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Abstract

We apply kernel-based methods to solve the difficult reinforcement learning problem of
3vs2 keepaway in RoboCup simulated soccer. Key challenges in keepaway are the high-
dimensionality of the state space (rendering conventional discretization-based function ap-
proximation like tilecoding infeasible), the stochasticity due to noise and multiple learning
agents needing to cooperate (meaning that the exact dynamics of the environment are un-
known) and real-time learning (meaning that an efficient online implementation is required).
We employ the general framework of approximate policy iteration with least-squares-based
policy evaluation. As underlying function approximator we consider the family of regular-
ization networks with subset of regressors approximation. The core of our proposed solution
is an efficient recursive implementation with automatic supervised selection of relevant ba-
sis functions. Simulation results indicate that the behavior learned through our approach
clearly outperforms the best results obtained with tilecoding by Stone et al. (2005).

Keywords: Reinforcement Learning, Least-squares Policy Iteration, Regularization Net-
works, RoboCup

1. Introduction

RoboCup simulated soccer has been conceived and is widely accepted as a common plat-
form to address various challenges in artificial intelligence and robotics research. Here, we
consider a subtask of the full problem, namely the keepaway problem. In keepaway we have
two smaller teams: one team (the ‘keepers’) must try to maintain possession of the ball
for as long as possible while staying within a small region of the full soccer field. The
other team (the ‘takers’) tries to gain possession of the ball. Stone et al. (2005) initially
formulated keepaway as benchmark problem for reinforcement learning (RL); the keepers
must individually learn how to maximize the time they control the ball as a team against
the team of opposing takers playing a fixed strategy. The central challenges to overcome
are, for one, the high dimensionality of the state space (each observed state is a vector
of 13 measurements), meaning that conventional approaches to function approximation in
RL, like grid-based tilecoding, are infeasible; second, the stochasticity due to noise and
the uncertainty in control due to the multi-agent nature imply that the dynamics of the
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environment are both unknown and cannot be obtained easily. Hence we need model-free
methods. Finally, the underlying soccer server expects an action every 100 msec, meaning
that efficient methods are necessary that are able to learn in real-time.

Stone et al. (2005) successfully applied RL to keepaway, using the textbook approach
with online Sarsa(λ) and tilecoding as underlying function approximator (Sutton and Barto,
1998). However, tilecoding is a local method and places parameters (i.e. basis functions) in a
regular fashion throughout the entire state space, such that the number of parameters grows
exponentially with the dimensionality of the space. In (Stone et al., 2005) this very serious
shortcoming was adressed by exploiting problem-specific knowledge of how the various state
variables interact. In particular, each state variable was considered independently from the
rest. Here, we will demonstrate that one can also learn using the full (untampered) state
information, without resorting to simplifying assumptions.

In this paper we propose a (non-parametric) kernel-based approach to approximate the
value function. The rationale for doing this is that by representing the solution through
the data and not by some basis functions chosen before the data becomes available, we
can better adapt to the complexity of the unknown function we are trying to estimate. In
particular, parameters are not ‘wasted’ on parts of the input space that are never visited.
The hope is that thereby the exponential growth of parameters is bypassed. To solve the
RL problem of optimal control we consider the framework of approximate policy iteration
with the related least-squares based policy evaluation methods LSPE(λ) proposed by Nedić
and Bertsekas (2003) and LSTD(λ) proposed by Boyan (1999). Least-squares based policy
evaluation is ideally suited for the use with linear models and is a very sample-efficient
variant of RL. In this paper we provide a unified and concise formulation of LSPE and
LSTD; the approximated value function is obtained from a regularization network which is
effectively the mean of the posterior obtained by GP regression (Rasmussen and Williams,
2006). We use the subset of regressors method (Smola and Schölkopf, 2000; Luo and Wahba,
1997) to approximate the kernel using a much reduced subset of basis functions. To select
this subset we employ greedy online selection, similar to (Csató and Opper, 2001; Engel
et al., 2003), that adds a candidate basis function based on its distance to the span of the
previously chosen ones. One improvement is that we consider a supervised criterion for the
selection of the relevant basis functions that takes into account the reduction of the cost in
the original learning task in addition to reducing the error incurred from approximating the
kernel. Since the per-step complexity during training and prediction depends on the size
of the subset, making sure that no unnecessary basis functions are selected ensures more
efficient usage of otherwise scarce resources. In this way learning in real-time (a necessity
for keepaway) becomes possible.

This paper is structured in three parts: the first part (Section 2) gives a brief intro-
duction on reinforcement learning and carrying out general regression with regularization
networks. The second part (Section 3) describes and derives an efficient recursive imple-
mentation of the proposed approach, particularly suited for online learning. The third part
describes the RoboCup-keepaway problem in more detail (Section 4) and contains the re-
sults we were able to achieve (Section 5). A longer discussion of related work is deferred
to the end of the paper; there we compare the similarities of our work with that of Engel
et al. (2003, 2005a,b).
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2. Background

In this section we briefly review the subjects of RL and regularization networks.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a simulation-based form of approximate dynamic program-
ming, e.g. see (Bertsekas and Tsitsiklis, 1996). Consider a discrete-time dynamical system
with states S = {1, . . . , N} (for ease of exposition we assume the finite case). At each time
step t, when the system is in state st, a decision maker chooses a control-action at (again,
selected from a finite set A of admissible actions) which changes probabilistically the state
of the system to st+1, with distribution P (st+1|st, at). Every such transition yields an im-
mediate reward rt+1 = R(st+1|st, at). The ultimate goal of the decision-maker is to choose
a course of actions such that the long-term performance, a measure of the cumulated sum
of rewards, is maximized.

2.1.1 Model-free Q-value function and optimal control

Let π denote a decision-rule (called the policy) that maps states to actions. For a fixed
policy π we want to evaluate the state-action value function (Q-function) which for every
state s is taken to be the expected infinite-horizon discounted sum of rewards obtained from
starting in state s, choosing action a and then proceeding to select actions according to π:

Qπ(s, a) := Eπ







∑

t≥0

γtrt+1|s0 = s, a0 = a







∀s, a (1)

where st+1 ∼ P (· |st, π(st)) and rt+1 = R(st+1|st, π(st)). The parameter γ ∈ (0, 1) denotes
a discount factor.

Ultimately, we are not directly interested in Qπ; our true goal is optimal control, i.e. we
seek an optimal policy π∗ = argmaxπ Qπ. To accomplish that, policy iteration interleaves
the two steps policy evaluation and policy improvement: First, compute Qπk for a fixed
policy πk. Then, once Qπk is known, derive an improved policy πk+1 by choosing the
greedy policy with respect to Qπk , i.e. by by choosing in every state the action πk+1(s) =
argmaxa Qπk(s, a) that achieves the best Q-value. Obtaining the best action is trivial if we
employ the Q-notation, otherwise we would need the transition probabilities and reward
function (i.e. a ‘model’).

To compute the Q-function, one exploits the fact that Qπ obeys the fixed-point relation
Qπ = TπQπ, where Tπ is the Bellman operator

(

TπQ
)

(s, a) := Es′∼P (· |s,a)

{

R(s′|s, a) + γQ(s′, π(s′))
}

.

In principle, it is possible to calculate Qπ exactly by solving the corresponding linear system
of equations, provided that the transition probabilities P (s′|s, a) and rewards R(s′|s, a) are
known in advance and the number of states is finite and small.

However, in many practical situations this is not the case. If the number of states is
very large or infinite, one can only operate with an approximation of the Q-function, e.g. a
linear approximation Q̃(s, a;w) = φm(s, a)Tw, where φm(s, a) is an m-dimensional feature
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Figure 1: Approximate policy iteration framework.

vector and w the adjustable weight vector. To approximate the unknown expectation value
one employs simulation (i.e. an agent interacts with the environment) to generate a large
number of observed transitions. Figure 1 depicts the resulting approximate policy iteration
framework: using only a parameterized Q̃ and sample transitions to emulate application
of Tπ means that we can carry out the policy evaluation step only approximately. Also,
using an approximation of Qπk to derive an improved policy from does not necessarily mean
that the new policy actually is an improved one; oscillations in policy space are possible.
In practice however, approximate policy iteration is a fairly sound procedure that either
converges or oscillates with bounded suboptimality (Bertsekas and Tsitsiklis, 1996).

Inferring a parameter vector wk from sample transitions such that Q̃(· ;wk) is a good
approximation to Qπk is therefore the central problem addressed by reinforcement learning.
Chiefly two questions need to be answered:

1. By what method do we choose the parametrisation of Q̃ and carry out regression?

2. By what method do we learn the weight vector w of this approximation, given sample
transitions?

The latter can be solved by the family of temporal difference learning, with TD(λ), ini-
tially proposed by Sutton (1988), being its most prominent member. Using a linearly
parametrized value function, it was in shown in (Tsitsiklis and Roy, 1997) that TD(λ)
converges against the true value function (under certain technical assumptions).

2.1.2 Approximate policy evaluation with least-squares methods

In what follows we will discuss three related algorithms for approximate policy evalua-
tion that share most of the advantages of TD(λ) but converge much faster, since they
are based on solving a least-squares problem in closed form, whereas TD(λ) is based on
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stochastic gradient descent. All three methods assume that an (infinitely) long1 trajectory
of states and rewards is generated using a simulation of the system (e.g. an agent inter-
acting with its environment). The trajectory starts from an initial state s0 and consists
of tuples (s0, a0), (s1, a1), . . . and rewards r1, r2, . . . where action ai is chosen according to
π and successor states and associated rewards are sampled from the underlying transition
probabilities. From now on, to abbreviate these state-action tuples, we will understand xt

as denoting xt := (st, at). Furthermore, we assume that the Q-function is parameterized by
Q̃π(x;w) = φm(x)Tw and that w needs to be determined.

The LSPE(λ) method. The method λ-least squares policy evaluation LSPE(λ) was
proposed by Nedić and Bertsekas (2003); Bertsekas et al. (2004) and proceeds by making
incremental changes to the weights w. Assume that at time t (after having observed t
transitions) we have a current weight vector wt and observe a new transition from xt to
xt+1 with associated reward rt+1. Then we compute the solution ŵt+1 of the least-squares
problem

ŵt+1 = argmin
w

t
∑

i=0

{

φm(xi)
Tw − φm(xi)

Twt −
t

∑

k=i

(λγ)k−id(xk,xk+1;wt)

}2

(2)

where

d(xk,xk+1;wt) := rk+1 + γφm(xk+1)
Twt − φm(xk)

Twt.

The new weight vector wt+1 is obtained by setting

wt+1 = wt + ηt(ŵt+1 −wt) (3)

where w0 is the initial weight vector and 0 < ηt ≤ 1 is a diminishing step size.

The LSTD(λ) method. The least-squares temporal difference method LSTD(λ) pro-
posed by Bradtke and Barto (1996) for λ = 0 and by Boyan (1999) for general λ ∈ [0, 1]
does not proceed by making incremental changes to the weight vector w. Instead, at time
t (after having observed t transitions), the weight vector wt+1 is obtained by solving the
fixed-point equation

ŵ = argmin
w

t
∑

i=0

{

φm(xi)
Tw − φm(xi)

Tŵ −
t

∑

k=i

(λγ)k−id(xk,xk+1; ŵ)

}2

(4)

for ŵ, where

d(xk,xk+1; ŵ) := rk+1 + γφm(xk+1)
Tŵ − φm(xk)

Tŵ,

and setting wt+1 to this unique solution.

1. If we are dealing with an episodic learning task with designated terminal states, we can generate an
infinite trajectory in the following way: once an episode ends, we set the discount factor γ to zero and
make a zero-reward transition from the terminal state to the start state of the next (following) episode.
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BRM LSTD LSPE
Corresponds to TD(0) Corresponds to TD(λ) Corresponds to TD(λ)
Deterministic transitions only Stochastic transitions possible Stochastic transitions possible
No OPI No OPI OPI possible
Explicit least-squares Least-squares only implicitly Explicit least-squares
⇒ Supervised basis selection ⇒ No supervised basis selection ⇒ Supervised basis selection

Table 1: Comparison of least-squares policy evaluation

Comparison of LSPE and LSTD. The similarities and differences between LSPE(λ)
and LSTD(λ) are listed in Table 1. Both LSPE(λ) and LSTD(λ) converge to the same
limit (see Bertsekas et al., 2004), which is also the limit to which TD(λ) converges (the
initial iterates may be vastly different though). Both methods rely on the solution of a
least-squares problem (either explicitly as is the case in LSPE or implicitly as is the case in
LSTD) and can be efficiently implemented using recursive computations. Computational
experiments in (Bertsekas and Ioffe, 1996) or (Lagoudakis and Parr, 2003) indicate that
both approaches can perform much better than TD(λ).

Both methods LSPE and LSTD differ as far as their role in the approximate policy
iteration framework is concerned. LSPE can take advantage of previous estimates of the
weight vector and can hence be used in the context of optimistic policy iteration (OPI), i.e.
the policy under consideration gets improved following very few observed transitions. For
LSTD this is not possible; here a more rigid actor-critic approach is called for.

Both methods LSPE and LSTD also differ as far as their relation to standard regression
with least-squares methods is concerned. LSPE directly minimizes a quadratic objective
function. Using this function it will be possible to carry out ‘supervised’ basis selection,
where for the selection of basis functions the reduction of the costs (the quantity we are
trying to minimize) is taken into account. For LSTD this is not possible; here in fact we
are solving a fixed point equation that employs least-squares only implicitly (to carry out
the projection).

The BRM method. A third approach, related to LSTD(0) is the direct minimization
of the Bellman residuals (BRM), as proposed in (Baird, 1995; Lagoudakis and Parr, 2003).
Here, at time t, the weight vector wt+1 is obtained from solving the least-squares problem

wt+1 = argmin
w

t
∑

i=0

{

φm(xi)
Tw −

∑

s′

P (s′|si, π(si))
[

R(s′|si, π(si)) + γφm(s′, π(s′))Tw
]

}2

Unfortunately, the transition probabilities can not be approximated by using single samples
from the trajectory; one would need ‘doubled’ samples to obtain an unbiased estimate
(see Baird, 1995). Thus this method would be only applicable for tasks with deterministic
state transitions or known state dynamics; two conditions which are both violated in our
application to RoboCup-keepaway. Nevertheless we will treat the deterministic case in first
place during all our derivations, since LSPE and LSTD require only very minor changes
to the resulting implementation. Using BRM with deterministic transitions amounts to
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solving the least-squares problem

wt+1 = argmin
w

t
∑

i=0

{

φm(xi)
Tw − ri+1 − γφm(xi+1)

Tw
}2

(5)

2.2 Standard regression with regularization networks

From the foregoing discussion we have seen that (approximate) policy evaluation can amount
to a traditional function approximation problem. For this purpose we will here consider the
family of regularization networks (Girosi et al., 1995), which are functionally equivalent to
kernel ridge regression and Bayesian regression with Gaussian processes (Rasmussen and
Williams, 2006). Here however, we will introduce them from the non-Bayesian regularization
perspective as in (Smola and Schölkopf, 2000).

2.2.1 Solving the full problem

Given t training examples {xi, yi}
t
i=1 with inputs xi and observed outputs yi, to reconstruct

the underlying function, one considers candidates from a function space Hk, where Hk is a
reproducing kernel Hilbert space with reproducing kernel k (e.g. Wahba, 1990), and searches
among all possible candidates for the function f ∈ Hk that achieves the minimum in the risk
functional

∑

(yi − f(xi))
2 + σ2 ‖f‖Hk

. The scalar σ2 is a regularization parameter. Since
solutions to this variational problem may be represented through the data alone (Wahba,
1990) as f(·) =

∑

k(xi, ·)wi, the unknown weight vector w is obtained from solving the
quadratic problem

min
w∈Rt

(Kw − y)T(Kw − y) + σ2wTKw (6)

The solution to (6) is w = (K + σ2I)−1y, where y =
(

y1, . . . yt

)

T
and K is the t × t kernel

matrix [K]ij = k(xi,xj).

2.2.2 Subset of regressor approximation

Often, one is not willing to solve the full t-by-t problem in (6) when the number of training
examples t is large and instead considers means of approximation. In the subset of regressors
(SR) approach (Poggio and Girosi, 1990; Luo and Wahba, 1997; Smola and Schölkopf, 2000)
one chooses a subset {x̃i}

m
i=1 of the data, with m � t, and approximates the kernel for

arbitrary x,x′ by taking

k(x,x′) = km(x)TK−1
mmkm(x′). (7)

Here km(x) denotes the m × 1 feature vector km(x) =
(

k(x̃1,x), . . . , k(x̃m,x)
)

T
and the

m × m matrix Kmm is the submatrix [Kmm]ij = k(x̃i, x̃j) of the full kernel matrix K.
Replacing the kernel in (6) by expression (7) gives

min
w∈Rm

(Ktmw − y)T(Ktmw − y) + σ2wTKmmw

with solution

wt =
(

KT

tmKtm + σ2Kmm

)−1
KT

tmy (8)
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where Ktm is the t×m submatrix [Ktm]ij = k(xi, x̃j) corresponding to the m columns of the
data points in the subset. Learning the weight vector wt from (8) costs O(tm2) operations.
Afterwards, predictions for unknown test points x∗ are made by f(x∗) = km(x∗)

Tw at
O(m) operations.

2.2.3 Online selection of the subset

To choose the subset of relevant basis functions (termed the dictionary or set of basis vectors
BV) many different approaches are possible; typically they can be distinguished as being
unsupervised or supervised. Unsupervised approaches like random selection (Williams and
Seeger, 2001) or the incomplete Cholesky decomposition (Fine and Scheinberg, 2001) do not
use information about the task we want to solve, i.e. the response variable we wish to regress
upon. Random selection does not use any information at all whereas incomplete Cholesky
aims at reducing the error incurred from approximating the kernel matrix. Supervised choice
of the subset does take into account the response variable and usually proceeds by greedy
forward selection, using e.g. matching pursuit techniques (Smola and Bartlett, 2001).

However, none of these approaches are directly applicable for sequential learning, since
the complete set of basis function candidates must be known from the start. Instead, assume
that the data becomes available only sequentially at t = 1, 2, . . . and that only one pass over
the data set is possible, so that we cannot select the subset BV in advance. Working in
the context of Gaussian process regression, Csató and Opper (2001) and later Engel et al.
(2003) have proposed a sparse greedy online approximation: start from an empty set of BV
and examine at every time step t if the new example needs to be included in BV or if it can
be processed without augmenting BV. The criterion they employ to make that decision is
an unsupervised one: at every time step t compute for the new data point xt the error

δt = k(xt,xt) − km(xt)
TK−1

mmkm(xt) (9)

incurred from approximating the new data point using the current BV. If δt exceeds a
given threshold then it is considered as sufficiently different and added to the dictionary
BV. Note that only the current number of elements in BV at a given time t is considered,
the contribution from basis functions that will be added at a later time is ignored.

In this case, it might be instructive to visualize what happens to the t×m data matrix
Ktm once BV is augmented. Adding the new element xt to BV means adding a new basis
function (centered on xt) to the model and consequently adding a new associated column

q =
(

k(x1,xt), . . . , k(xt,xt)
)T

to Ktm. With sparse online approximation all t − 1 past
entries in q are given by k(xi,xt) ≈ km(xi)

TK−1
mmkm(xt), i = 1 . . . , t− 1, which is exact for

the m basis-elements and an approximation for the remaining t−m−1 non-basis elements.
Hence, going from m to m + 1 basis functions, we have that

Kt,m+1 =
[

Ktm q
]

=

[

Kt−1,m Kt−1,mat

km(xt)
T k(xt,xt)

]

. (10)

where at := K−1
mmkm(xt). The overall effect is that now we do not need to access the full data

set any longer. All costly O(tm) operations that arise from adding a new column, i.e. adding
a new basis function, computing the reduction of error during greedy forward selection of
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basis functions, or computing predictive variance with augmentation as in (Rasmussen and
Quiñonero Candela, 2005), now become a more affordable O(m2).

This is exploited in (Jung and Polani, 2006); here a simple modification of the selection
procedure is presented, where in addition to the unsupervised criterion from (9) the contri-
bution to the reduction of the error (i.e. the objective function one is trying to minimize)
is taken into account. Since the per-step complexity during training and then later during
prediction critically depends on the size m of the subset BV, making sure that no unneces-
sary basis functions are selected ensures more efficient usage of otherwise scarce resources
and makes learning in real-time (a necessity for keepaway) possible.

3. Policy evaluation with regularization networks

We now present an efficient online implementation for least-squares-based policy evaluation
(applicable to the methods LSPE, LSTD, BRM) to be used in the framework of approximate
policy iteration (see Figure 1). Our implementation combines the aforementioned automatic
selection of basis functions (from Section 2.2.3) with a recursive computation of the weight
vector corresponding to the regularization network (from Section 2.2.2) to represent the
underlying Q-function. The goal is to infer an approximation Q̃(· ;w) of Qπ, the unknown
Q-function of some given policy π. The training examples are taken from an observed
trajectory x0,x1,x2, . . . with associated rewards r1, r2, . . . where xi denotes state-action
tuples xi := (si, ai) and action ai = π(si) is selected according to policy π.

3.1 Stating LSPE, LSTD and BRM with regularization networks

First, express each of the three problems LSPE in eq. (2), LSTD in eq. (4) and BRM in
eq. (5) in more compact matrix form using regularization networks from (8). Assume that
the dictionary BV contains m basis functions. Further assume that at time t (after having
observed t transitions) a new transition from xt to xt+1 under reward rt+1 is observed.
From now on we will use a double index (also for vectors) to indicate the dependence in the
number of examples t and the number of basis functions m. Define the matrices:

Kt+1,m :=







km(x0)
T

...
km(xt)

T






, Ht+1,m :=







km(x0)
T − γkm(x1)

T

...
km(xt)

T − γkm(xt+1)
T







rt+1 :=







r1
...

rt+1






, Λt+1 :=













1 (λγ)1 · · · (λγ)t

0
. . .

...
...

. . . 1 (λγ)1

0 · · · 0 1













(11)

where, as before, m × 1 vector km(·) denotes km(·) =
(

k(·, x̃1), . . . , k(·, x̃m)
)T

.
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3.1.1 The LSPE(λ) method

Then, for LSPE(λ), the least-squares problem (2) is stated as (wtm being the weight vector
of the previous step):

ŵt+1,m = argmin
w

{

∥

∥Kt+1,mw −Kt+1,mwtm −Λt+1

(

rt+1 −Ht+1,mwtm

)∥

∥

2

+σ2(w −wtm)TKmm(w −wtm)
}

Computing the derivative wrt w and setting it to zero, one obtains for ŵt+1,m:

ŵt+1,m = wtm +
(

KT

t+1,mKt+1,m + σ2Kmm

)−1(
ZT

t+1,mrt+1 − ZT

t+1,mHt+1,mwtm

)

where in the last line we have substituted Zt+1,m := ΛT

t+1Kt+1,m. From (3) the next iterate
wt+1,m for the weight vector in LSPE(λ) is thus obtained by

wt+1,m = wtm + ηt(ŵt+1,m −wtm) = wtm + ηt

(

KT

t+1,mKt+1,m + σ2Kmm

)−1

(

ZT

t+1,mrt+1 − ZT

t+1,mHt+1,mwtm

)

(12)

3.1.2 The LSTD(λ) method

Likewise, for LSTD(λ), the fixed point equation (4) is stated as:

ŵ = argmin
w

{

∥

∥Kt+1,mw −Kt+1,mŵ −Λt+1

(

rt+1 −Ht+1,mŵ
)
∥

∥

2

+σ2wTKmmw
}

.

Computing the derivative with respect to w and setting it to zero, one obtains

(

ZT

t+1,mHt+1,m + σ2Kmm

)

ŵ = ZT

t+1,mrt+1.

Thus the solution wt+1,m to the fixed point equation in LSTD(λ) is given by:

wt+1,m =
(

ZT

t+1,mHt+1,m + σ2Kmm

)−1
ZT

t+1,mrt+1 (13)

3.1.3 The BRM method

Finally, for the case of BRM, the least-squares problem (5) is stated as:

wt+1,m = argmin
w

{

‖rt+1 −Ht+1,mw‖2 + σ2wTKmmw
}

Thus again, one obtains the weight vector wt+1,m by

wt+1,m =
(

HT

t+1,mHt+1,m + σ2Kmm

)−1
HT

t+1,mrt+1 (14)
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3.2 Outline of the recursive implementation

Note that all three methods amount to solving a very similar structured set of linear equa-
tions in eqs. (12),(13),(14). Overloading the notation these can be compactly stated as:

• LSPE: solve

wt+1,m = wtm + ηP−1
t+1,m(bt+1,m −At+1,mwtm) (12’)

where

– P−1
t+1,m := (KT

t+1,mKt+1,m + σ2Kmm)−1

– bt+1,m := ZT

t+1,mrt+1

– At+1,m := ZT
t+1,mHt+1,m

• LSTD: solve

wt+1,m = P−1
t+1,mbt+1,m (13’)

where

– P−1
t+1,m := (ZT

t+1,mHt+1,m + σ2Kmm)−1

– bt+1,m := ZT
t+1,mrt+1

• BRM: solve

wt+1,m = P−1
t+1,mbt+1,m (14’)

where

– P−1
t+1,m := (HT

t+1,mHt+1,m + σ2Kmm)−1

– bt+1,m := HT

t+1,mrt+1

Each time a new transitions from xt to xt+1 under reward rt+1 is observed, the goal is to
recursively

1. update the weight vector wtm, and

2. possibly augment the model, adding a new basis function (centered on xt+1) to the
set of currently selected basis functions BV.

More specifically, we will perform one or both of the following update operations:

1. Normal step: Process (xt+1, rt+1) using the current fixed set of basis functions BV.

2. Growing step: If the new example is sufficiently different from the previous examples
in BV (i.e. the reconstruction error in (9) exceeds a given threshold) and strongly
contributes to the solution of the problem (i.e. the decrease of the loss when adding
the new basis function is greater than a given threshold) then the current example is
added to BV and the number of basis functions in the model is increased by one.
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The update operations work along the lines of recursive least squares (RLS), i.e. propagate
forward the inverse2 of the m × m cross product matrix Ptm. Integral to the derivation of
these updates are two well-known matrix identities for recursively computing the inverse of
a matrix: (for matrices with compatible dimensions)

if Bt+1 = Bt + bbT then B−1
t+1 = B−1

t −
B−1

t bbTB−1
t

1 + bTB−1
t b

(15)

which is used when adding a row to the data matrix. Likewise,

if Bt+1 =

[

Bt b
bT b∗

]

then B−1
t+1 =

[

B−1
t 0
0 0

]

+
1

∆b

[

−B−1
t b
1

] [

−B−1
t b
1

]T

(16)

with ∆b = b∗ − bTB−1
t b. This second update is used when adding a column to the data

matrix.
An outline of the general implementation applicable to all three of the methods LSPE,

LSTD, and BRM is sketched in Figure 2. To avoid unnecessary repetitions we will here
only derive the update equations for the BRM method; the other two are obtained with
very minor modifications and are summarized in the appendix.

3.3 Derivation of recursive updates for the case BRM

Let t be the current time step, (xt+1, rt+1) the currently observed input-output pair and
assume that from the past t examples {(xi, ri)}

t
i=1 the m examples {x̃i}

m
i=1 were selected

into the dictionary BV. Consider the penalized least-squares problem that is BRM (restated
here for clarity)

min
w∈Rm

Jtm(w) = ‖rt −Htmw‖2 + σ2wTKmmw (17)

with Htm being the t×m data matrix and rt being the t× 1 vector of the observed output
values from (11). Defining the m × m cross product matrix Ptm = (HT

tmHtm + σ2Kmm),
the solution to (17) is given by

wtm = P−1
tmHT

tmrt.

Finally, introduce the costs ξtm = Jtm(wtm). Assuming that {P−1
tm , wtm, ξtm} are known

from previous computations, every time a new transition (xt+1, rt+1) is observed, we will
perform one or both of the following update operations:

3.3.1 Normal step: from {P−1
tm ,wtm, ξtm} to {P−1

t+1,m,wt+1,m, ξt+1,m}

With ht+1 defined as ht+1 :=
(

km(xt) − γkm(xt+1)
)T

, one gets

Ht+1,m =

[

Htm

hT

t+1

]

and rt+1 =

[

rt

rt+1

]

.

2. A better alternative (from the standpoint of numerical implementation) would be to not propagate
forward the inverse, but instead to work with the Cholesky factor. For this paper we chose the first
method in the first place because it gives consistent update formulas for all three considered problems
(note that for LSTD the cross-product matrix is not symmetric) and overall allows a better exposition.
For details on the second way, see e.g. (Sayed, 2003).
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Relevant symbols:

// π: Policy, whose value function Qπ we want to estimate
// t: Number of transitions seen so far
// m: Current number of basis functions in BV
// P−1

tm: Cross product matrix used to compute wtm

// wtm: Weights of Q̃(· ;wtm), the current approximation to Qπ

// K−1
mm: Used during approximation of kernel

Initialization:

Generate first state s0. Choose action a0 = π(s0). Execute a0 and observe s1 and r1.
Choose a1 = π(s1). Let x0 := (s0, a0) and bx1 := (s1, a1). Initialize the set of basis
functions BV := {x0,x1} and K−1

2,2. Initialize P−1
1,2, w1,2 according to either LSPE,

LSTD or BRM. Set t := 1 and m := 2.

Loop: For t = 1, 2, . . .

Execute action at (simulate a transition).
Observe next state st+1 and reward rt+1.
Choose action at+1 = π(st+1). Let xt+1 := (st+1, at+1).

Step 1: Check, if xt+1 should be added to the set of basis functions.
Unsupervised basis selection: return true if (9)> TOL1.
Supervised basis selection: return true if (9)> TOL1

and additionally if either (24) or (24”)> TOL2.

Step 2: Normal step

Obtain P−1
t+1,m from either (18),(18’), or (18”).

Obtain wt+1,m from either (19),(19’), or (19”).

Step 3: Growing step (only when step 1 returned true)
Obtain P−1

t+1,m+1 from either (20),(20’), or (20”).
Obtain wt+1,m+1 from either (23),(23’), or (23”).
Add xt+1 to BV and obtain Km+1,m+1 from (25).
m := m + 1

t := t + 1, st := st+1, at := at+1

Figure 2: Online policy evalution with growing regularization networks. This pseudo-code
applies to BRM, LSPE and LSTD, see the appendix for the exact equations. The
computational complexity per observed transition is O(m2).

Thus Pt+1,m = Ptm + ht+1h
T

t+1 and we obtain from (15) the well-known RLS updates

P−1
t+1,m = P−1

tm −
P−1

tmht+1h
T
t+1P

−1
tm

∆
(18)

with scalar ∆ = 1 + hT
t+1P

−1
tmht+1 and

wt+1,m = wtm +
%

∆
P−1

tmht+1 (19)

with scalar % = rt+1 − hT

t+1wtm. The costs become ξt+1,m = ξtm + %2

∆ . The set of basis
functions BV is not altered during this step. Operation complexity is O(m2).
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3.3.2 Growing step: from {P−1
t+1,m,wt+1,m, ξt+1,m} to {P−1

t+1,m+1,wt+1,m+1, ξt+1,m+1}

How to add a BV. When adding a basis function (centered on xt+1) to the model, we
augment the set BV with x̃m+1 (note that x̃m+1 is the same as xt+1 from above). Define
kt+1 := km(x̃m+1), k∗

t := k(xt,xt+1), and k∗
t+1 := k(xt+1,xt+1). Adding a basis function

means appending a new (t + 1) × 1 vector q to the data matrix and appending kt+1 as
row/column to the penalty matrix Kmm, thus

Pt+1,m+1 =
[

Ht+1,m q
]T [

Ht+1,m q
]

+ σ2

[

Kmm kt+1

kT

t+1 k∗
t+1

]

.

Invoking (16) we obtain the updated inverse P−1
t+1,m+1 via

P−1
t+1,m+1 =

[

P−1
t+1,m 0

0 0

]

+
1

∆b

[

−wb

1

] [

−wb

1

]T

(20)

where simple vector algebra reveals that

wb = P−1
t+1,m(HT

t+1,mq + σ2kt+1)

∆b = qTq + σ2k∗
t+1 − (HT

t+1,mq + σ2kt+1)
Twb. (21)

Without sparse online approximation this step would require us to recall all t past examples
and would come at the undesirable price of O(tm) operations. However, we are going to
get away with merely O(m) operations and only need to access the m past examples in
the memorized BV. Due to the sparse online approximation, q is actually of the form

qT =
[

Htmat+1 h∗
t+1

]T
with h∗

t+1 := k∗
t −γk∗

t+1 and at+1 = K−1
mmkt+1 (see Section 2.2.3).

Hence new information is injected only through the last component. Exploiting this special
structure of q equation (21) becomes

wb = at+1 +
δh

∆
P−1

tmht+1

∆b =
δ2
h

∆
+ σ2δh (22)

where δh = h∗
t+1 − hT

t+1at+1. If we cache and reuse those terms already computed in the
preceding step (see Section 3.3.1) then we can obtain wb,∆b in O(m) operations.

To obtain the updated coefficients wt+1,m+1 we postmultiply (20) by HT
t+1,m+1rt+1 =

[

HT
t+1,mrt+1 qTrt+1

]T
, getting

wt+1,m+1 =

[

wtm

0

]

+ κ

[

−wb

1

]

(23)

where scalar κ is defined by κ = rT

t+1(q − Ht+1,mwb)/∆b. Again we can now exploit the
special structure of q to show that κ is equal to

κ = −
δh%

∆b∆
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And again we can reuse terms computed in the previous step (see Section 3.3.1).
Skipping the computations, we can show that the reduced (regularized) cost ξt+1,m+1 is

recursively obtained from ξt+1,m via the expression:

ξt+1,m+1 = ξt+1,m − κ2∆b. (24)

Finally, each time we add an example to the BV set we must also update the inverse kernel
matrix K−1

mm needed during the computation of at+1 and δh. This can be done using the
formula for partitioned matrix inverses (16):

K−1
m+1,m+1 =

[

K−1
mm 0
0T 0

]

+
1

δ

[

−at+1

1

] [

−at+1

1

]T

. (25)

When to add a BV. To decide whether or not the current example xt+1 should be
added to the BV set, we employ the supervised two-part criterion from (Jung and Polani,
2006). The first part measures the ‘novelty’ of the current example: only examples that are
‘far’ from those already stored in the BV set are considered for inclusion. To this end we
compute as in (Csató and Opper, 2001) the squared norm of the residual from projecting
(in RKHS) the example onto the span of the current BV set, i.e. we compute, restated
from (9), δ = k∗

t+1 − kT
t+1at+1. If δ < TOL1 for a given threshold TOL1, then xt+1 is well

represented by the given BV set and its inclusion would not contribute much to reduce the
error from approximating the kernel by the reduced set. On the other hand, if δ > TOL1

then xt+1 is not well represented by the current BV set and leaving it behind could incur a
large error in the approximation of the kernel.

Aside from novelty, we consider as second part of the selection criterion the ‘usefulness’
of a basis function candidate. Usefulness is taken to be its contribution to the reduction of
the regularized costs ξtm, i.e. the term κ2∆b from (24). Both parts together are combined
into one rule: only if δ > TOL1 and δκ2∆b > TOL2, then the current example will become a
new basis function and will be added to BV.

4. RoboCup-keepaway as RL benchmark

The experimental work we carried out for this article uses the publicly available3 keepaway
framework from (Stone et al., 2005), which is built on top of the standard RoboCup soccer
simulator also used for official competitions (Noda et al., 1998). Agents in RoboCup are
autonomous entities; they sense and act independently and asynchronously, run as individ-
ual processes and cannot communicate directly. Agents receive visual perceptions every 150
msec and may act once every 100 msec. The state description consists of relative distances
and angles to visible objects in the world, such as the ball, other agents or fixed beacons
for localization. In addition, random noise affects both the agents sensors as well as their
actuators.

In keepaway, one team of ‘keepers’ must learn how to maximize the time they can
control the ball within a limited region of the field against an opposing team of ‘takers’.
Only the keepers are allowed to learn, the behavior of the takers is governed by a fixed set

3. Sources are available from http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/.
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Acting keeper with ball

Boundary

Taker

Center beacon

Keeper

Figure 3: Illustrating keepaway. The various lines and angles indicate the 13 state variables
making up each sensation as provided by the keepaway benchmark software.

of hand-coded rules. However, each keeper only learns individually from its own (noisy)
actions and its own (noisy) perceptions of the world. The decision-making happens at an
intermediate level using multi-step macro-actions; the keeper currently controlling the ball
must decide between holding the ball or passing it to one of its teammates. The remaining
keepers automatically try to position themselves such to best receive a pass. The task is
episodic; it starts with the keepers controlling the ball and continues as long as neither the
ball leaves the region nor the takers succeed in gaining control. Thus the goal for RL is to
maximize the overall duration of an episode. The immediate reward is the time that passes
between individual calls to the acting agent.

For our work, we consider as in (Stone et al., 2005) the special 3vs2 keepaway problem
(i.e. three learning keepers against two takers) played in a 20x20m field. In this case the
continuous state space has dimensionality 13, and the discrete action space consists of the
three different actions hold, pass to teammate-1, pass to teammate-2 (see Figure 3). More
generally, larger instantiations of keepaway would also be possible, like e.g. 4vs3, 5vs4 or
more, resulting in even larger state- and action spaces.

5. Experiments

In this section we are finally ready to apply our proposed approach to the keepaway problem.
We implemented and compared two different variations of the basic algorithm in a policy
iteration based framework: (a) Optimistic policy iteration using LSPE(λ) and (b) Actor-
critic policy iteration using LSTD(λ). As baseline method we used Sarsa(λ) with tilecoding,
which we re-implemented from (Stone et al., 2005) as faithfully as possible. Initially, we
also tried to employ BRM instead of LSTD in the actor-critic framework. However, this
set-up did not fare well in our experiments because of the stochastic state-transitions in
keepaway (resulting in highly variable outcomes) and BRM’s inability to deal with this
situation adequately. Thus, the results for BRM are not reported here.

Optimistic policy iteration. Sarsa(λ) and LSPE(λ) paired with optimistic policy iter-
ation is an on-policy learning method, meaning that the learning procedure estimates the
Q-values from and for the current policy being executed by the agent. At the same time, the
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agent continually updates the policy according to the changing estimates of the Q-function.
Thus policy evaluation and improvement are tightly interwoven. Optimistic policy iteration
(OPI) is an online method that immediately processes the observed transitions as they be-
come available from the agent interacting with the environment (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998).

Actor-critic. In contrast, LSTD(λ) paired with actor-critic is an off-policy learning method
adhering with more rigor to the policy iteration framework. Here the learning procedure
estimates the Q-values for a fixed policy, i.e. a policy that is not continually modified to
reflect the changing estimates of Q. Instead, one collects a large number of state transitions
under the same policy and estimates Q from these training examples. In OPI, where the
most recent version of the Q-function is used to derive the next control action, only one
network is required to represent Q and make the predictions. In contrast, the actor-critic
framework maintains two instantiations of regularization networks: one (the actor) is used
to represent the Q-function learned during the previous policy evaluation step and which
is now used to represent the current policy, i.e. control actions are derived using its predic-
tions. The second network (the critic) is used to represent the current Q-function and is
updated regularly.

One advantage of the actor-critic approach is that we can reuse the same set of observed
transitions to evaluate different policies, as proposed in (Lagoudakis and Parr, 2003). We
maintain an ever-growing list of all transitions observed from the learning agent (irrespective
of the policy), and use it to evaluate the current policy with LSTD(λ). To reflect the real-
time nature of learning in RoboCup, where we can only carry out a very small amount
of computations during one single function call to the agent, we evaluate the transitions
in small batches (20 examples per step). Once we have completed evaluating all training
examples in the list, the critic network is copied to the actor network and we can proceed
to the next iteration, starting anew to process the examples, using this time a new policy.

Policy improvement and ε-greedy action selection. To carry out policy improve-
ment, every time we need to determine a control action for an arbitrary state s∗, we choose
the action a∗ that achieves the maximum Q-value; that is, given weights wk and a set of
basis functions {x̃1, . . . , x̃m}, we choose

a∗ = argmax
a

Q̃(s∗, a;wk) = argmax
a

km(s∗, a)Twk.

Sometimes however, instead of choosing the best (greedy) action, it is recommended to try
out an alternative (non-greedy) action to ensure sufficient exploration. Here we employ the
ε-greedy selection scheme; we choose a random action with a small probability ε ( ε = 0.01),
otherwise we pick the greedy action with probability 1− ε. Taking a random action usually
means to choose among all possible actions with equal probability.

Under the standard assumption for errors in Bayesian regression (e.g., see Rasmussen
and Williams, 2006), namely that the observed target values differ from the true function
values by an additive noise term (i.i.d. Gaussian noise with zero mean and uniform variance),
it is also possible to obtain an expression for the ‘predictive variance’ which measures the
uncertainty associated with value predictions. The availability of such confidence intervals
(which is possible for the direct least-squares problems LSPE and also BRM) could be used,

49



Jung and Polani

as suggested in (Engel et al., 2005a), to guide the choice of actions during exploration and to
increase the overall performance. For the purpose of solving the keepaway problem however,
our initial experiments showed no measurable increase in performance when including this
additional feature.

Remaining parameters. Since the kernel is defined for state-action tuples, we employ
a product kernel k([s, a], [s′, a′]) = kS(s, s′)kA(a, a′) as suggested by Engel et al. (2005a).
The action kernel kA(a, a′) is taken to be the Kronecker delta, since the actions in keepaway
are discrete and disparate. As state kernel kS(s, s′) we chose the Gaussian RBF kS(s, s′) =
exp(−h ‖s − s′‖2) with uniform length-scale h−1 = 0.2. The other parameters were set
to: regularization σ2 = 0.1, discount factor for RL γ = 0.99, λ = 0.5, and LSPE step size
ηt = 0.5. The novelty parameter for basis selection was set to TOL1 = 0.1. For the usefulness
part we tried out different values to examine the effect supervised basis selection has; we
started with TOL2 = 0 corresponding to the unsupervised case and then began increasing
the tolerance, considering alternatively the settings TOL2 = 0.001 and TOL2 = 0.01. Since in
the case of LSTD we are not directly solving a least-squares problem, we use the associated
BRM formulation to obtain an expression for the error reduction in the supervised basis
selection. Due to the very long runtime of the simulations (simulating one hour in the
soccer server roughly takes one hour real time on a standard PC) we could not try out
many different parameter combinations. The parameters governing RL were set according
to our experiences with smaller problems and are in the range typically reported in the
literature. The parameters governing the choice of the kernel (i.e. the length-scale of the
Gaussian RBF) was chosen such that for the unsupervised case (TOL2 = 0) the number of
selected basis functions approaches the maximum number of basis functions the CPU used
for these the experiments was able to process in real-time. This number was determined to
be ∼ 1400 (on a standard 2 GHz PC).

Results. We evaluate every algorithm/parameter configuration using 5 independent runs.
The learning curves for these runs are shown in Figure 4. The curves plot the average
time the keepers are able to keep the ball (corresponding to the performance) against the
simulated time the keepers were learning (roughly corresponding to the observed training
examples). Additionally, two horizontal lines indicate the scores for the two benchmark
policies random behavior and optimized hand-coded behavior used in (Stone et al., 2005).

The plots show that generally RL is able to learn policies that are at least as effective as
the optimized hand-coded behavior. This is indeed quite an achievement, considering that
the latter is the product of considerable manual effort. Comparing the three approaches
Sarsa, LSPE and LSTD we find that the performance of LSPE is on par with Sarsa. The
curves of LSTD tell a different story however; here we are outperforming Sarsa by 25%
in terms of performance (in Sarsa the best performance is about 15 seconds, in LSTD the
best performance is about 20 seconds). This gain is even more impressive when we consider
the time scale at which this behavior is learned; just after a mere 2 hours we are already
outperforming hand-coded control. Thus our approach needs far fewer state transitions
to discover good behavior. The third observation shows the effectiveness of our proposed
supervised basis function selection; here we show that our supervised approach performs as
well as the unsupervised one, but requires significantly fewer basis functions to achieve that
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Figure 4: From left to right: Learning curves for our approach with LSTD (TOL2=0), LSTD
(TOL2=0.001), LSTD (TOL2=0.01), and LSPE. At the bottom we show the curves
for Sarsa with tilecoding corresponding to (Stone et al., 2005). We plot the
average time the keepers are able to control the ball (quality of learned behavior)
against the training time. After interacting for 15 hours the performance does not
increase any more and the agent has experienced roughly 35,000 state transitions.
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level of performance (∼ 700 basis functions at TOL2= 0.01 against 1400 basis functions at
TOL2= 0).

Regarding the unexpectedly weak performance of LSPE in comparison with LSTD, we
conjecture that this strongly depends on the underlying architecture of policy iteration (i.e.
OPI vs. actor-critic) as well as the specific learning problem. On a related number of
experiments carried out with the octopus arm benchmark4 we made exactly the opposite
observation (not discussed here in more detail, see Jung and Polani, 2007).

6. Discussion and related work

We have presented a kernel-based approach for least-squares based policy evaluation in RL
using regularization networks as underlying function approximator. The key point is an effi-
cient supervised basis selection mechanism, which is used to select a subset of relevant basis
functions directly from the data stream. The proposed method was particularly devised
with high-dimensional, stochastic control tasks for RL in mind; we prove its effectiveness
using the RoboCup keepaway benchmark. Overall the results indicate that kernel-based
online learning in RL is very well possible and recommendable. Even the rather few sim-
ulation runs we made clearly show that our approach is superior to convential function
approximation in RL using grid-based tilecoding. What could be even more important is
that the kernel-based approach only requires the setting of some fairly general parameters
that do not depend on the specific control problem one wants to solve. On the other hand,
using tilecoding or a fixed basis function network in high dimensions requires considerable
manual effort on part of the programmer to carefully devise problem-specific features and
manually choose suitable basis functions.

Engel et al. (2003, 2005a) initially advocated using kernel-based methods in RL and
proposed the related GPTD algorithm. Our method using regularization networks develops
this idea further. Both methods have in common the online selection of relevant basis
functions based on (Csató and Opper, 2001). As opposed to the unsupervised selection in
GPTD, we use a supervised criterion to further reduce the number of relevant basis functions
selected. A more fundamental difference is the policy evaluation method addressed by the
respective formulation; GPTD models the Bellman residuals and corresponds to the BRM
approach (see Section 2.1.2). Thus, in its original formulation GPTD can be only applied
to RL problems with deterministic state transitions. In contrast, we provide a unified and
concise formulation of LSTD and LSPE which can deal with stochastic state transitions as
well. Another difference is the type of benchmark problem used to showcase the respective
method; GPTD was demonstrated by learning to control a simulated octopus arm, which
was posed as an 88-dimensional control problem (Engel et al., 2005b). Controlling the
octopus arm is a deterministic control problem with known state transitions and was solved
there using model-based RL. In contrast, 3vs2 keepaway is only a 13-dimensional problem;
here however, we have to deal with stochastic and unknown state transitions and need to
use model-free RL.

4. From the ICML06 RL benchmarking page:
http://www.cs.mcgill.ca/dprecup/workshops/ICML06/octopus.html
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Appendix A. A summary of the updates

Let xt+1 = (st+1, at+1) be the next state-action tuple and rt+1 be the reward assiociated
with transition from the previous state st to st+1 under at. Define the abbreviations:

kt := km(xt) kt+1 := km(xt+1) ht+1 := kt − γkt+1

k∗
t := k(xt,xt+1) k∗

t+1 := k(xt+1,xt+1) h∗
t+1 := k∗

t − γk∗
t+1

and at+1 := K−1
mmkt+1.

A.1 Unsupervised basis selection

We want to test if xt+1 is well represented by the current basis functions in the dictionary
or if we need to add xt+1 to the basis elements. Compute

δ = k∗
t+1 − kT

t+1at+1. (9)

If δ < TOL1, then add xt+1 to the dictionary, execute the growing step (see below) and
update

K−1
m+1,m+1 =

[

K−1
mm 0
0T 0

]

+
1

δ

[

−at+1

1

] [

−at+1

1

]T

. (25)

A.2 Recursive updates for BRM

• Normal step {t,m} 7→ {t + 1,m}:

1.

P−1
t+1,m = P−1

tm −
P−1

tmht+1h
T

t+1P
−1
tm

∆
(18)

with ∆ = 1 + hT
t+1P

−1
tmht+1.

2.
wt+1,m = wtm +

%

∆
P−1

tmht+1 (19)

with % = rt+1 − hT

t+1wtm.

• Growing step {t + 1,m} 7→ {t + 1,m + 1}

1.

P−1
t+1,m+1 =

[

P−1
t+1,m 0

0 0

]

+
1

∆b

[

−wb

1

] [

−wb

1

]T

(20)

where

wb = at+1 +
δh

∆
P−1

tmht+1, ∆b =
δ2
h

∆
+ σ2δh, δh = h∗

t+1 − hT

t+1at+1
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2.

wt+1,m+1 =

[

wt+1,m

0

]

+ κ

[

−wb

1

]

(23)

where κ = − δh%
∆b∆

.

• Reduction of regularized cost when adding xt+1 (supervised basis selection):

ξt+1,m+1 = ξt+1,m − κ2∆b (24)

For supervised basis selection we additionally check if κ2∆b > TOL2.

A.3 Recursive updates for LSTD(λ)

• Normal step {t,m} 7→ {t + 1,m}:

1.
zt+1,m = (γλ)ztm + kt

2.

P−1
t+1,m = P−1

tm −
P−1

tmzt+1,mhT
t+1P

−1
tm

∆
(18’)

with ∆ = 1 + hT

t+1P
−1
tmzt+1,m.

3.
wt+1,m = wtm +

%

∆
P−1

tmzt+1,m (19’)

with % = rt+1 − hT
t+1wtm.

• Growing step {t + 1,m} 7→ {t + 1,m + 1}

1.
zt+1,m+1 =

[

zT
t+1,m z∗t+1,m

]T

where z∗t+1,m = (γλ)zT
tmat+1 + k∗

t .

2.

P−1
t+1,m+1 =

[

P−1
t+1,m 0

0 0

]

+
1

∆b

[

−w
(1)
b

1

]

[

−w
(2)
b 1

]

(20’)

where

w
(1)
b = at+1 +

δ(1)

∆
P−1

tmzt+1,m δ(1) = h∗
t+1 − aT

t+1ht+1

w
(2)
b = aT

t+1 +
δ(2)

∆
hT

t+1P
−1
tm δ(2) = z∗t+1,m − aT

t+1zt+1,m

and ∆b = δ(1)δ(2)

∆ + σ2(k∗
t+1 − kT

t+1at+1).

3.

wt+1,m+1 =

[

wt+1,m

0

]

+ κ

[

−w
(1)
b

1

]

(23’)

where κ = − δ(2)%
∆b∆

.

54



Learning Keepaway with Kernels

A.4 Recursive updates for LSPE(λ)

• Normal step {t,m} 7→ {t + 1,m}:

1.

zt+1,m = (γλ)ztm + kt+1

At+1,m = Atm + zt+1,mhT

t+1

bt+1,m = btm + zt+1,mrt+1

2.

P−1
t+1,m = P−1

tm −
P−1

tmkt+1k
T
t+1P

−1
tm

∆
(18”)

with ∆ = 1 + kT

t+1P
−1
tmkt+1.

3.
wt+1,m = wtm + ηP−1

t+1,m(bt+1,m −At+1,mwtm) (19”)

• Growing step {t + 1,m} 7→ {t + 1,m + 1}

1.

zt+1,m+1 =

[

zt+1,m

z∗t+1,m

]

bt+1,m+1 =

[

bt+1,m

aT
t+1btm + z∗t+1,mrt+1

]

At+1,m+1 =

[

At+1,m Atmat+1 + zt+1,mh∗

aT

t+1Atm + z∗t+1,mhT

t+1 aT

t+1Atmat+1 + z∗t+1,mh∗

]

where z∗t+1,m = (γλ)zT
tmat+1 + k∗

t .

2.

P−1
t+1,m+1 =

[

P−1
t+1,m 0

0 0

]

+
1

∆b

[

−wb

1

] [

−wb

1

]T

(20”)

where

wb = at+1 +
δ

∆
P−1

tmkt+1, ∆b =
δ2

∆
+ σ2δ, δ = k∗

t − kT

t at+1

and ∆b = δ(1)δ(2)

∆ + σ2(k∗
t+1 − kT

t+1at+1).

3.

wt+1,m+1 =

[

wt+1,m

0

]

+ κ

[

−w
(1)
b

1

]

(23”)

where κ = − δ(2)%
∆b∆

.

• Reduction of regularized cost when adding xt+1 (supervised basis selection):

ξt+1,m+1 = ξt+1,m − ∆−1
b (c −wT

b d)2 (24”)

where c = aT

t+1(btm−Atmwtm)+z∗t+1,m(rt+1−hT

t+1wtm) and d = bt+1,m−At+1,mwtm.

For supervised basis selection we additionally check if ∆−1
b (c −wT

b d)2 > TOL2.
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