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Abstract. We consider temporal aspects of self-replication and evolvability – in
particular, the massively asynchronous parallel and distributed nature of living
systems. Formal views of self-reproduction and time are surveyed, and a gen-
eral asynchronization construction for automata networks is presented. Evolution
and evolvability are distinguished, and the evolvability characteristics of natural
and artificial examples are overviewed. Minimal implemented evolvable systems
achieving (1) asynchronous self-replication and evolution, as well as (2) proto-
cultural transmission and evolution, are presented and analyzed for evolvability.
Developmental genetic regulatory networks (DGRNs) are suggested as a novel
paradigm for massive asynchronous computation and evolvability. An appendix
classifies modes of life (with different degrees of aliveness) for natural and artifi-
cial living systems and possible transitions between them.

1 Models of Time: Logical vs. Physical Time

We consider time in discrete dynamical systems. St. Augustine considered time as
something intuitively graspable yet ineffable. Varshavsky distinguished two kinds of
time: Time as a logical variable in a system defined by events vs. time as an indepen-
dent physical variable [96], and studied self-timing and asynchrony theory for comput-
ing devices as the problem of reconciling the two types of time via design of system
timing for the appropriate functioning asynchronous devices interacting with external
environments.

For a single observer or location, we can consider three main views of the (logical)
time:
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1.1 Partial Orders as Models of Time

Aristotle considered events in time via ordering related to casuality (and motion), and
time as defined by differences between states before and after (thus change is required
for the passage of time).

1.2 Time as a Random Variable

Another view is to regard logical events, such as a discrete event clock-tick, as embed-
ded in physical time but where a random variable takes values event or no event accord-
ing to some distribution at successive discrete moments of physical time. (Instead of just
one type of event more generally different particular events might be generated.) Here
the passage of logical time, if used to increment a measuring counter, is monotonically
but not deterministically related to the passage of physical time.

1.3 Algebras of Time: Semigroups as Models of Time

Following J. L. Rhodes (who refers to Aristotle), we can describe time algebraically. If
α, β, and γ are each sequences of events in time, and the composite sequence β then
γ is preceded by α, this is exactly in the same as when β follows α and after both γ

occurs. That is, the associative law

(αβ)γ = α(βγ)

is a grammatical statement about sequences of events in time. The study of associative
structures (semigroups) is thus the study of models of time.

As a simple application, we have algebraically classified all models of time allowing
for only a single repeated event (or “clock-tick”).1

Semigroups are intimately connected with deterministic automata, as sequences of
inputs induce mappings of the set of states of the automaton to itself; these induced
mappings thus comprise a semigroup (under the associative operation of function com-
position) which serves as a model of time in the automaton.

To pass to a nondeterministic or probabilistic automaton, there are several methods.
A very general one, related to the construction of minimal automata, applies to the more
general case of observations or measurements of any phenomenon at all. Observations
of a given stochastic phenomenon can be treated via Crutchfield’s ε-machines: from ob-
servations of an, in general stochastic, process one constructs a deterministic automaton
in which transitions are single observations and in which states are equivalence classes
of past histories for each member of which the probability distribution over the future
histories is identical. In other words, in a given state the future is conditionally inde-
pendent of the past [15]. The semigroup of the ε-machine then serves as an algebraic
invariant and model of the temporal dynamics of the given phenomenon.

1 The possible single event models are cyclic groups, the positive natural numbers under addi-
tion, and thresholded cyclic groups – in which the event can be repeated some number of times
whereupon one enters a cyclic group [57].



2 Evolution and Evolvability

Evolution viewed as stochastic synchronous or asynchronous algorithm or temporal
process is described here. Evolvability describes the capacity to which a particular evo-
lutionary process is successful in generating adaptive individuals and will be discussed
in detail later. After defining Darwinian evolution, we survey non-biological examples
and the other evolution-like phenomena. Evolvability is then discussed in detail for
these examples.

2.1 Definition of Darwinian Evolution

Evolution is any dynamical population process [17, 16] with the following charac-
teristics, which one can regard as the semi-formal Darwin-Wallace axioms:

(1) Heritability: Individuals have inherited information or material (genotype) from
parent(s) that makes them similar to their parent(s) in some traits.
(2) Variability: Offspring may differ from their parents in their heritable material
(genotype) and in other respects (phenotype).
(3) Differential Reproductive Success [selection]: depending on phenotype, which
must depend at least in part on inherited traits, some individuals are more likely to
have any (or more) offspring than others.
(4) Finite Resources and Turn-over of Generations: Lifespans of individuals are fi-
nite and the existence of only a limited number of individuals can be supported in the
population at any moment.

The above axioms yield a creative engine via a “struggle for existence” driving “de-
scent with modification”. Persistence and increase in distribution of heritable successful
traits follow by (1) and (3), and creativity arises via (2). Competition for existence is
due to (4). Note that a presupposition of these axioms is that the population consists of
well-defined individuals.

2.2 Stochasticity of Evolution

Stochasticity impinges on evolution usually (1) via the mechanism of genotypic vari-
ability, whereby inherited information is perturbed, but also (2) in phenotypic variability
whereby the environment or constrained aspects of development lead to differences be-
tween parent and progeny. Differential reproductive success (3) refers to the probability
of success at producing progeny depending on inherited information and is therefore
generally modeled as stochastic in nature.2

Evolution can thus be regarded as a very general class of stochastic algorithm with
many instances occurring in nature, culture, and artificial systems.

2 Nevertheless, evolution is also possible in completely deterministic systems, e.g. the syn-
chronous evoloop system [77] (see below), or any non-interactive genetic algorithm running
with a given ‘seed’ for generating random numbers.



2.3 Instances of Evolution in Silico

Genetic Algorithms and Evolutionary Computation Genetic Algorithms (GAs) and
allied methods are population processes for artificial evolution in computers and have
been introduce in many variants: genetic algorithms [27], evolutionary strategies [70,
80], evolutionary algorithms [24], and others. The “vanilla” genetic algorithm in the
style of Holland [27] is described here:

0. Create a population of fixed finite size of fixed-length bit-strings encoding candidate
solutions to an optimization problem (initialized randomly or with domain knowledge)
1. Evaluate each against an objective function (“fitness function”)
2. Copy individuals that do better with higher probability into next generation (a new
population, with same population size) [selection]
3. Apply variability operators: mutation random bit-flips, crossover: recombination be-
tween two individuals by swapping the substrings after some randomly selected point
along the strings, and others.
4. Iterate 1-3 until satisfied.

Genetic Programming: variant of GA Genetic Programming (GP) is a variant of
GAs introduced in the early 1990s by John Koza [30]. It has the following structure:
0. Do GA, but on populations of programs, not bit-strings (e.g. Lisp S-expressions,
or parse trees in any programming language). Individuals are syntactically correct pro-
grams over some chosen set of basic operations, and terminals (constants and variables).
1. Behaviour or output of each program in population is evaluated against an objective
function (“fitness function”)
2. Copy individuals that do better with higher probability into next generation (a new
population, with same population size) [selection]
3. Apply variability operators respecting syntax: mutation replaces a subtree by random
one (of the same type); crossover: exchange subtrees (of the same type) at random nodes
between two individuals. New individuals are syntactically correct since the operators
respect node typing.

Later variants of GP also introduced explicit support for modularity, named func-
tions (so-called automatically defined functions (ADFs)) that can be called by the main
result producing branch of the program.

Digital Organisms Digital organisms were introduced by tropical evolutionary biol-
ogist and computer scientist T. S. Ray around 1989. Individuals in a finite computer
memory are self-replicating programs running on a Darwinian operating systems (one
in which mutations in data and flaws in computational operations occur with certain
low probabilities). There is no objective function, so we have an instance of natural
selection. The motivation is not optimization but artificial life as a generalization of
biology. Several systems for the evolution of digital organisms have been developed:
Tierra [69], the first one, gives rise to rich ecologies (parasites, obligatorily social
hyperparasites, etc.). Insights that make it evolvable (as compared to random muta-
tion of computer code) were inspired by biology and include (1) template recognition



and matching (recognition based on “shape”); (2) all strings are syntactically correct
(in Tierra, assembler-like programs), and (3) small language size - no numerical con-
stants are permitted in statements (but must be constructed in an organism’s digital
processor if needed). Space in computer memory and processor cycles are the funda-
mental resources for digital organisms; these and interaction amongst digital organisms
determines their reproductive success in an emergent manner. NetTierra is an in-
ternet wide version with multithreading (an analogue of multicellularity), sensing by
digital organisms of other sites over the network, and migration between computers.
The Avida system added CPU cycle rewards for some computations and is currently
most widely used [2], especially as a model for bacterial evolution and an experimen-
tal test-bed for population genetics theory. Physis [23] is new system for studying
evolvability of digital organisms in which organisms carry not only the code for their
self-replication, but also code specifying the processor that will run it and, moreover,
code specifying the language they will run on it: evolvable processors. This latter system
allows the study of the evolvability of self-replication, including phenomena analogous
to evolution of the genetic code for protein biosynthesis via translation to amino acid
sequences from sequences of codons in very long oligonucleotides (DNA/RNA).

3 Not-Quite-Darwinian Evolution

Several cases of what looks like evolution (and is often called evolution) fail to meet
the Darwinian axioms. Generally, in such cases, there are dynamical similarities, but the
problem is that one cannot identify well-defined individuals. An analogue of producing
progeny in such cases is persistence [52], usually eventually with modification (and
hence variability).

3.1 Software Evolution

In Software Engineering, the costs of so-called ‘software maintenance’ and ‘software
evolution’, i.e. costs of modifying and adapting already released software, amount to
billions of dollars annually (50-95% of all software costs [83, 35]). Software is static,
fragile and inflexible (except where adaptation need has been foreseen), but its con-
text and environments of use change, hence requirements change. Software evolution
has been characterized as managing change – see the work of Lehman, Goguen, and
Berners-Lee (e.g. [35, 25, 26, 8]). Persistence and re-use of software is an analogue to
heritability [52]. If software code is regarded as heritable information, the severe prob-
lem of requirements change shows the need for software that possesses phenotypic ver-
satility and robustness to perturbation, both of which are related to evolvability.

Software growth has been studied as a dynamical system with system-level, positive
and negative growth laws [103]. There are no clear individuals, no population. But
there is persistence and growth, and descent with modification. Are there principles in
common with those of biological evolvability? The answer seems to be yes, but they are
not well-understood yet. Any software carries with it an unbounded number of hidden
assumptions, which are progressively violated as time passes and context of use – and
hence requirements – changes [35]. A design principle similar to biological evolvability:



attempt to be future-proof, robust to likely sources of change (see [8] on future-proofing
and world wide web data and mark-up languages).3

3.2 Cultural Evolution

Other examples of evolution without readily identifiable individuals in populations are
the evolution of artifacts, and the evolution of behavior or cultural (memetic) evolution.

4 Evolvability

The evolution of life on earth has undergone several major transitions. Major transitions
in evolution are studied in [11, 45]: Free Replicators to replicators in compartments;
RNA as gene/enzyme to DNA and protein (genetic code); prokaryotes to eukaryotes;
asexual clones to sexual populations; protists to differentiated multicellular life (esp.
[11, 47]); solitary individuals to colonies with non-reproductive castes [45].

All of them involve transitions in the way information is used and most of them
involve the advent of new types of individuality and thus new units of selection in
populations of these new individuals.

Nothing like the complexity and creative power of organic evolution has been re-
alized in artificially constructed evolutionary systems. Why is this the case? Computer
scientists using evolutionary computation techniques quickly discovered that in some
cases evolution was better able to find solutions than in others. Sometimes evolution
completely failed as an optimization method, other times it worked well. Biologists had
tacitly assumed that evolution by itself was sufficient to generate open-ended adaptiv-
ity and complexity of the kind they observed in nature (e.g. flowering plans, animals
with complex body plans, etc.). But the frustration of computer scientists in some cases
showed clearly that some systems were obviously more evolvable than others.

4.1 Krohn-Rhodes Complexity and Open-Ended Evolution

This leads to a constructive challenge problem.

Open Problem 1. (Open-Ended Evolution) Build a system that exhibits open-ended
evolution. One in which complexity can grow arbitrarily large and new innovation and
complex traits continue to arise.

3 The problem with being “future-proof” is that evolution by itself is a historical process that
cannot predict anything about the future. In biology, robustness to likely sources of change
appears to be achieved via lineage selection, i.e. lineages robust to the kind of change that has
historically occurred are more likely to continue than others when changes of the same type
reoccur in the future. In software, human design as well as such lineage selection may operate.
See also the discussion in the sections of this paper on GP code bloat and on the evolution of
evolvability.



Krohn-Rhodes complexity in algebraic automata theory using semigroups as mod-
els of time (or, e.g. Kolmogorov complexity) can be used to formalize the notion of un-
bounded complexity growth, and explicit bounds on complexity increase in the course
of smooth evolution can be computed [60]. Duplication-and-divergence is one generic
method of maximizing jumps in complexity [62].

4.2 Origin vs. Fate of Variation

Most evolutionary theory (e.g. nearly all of population genetics) has been concerned
with the fate rather than origin of variation [101]. Variability is the only source of cre-
ativity in the evolution axioms, and its generation must therefore be one of the keys to
evolvability.

4.3 Definition of Evolvability

Evolvability has been characterized in various ways in the literature:

– “the ability of a population to produce variants fitter than any yet existing” (Al-
tenberg [5])

– “genome’s ability to produce adaptive variants when acted on by the genetic sys-
tem” (Wagner & Altenberg [101])

– “the capacity to generate heritable phenotypic variation” (Kirschner & Gerhart
[29])

– characterized by evolutionary watersheds opening the floodgates of evolution, such
as with the advent of segmentation and body plans (Dawkins [20])

A synthetic definition is formulated here:

Definition. Evolvability is the capacity of a population to generate adaptive heritable
genotypic and phenotypic variation.

In this definition, “adaptive” is understood as fitter than any currently existing.4

4.4 Genetic Algorithms and Evolutionary Computation: Evolvability Issues

Choice of encoding is a crucial issue for evolutionary computation: “The Representa-
tion Problem”. Encoding determines the genotype (e.g. bit-string) to phenotype (fitness
evaluation) mapping (Genotype-Phenotype Map).

4 This notion of evolutionary adaptivity is similar in its sense to that used in Altenberg’s defi-
nition above [5], but is more specific in that it replaces “fitter than any yet existing” by “fitter
than any currently existing”. The reason for this is that fitness is a spatio-temporally local no-
tion depends of the current organism-environment interactions and niches which are of course
subject in general to temporal variation over generations.

The production of fitter individuals might first proceed via neutral evolution, i.e. the pro-
duction of new individuals with different genotypes and of equal fitness to those existing; this
is known to increase evolvability in many examples (cf. [28, 93].)



Genotype-Phenotype Relation

“The genotype-phenotype map is the common theme underlying such var-
ied biological phenomena as genetic canalization, developmental constraints,
biological versatility, developmental dissociability, morphological integration,
and many more” - G. P. Wagner & L. Altenberg [101]

Variability operators determine the topology (neighborhood relations of genotypes)
of the fitness landscape (S. Wright 1932 [107]), mapping genotype (or genotype and
phenotype via environment interaction) to probability of reproductive success. Smooth-
ness of the objective function on this landscape determines how well GAs can do
their stochastic hill-climbing. If there are deep broad valleys between fitness peaks (lo-
cal optima) that can’t be traversed quickly enough, the system is not evolvable. Con-
versely, uphill paths reachable by a single step from local optima help make a landscape
evolution-friendly.

To improve evolvability, the evolutionary strategies of Rechenberg and Schwefel
[70, 80] introduce the heritability of locus specific mutation parameters (for the variance
of noise applied to numerical parameters under optimization).

Extradimensional bypass [14] is the adding of dimensions to the genetic ‘search’
space (e.g. by an insertion mutation or by duplication of a gene), in higher dimensional
fitness landscapes, local optima often become saddle points; this is observed in protein
evolution, and is related to neutral networks and robustness (via mutational buffering).
Sometimes it has been used in evolutionary computation, e.g. via growth in genome
size or duplication of all or part of the genome, to achieve improved evolutionary per-
formance.

4.5 Genetic Programming and General Evolvability Issues

In GP, an important phenomenon is code bloat: for robustness to crossover, size of
programs increases uncontrollably. They are full of junk in order to withstand crossover
with lower chance of distribution. Making multiple crossover occurrences more likely
for large trees according to their size eliminates this trend [91].

This is a particular instance of a general principal in the evolution of evolvability:
Evolution favors lineages with robustness to disruption from the variability operators
experienced by the evolving population. See [66] for a related study on linkage and
crossover, and [92] for the neutral evolution of mutational robustness.

Modularity: Automatically Defined Functions (ADFs) [31] are functional modules
that can be called from various locations in a program. Using these can measurably in-
crease evolvability [90]. This is related to analogous principles in software engineering
for evolvability: code factoring, appropriate modularity, and re-use (e.g. [65, 52, 83]).

4.6 Properties and Mechanisms of Evolvability

What makes an instance of the stochastic algorithm, evolution, evolvable? A list of
properties and mechanisms that seem closely related to evolvability is presented here.



In many cases it is unclear whether we are examining a prerequisite for, or a conse-
quence of, evolvability, or possibly both (via the circular casuality of the dynamical
evolutionary process), or perhaps an incidental property.

1. Developmental Plasticity: Universal responsiveness to interaction with the environ-
ment, an incessant, continual coupling throughout life. (lifelong viability; multiple
cell types; complex life cycles; multiple developmental pathways/behaviours/morphs;
continual self-creation and maintenance in interaction with environment/others).
This property is almost unknown in artificial systems, standard population genetics
models, the ‘new synthesis’, unimodal evolutionary models; but see West-Eberhard
[104] and also Varela [94].

2. Flexibility/Rigidity of Genotype-Phenotype Relation. Robustness (to Heritable and
to Developmental/ Environmental Perturbations)

3. Duplication-Divergence: From one, many! (cell types, castes, genetic regulatory
networks (GRNs), segmentation, generic complexity increase)

4. Differentiation, Local Adaptation and Control
5. Appropriate Modularity, Compartmentation. Potential to Combine Lower Level

Units: one from many!
6. Symbiogenesis
7. New Individuality (e.g. Multicellularity, Compartmentation; Linkage)
8. Use of Signaling, Switches, Signal Transduction, & Feedback Control
9. Employment of Evolutionary Dynamics (within individuals!)

10. Redundancy
11. Extradimensional Bypass

4.7 Duplication and Divergence.

Gene duplication is remarkably frequent and important in biological evolution [63],
and subject to complex evolutionary dynamics [39]. The creation of a full or partial
extra copy of a gene (or other component) frees one copy or both copies to specialize
functionally, or one copy to acquire a new function. Duplication and divergence in bi-
ological evolution [63] is thus a generic mechanism for the generation of variability, of
great potential creative power.

Duplication and divergence (Figure 1) is also exemplified by division of labor among
cells or tissue types in a body, or castes in a social insect colony. In differentiated multi-
cellularity, growth via cell division together with specialization into cell types (e.g. into
soma and germ lines) provides an opportunity and mechanism to exploit asynchronous
parallel processing by closely related entities to achieve adaptation at a higher level of
individuality.

Complexity increase via duplication and divergence, e.g. increase in number and
role of cell types [9], or acquiring genomes [43] (which does not involve duplication
and divergence) can apparently realize known, sharp theoretical bounds on the evolution
of biological complexity [60].



Fig. 1. Duplication-Divergence: A Generic Path toward Complexity Increase and Evolvability.
(after J. Maynard Smith [44])

Differentiation Differentiation of multiple copies of the same entity as in differentiated
multicellular involves the following properties:

– Multiple copies of regulatory mechanism in similar units (e.g. genetic regulatory
networks, cells, individuals, etc.)

– Local state
– State inherited by lineage (e.g. Cell types, growth and morphogenesis, epigenetics

via methylation, etc.)
– Local adaptation to local conditions
– Long- and medium- distance interactions
– Growth from single unit to a differentiated many, with changing topology
– Division of labour

5 Self-Production and Reproduction

How is it possible for a mechanistic system to produce something as complex or even
more complex than itself? This problem motivated von Neumann to study the physical
and logical basis of self-reproduction using automata models. Von Neumann considered
automata capable of (1) examining and copying any pattern or specimen given to them,
or of (2) production of any object starting from a logical description.5 Either approach

5 See especially notes of von Neumann’s fifth lecture “Re-Evaluation of the Problems of Com-
plicated Automata - Problems of Hierarchy and Evolution” in Part I of [99] delivered in De-
cember 1949 (and edited and reconstructed by A. W. Burks). In both cases the word “any”



leads to a solution to von Neumann’s problem: in the first method, present the automa-
ton with an entity as or more complex than itself; in the second, present it with a logical
description of one. Of course for this to work, it is necessary to construct such universal
constructing automata with these capabilities or to demonstrate their existence.6

These two approaches lead to solutions of the problem of self-reproduction by self-
examination vs. heritable encoded information respectively. One presents the universal
constructing automaton with itself (or a copy of itself), or with a logical description
of itself, respectively. In the latter case, a copying component of the constructing au-
tomaton can be used to copy the logical description (regarded as part of the entity),
which thus becomes heritable genetic information. Von Neumann showed how to con-
struct such an automaton in a synchronous cellular automata network using the second
method [99, Part II].

Mutations or errors in the construction process could lead to lethal or non-lethal
variant copies and hence provide the variability required for evolution to act. Conceiv-
ably, this could therefore lead to the evolution of more and more complex automata. Al-
though von Neumann considered this possibility, so far no one has been able to shown
in detail how it could be realized.7

It is remarkable that von Neumann’s solution used genetic, inherited information
in two roles: (1) blindly copied and (2) executed, before the structure of the heritable
genetic material in life on earth was uncovered by Watson and Crick’s 1953 detailed
description of the structure of DNA revealing its essentially digital nature with similar
dual roles [102]. Thus, von Neumann’s work on his automata models even anticipated
the important transcription (“blind copying”) and translation (“executability”) proper-
ties of genetic material found for DNA, with the former realized by complementary
pairing of bases and the latter via template matching and the genetic code sequentially
mapping codons (triplets of “letters” of DNA) to the amino acids in proteins (along
with numerous regulatory intricacies).

From the beginnings of the study of self-reproduction in artificial systems initiated
by von Neumann already in 1948, the primary formal model has been synchronous
cellular automata in which configurations develop that eventually may include an un-
bounded number of copies of the original. The models constructed by von Neumman
and his successors have amply demonstrated that self-reproduction is indeed possible
in artificial systems.

The different possibilities for achieving self-reproduction have implications for our
understanding of the origin of life, the nature of organic life, and for the possibilities
of life as it may exist elsewhere in the universe. Szathmáry [84] offers a classification
of replicators applicable to natural and artificial systems along the dimensions of the
replication process (holistic vs. modular, and genotypic vs. phenotypic (the latter is de-
fined by non-modular copying of functionality)) and of variability (limited vs. unlimited

must be taken as having scope over a particular very large class of bounded structures whose
existence is possible in the ambient environment.

6 Portions of this section are based on the author’s paper [55].
7 To demonstrate this, a suitable rigorous complexity measure would of course be a pre-requisite

(cf. [62]).



heredity, where the latter requires that the number of possible variants be much larger
than the number of individuals in the population).

Self-reproduction is of course a prerequisite for any independent evolutionary pro-
cess. Sending information, instructions on how to build copies of desired structures us-
ing local materials, into an environment rather than sending all necessary materials into
that environment represents more economical methods of space exploration and colo-
nization. See the NASA report edited by Freitas and Gilbreath (1980) for further poten-
tial examples and applications of self-reproduction to space science, e.g. self-replicating
and self-maintaining lunar factories.

5.1 Self-Replication and Time

Nature abounds with asynchrony. Cells in a multicellular organism or organelles or
molecules within a cell apparently have no access to a central clock signal. Can von
Neumann’s problem still be solved without synchrony? Might the restriction to syn-
chronous update be relaxed? In building an artificial self-reproducing entity is it really
necessary to have a single global synchronization signal that reaches all parts of the
entity simultaneously (or at least within a well-defined tolerance)? If local parts of the
configuration are ready to change their state, is it realistic and practical to assume that
they must wait until all other parts of the cellular space are also ready to update their
states?

We can indeed free all cellular automata models of self-reproduction as well as all
cellular automata models of evolution, universal computation, and universal construc-
tion from the need for synchronous update ([55, 53], and below). This is accomplished
by an elegant simple mechanism that allows one to construct an asynchronous automata
network that is capable of emulating the behavior of a given synchronous automata net-
work. State updates in the asynchronous model may be produced by practically any
asynchronous update mechanism whatsoever8 (e.g. updates may be sequential, occur
randomly – locally distributed according a probability distribution, be partially simul-
taneous, etc., or even synchronous). The result for cellular automata is a special case of
a more general theorem for automata networks with inputs due to the author (Theorem
1 below, [56]).

We describe below the construction for making any automata network’s computa-
tion asynchronously realizable, give examples that illustrate how the use of “local time”
frees cellular automata networks from the need for global synchronization, and display
asynchronous examples of self-reproduction and evolution in cellular automata in the
context of discussing evolvability in natural and artificial systems.

5.2 Models of Self-Reproduction

Von Neumann’s original constructive demonstration (begun in the 1940s and completed
by Burks in the 1960s) of self-reproduction of a configuration of states in the cellular

8 The only essential restriction is that each local automaton is updated an unbounded number
of times, and a given node from the viewpoint of another cannot have been updated infinitely
often in the past.



automata network has the properties that the self-reproducing configuration is capable
of universal computation (in Turing’s sense) and of universal construction – loosely
speaking, the ability to fill any compact area in the cellular space with any desired
pattern. These properties were included in addition to the ability of the replicator to
make a copy of itself, and could also be used to support this ability. Namely, universal
construction (as the ability to fill any compact region of the cellular space with arbitrary
configurations) guarantees that a copy of the self (including its ‘instruction tape’ which
is present in many examples) can be constructed. However, von Neumann’s design of a
self-reproducing universal computer and constructor was infeasibly large and has never
been fully implemented and executed through a reproduction cycle on a computational
device.

Langton’s (1984) definition of self-reproduction requires that a copy is constructed
but realizes neither universal computation nor universal construction [33]. Langton im-
plemented and studied the first example of feasible self-reproduction in cellular au-
tomata, using an 8-state cellular automaton with an initial configuration of 86 cells,
that produces a first offspring after 151 time steps and then proceeds to fill up avail-
able space with copies. To avoid trivialities while avoiding the complexity of von Neu-
mann’s model, Langton’s criterion [33, 34] was proposed as a necessary condition on
self-reproduction and requires that information is treated in the two ways identified
above: as instructions that are executed (‘translation’) and as data which are blindly
copied (‘transcription’). These properties are also present in and abstracted from von
Neumann’s and later Codd’s examples [13], and were by that time also known to be
characteristic of biological self-reproduction. Encoding of heritable information in the
shape of a configuration or using self-inspection represents another feasible mode of
encoding heritable variation in self-reproduction (cf. [32, 69, 50, 54]). Subsequent ex-
amples of Byl [12] and Reggia et al. (e.g., [71, 38]) simplified the self-replicating loop
of Langton toward minimality, with fewer states, simpler transition rules, or less cells
in the initial configuration. In some cases the simplifications are so severe that it is
debatable whether nontrivial self-reproduction has been achieved (e.g. according to
Langton’s criterion).

Subsequently, various researchers kept Langton’s requirements for self-reproduction,
but have added more and more computational power to the relatively small self-reproducing
cellular automata configurations (in comparison to von Neumann’s solution). These
trends are surveyed by Lohn [37], who also describes the evolution of cellular automata
rules that support self-reproduction (see also [38]). An annotated bibliography with
some links to various relevant on-line resources can be found at Moshe Sipper’s Artifi-
cial Self-Replication page [82].

H. Sayama [76, 77] has constructed variants of the self-reproducing Langton loop
which exhibit self-dissolution once they can no longer reproduce, thus freeing up space
for reuse by progeny, and most interestingly, another similar variant called “evoloop”
which exhibits heritable variability in loop size and is subject to evolution via interac-
tion among descendants of a common ancestor acting as a selective force ([75, 77], and
below). Heritability, variability, and turn-over of generations with differential survival
in an environment with limited resources are present in his evoloop when run in finite



spaces. Thus evoloop appears to be the first convincing example of an evolutionary
process occurring in cellular automata.

5.3 Self-Reproduction, Individuality, and the Heritability of Fitness

What constitutes self-reproduction?
The definition is not uncontroversial. We have already mentioned that von Neu-

mann included universal computation and universal construction in order to exclude
trivialities, such as the simple example of spreading activation. Langton abstracted the
properties of inherited information being both copied and executed.

E. F. Moore [49] defines a configuration C to be capable of self-reproducing n

offspring by time t if starting from the initial conditions of the entire cellular space at
time t = 0 such that the set of all non-quiescent cells of the space is an array whose
configuration is a copy of C there is a time t′ > t such that at time t′ the set of all
non-quiescent cells will then be contained in an array whose configuration includes at
least n copies of C.

Lohn and Reggia [38] give the following definition:

“A configuration C is self-replicating if the following criteria are met. First,
C is a structure comprised of more than one non-quiescent cell and changes
its shape during its self-replication process. Second, replicants of C, possibly
translated and/or rotated, are created in neighbor-adjacent cells by the structure.
Third, there must exist a time t such that C can produce i or more replicants, for
any positive integer i, for infinite cellular spaces (Moore’s criterion). Fourth, if
the self-replication begins at time t, there exists a time t+∆t (for finite ∆t > 1)
such that the first replicant becomes isolated from the parent structure.”

The issue of exactness of the copy is problematic since it is not desirable to ex-
clude the possibility of variability. Variability among offspring is certainly present in
biological systems, and, as Darwin showed us, is necessary for evolvability. Vitányi
[97] introduced sexual reproduction in cellular automata and Sayama [76], mentioned
above, has demonstrated variability and (deterministic) evolution occurring in cellular
automata.

A discussion of the difficulties in formulating a rigorous definition of self-replicating
or self-reproduction is given by Nehaniv and Dautenhahn [58], who point out that even
in accepted cellular automata models of self-reproduction there are rarely two copies of
the original configuration present at exactly at the same time when reproduction is gen-
erally accepted to have occurred (e.g. in the von Neumann or Langton models), and it
is certainly not the case when the first offspring has been produced. The various copies
of the configuration may be at different stages in their “lifecycles” and not have exactly
the same configuration of states. They suggest looser criteria on identity of copies to
allow ‘species’ of non-exact copies to be acknowledged as offspring, and also loosen
the restriction on the presence of copies all at the same time (e.g., offspring that have to
grow into adults are still regarded as offspring even though they are never in exactly the
same state of development as the parent). Adequate formal definitions of “member of
the same species” and of “individual” are still lacking in the sciences of the artificial,



including the study of self-reproduction in artificial systems. Although these concepts
are clearly fundamental to biological evolution, even within biology there is still on-
going controversy and current research into appropriate definitions for these concepts
[43].

Coming back to Darwin’s ideas, some degree of heritability of fitness is required for
nontrivial evolution to occur. With self-reproduction, the similarity of offspring to the
parents and the similarities of the environments in which the replicators find themselves
is often enough to account for this. However, beyond the level of simple replicators, her-
itability of fitness requires more explanation, e.g. in considering multicellular lifeforms
with differentiated cell types, subunits which are themselves replicators comprise popu-
lations within the body that are themselves potentially subject to evolutionary pressures
[11, 45, 47, 48]. For example, cancer is an example in which reproduction and evolution
occur at the lower cellular level at the expense of the higher organismal one. Multi-
cellularity can arise (in certain conditions on mutations and cost of defection) where
fitness (reproductive success) at the higher, whole organism level emerges in a trade-off
against short-term fitness at the lower, cellular level. Guaranteeing that the offspring
are similar to the parent by suppression of freedom at the lower level in exchange for
benefits is the first functionality required of any higher unit of fitness such as a multi-
cellular organism. The latter must employ mechanisms to balance the tendency of the
lower level to defect by sufficient benefits from cooperation in the higher level unit, in
order to persist over evolutionary time [48, 47].

In asynchronous self-reproduction the very fact that the relative synchronization of
the entire state of the “organism” is uncertain contributes to this problem of heritability
of fitness.

5.4 Self-Repair: Biological Methods and Generalizations

Self-reproduction and self-repair (or self-maintenance) are often closely related in bi-
ology, and an understanding of self-reproduction can thus contribute to our ability to
create self-repairing, self-maintaining hardware and software. Von Neumann [98] con-
siders synthesis of reliable organisms from unreliable components through redundancy
and degeneracy, but apparently did not extend this during his lifetime to self-repair or
relate it directly to self-reproduction. Automata models and circuitry capable of au-
tonomous fault-detection and self-repair is an increasingly important area [40, 89, 41],
both as an means to understand principles of biological organization, and also in tech-
nological applications, including robust computation, and especially for mission critical
systems in space sciences. The capacity of a system to generate parts and components
of its own structure and to establish their organization might obviously be useful in
generating and installing a replacement parts in maintaining itself.

5.5 Self-Maintaining and Self-Creating Systems: Autopoiesis

Such a capacity for production of constituent components in the building and mainte-
nance of them in an organized structure and dynamical process in the face of favorable
or unfavorable perturbations (such as damage, production of waste, and entropic decay)



is identified, according to biologists F. Varela and H. Maturana, as the key property,
autopoiesis (“self-production”), defining living systems [95].

Neither von Neumann’s work on self-reproducing automata, nor the studies follow-
ing him have addressed via constructive models this aspect of living systems. Lang-
ton’s work on self-reproducing loops (removing the universal construction and univer-
sal computation capacity) and its successors have focused on minimal models of self-
reproduction, first by minimizing the size of replicators [12, 71, 37], and then adding
various computational and other abilities [86].

Autocatalysis, Compartmentation, Early Life An autocatalyst, by definition, pro-
motes its own formation from other materials, and thus is in some sense self-replicating
[64]. Autocatalysis implies dynamical cycles, potentially continuing without end. Com-
partmentation proceeds via isolation of an environment inside a vesicle or membrane
(see Figure 2) within which conditions are conducive to the autocatalytic cycle and
the production and maintenance of the membrane. Self-replication in early life might
thus have arisen as a bifurcation in the dynamics of a self-producing, self-maintaining
system resulting in response to some perturbation. an early self-maintaining vesicle is
broken into two parts along its membrane; each surviving component repairs itself com-
prising a new self-producing organization.? For example, due to increase in size or due
to accidental damage, Any heritable aspect of organization that increases stability fol-
lowing such an event leads to similar descendants, potentially growing exponentially in
number.

5.6 Challenge Problems

Work in constructive biology and the theory of self-reproducing automata discussed
above leaves several challenges unanswered:

Open Problem 2. Realize construction universality in any computationally feasible,
implementable models.

Open Problem 3. Construct an autopoietic self-reproducer whether synchronous or
asynchronous in logical, kinematic or physical realization.

Open Problem 4. Solve open problem 3, adding heritable variation to realize evolution
in a population of autopoietic self-reproducers.

Genetic Acquisitions Sex in biology is, by definition, nothing more than the transfer
or exchange of genetic material. It occurs, e.g., between homologous chromosomes in
meiosis, or in the uptake of DNA from the environment by bacteria. If precious genetic
information is lost due to damage to DNA, or if an organism is doing poorly due to

? [cf. N. Ono and T. Ikegami, Artificial Chemistry: Computational Studies on the Emergence
of Self-Reproducing Units. In Advances in Artificial Life (J. Kelemen and P. Sos ı́k (Eds.),
Springer Lecture Notes in Artificial Intelligence, vol. 2159, 2001 ) pp. 186–195].



Fig. 2. Compartmentation as Proto-Self-Maintenance: Components of an Autocatalytic Cycle in
a Protected Environment with only Constituent Partners present in suitable proportions. (After J.
Maynard Smith [44])

heavy environmental stress, recourse to the genetic material from others may save the
day by providing an undamaged source – though quite possibly different in content –
of relevant genetic information; see [46] for the role of sex in repair.

A more extreme acquisition of genetic material than in sex is the acquisition of en-
tire genomes in symbiogenesis (the advent of a merged entity, derived from replicators
from two evolving populations, which becomes the unit of selection in an evolutionary
process – see Appendix), and resulting speciation [43]. Such processes were involved in
the acquisition by eukaryotes of the bacterial ancestors of mitochondria and, in plants,
of chloroplasts [42].

Open Problem 5. Construct an evolutionary system in which different populations of
autopoietic self-reproducers interact, and in which one species acquires the genome of
another, realizing symbiogenesis.

5.7 Evolution of Evolvability

Finally, how can evolvability itself evolve? Lineage selection arguments suggest that
lineages will survive that are robust to variational operators acting an evolving pop-
ulation [66, 5, 91]. The genetic code and genotype phenotype mapping, and genetic
switches have all arisen in organic evolution of life on earth.



Open Problem 6. Construct an evolutionary system in which the capacity of popula-
tions to generate adaptive heritable genotypic and phenotypic variation increases with-
out bound.

Evolution of developmental genetic regulatory networks in constructed artificial
systems interacting with their environments (see sec. 8) is suggested as one road to-
ward achieving some small reflection of what nature has achieved.

6 Local Time

We adopt here the view of local time as a random variable to approach the asynchroniza-
tion problem for automata networks. That is, given a synchronously updating network
of automata, we want to construct another network of automata, with essentially the
same behaviour, but in which at each node logical time is determined by an (unknown)
local random variable. It is at first unclear whether this is possible at all, since simple
experiments with common cellular automata networks show that the behaviour of the
system generally changes radically in a qualitative sense when abandoning synchronous
update.

An automata network consists a collection of automata Av associated to the ver-
tices v ∈ V of a locally finite directed graph Γ = (V, E), and a global input alphabet
X and local transition rules δv. A state of the network is a choice of state for each
component automaton. Given a global input x ∈ X and a state of the automata, the
next state of the network at node v is determined by the state of the automaton at v, the
states of the automata in the neighborhood of v (i.e. at those nodes w which have an
edge (w, v) ∈ E to node v), and x. Thus the new state of the automaton at node v may
be written as

qv ′ = δv(qv, qN(v), x),

where qv and qN(v) are, respectively, the current state at v and the states qw of all nodes
w in the neighborhood of v.

An automata network is synchronous if every node advances to its next state simul-
taneously. Otherwise it is called asynchronous.9

9 We assume for asynchronous update that there are no delays in state information reaching a
node in a local transition and that local updates may be regarded as instantaneous. We do not
require any particular ordering of updates of nodes, only that, after an update of any given
node, each node will still be updated an unbounded number of times in its future. Simultaneity
of the update of any two nodes is permitted (but not required), and massive asynchronous
parallelism is thus possible.

We may assume an ambient physical time in which stochastic update events occur, i.e.
particular subsets of the sets of nodes are updated at discrete moments of physical time; every
node is updated an unbounded number of times; and no node is updated an infinite number of
times within a bounded interval of physical time.

In our model of asynchronous networks, based solely on a function of its local neighborhood
and state information, a local automaton may choose to read or delay reading the next letter
in global input sequence. Reading of the global input sequence is thus not synchronized but
happens independently at each node.

See [56] or [21, Ch. 7] for more details and proofs of theorems stated here.



An automata network is called a cellular automaton if it has only one global input
letter (i.e. the alphabet satisfies |X | = 1 and its unique letter can be considered a “clock
tick”), and the local transition functions, local automata, and neighborhoods at each
node are isomorphic. Synchronous cellular automata have been well-studied since they
were introduced by S. Ulam and J. von Neumann in the middle of the last century (e.g.
[99, 13, 10, 88])

Definition (Emulation). Let A be an synchronous automata network over a directed
graph Γ = (V, E) with global state set Q and Â be an asynchronous automata network
with the same input alphabet X , a directed graph Γ ′ = (V, E′) with the same set of
nodes, and global state set Q̂. Let π : Q̂ → Q be a function from global states of
the asynchronous automata network to global states of the synchronous one, such that
πv(q̂) = (π(q̂))v depends only on q̂v for all q̂ ∈ Q̂. Thus we can denote (π(q̂))v by
π(q̂v).

Regarding physical time as modeled by non-negative real numbers and logical time
in the synchronous automata network as modeled by the natural numbers, we then say
that the behavior q̂ : R

+ → Q̂ of Â starting in state q̂0 for update pattern determined by
local random variables at each node (as above) and input sequence x1, x2, . . . (xi ∈ X

for i ∈ N) emulates the behavior q : N → Q of A starting in state q0 with the same
input sequence under the projection π if there exists a spatial-temporal covering λ :
R

+ × V → N, i.e. the following diagram commutes for each v ∈ V :

R
+ q̂

v

−→ Q̂v (asynchronous)
λ(−, v) ↓ ↓ π

N
q

v

−→ Qv (synchronous)

That is, π(q̂v
t ) = qv

λ(t,v), with qv
n = state in A of node v at time n ∈ N and q̂v

t = state

in Â of node v at time t ∈ R
+.

Thus the behaviour of Â projects onto and completely determines the behaviour of A.

Theorem 1 (Emulation by Asynchronous Automata Networks [56]). Let any syn-
chronous automata network A over a locally finite digraph Γ = (V, E) with local
automata Av = (Qv, Xv, δv) (v ∈ V ) and external input alphabet X be given.

We construct an asynchronous automata network Â (with the same input alphabet
X) such that every possible behavior of Â with input sequence {xn}n>0 emulates the
(only possible) behavior of A with input sequence {xn}n>0, when Â starts in an initial
global state q̂0 depending only on the initial global state q0 of A.

Moreover, the following hold:

1. The underlying digraph for Â is the reflexive-symmetric closure of the digraph for
A.

2. For each vertex v, the local automaton Âv at vertex v in Â is “not much more
complicated” than the local automaton Av at v in A. Indeed, Âv is a product of
Av , an identity-reset automaton, and a modulo three counter. In fact, Av has state
set Q̂v = Qv × Qv × {0, 1, 2}.



3. The projection π : Q̂ → Q is given locally by πv(qv , bv, r) = qv for (qv , bv, r) ∈

Q̂v.
4. The starting state of Â is given by q̂v

0 = (qv
0 , qv

0 , 0) for all v ∈ V .
5. Furthermore, the spatial-temporal covering of the emulation satisfies

|λ(t, v) − λ(t, v′)| ≤ b
d(v, v′) + 2

3
c,

where d is the distance metric in the graph Γ̂ .

Note that updates of local states in the constructed emulating automaton are essen-
tially arbitrary.

We call λ(t, v) the local time of the synchronous automaton A at vertex v for time
t in the emulating asynchronous automata network Â. Of course, λ depends in general
on the update pattern for the particular behavior of Â. Thus (5.) above says that the
difference in local time at two nodes in the emulating asynchronous automata network
is bounded above by approximately one third of the distance between them.

Brief Sketch of Proof and Construction:
Let N(v) denote the set of neighbors of node v, and let N̂(v) denote the neighbors

of v in the reflexive-symmetric closure of Γ , which gives the topology of the emulating
asynchronous automaton Â. The local update function in Â is defined as follows, where
ϕv and ϕ̂v give the action at vertex v in A and Â, respectively, as a function of their
arguments, depending only on local state in the neighborhood and global input letter:

δ̂v((qv , bv, rv), ϕ̂v(q̂, x)) =



(qv , bv, rv) if rw = rv − 1 mod 3 for some w ∈ N̂(v)

(qv , bv, rv + 1 mod 3) if rw 6= rv − 1 mod 3 for all w ∈ N̂(v)
and rv 6= 0

(qv · ϕv(c, x), qv , 1) otherwise,

where c be an arbitrary state of A such that for each w ∈ N(v),

cw =

{
qw if rw = 0
bw if rw = 1.

Note each rw must lie in {0, 1} in determining cw of the third case, as necessarily
rv = 0 in third case and w ∈ N(v) ⊆ N̂(v) implies rw 6= 2 mod 3.

Thus, in the emulating automata network the neighboring nodes carry a copy of
“current state” and “old state” in case a neighbor needs to read either one. The third
component of state carries a modulo 3 value. The neighbors of any node v can be
shown inductively to receive the same number of increments modulo 3 as node v, plus
or minus one. Thus neighboring nodes differ by at most 1 modulo 3 in this component.
In computing its local update, a node can check whether each of its neighbors is in the
past, future, or in sync with it. If any neighbor is in the past, no update is performed
(and the global input letter is not read). Otherwise, we increment the modulo 3 counter
and on every third counter increment, copy current state to old, and update the current



state according to the update rule of A and the global input letter. In the latter case,
every neighbor must be in sync or in the future relative to the node in question, so the
appropriate state of the neighbor node in A can be determined from the current or past
state component of the corresponding neighbor in Â.

Using the fact that nodes differ by at most one in the number of increments they
receive in the third component and using local finiteness another lemma shows free-
dom from deadlocks – a node can only be waiting for one that has received one less
such increment and only finitely many can have occurred, so any chain of waiting ends
when the automata at its end (with fewest increments so far) receives an update. Induc-
tion then shows that behavior of the synchronous automata network can be recovered
uniquely from any behaviour of the asynchronous one by a spatial-temporal section
λ(t, v) equal to the ceiling of the one-third of two plus the number of counter incre-
ments at node v. (See [56] for full details.) �

A special case of essentially this construction was found independently and pre-
sented by K. Nakamura [51], the author [55, 53], and T. Toffoli [87, 88], with full rigor-
ous proof of its correctness given in [56]:

Corollary 1 (Asynchronous Emulation of Cellular Automata Networks Theorem).
If A is a synchronous cellular automaton then there is an emulating asynchronous cel-
lular automaton Â. �

Open Problem 7. Prove an analogue of the Asynchronous Emulation Theorem for
Automata Networks that may dynamically change their topology and number of com-
ponent automata. (Or, more weakly, prove such an analogue for cellular automata net-
works.)

6.1 Temporal Waves, Asynchronous Game of Life and Universal Computation

Temporal Waves From what we saw in the last section, it follows that local time in
the asynchronous emulating network for nodes at distance d differs by at most about a
third of the distance between them.10 Since the values of the modulo 3 synchronization
counter differs by at most 1 between neighbors in the asynchronous emulating network,
this spatial continuity of the modulo 3 counter state entails that updates corresponding
to simultaneous ones in the synchronous network move as temporal waves across the
space of the asynchronous network.

Asynchronous Game of Life This phenomenon is illustrated here with an asynchronous
version of John Conway’s famous synchronous cellular automata network, “The Game
of Life”.

Let us apply the construction to Conway’s (synchronous) Game of Life. A local au-
tomaton in synchronous Life has two possible states (quiescent (0) or alive (1)) and the

10 Disconnected components are of course at infinite distance, and so the temporal disparity be-
tween them can be arbitrarily large.



ASYNCHRONOUS GAME OF LIFE

Initial State:

Progress of Gliders in Asynchronous Life. Note that the upper left hand glider is not recognizable
as one due to small local temporal variation in its cells:

Further Progress of Gliders in Asynchronous Life. All their parts are nearly in
the same spatial-temporal section; all three gliders are now recognizable again:

Fig. 3. Temporal Waves and Progression of 3 Gliders, with Box, and Blinker in Asynchronous
Game of Life. Contiguous regions of the same shade are “temporal wavefronts” that represent
the same moment in a spatio-temporal section giving the global state of the corresponding syn-
chronous cellular automaton [55]. Shade is determined by value of modulo 3 counter at a given
node. Neighbor nodes differ by at most one time unit with respect corresponding nodes in the
synchronous model.



following transition function: if a cell is quiescent and has exactly 3 neighbors that are
alive, its next state is alive. If a cell is alive, and it has either 2 or 3 live neighbors (not in-
cluding itself) then it stays alive, otherwise it becomes quiescent. It is well-known that,
in principle, universal computation can be implemented in a infinite two-dimensional
(synchronous) cellular automaton running Conway’s rule (for an enjoyable yet detailed
overview see chapter 1 of [81]).

Figure 3 (top panel) shows an initial configuration of some well-known structures in
Conway’s Game of Life as an initial configuration for the corresponding asynchronous
cellular automaton: Three gliders which move across the space, a stable 2 × 2 box, and
a blinker (a row of 3 cells, that becomes a column of 3 cells, then a row of 3 cells, and
so on).

The next panel shows the state of the world a few time steps later, the shading indi-
cates the synchronization state of the cell in the space, while the darker cells of various
shades are live cells in various stages of temporal synchronization. Contiguous cells
of the same shade are in sync and reflect the same instant of time in the synchronous
cellular automaton. The third panel down shows the state of the system a little later.

Asynchronous Universal Computation The possibility of implementation of Con-
way’s Game of Life in an asynchronous cellular automaton as illustrated here entails
that universal computation is possible in a two-dimensional asynchronous cellular au-
tomata running the modified rules (see [81] for a lively exposition).

Of course, a Turing machine can be regarded as a synchronous 1-dimensional cel-
lular automaton where all state transitions are trivial except in the vicinity of the read-
write head. Thus applying Corollary 1 to a universal Turing machine also yields the
result.

6.2 Asynchronous Self-Replicators

Applying the construction of the theorem to Langton’s self-reproducing loop, and nu-
merous self-reproducers including those of Byl, Reggia et al., Sayama and others men-
tioned above, we implemented the first asynchronous self-reproduction in cellular au-
tomata [55]. Figure 4 illustrates asynchronous replication of a structurally dissolvable
loop capable of programmed cell death.

7 Minimal Evolvable Systems

To better understand evolvability we considered some open-ended evolutionary sys-
tems. Now we examine two (more or less) minimal evolvable systems to study how
evolvability, and in particular variability, can arise.

7.1 Minimal Example 1: Asynchronous Evoloop

This example is due to Sayama-Nehaniv [77, 53] by combining their techniques. Here
a population of self-replicating loops in finite space is implemented (asynchronous cel-
lular automata; physics: changes according to deterministic rules depending on local
neighborhoods; asynchronous version of Sayama-Langton evoloop [53]).



Fig. 4. Asynchronous Version of Sayama’s Structurally Dissolvable Self-Reproducing Loop.
Space is liberated by “programmed cell death” and can be reused by descendents of the origi-
nal loop (6 snapshots of a single run; toroidal topology). Differences in shading (shown only in
the first four panels) correspond to differences in the synchronization component of local state
(cf. discussion of temporal waves).



Sayama [76], extending Langton’s construction, introduced apoptosis. Apoptosis
(“programmed cell death”), locally started, is triggered by local rules in response to
stagnant or unexpected configurations (tending to indicate non-viability) generating
a suicide signal, which propagates over to contiguous local automata that are non-
quiescent [76]. This results in resource freeing and makes possible the turn over of
generations required by evolution.

A further synchronous variant, evoloop, allows evolution in a cellular automata net-
work to be realized [77]. By careful design of the update rules, ancestral self-reproducing
loops are robust to some interactions (collisions) with others in space. They might ei-
ther recover from a collision with another loop, undergo an apoptosis chain reaction,
or survive in a changed form. The latter may or may not have the same circulating
genome determining the construction of its potential offspring. If a changed loop pro-
duces viable, reproductive offspring, then variation is inherited, so variability has been
introduced in evolution.

Applying the asynchronous emulation theorem yields the first implemented exam-
ple of an asynchronous cellular automata network with the capacity for Darwinian evo-
lution (minimal evolvability), including heredity, variability, differential reproductive
success, finite resources and turn-over of generations [53].

Over evolutionary time, loops of different sizes arise; smaller loops can replicate
more quickly and are less likely to collide than large ones; the population generally
evolves smaller and smaller loops until no further reduction in size is possible. See
Figure 5.

Sources of Variability: Interaction. Interactions during lifetime are the major selec-
tive force but also the source of variation. There is only limited potential for variability
(rotation of genetic core; loop and genome size).

7.2 Minimal Example 2: Cultural Evolution in Alissandrakis’ Imitating Robotic
Arms

Another instance of evolution occurs in human and non-human culture with the trans-
mission of patterns of behavior (or memes [19]). Imitation broadly construed is the
transmission mechanism for memes.11

Imitation, Social Learning, and Cultural Evolution Learning behaviours from oth-
ers, with cultural variations between populations that are not explainable simply due to

11 There is a unsettled debate on whether a meme should be regarded as an unobservable (at
least until now) pattern of information in the brain or as an observable expressed pattern of
behaviour. The former seems more “genotypic” (as an informational pattern, but it probably
is incapable of ever being directly copied from one individual to another) and the latter more
“phenotypic” (as an effect of such a pattern).

Moreover, it is unclear what constitute an individual meme in the population dynamics of
memetic evolution, or when two memes are “the same” (either at the neuronal or behavioral
level).



Evolvability (First Asynchronous Cellular Automata Network Example)

. . .

. . . .

. . . .

. . . .

Fig. 5. Evolution in Asynchronous Cellular Automata: Asynchronous Version of Self-
Reproducing Evoloop. (12 snapshots (not all from the same run); toroidal topologies). Heritable
variability of characteristics of individuals (e.g. loop size) entails that this is an evolutionary sys-
tem. Evolution leads to small, fast-replicating loops that are less likely to collide than larger ones.
Temporal waves shading is shown in the first six snapshots [53].



differences in local ecological context, has been established not only for humans, but
also in some other animal species, including cetaceans [72] and in chimpanzees [105].

Cultural evolution is based on transmitted patterns of behavior, and is exhibited by
humans and some other animal species. Social learning, imitation, and/or instruction
allow an organism to learn from the experience of others, which facilitates the accumu-
lation of cultural practice and obviate much, often dangerous, trial-and-error individual
learning. Social learning can also be combined with individual learning to exploit cre-
ative variability. In several realms (behaviors, technology artifacts, language) cultural
evolution can be open-ended.

Cultural (memetic) evolution is possible in artificial societies and in the future might
find application e.g. in factories populated by autonomous robots of various types who
acquire and transmit skills and task knowledge through social learning. These robots
could acquire skills and competencies by observing others (e.g. human demonstrators,
or industrial robotic arms with different sizes, kinds and numbers of joints) and pass
them to newcomer robots of as yet unknown type when they join the population.

A simple robotic population model illustrates this potentiality [3, 4]: Simulated
robotic arms are used, with differing lengths of segments, differing numbers of joints,
but all with fixed base about which they can rotate (Figures 6 & 7). The robot arms

Fig. 6. An example robotic arm imitating agent. A two-joint robotic arm, with segments of length
`1 and `2, moving from state S0 (arm completely outstretched along the horizontal axis) to state
S to state S′ to state S′′, as it sequentially performs actions A, A′, and A′′. Effects of these
actions (marked trails) are shown as the arrows that join the tips of the arm as it moves.

carry out behaviors in a two-dimensional workspace and engage in social learning via
imitation. The agent embodiment can be described by a vector L = [`1, `2, `3 · · · , `n],
where `i is the length of the ith joint. Each robot builds a “correspondence library” to



Fig. 7. Solving a correspondence problem for matched behaviour between different embodiments.
A demonstrator behaviour consists of a model folding its 3 joints counter-clockwise (left). Imita-
tion attempts to match the position of the end point are shown for a 2-joint imitator (center) and
a 6-joint imitator (right).

imitate another, possibly dissimilar one (using various metrics of similarity to reinforce
success). A robot arm observes another one (with possibly different embodiment) and
attempts to match its behaviour (according to some metric such as posture, end-effector
position, or angle changes at the joints). In turn, a third robot arm observes the imitator
and attempts to imitate it (again using its own possibly different embodiment, using
some metric), but does not observe the first robot, and so on. Behaviors can thus be
culturally transmitted through a chain of robots.

The example illustrated in Fig. 8 demonstrates such (horizontal) transmission of a
behavioral pattern via social learning in a chain of imitating agents. The original model
with three joints is shown in (Fig. 8, left). It is imitated by a two-joint robotic arm
(Fig. 8, center), which in turn is imitated by another imitator (Fig. 8, right) with the
same embodiment as the original model, but which only perceives the behavior of the
two-joint agent. After transmission through the intermediary, the behavioral pattern that
has been acquired by the second imitator in (Fig. 8, right) is quite similar to the original
despite differences in embodiment in the chain of transmission. This example illustrates
transmission of a behavioral pattern through a chain of robotic agents, despite differ-
ences in embodiment of agents involved. This simple example serves as proof of the
concept that by using social learning and imitation, rudimentary cultural transmission
with variability is possible among robots, even heterogeneous ones.

Evolutionary emergence of shared behavior and rudimentary ‘proto-culture’ in pop-
ulations of robotic arms is discussed in [4]. Figure 9 shows imitators, with different em-
bodiments arranged in a circle each learning by imitating its neighbor, and the resulting
emergence of shared behavior.

Synchronization (via resetting to a fixed initial posture) before each demonstration
has been shown to generally result in much faster and more accurate behavioral trans-
mission [3].



Fig. 8. An example of social transmission. Trail left by end-effector tips during behaviors by 3
robot arms are visualized. The original model model0 (L = [20, 20, 20]) is shown to the left.
In the middle, a two-joint imitator0 (L = [30, 30]) acts also as a model for imitator1
on the right (L = [20, 20, 20])). Due to the different embodiment of the agent imitator0, the
replication of the model pattern is similar, but not exact. imitator1 has the same embodiment
as the original model model0 and, although indirectly transmitted, the resulting pattern is closer
to that of the original model than is the behavior of the intermediate agent imitator0 used as
a model by this second imitator [3].

Sources of Variability: Embodiment Differences. The behaviors of the arms are
the selectable entity for a Darwinian evolutionary process: Imitation is the replication
mechanism for these behaviors. Resources are finite since there are finitely many arms
and each arm can only perform one behavior at a time.

Variability arises from several sources: (1) Errors in observation and noise in pro-
duction of a behavior can introduce variability in a behaviour, which an observing robot
might match, learn and pass on. (2) Embodiment differences may constrain what an
imitator can do. For instance, a complex folding up by a six-segment arm could not be
matched exactly angle-for-angle by a three-segment arm. Conversely, the six-segment
arm imitating a two-segment arm might vary the position of various joints in many
ways and still achieve a satisfactory imitative behavior; further down the chain of trans-
mission an observer of this six-segment robot arm might acquire some aspects of its
behavior not present in the original behavior of the two-segment robot.

The first source of variability is very closely analogous to mutation at the level of
copying errors and is not particularly novel. The second source of variability, differences
in embodiment, is unlike what we know from biological or evolutionary computation
examples.

Replication in the robot arm example is based on interaction (like in prions – pro-
teins that can inherit a conformation from interaction with a variant protein – but with
vastly more variability).12

12 This is in contrast to evolving population of self-reproducing loops in example 1. There inter-
action provided the basis, not for replication, but for variability.



Fig. 9. Emergence of proto-culture among eight heterogeneous agents. Arm robots have alter-
nating 2 and 4 joint embodiments (overall arm length remains constant). Starting with no initial
“seed” model, and imitating each other clock-wise using a metric on actions, the figure shows
an example of two stable repeated single-action variant behaviours emerging in the population:
the agents with two joints move both joints anti-clockwise (by 10 degrees), while the agents with
four joints freeze their first and the third joint, moving only the second and third joint. The dif-
ferent effect patterns shown result from the different states the agents are in when stable imitative
behaviour is established.



8 Developmental Genetic Regulatory Networks (DGRNs)

A particular paradigm from nature realizes all of the above properties discussed for
differentiation, duplication and divergence: developmental genetic regulatory networks
(DGRNs). The most complex systems known to humankind are differentiated multi-
cellular organisms. They may consist of e.g. on the order of between 1013 and 1014

cells in the human body; in multicellular organisms genetically identical cells differen-
tiate, depending on the species, into between two or tens, or hundreds, of cell types [9]
with each cell each capable of taking astronomically many states. The component cells
themselves are each living entities each in itself already more complex than anything
ever constructed by a human being. The organism maintains coherence as an individual
while growing from a single cell into this huge number through asynchronous divisions,
with a dynamically changing topology of interactivity between this changing number of
cells including long, medium and short range interactions regulating patterning, global
metabolism and the essential processes of life (see e.g. [106, 6]).

In nature genetic regulatory networks with development/differentiation are con-
stantly engaged in interaction (within each cell, with the local environment of the cell,
or at organismal level with the external, ecological, and possibly social environment).
This kind of incessant activity in the control systems within each cell and their coherent
integrated activity has been called universal responsiveness by West-Eberhard and lies
at the basis of phenotypic and developmental plasticity [104]. Selection for robustness
in development (due, for example, to pressures for fitness to be heritable from parent
to offspring) could have as a non-selected by-product the following properties which
enhance evolvability:
(1) phenotypic variation becomes tolerated and possible;
(2) particular phenotypic variations becomes heritable, since similar genes in a similar
environment yield similar development; later canalized, and
(3) developmental versatility leads to increased phenotypic variability (along the “‘right”
dimensions of variation) serving as fodder for the next “rounds” of evolution.

Very little in Artificial Life has been achieved in the two modes of life involving
self-reproducing autopoietic entities or symbiogenesis (see Appendix), but they can be
approached on the foundations of current work. Genetic regulatory networks (GRNs)
in cells are an essential component of how nature is able to grow developing, living
systems [18]. GRNs are universally responsive control systems within biological cells.
In multicellular organisms, GRNs are duplicated and diverge in functionality as organ-
isms grow, in response to local conditions, the environment, and via signaling. They
appear to provide essential properties for evolvability [1], and the continual, universal
responsiveness and plasticity of living systems [104].

Operating continually in close connection with their environment through signaling
channels, while actively maintaining internal dynamics, artificial GRNs easily allow for
heritable digital genetic encoding, and provide a model analogous to that of a single cell
(although presently without its replication capabilities). Unlike most other present-day
computational models it is natural to apply them in an continually active and respon-
sive mode [67]. Moreover, they exhibit very flexible evolvable, expressive dynamics
similar to key biological regulatory phenomena useful in achieving a variety of control
and computational dynamics [7, 67]. The evolvability properties of GRNs and DGRNs



are being analyzed mathematically as dynamical systems using techniques, e.g. of [62,
61, 60], in efforts to develop a predictive theory of their evolution and application in
novel computation, as well as Artificial Life. The genetic regulatory network in a de-
veloping organism is duplicated in each cell, which carries its own differing state (in
cytoplasm, structural and epigenetic marking). Each cell has the same genetic network
and responds to local conditions. Multicellular living organisms use DGRNs to control
for growth and differentiation, as well as for incessant active control while growing
from a single zygote (or “seed”) to adult by cell division. The desirable dynamical
systems properties of GRNs might be combined with development to allow flexible,
responsive control, continually coupled to the environment in organisms consisting of
even astronomical numbers of different cells. Massively parallel distributed, adaptive,
robust, fault-tolerant, self-repairing control and computation is a hallmark of DGRNs
in living organisms but very unlike what we find in conventional software engineering
and von Neumann computation, but the potential of DGRNs for novel computation and
the simulation and synthesis of life is only now beginning to be explored.

Reaction-diffusion, cellular signaling and positional information could be set up
using tools available and being developed in evolving multicellular systems as a natural
method for computational morphogenesis and novel, developmental computation.

Development of NETBUILDER, a test-bed for modeling the dynamics of multicellu-
lar genetic regulatory networks for biologists [78], is currently supported by a grant of
the Wellcome Trust to Maria Schilstra and the author. It turns out that this platform can
also be used to model artificial developmental genetic regulatory networks. Schilstra
and Nehaniv [79] discuss the computational modelling of gene regulation in genetic
regulatory networks, and current work is exploring the use of such computational net-
works to reverse engineer genetic regulatory control given gene expression data.

The evolutionary approach to understanding DGRNs is the most natural and would
help characterize and evaluate aspects of their evolvability properties and developmen-
tal plasticity in different contexts.

Study of artificial versions of developmental genetic regulatory networks, compris-
ing multicellular individuals, in evolving populations of such multicellular individuals
is also a natural approach to addressing the essential questions of defining possible
modes of life (see Appendix). Such evolving populations of DGRNs embodied in dif-
ferent environments may be rich enough to study (1) heritability of characters at higher
levels, and (2) regulation of conflicts with the constituent cellular level (guided by some
predictive theory from [47]), (3) emergence of self-maintenance at various levels, as
well as (4) differentiation and modification of regulatory dynamics, and genetic, devel-
opmental and phenotypic plasticity.

Coupled with replication capability, evolving these artificial DGRNs (in software
or in artificial proto-cells) could lead to systems showing more or all of the properties
of life in its various modes. It would also be interesting to study (5) the induction of
symbiogenesis in such systems, perhaps leading to artificial organelles and the degen-
eration of properties of life if capacity for independent maintenance of pattern integrity
and replication is lost (mode 3). The genetic network in each cell of a differentiated
multicellular organism is duplicated and diverges from its progenitors. Evolved differ-
entiated multicellular organism possess a dynamic topology of interacting, developing



genetic regulatory networks within their cells. These DGRNs have the following prop-
erties that could also be realized in implementations of artificial versions:

– Multiple copies of the same regulatory mechanism in similar units, with lineage
structure

– Expressive and robust dynamical systems with parameters tunable by transcription
factor (TF) binding strengths, concentrations, co-factors, etc.

– Layering of combinatorial logic on activation/inhibition of transcription (“biologic”)
– Duplication-divergence via sensitivity of dynamics to epigenetic marking, develop-

ment, environment, timing, cell-type, external signals

There are some open questions for GRNs and DGRNs:
(1) What is the degree of smoothness of their evolutionary dynamics?
(2) What is the relative importance of variability operators yielding regulatory changes
vs. operators yielding gene product changes?
(3) What organizations of development yield what evolvability properties?
(4) What is the role of development and ecology in their evolvability (evo-devo-eco)?
(5) As biological DGRNs are naturally asynchronous, with no global clock coordi-
nating their action, developmental and organismal time and timing must rely on local
mechanisms to achieve coordination. The dynamic topology and asynchronous nature
of DGRNs thus make them a promising test-bed for studying the evolutionary dynamics
and emergence of asynchronous temporal coordination.

9 Conclusion and Major Challenges

Evolution has been presented as a powerful and general class of stochastic algorithms.
Response to interactivity (phenotypic plasticity) with environment/others may be fun-
damental to evolvability. Interaction can play a selective and/or reproductive role in the
capacity to evolve (as shown in two minimal examples exhibiting evolvability). Inter-
action can modulate duplication-divergence: Genetic regulatory networks, lifelong en-
gagement, and differentiation/development appear to have important evolvability prop-
erties and consequences that deserve to be better studied. Interaction also plays a im-
portant role in the arising of multicellularity. Culture arises via social transmission of
behavior, knowledge and skills, and is possible for constructed agents (e.g. robots on
shop floor). In different example minimal evolutionary systems, interaction and embodi-
ment can serve as a sources of variability. Developmental Genetic Regulatory Networks
(DGRNs) are proposed as a paradigm for novel computation and the study of evolv-
ability. Evolvability of autopoietic self-replicators, open-ended evolution, and feasible
universal construction are open problems. Asynchrony is present in the most complex
natural systems such as differentiated multicellular life, but synchronous automata net-
work models can be made asynchronous using a uniform method by which emulation
of behaviour of the synchronous system is mathematically guaranteed.
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97. VITÁNYI, P. M. B. Sexually reproducing cellular automata. Mathematical Biosciences 18

(1973), 23–54.
98. VON NEUMANN, J. Probabilistic logics and the synthesis of reliable organisms from un-

reliable components. In Automata Studies (Annals of Mathematics Studies, Number 34),
C. E. Shannon and J. McCarthy, Eds. Princeton, 1956, pp. 43–98.

99. VON NEUMANN, J. Theory of Self-Reproducing Automata. Edited and completed by A. W.
Burks. University of Illinois Press, 1966.

100. WAGNER, G. P., Ed. The Character Concept in Evolutionary Biology. Academic Press,
2001.

101. WAGNER, G. P., AND ALTENBERG, L. Complex adaptations and the evolution of evolv-
ability. Evolution 50, 3 (1996), 967–976.

102. WATSON, J. D., AND CRICK, F. H. C. Molecular structure of nucleic acids. Nature 171
(1953), 737–738.

103. WERNICK, P., AND LEHMAN, M. M. Software process white box modelling for FEAST/1.
Journal of Systems and Software 46, 2-3 (1999), 193–201.

104. WEST-EBERHARD, M. Developmental Plasticity and Evolution. Oxford University Press,
2003.



105. WHITEN, A., GOODALL, J., MCGREW, W. C., NISHIDA, T., REYNOLDS, V.,
SUGIYAMA, Y., TUTIN, C. E. G., WRANGHAM, R. W., AND BOESCH, C. Culture in
chimpanzees. Nature 399 (1999), 682–685.

106. WOLPERT, L. The Triumph of the Embryo. Oxford University Press, 1991.
107. WRIGHT, S. The role of mutation, inbreeding, crossbreeding, and selection in evolution.

Proceedings of the Sixth International Congress on Genetics 1 (1932), 356–366.

Appendix A: Are There Degrees of Life? – Converting Resources
into Persistence and Progeny

The preceding considerations of evolutionary processes as stochastic algorithms that
may be realized in many substrates lead naturally to the question of when the individu-
als in an evolutionary process should be called alive. We consider in this appendix what
heritability, self-maintenance, symbiosis and responsive dynamics via genetic regula-
tory networks can tell us about possible modes of life, in whatever medium it might find
realization.

A.1 Re-Thinking Life

The last two centuries have yielded profound scientific advances in our understanding
of the particular nature of life on earth: the nature of the cell, the Darwinian theory
of evolution, its synthesis with Mendelian genetics, and later with biochemistry, the
basis of hereditary in the substance of long chains of nucleotides, the (nearly) universal
genetic code, the details of protein biosynthesis (see e.g. [73]), increased understanding
of the dynamics of development in animals [6] and plants [36], and of evolvability [1,
100], as well as ever more detailed understanding of genetic regulatory systems and how
they operate in the single-celled and differentiated multicellular organisms (e.g. [18]),
among other advances. Recent advances in the construction of ‘proto-cells’ with various
properties of living systems bring us closer to new and very minimal instantiations of
life – of various kinds (artificially constructed or parred-down cells) [68, 85]. We may
possibly find other examples of life elsewhere in the solar system or universe, but also
in media other than those of organic biochemistry. Researchers in Artificial Life have
sought to capture and reproduce an underlying an “logic of life” in software running
on electronic computers (e.g. [69]), or in other media. These developments are leading
us to reconsider the notion of living organism: How are we to know whether we are
looking at new kinds of life?

A.2 Some Subtle Properties of Life Here we collect fundamental phenomena found
in organic life on earth that have tended not to receive emphasis. We formulate them
with a view toward achieving a more universal understanding of what life is.
Replicators in Context. The heritable material in replicators does not fully specify
the constraints of the environment in which they are capable of replication. Indeed,
there is no way for evolution directly to distinguish between genetic, environmental,
physical, geometric, energetic constraints, or incidental or universal properties of an
evolving population’s environment. Catalyzing the ambient dynamics, no matter how,



that promote their own replication is enough for the most primitive replicators. Other
capabilities come later in the evolution of biological complexity [62].
Pattern Integrity Life is an organizational pattern that “holds its shape”. Although the
particular material that makes up an organism in the course of its life may be changing,
the individual persists. Just as a wave on the ocean, a dynamical event occurring on a
substrate of water molecules, and a slipknot, which may be passed down from a string
to a rope to a necktie, depend on configuration and not particular material for their exis-
tence, similarly life relies on persistence of an organizational pattern that is structurally
stable enough to perpetuate its existence in a medium (pattern integrity). (cf. discussion
in [22].)

Enough stability must be present in the structure of the dynamics for this to occur
for us to be able to speak about an individual of any kind.

In replication, during a transition when a parent is giving rise to its offspring in the
dynamics of the medium, the parent is active in the establishment of the offspring’s
pattern integrity, as is the new individual itself, in changing degrees (self-production).
Replicators whose dynamics favors conditions that happen to tend to increase their
reproductive success through promoting processes of homeostasis and self-repair will
increase under the action of evolution. Beyond basic pattern integrity – which is neces-
sarily present already with simple replicators, or for that matter in any persistent indi-
viduals – life has also achieved more sophisticated types of pattern integrity in the forms
of self-maintenance, homeostasis, self-repair and regeneration within an individual.
Robustness, Plasticity and Incessant Responsiveness Despite perturbation and vari-
ability at the level of inheritance (such as mutations and sex), living organisms are of-
ten robust and can grow, develop, persist, and thrive successfully (robustness to genetic
variability [14]). Moreover, despite the lack of any full ‘specification’ of organisms by
their genetic material and despite perturbations to the environment, they are often re-
markably able to generate appropriate and adaptive forms and responses to various,
changing environmental situations (phenotypic and developmental plasticity) [104].
This relies on the fact that organisms continually engage with their local environment,
showing incessant adaptive activity, internally and externally (universal responsiveness
[104]).
Evolvable Dynamical Systems. Evolvability (cf. [1]) is defined above as the particular
capacity of an evolving population to generate adaptive heritable genotypic and phe-
notypic variation. Evolvability depends on many details of the genetic system and can
be radically different in different instances of evolution. To achieve self-maintenance,
plasticity, and continual responsiveness a sufficiently evolvable substrate is necessary.
Sufficiently powerful dynamical systems bases (such as the physics, chemistry and ge-
netic system enjoyed by life on earth) are necessary to support evolvability. Moreover,
the evolvability of a system can change (e.g. with the advent of a genetic code).
Achieving Heritability and Transitions in Individuality. Things fall apart (in the
physical and many artificial worlds). Quick reproduction based on digital templates
is one of the ways that life uses to help it to triumph over entropy. With a discrete ba-
sis of heritability (such as provided by a limited alphabet of nucleotides and codons),
copies can be perfect. Engineering shows that rebuilding is often more efficient than
repair.



Simple replicators might have no regeneration and repair capabilities (and these
might be quite complex to specify in a heritable manner). Without these, replication
rather than repair is eventually the only option in the face of the tendency of things to
crumble. With increased degrees of self-repair and regeneration, persistence rather than
immediate production of offspring becomes an option. Too much persistence however
would stop evolution, unless variability is somehow continually generated.

The simplest replicators have offspring like themselves in a similar environment.
Fitness of these is likely to be similar to that of the parents (until resources are ex-
hausted, or conditions change): When offspring are produced, they are likely to be suc-
cessful in the environment of their parent if they are similar to it – that is, if their
capabilities of promoting their own persistence and reproductive success in that envi-
ronment are similar to those of their parents. Heritability of fitness is achieved simply
for accurate replicators in a stable environment: if the new one is to be viable, a copy of
the original is likely to be a good choice.

Ensuring faithfulness of copies is one way to ensure heritability of fitness. Digital
genetic systems help achieve this.

New higher-level, e.g. multicellular, replicators whose components are themselves
alive need to solve the problems of heritability of fitness anew, together with those of
sex, and self-repair. At higher levels, for life to exist, a transition to individuality must
reinvent replication, resulting in heritability of fitness at that level; also reinvented are
self-maintenance for the higher-level individual, and sex (receiving or exchanging of
heritable material from others) [47]. It is also faced with new problems: suppression
of freedom at lower levels and harnessing lower level units into cooperatives that con-
tribute to the fitness of the higher level individual requires a balance of the tendency
of replicators at lower levels to pursue their own individual reproductive success at the
expense of that of the higher level individual [11, 47]. In differentiated multicellularity,
constituent cells may pursue their own replication at the higher-level’s expense (can-
cer); in social insects some members of non-reproductive labor castes may ‘defect’ and
become reproductive, at the expense of the colony’s integrity.

Higher-level individuals develop from a single (or a small number of) constituents
and harness division of labor and the differentiation of their constituents (e.g. cells in a
body; insect castes). Epigenetic inheritance (via state and marking) in the population of
constituents comprising them makes this possible.

A.3 Degrees and Modes of Being Alive

Biologists asked to define life have not agreed on a universally accepted definition, but
instead tend to produce lists of properties. One candidate definition [59], applicable to
life-as-it-could-be as well as life-as-we-know-it, is:
A living organism is an individual entity that

1. transforms resources into persistence (pattern integrity) and progeny (i.e. to achieve
reproduction),

2. results from reproduction (or is able to reproduce),
3. results from an evolutionary process in a population (involving heritable variation,

differential reproductive success, finite resources),



4. produces itself in the context of its environment (self-production, growth and pos-
sibly development),

5. engages in self-maintenance,
6. uses signaling and interaction (internally and externally), and
7. modifies and is modified by its environment (embodiment and plasticity).

The more of these properties from such lists a system exhibits, the more justified we
feel in saying that it is alive. For example, viruses or ‘digital organisms’ (such as Tier-
rans [69]) exhibit some but not all the properties of life (see also below). This suggests
that there may be different degrees to which it makes sense to call something alive, i.e.
different degrees of life depending on the degree to which each of requirements in the
biologist’s list are satisfied [59].

Modes of Life with Different Degrees of Aliveness In light of the advances in Biology
and Artificial Life mentioned above, it will be argued here that the evolution of life from
a single ancestor or ancestral population may involve different modes which account for
some of the differences in the degree of aliveness. Organic evolution on earth (and in
some cases in artificial systems at the first two levels) has apparently produce different
modes of life (which comprise a evolutionary continuum). These modes show marked
qualitative differences in dimensions present among the requirements for life, but are
related to each other by evolutionary contingencies:

– Mode 0: Replicators (no or very limited variation in heritability). Prions, crys-
tal growth, and cellular automata replicators show many properties of life. They
engage in no self-maintenance. Evolution does not occur (with some recent excep-
tions in cellular automata). At the level of the individual, they do not show genetic,
developmental, or phenotypic plasticity.

– Mode 1: Replicators in Evolving Populations. Viruses, Tierrans (and to a lesser
degree transposons) exist in populations showing heritability, variability, and dif-
ferential reproductive success – the requirements for evolution. This leads some
researchers to assert that they are examples of minimal living systems. They ex-
hibit no homeostatic control, or capabilities of regeneration and self-repair.

– Mode 2: Self-Maintaining Organisms (showing various degrees of autonomous
responsive dynamics and plasticity). These extend mode 1 capacities and include
all the uncontroversial cases of living organisms. [See list of living organism dimen-
sional properties above. This class might have identifiable occurring submodes, e.g.
some self-maintenance and regenerative capability but little or no phenotypic plas-
ticity. Some examples may be naturally occurring, but others might soon be pro-
duced by constructive methods en route to more sophisticated artificial life forms,
e.g. proto-cells.]

– Mode 3: Degenerated Life (arising, e.g., due to Symbiogenesis or Multicellu-
larity). These are evolving replicators whose ancestors were of another mode but
which are in the process of losing (or have lost) most of their individuality. Exam-
ples associated with evolutionary transitions: in the RNA world (or other early life
scenarios), early replicators→ membrane-bound genes/‘chromosomes’; in the evo-
lution of eukaryotes, free-living prokaryotic ancestors of organelles → mitochon-
dria, chloroplasts. Mitochondria and chloroplasts are organelles whose ancestors



where free-living endosymbionts of ancestors of eukaryotic cells but which are not
longer capable of replication without the machinery of the cells and some of the
heritable information in the cell’s nuclear DNA [42, 74].

Transitions between Modes of Life The advent of new higher-level replicators such
as multicellular entities (possibly with differentiation of constituents into a cooperative
division of labor) leads us to ask the question again. Are these replicators (rather than
their constituent members) alive? To what degree do they show the properties required
of living systems such as being members of an evolving population? self-maintenance,
heritability of fitness, and sophisticated responsive dynamics?

If multicellular plants, animals and fungi, or colonies of social insects are self-
replicating higher level individuals satisfying the properties of life, how are the proper-
ties of life (in the list above) achieved by the higher level entity? Are we dealing with
mere replicators, evolution, or evolution of self-maintaining dynamic entities?

With symbiogenesis and increasing dependency on partners, loss of individuality
may result (e.g. in the evolution of cellular organelles having endosymbiotic origin,
mitochondria and chloroplasts). For most definitions of life, evolution must act on in-
dividuals in a population, if individuality is lost, then evolution at the former level of
individuality – and hence life at that level – becomes less distinct (mode 3), and even-
tually it may not be appropriate to speak of life.

The extreme modes are less alive than the middle ones. Transitions between the
above modes of life (in the direction of the list) are however natural and may be favored
by natural selection (as with the evolution of mitochondria). Even though the last mode
involves degeneration of life properties at one level, it is only known to occur in the
transitional genesis of higher-level units of selection. Note that it also need not occur
(even with new, albeit loose units of selection); e.g. the cells in differentiated multi-
cellular organisms or symbiotic partners in lichens that can also live independently are
both mode 2. In the opposite direction, examples which may or may not have arisen
as renegade replicators that were originally components of a larger unit of life include
viruses and transposons (transitions to mode 1 from higher modes).


