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Abstract. The hydrophobic-hydrophilic (H-P) model for protein folding was intro-
duced by Dill et al. [6]. A problem instance consists of a sequence of amino acids,
each labeled as either hydrophobic (H) or hydrophilic (P). The sequence must be
placed on a 2D or 3D grid without overlapping, so that adjacent amino acids in the
sequence remain adjacent in the grid. The goal is to minimize the energy, which in
the simplest variation corresponds to maximizing the number of adjacent hydropho-
bic pairs. Although the model is extremely simple, it captures the main features of
the problem. The protein folding problem in the H-P model is NP-hard in both 2D
and 3D. Recently, Fu and Wang [9] proved an exp(O(n1−1/d) · ln n) algorithm for
d-dimensional protein folding simulation in the HP-model. Our preliminary results
on stochastic search applied to protein folding utilize complete move sets proposed by
Lesh et al. [15] and Blazewicz et al. [3]. We obtain that after (n/δ)c·Γ Markov chain
transitions, the probability to be in a minimum energy conformation is at least 1− δ,
where n is the length of the instance, Γ is the maximum value of the minimum escape
height from local minima of the underlying energy landscape, and c is a (small) con-
stant. Γ depends on the move sets, and future research will focus on upper bounds of
this value. To be competitive with the Fu/Wang bound, Γ ≤ n1−1/d is required. From
previous experiments on stochastic search applied to computationally hard problems
[20] we expect Γ to be much smaller for real protein sequences.

1 Introduction

The protein folding problem is one of the most challenging problems in current bio-
chemistry and is a very rich source of interesting problems in mathematical modelling
and computational mathematics. Proteins are complex biological macromolecules that
are composed of a sequence of amino acids, which is encoded by a gene in a genome
[6, 11, 17]. Proteins mediate virtually all cellular functions. There are 20 different amino
acids specified in the genetic code. Amino acids are joined end-to-end during protein syn-
thesis by the formation of peptide bonds. The functional properties of proteins depend
upon their three-dimensional structures. Unlike the structure of other biological macro-
molecules (e.g., DNA), proteins have complex structures that are difficult to predict.

The linear sequence of residues in a protein is called its primary structure. The smallest
proteins, peptide-hormones, have about 25–100 residues, typical globular proteins about
100–500, and fibrous proteins may have more than 3000 residues [17].

One of the basic paradigms of structural proteomics is given by Anfinsen’s thermo-
dynamic hypothesis [1]: Proteins fold to a minimum energy state, and the information
determining the three-dimensional structure (tertiary structure) of a protein resides in the
chemistry of its primary structure (cf. [11, 21] for discussion of restrictions).
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Proteins exhibit a variety of so-called secondary structure motifs that reflect common
structural elements in a local region of the primary structure, such as α-helices and β-
strands. Groups of secondary structures usually combine to form compact structures,
which represent the tertiary structure of an entire protein. The key problem is to un-
derstand the entire folding pathway, i.e., the complete dynamics and chemical changes
involved in going from an unfolded linear state into a compact folded state (tertiary struc-
ture).

The protein folding problem can be naturally posed as a numerical simulation, but
there are several problems of scale, including the small energy differences between folded
and unfolded states, and the extremely short interval (approximately 10–15 seconds) for
which the dynamics equations remain valid, compared to the microseconds to milliseconds
over which the folding takes place. The thermodynamic hypothesis [1] motivates the
attempt to predict protein folding by solving certain optimization problems, but there are
two main difficulties with this approach: The precise definition of the energy function that
has to be minimised, and the extremely difficult optimization problems arising from the
energy functions commonly used in folding simulations [11, 17].

A great variety of models has been developed for protein folding simulations, with
different levels of detail (for a concise discussion, cf. [21]). In the present paper, we focus
on minimal models [11, 21], and we distinguish roughly between lattice models [6] and
off-lattice models [7, 17]. For a discussion of energy functions and justifications for the
use of simplified (approximated) energy functions we refer the reader to [21]. One of
the most popular models of protein folding is the hydrophobic-hydrophilic (H-P) model
[6]. In the H-P model, proteins are modelled as chains whose vertices are marked either
H (hydrophobic) or P (hydrophilic); the resulting chain is embedded in some lattice.
H nodes are considered to attract each other while P nodes are neutral. An optimal
embedding is one that maximizes the number of H-H contacts. The rationale for this
objective is that hydrophobic interactions contribute a significant portion of the total
energy function. Roughly, this objective favours conformations that have the hydrophobic
amino acid residues clustered on the inside, covered by the hydrophilic ones. Unlike more
sophisticated models of protein folding, the main goal of the H-P model is to explore broad
qualitative questions about protein folding such as whether the dominant interactions are
local or global with respect to the chain.

Lattice models of protein folding have provided valuable insights into the general com-
plexity of protein structure prediction problems. For example, protein structure prediction
has been shown to be NP-hard for a variety of lattice models [2, 11, 16]. The intractability
results are complemented by performance guaranteed approximation algorithms that run
in linear time [11, 13]. These results can be generalized to simple off-lattice protein models.
However, these approximation algorithms have not proven helpful for finding minimum
energy conformations. Since protein structure prediction is NP-hard, (local) search-based
algorithms are a natural choice to tackle the problem, especially in lattice models; cf. lit-
erature in [11]. Lesh et al. [15] and Blazewicz et al. [3] proposed complete neighbourhood
move sets for local search in 2D and 3D grids, respectively, and performed computational
experiments on benchmark problems for protein folding in the H-P model. Recently, Fu
and Wang [9] proved an exp(O(n1−1/d) · ln n) algorithm for d-dimensional protein folding
simulation in the HP-model.

The present paper reports our preliminary results on stochastic search applied to pro-
tein folding in the H-P model. We utilize the complete move sets proposed in [15] and
[3]. We obtain that after (n/δ)c·Γ Markov chain transitions, the probability to be in a
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minimum energy conformation is at least 1 − δ, where n is the length of the instance, Γ
is the maximum value of the minimum escape height from local minima of the underlying
energy landscape, and c is a relatively small constant. Thus, to be competitive with the
Fu/Wang run-time bound, we need to show Γ ≤ n1−1/d. However, based on our previ-
ous experiments on stochastic search applied to computationally hard problems [20] we
expect Γ to be much smaller for real protein sequences. Future research will focus on
proven upper bounds of Γ in the context of complete move sets for the H-P model, and
on computational experiments on protein folding benchmark problems [3]. Furthermore,
since local search methods have been proved to be useful in many applications, we plan to
explore the applicability of local search methods developed in diverse areas of combina-
torial optimization. For example, WalkSAT and related methods have been successfully
used to solve SAT instances [10, 19]. Therefore, we intend to investigate if methods like
WalkSAT are applicable to the protein folding problem in the lattice model; on the other
hand, we also plan to study the performance of our logarithmic simulated annealing-based
search on SAT instances.

2 Preliminaries

Our stochastic local search procedure for protein folding is based on simulated anneal-
ing [5, 14], where the underlying Markov chain is of inhomogeneous type [4, 12]. Simulated
annealing algorithms are acting within a configuration space in accordance with a certain
neighbourhood relation, usually of polynomial size. The particular transitions between
adjacent elements of the configuration space are governed by an objective function. For
simplicity of presentation, we focus on the 2D rectangular grid H-P model only.

According to Anfinsen’s thermodynamic hypothesis [1], the problem of finding the
native protein structure can be defined as an energy function minimization problem. In
the 2D rectangular grid H-P model, one can define the minimization problem as follows:

min
α

E(S,α) for E(S,α) := ξ · HHc(S,α),(1)

where where S is a sequence of amino acids containing n elements; Si = 1, if amino acid
on the ith position in the sequence is hydrophobic; Si = 0, if amino acid on the ith position
is polar; α is a vector of (n − 2) grid angles defined by consecutive triples of amino acids
in the sequence; HHc is a function that counts the number of neighbours between amino
acids that are not neighbours in the sequence, but they are neighbours on the grid (they
are topological neighbours); finally, ξ < 0 is a constant lower than zero that defines an
influence ratio of hydrophobic contacts on the value of conformational free energy. The
distances between neighbouring grid nodes is assumed to be equal to 1. We identify
sequences α with conformations of the protein sequence S, and a valid conformation α
of the chain S lies along a non-self-intersecting path of the rectangular grid such that
adjacent vertices of the chain S occupy adjacent locations. Thus, we define the set of
conformations (for each S specifically) by

FS := {α is a valid conformation for S }.(2)

Since F := FS is defined for a specific S, we denote the objective function by

Z(α) := ξ · HHc(S,α).(3)
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The neighbourhood relation of our stochastic local search procedure is determined by
the set of pull moves introduced in [15] for 2D protein folding simulations in the H-P model
(and, basically, extended to the 3D case in [3]). For details of the definition of the set of
pull moves we refer the reader to [15].

Theorem 1 [15] The set of pull moves is local, reversible, and complete within F , i.e. any
β ∈ F can be reached from any α ∈ F by executing pull moves only.

The set of neighbours of α that can be reached by a single pull move is denoted by
Nα, where additionally α is included since the search process can remain in the same
configuration. Furthermore, we set

Nα := |Nα |;(4)
Fmin := {α : α ∈ F and Z(α) = min

α′ E(S,α′)}.(5)

In simulated annealing-based search, the transitions between neighbouring elements are
depending on the objective function Z. Given a pair of protein conformations [α,α′], we
denote by G[α, α′] the probability of generating α′ from α, and by A[α,α′] we denote the
probability of accepting α′ once it has been generated from α. As in most applications of
simulated annealing, we take a uniform generation probability:

G[α, α′] :=

{ 1
Nα

, if α′ ∈ Nα;
0, otherwise.

(6)

The acceptance probabilities A[α, α′] are derived from the underlying analogy to thermo-
dynamic systems:

A[α,α′] :=

{
1, if Z(α′) −Z(α) ≤ 0;

e−
Z(α′)−Z(α)

t , otherwise,
(7)

where t is a control parameter having the interpretation of a temperature in annealing
processes. The probability of performing the transition between α and α′ is defined by

Pr{α → α′} =

⎧⎨⎩
G[α, α′] · A[α, α′], if α′ �= α;

1 − ∑
α′ �= α

G[α, α′] · A[α, α′], otherwise.(8)

By definition, the probability Pr{α → α′} depends on the control parameter t. Let aα(k)
denote the probability of being in conformation α after k transition steps. The probability
aα(k) is calculated in accordance with

aα(k) :=
∑
β∈F

aβ(k − 1) · Pr{β → α}.(9)

The recursive application of (9) defines a Markov chain of probabilities aα(k), where
α ∈ F and k = 1, 2, .... If the parameter t = t(k) is a constant t, the chain is said to
be a homogeneous Markov chain; otherwise, if t(k) is lowered at any step, the sequence of
probability vectors �a(k) is an inhomogeneous Markov chain.

In the present paper we are focusing on a special type of inhomogeneous Markov chains
where the value t(k) changes in accordance with

t(k) =
Γ

ln(k + 2)
, k = 0, 1, ... .(10)
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The choice of t(k) is motivated by Hajek’s Theorem on logarithmic cooling schedules for
inhomogeneous Markov chains [12]. To explain Hajek’s result, we first need to introduce
some parameters characterising local minima of the objective function:
Definition 1 A conformation α′ ∈ F is said to be reachable at height h from α ∈ F , if
∃α0, α1, ..., αr ∈ F with α0 = α∧αr = α′ such that G[αu, αu+1]>0, u = 0, 1, ... , (r−1),
and Z(αu) ≤ h for all u = 0, 1, ... , r.
We use the notation H(α ⇒ α′) ≤ h for this property. The conformation α is a local
minimum, if α ∈ F\Fmin and Z(α′) ≥ Z(α) for all α′ ∈ Nα\{α}.
Definition 2 Let λmin denote a local minimum, then D(λmin) denotes the smallest h such
that there exists λ′ ∈ F with Z(λ′) < Z(λmin) that is reachable at height Z(λmin) + h.
The following convergence property has been proved by B. Hajek:

Theorem 2 [12] For t(k) from (10), the asymptotic convergence
∑

α∈Fmin
aα(k) −→

k→∞
1 of

the algorithm defined by (3), ..., (9) is guaranteed if and only if
1. ∀α, α′∈F ∃α0, α1, ... , αr ∈F such that α0 = α ∧ αr = α′

and G[αu, αu+1] > 0 for u = 0, 1, ... , (r − 1);
2. ∀h : H(α⇒α′) ≤ h ⇐⇒ H(α′⇒α) ≤ h;
3. Γ ≥ max

λmin

D(λmin).

From Theorem 1 and the definition of Nα we immediately conclude that the conditions
(i) and (ii) are valid for F . Thus, together with Theorem 2 we obtain:
Corollary 1 If Γ ≥ maxλmin

D(λmin), the algorithm defined by (3), ..., (10) and the pull
move set from [15] tends to minimum energy conformations in the H-P model.

3 Run-time Estimates of Simulations

For any α ∈ F we introduce the following parameters:

s(α) := |{α′ : α′ ∈ Nα ∧ Z(α′) > Z(α)}|,(11)
r(α) := |{α′ : α′ ∈ Nα ∧ α′ �= α ∧ Z(α′) ≤ Z(α)}| .(12)

Thus, from the definition of Nα and (4) we have

s(α) + r(α) = Nα − 1.(13)

We observe that for Z(α′) > Z(α) the acceptance probability (7) can be rewritten as

e−(Z(α′)−Z(α))/t(k) =
1

(k + 2)(Z(α′)−Z(α))/Γ
, k ≥ 0.(14)

To simplify notations, we use γ := γ(α′, α) := (Z(α′) − Z(α))/Γ, in most cases not
indicating the dependence on (α′, α).

In (9), we separate the probabilities according to whether or not α′ equals α, and the
probability to remain in α is substituted by the defining equation from (8). Thus, we
obtain:

aα(k) =
∑

α′ ∈ Nα

aα′(k − 1) ·Pr{α′ → α}
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= aα(k − 1) · Pr{α → α} +
∑

α′ �= α

aα′(k − 1) · Pr{α′ → α}

= aα(k − 1) ·
(
1 −

∑
α′ �= α

Pr{α → α′}
)

+
∑

α′ �= α

aα′(k − 1) · Pr{α′ → α}.

The value of aα(k) is now expressed by using structural parameters as defined in (11) and
(12):
Lemma 1 The value of aα(k) can be calculated from probabilities of the previous step by

aα(k) =
(

s(α) + 1
Nα

− 1
Nα

·
s(α)∑
i=1

1
(k + 1)γ

)
· aα(k − 1) +

s(α)∑
i=1

aαi(k − 1)
Nαi

+

+
r(α)∑
j=1

aαj (k − 1)
Nαj

· 1
(k + 1)γ

.(15)

The backwards expansion from Lemma 1 will be used as the main relation reducing aα(k)
to probabilities from previous steps. The elements of the conformation space are distin-
guished by their minimum distance to Fmin: Given α ∈ F , we consider a shortest path of
length dist(α) with respect to neighbourhood transitions from α to Fmin. We introduce a
partition of F in accordance with dist(α):

α ∈ Mi ⇐⇒ dist(α) = i ≥ 0, and Md m =
d m⋃
i=0

Mi,(16)

where M0 := Fmin and d m is the maximum distance. From the proof of Theorem 1 in
[15] we conclude

dm ≤ nO(1).(17)

Since we want to analyze the convergence to elements from M0 = Fmin, we have to show
that the value ∑

α�∈M0

aα(k)(18)

becomes small as k increases. We assume k ≥ d m and we are going backwards from
step k: At the same backwards transition from k to (k − 1), the neighbours of α are
generating terms containing aα(k − 1) as a factor in the same way as aα(k) generates
terms with factors aαi(k − 1) and aαj (k − 1), see Lemma 1. If we now consider the entire
sum

∑
α�∈M0

aα(k), the terms corresponding to a particular aα(k − 1) can be collected
together to form a single expression. Firstly, we consider α ∈ Mi, i ≥ 2. In this case,
α does not have neighbours from M0, i.e., the expansion from Lemma 1 appears for all
neighbours of α in the reduction of

∑
α�∈M0

aα(k) to step (k − 1). Therefore, taking all
terms together that contain aα(k − 1), we obtain

aα(k − 1) ·
{(

Nα − r(α)
Nα

− 1
Nα

·
s(α)∑
i=1

1
(k + 1)γi

)
+

1
Nα

·
s(α)∑
i=1

1
(k + 1)γi

+
r(α)
Nα

}
= aα(k − 1).(19)

Secondly, if α ∈ M1, the neighbours from M0 are missing in
∑

α�∈M0
aα(k) at the step to

(k − 1), i.e. they do not generate terms containing probabilities from higher levels. For
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α′ ∈ M0, the expansion from Lemma 1 contains the terms aαi(k − 1)/Nαi for αi ∈ M1.
Thus, the terms aαi(k − 1)/Nαi are not “available” for α = αi ∈ M1 in the reduction
of

∑
α�∈M0

aα(k) to step (k − 1). For each α ∈ M1, there are r(α) such terms related to
neighbours from M0. Therefore, in the expansion of

∑
α�∈M0

aα(k), the following arithmetic
term is generated when the particular α is from M1:(

1 − r(α)
Nα

)
· aα(k − 1).(20)

We introduce the following abbreviations:

ϕ(α, v) :=
1

Nα
·

s(α)∑
i=1

1
(k + 2 − v)γi

and Dα(k − v) :=
s(α) + 1

Nα
− ϕ(α, v).(21)

Now, the relations expressed in (19) and (20) can be summarised to
Lemma 2 A single step of the expansion of

∑
α�∈M0

aα(k) results in∑
α �∈ M0

aα(k) =
∑

α �∈ M0

aα(k−1)−
∑

α ∈ M1

r(α)
Nα

·aα(k−1)+
∑

α′ ∈ M0

ϕ(α′, 1) ·aα′(k−1).(22)

The diminishing factor (1 − r(α)/Nα) is generated by definition for all elements of M1.
At subsequent reduction steps, the factor is “transmitted” successively to all probabilities
from higher distance levels Mi because any element of Mi has at least one neighbour from
Mi−1. The main task is now to analyse how this diminishing factor changes when it is
transmitted to higher distance levels. We denote∑

α �∈ M0

aα(k) =
∑

α �∈ M0

µ(α, v) · aα(k − v) +
∑

α′ ∈ M0

µ(α′, v) · aα′(k − v),(23)

i.e. the coefficients µ(α̃, v) are the factors at probabilities after v steps of a backwards
expansion of

∑
α�∈M0

aα(k). Starting from step (k−1), the probabilities aα′(k−v), α′ ∈ M0,
from (23) are expanded in the same way as the probabilities for all other α �∈ M0.

We establish a recursive relation for the coefficients µ(α̃, v) defined in (23). The recur-
sive relation is derived by an inductive step from (k− (v− 1)) to (k− v), v ≥ 2, where the
probabilities aα̃(k − (v − 1)) are expanded in∑

α �∈ M0

aα(k) =
∑

α̃ ∈ F
µ(α̃, v − 1) · aα̃(k − (v − 1))(24)

according to Lemma 1. We note that the particular summands in the expansion of aα̃(k−
(v − 1)), i.e. the summands at the right hand side in Lemma 1 are multiplied by the
corresponding µ(α̃, v−1). Taking together all terms associated with a particular aα̃(k−v),
we have

aα̃(k − v) ·
{

µ(α̃, v − 1) ·
(

Nα̃ − r(α̃)
Nα̃

− ϕ(α̃, v)
)

+

+
∑

α′ > α̃

µ(α′, v − 1)
Nα̃

· 1
(k + 2 − v)γ

+
∑

α′′ ≤ α̃

µ(α′′, v − 1)
Nα̃

}

= aα̃(k − v) · µ(α̃, v),

where α′ > α̃ is for Z(α′) > Z(α̃) and α′′ ≤ α̃ for the reverse relation to simplify
the notations. Thus, taking into account (21), we obtain the following parameterized
representation:
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Lemma 3 The following recurrent relation is valid for the coefficients µ(α̃, v):

µ(α̃, v)=µ(α̃, v−1)·Dα̃(k−v) +
∑

α′′ < α̃

µ(α′′, v−1)
Nα̃

+
∑

α′ > α̃

µ(α′, v−1)
Nα̃

· 1
(k+2−v)γ

.(25)

It is important to note that the summands are divided by the same value Nα̃.
We take advantage of the fact that for conformations α different from local and global

minima the factor Dα(k − v), which is associated with the probability to remain in α, is
smaller than (1− 1/(n+1)), i.e. there is an upper bound independent of (k− v); see (21).
Therefore, for this type of conformations, it is possible to obtain an upper bound of aα(k)
by straightforward calculations. Let MIN denote the set of all global and local minima.
We set M̂ := {α : r(α) ≥ 1} = F\MIN and consider aα(k) defined by (8) and (9) when
all probabilities on the right hand side are recursively substituted in the same way, where
we break up the paths of the expansion that lead from some α to α′ with Z(α) > Z(α′).
Such transitions generate a factor (k + 2− u)−γ , which is then used as the crucial type of
factors in the upper bound of aα(k). By analysing this type of expansions, we obtain:
Lemma 4 If k > 2 · (n + 1)2 · ln (k + 2)max γ, then

∑
α∈M̂

aα(k) <
3 · e · (n + 1)3

(k − 2 · (n + 1)2 · ln (k + 2)max γ)min γ
.(26)

By Mlm ⊂ MIN we denote the set of all local minima. If α ∈ Mlm, we represent µ(α, v)
by µ(α, v) = 1 − ν(α, v) and by straightforward calculations we obtain

∑
α�∈M0

aα(k) −
∑

α�∈M0

aα(k′) <
3·e·(n+1)3

(k−2 · (n+1)2 · ln (k+2)max γ)minγ
+

+
∑

α∈Mlm

ν(α, v′)·aα(k).(27)

Thus, it remains to analyse ν(α, v′), v′ ≥ d m + v, for local minima:
Lemma 5 If α ∈ Mlm, then

ν(α, v′) <
4 · (n + 1)

(k + 2 − v′)min γ
.(28)

From (27) and Lemma 5 we obtain together with
∑

α̃ �∈M0
aα̃(k) =

∑
α̃�∈M0

(aα̃(k)−aα̃(k′))+∑
α̃�∈M0

aα̃(k′) the main result:

Theorem 3 If Γ ≥ max
λmin

D(λmin) for the conformation space F from (2) and 0 < δ < 1,

then

k ≥ 2 ·
(8 · e · (n + 1)3

δ

)Γ/c

implies for arbitrary initial probability distributions �a(0) the relation∑
α̃�∈Fmin

aα̃(k) < δ and therefore,
∑

α′∈Fmin

aα′(k) ≥ 1 − δ,

where c is determined by min(α′,α)(Z(α′) −Z(α)).
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