccular Purkinje cells in vivo

Adult LTD-deficient L7-PKCi mice (n = 9) and wild type littermates (n = 13) were 

prepared for chronic recording experiments and subjected to optokinetic stimulation 

as described in detail by De Zeeuw et al. (1998) and by Goossens et al. (2004).  All 

preparations were done according to the European Communities Council Directive 

(86/609/EEC) and approved by the Dutch Ethical Committee (DEC) for animal 

experiments.  In short, the animals were anesthetized and they received a pedestal and 

a recording chamber placed over the paramedian lobule of the cerebellum.  

Subsequently, the animals were allowed to recover for a period of 3 - 4 days and 

extracellular Purkinje cell activity was recorded from the left flocculus.  The 
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electrophysiological signals were amplified, filtered, digitized, and analysed using 

MATLAB (Cyberamp and CED 1401plus units, CED; Mathworks Inc., Natick, MA, 

USA) (Hoebeek et al., 2005).  Single units were identified by the presence of a clean 

pause in simple spike firing of at least 5 ms following the occurrence of a complex 

spike.  The simple spike activity was recorded during both spontaneous activity in the 

dark and optokinetic stimulation.  Binocular visual stimulation was provided by a 

drum consisting of a random, black and white pattern rotating with an amplitude of 5 

degrees at 0.05 Hz or 0.2 Hz.  Once a floccular Purkinje cell was isolated, the 

preferred axis of modulation was determined by rotating the optokinetic stimulus 

around the vertical axis or a horizontal axis at 135° azimuth, ipsilateral to the side of 

the recording.  Only Purkinje cells with a preferred rotation around the vertical axis 

were used for the present study.  Cumulative probabilities of simple spike interspike 

intervals were calculated using all interspike intervals per stimulus condition. 
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Figure Legends

Figure 1. A Purkinje cell model responds to PF input patterns with a burst of 

simple spikes followed by a pause

(A) Background PF activity resulted in a Purkinje cell firing frequency of 48 Hz. 

Presentation of a novel and a learned PF input pattern evoked a burst of spikes 

followed by a pause. Note that the pause duration was reduced for the learned pattern. 

(B) Raster plots showing the presentation of 75 learned and 75 novel PF activity 

patterns consisting of 1000 synchronously activated PF synapses. Same time scale as 

A.

Figure 2. The simple spike pause can be used as criterion to distinguish 

learned and novel PF activity patterns

Panels show typical response distributions for three features of the spike train that 

could be used as criterion to recognize learned patterns: the latency of the first simple 

spike fired after presentation of a pattern (A), the number of spikes in the first 25 ms 

(B) and the length of the simple spike pause following the pattern presentation (C). 

For the latency and spike number, the distributions of responses to learned (red) and 

novel (blue) patterns overlapped to a large degree, resulting in very low s/n ratios of 

0.009 and 0.008, respectively. In contrast, for the pause the two response distributions 

were clearly separated with an s/n ratio of 18.6. Simulation parameters as in Fig. 1.

Figure 3. Synaptic stimulation in acute cerebellar slices evokes bursts of 

spikes followed by pauses 

The data shown in panels A – F were recorded while inhibition was blocked by 

adding SR95531 to the bath. In panels G and H, no SR95531 was added and 

inhibition was intact. (A) Extracellular recording of spiking from a Purkinje cell in a 

cerebellar slice. Raster plot of 10 consecutive sweeps. The first sweep in each raster is 

also shown as a raw trace. The underlying EPSP amplitude for each raster was (top to 

bottom) 15.5, 22.6, 26.0, 28.6 mV. Scale bar is 200 pA and 100 pA for the last raw 

trace. (B) After recording spike data in cell-attached mode EPSPs at the respective 

stimulation strength were recorded in whole-cell mode. Scale bar is 5 mV and 20 ms. 

(C) Pause duration as function of EPSP amplitude (black circles), baseline interspike 

interval (rectangles) and pause divided by the interspike interval (shifted to the right 
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for better visibility). (D) Extracellularly recorded pause as function of EPSP 

amplitude in 10 cells. Red connecting lines indicate statistical significance (p < 0.01). 

(E) Same data as in D, but normalized to the baseline interspike interval. (F) A typical 

spiking trace recorded in whole-cell mode and the corresponding EPSP. (G) EPSPs 

recorded at 5 different stimulation strengths with inhibition intact. Scale bar is 5 mV 

and 20 ms. (H) Pause duration as a function of EPSP amplitude in 7 cells with 

inhibition intact. 

Figure 4. An LTD protocol leads to a reduction in the pause

(A) Spike raster showing the spiking pattern of a Purkinje cell in a cerebellar slice in 

response to PF stimulation before and after an LTD induction protocol (at t = 0 min) 

consisting of conjunctive PF and CF stimuli. Two sample traces at times indicated by 

the arrows show responses before (blue) and after (red) pairing. Scale bar is 40 pA. 

(B) The duration of the pause in spiking following PF stimulation plotted as a 

function of time relative to the LTD induction protocol. (C) Averaged normalized 

pause length (circles) and baseline inter spike interval for 6 cells. (D) Change of pause 

for single cells (red connection indicates statistical significance) and the 

corresponding s/n ratio of pause, number of spikes and latency. Note that the cell with 

a low s/n ratio for the pause is the same cell that did not show a decrease in the pause 

in the left plot. (E) Extracellularly recorded responses to PF and CF stimulation and 

the corresponding PF EPSP and complex spike recorded intracellularly in whole-cell 

mode (cell hyperpolarized to -69 mV) after collection of cell-attached data. Scale 

bars: left panel, 15 pA (extra), 20 mV (intra), 15 ms; right panel 4 pA (extra), 20 mV 

(intra), 2 ms. 

Figure 5. Increased probabilities for longer ISIs in LTD-deficient L7-PKCi 

mutants in vivo

Panels A and B show cumulative probability distributions for simple spike firing of 

floccular Purkinje cells during sinusoidal optokinetic stimulation at 0.05 Hz (wild 

types in red n = 7, L7-PKCi mutants in blue n = 5) and 0.2 Hz (wild types n = 13, L7-

PKCi mutants n = 9), respectively.  Panel C shows the same distributions of floccular 

Purkinje cells in the absence of optokinetic stimulation (wild types n = 10, L7-PKCi 

mutants n = 9). Insets indicate normalized probabilities for ISIs of 20 - 60ms (scale 

bar = 0.05). Panel D shows differences in surface areas between normalized 
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cumulative probability distributions of wild types and L7-PKCi mutants during both 

the presence (0.05 Hz and 0.2 Hz) and absence (rest) of optokinetic stimulation. The 

LTD-deficient mutants show larger probabilities for longer ISIs under all 

circumstances and that these probabilities increase further during stimulation.

Figure 6. Learned PF patterns result in less calcium influx in the model than 

novel patterns

The Purkinje cell model was presented with one of the learned patterns and a novel 

pattern, and a snapshot of the calcium concentration in all compartments 10 ms after 

the pattern presentation is shown. Although the learned pattern also triggered an 

increase of the calcium concentration compared to the resting level of 40 nM (left), 

the increase in response to the novel pattern was much larger (right). Same simulation 

parameters as in Fig. 1.

Figure 7. Feed-forward inhibition does not affect the model predictions

75 PF patterns with 1000 synchronously active synapses were learned by the standard 

Purkinje cell model. The model was then presented with these learned patterns and 

the same number of novel patterns, each followed by input to a varying number of 

inhibitory synapses with a time delay of 1.4 ms (Mittmann et al., 2005). (A) Linear 

relationship between the number of inhibitory synapses activated and the inhibition / 

excitation ratio (see Procedures). (B) Dependence of pattern recognition performance, 

of pause duration, the number of spikes in the burst and spike latency on inhibition / 

excitation ratio. Physiologically realistic inhibition / excitation ratios of up to two 

(Mittmann et al., 2005) resulted in good pattern separation based on the duration of 

pauses. Pattern recognition performance of the pause duration deteriorated not 

because of large changes in pause duration but because of increased variability (C). 

This variability occurred when strong inhibition reduced the number of spikes in the 

burst (D).

Figure 8. Dependence of pattern recognition performance on the number of 

learned patterns

Between 10 and 300 patterns with 1000 synchronously active PF inputs were learned 

by the standard Purkinje cell model. The model was presented with the learned 

patterns and with the same number of novel patterns, and the pattern recognition 
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performance was evaluated by calculating s/n ratios for three response criteria. The 

performance of the spiking model was compared with the corresponding artificial 

neural network (ANN, see Procedures), and with pattern recognition based on the 

amplitude of the voltage response in a non-spiking Purkinje cell model with a passive 

soma (Vpeak, see Steuber & De Schutter 2001). Note the logarithmic scale of the y-

axis. Simulation parameters as in Fig. 1.

Figure 9. Influence of firing rate and different forms of noise on the pattern 

recognition performance

(A) 75 patterns with 1000 synchronously active PFs were learned by Purkinje cell 

models that received 0.2-0.56 Hz PF background input and fired simple spikes with 

frequencies between 0 and 130 Hz. The models were presented with the 75 learned 

and 75 novel patterns, and the pattern recognition performance was evaluated for the 

three response criteria. Only silent Purkinje cell models could use the latency and 

spike number for pattern recognition. Purkinje cell models that fired simple spikes 

could only use the pause, with increasing firing rates resulting in an improved pattern 

recognition performance. (B) The effect of PF background activity on pattern 

recognition based on pauses in the Purkinje cell model is compared to the effect of a 

corresponding form of noise in the ANN (see Procedures). (C) The Purkinje cell 

model was presented with the 75 learned patterns and 75 novel patterns under 

conditions where the individual AMPA receptor mediated postsynaptic currents were 

variable (quantal variance, QV) or the extent of LTD induced was variable, both with 

a coefficient of variation of 0.5. Neither QV nor variable LTD nor a combination of 

the two had a significant effect on the pattern recognition performance. Simulation 

parameters as in Fig. 1. (D) The model was presented with 75 learned and 75 novel 

patterns with 1000 active PF inputs that contained temporal jitter, introduced by 

randomly distributing the different active inputs in a pattern over time windows 

between 0 and 25 ms. Simulation parameters as in Fig. 1. 
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Cerebellar LTD and Pattern Recognition by Purkinje Cells: 

Supplementary Material 

Movie: Stored PF Patterns Result in Less Calcium Influx than Novel Patterns. 

The Purkinje cell model is presented with one of the learned patterns (left) and a novel 

pattern (right), and the temporal evolution of the calcium concentration in all 

compartments is shown. Although the learned pattern also triggers an increase of the 

calcium concentration compared to the resting level of 40 nM (left), the increase in 

response to the novel pattern is much larger (right). The movie spans the time from 50 ms 

before until 100 ms after pattern presentation(indicated by the appearance of a white 

square in the upper left corner). Color coding as described by the color bar in Fig. 6, 

simulation procedures as in Fig. 1. 

Supplementary Figure 1: The Modeling Predictions are Insensitive to the 

Number of Active PF Inputs per Pattern 

75 patterns with 250 – 10,000 synchronously active PF inputs are learned by the standard 

Purkinje cell model (simulation procedures as in Fig. 1). The model is presented with the 

75 learned patterns and with 75 novel patterns, and the pattern recognition performance is 

evaluated by calculating s/n ratios for the three response criteria. (A) For PF patterns with 

750 - 8000 active PFs, the length of the SS pause is the best criterion for pattern 

discrimination. Patterns with PF activity levels that fall out of this range could not be 

discriminated. The graph of the s/n ratio for the duration of pauses shows two peaks at 

1000 and 6000 active PFs/pattern, and a dip at 3000 active PFs/pattern. The presence of 

the dip is caused by a change in ratio of the duration of pauses caused by learned to novel 

patterns. (B) The durations of pauses after presentation of learned and novel patterns are 

indicated in red and blue, respectively (error bars represent standard deviation), and their 

difference is indicated in black. For both learned and novel patterns, increasing the 

number of active PFs first results in an increase in the duration of pauses, based on the 

corresponding increase in stimulation strength (as in the experiments, compare Fig. 3). A 

further increase in the number of active PFs then leads to a reduction in pause duration 

which occurs faster for learned pauses. For all activity levels, learned patterns triggered 

shorter pauses than novel patterns
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