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Abstract 
In many areas of economics there is a growing interest in how expertise and preferences drive 

individual and group decision making under uncertainty. Increasingly, we wish to estimate 

such models to quantify which of these drive decision making. In this paper we propose a 

new channel through which we can empirically identify expertise and preference parameters 

by using variation in decisions over heterogeneous priors. Relative to existing estimation 

approaches, our “Prior-Based Identification” extends the possible environments which can be 

estimated, and also substantially improves the accuracy and precision of estimates in those 

environments which can be estimated using existing methods. 
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1 Introduction

How individuals and groups of individuals make decisions under uncertainty is important

in many areas of economics and political economy, and there are several areas in which

theoretical models emphasize that decision makers differ both in terms of their knowledge

of an underlying state of the world and their preferences.1 Increasingly, we would like

to bring such models to the data in order to estimate the decision-making parameters

and understand, quantitatively, the role played by different factors in decision making

in different contexts. Important recent work by Iaryczower and Shum (2012) - MIMS2

hereafter - provides a two-step methodology to estimate decision parameters for groups

of contemporaneously-serving experts that relies on how decisions vary across states of

the world drawn from a given prior distribution (“State-Based Identification”). Our

contribution in this paper is to highlight another important channel through which an

econometrician can empirically identify the decision-making parameters in a Bayesian

decision problem: by using variation in decision-making behavior over heterogeneous

priors (“Prior-Based Identification”).3

We first present a binary choice model of Bayesian decision making in order to il-

lustrate how decision makers with different preferences and/or expertise have different

probabilities of choosing one decision (instead of the other). Let the choices be between

option 0 and option 1. Our identification can informally be understood by considering

that becoming more inclined toward choosing option 1 (a change in preferences toward

1) will cause the probability of choosing 1 to increase for all values of the prior belief (a

“shift” in their probability of choosing 1), while decision makers with more expertise will

have a lower probability of choosing 1 when the prior favors that choice, but a higher

probability of choosing 1 when the prior favors option 0. This “rotation” is driven by

the fact that decision makers with more expertise rely more on their own view rather

than the prior. It is this distinction between “shifts” and “rotations” which facilitates

Prior-Based Identification.

This new channel of identification has two implications that we explore in this paper.

The first is that preference and expertise parameters are identifiable without the need for

contemporaneous correlation in decisions. This opens up to empirical testing a broader

set of decision-making environments than that recognized by MIMS. For example, we

1For example, see the literatures on the career concerns of experts (Sorensen and Ottaviani 2000);
committee decision making (Gerling, Gruner, Kiel, and Schulte 2005); politicians’ behavior (Besley 2006);
and social learning (Banerjee 1992, Bikhchandani, Hirshleifer, and Welch 1992).

2Standing for Matias Iaryczower and Matt Shum to avoid potential confusion generated by simply
using IS.

3Another related paper is Li (2012) which proposes a way of separately identifying preferences from
expertise among advisors providing policy recommendations in a cheap-talk setting.

1



show using Monte Carlo simulations that we can estimate the parameters of a single

decision maker serving over time using noisy measures of the prior.4

The second implication is to show that the specification of MIMS to estimate decision-

making parameters for individuals within groups is incomplete as it does not allow dif-

ferent individuals to react differently to changes in the common prior. We argue theo-

retically that this omission should be particularly problematic when decision makers are

more heterogeneous in terms of their expertise. We then show, again using Monte Carlo

simulations, that adopting a more flexible specification that allows for both sources of

identification substantially improves the accuracy of individual estimates when there is

non-negligible expertise heterogeneity. Of particular note is that estimated differences

between individuals in terms of preferences, and especially expertise, are inflated by the

failure to account for Prior-Based Identification; the bias using the less flexible specifica-

tion is in the range of 60-90% for reasonable differences in expertise.

To confirm the relevance of the Monte Carlo simulation exercises, we analyze the

Supreme Court data used in MIMS and compare the results obtained using our proposed

specification with the original MIMS specification. In line with the predictions from our

Monte Carlo analysis, using our proposed specification reduces, in some cases markedly,

the dispersion of the distribution of the estimated individual parameters. While we

do not claim, nor attempt, to overturn MIMS’ key result that private signals play an

important role in decision making, our results suggest that researchers interested in the

level of decision-making parameters, or comparisons between members, would be better

served by using both State- and Prior-Based Identification.5 In a closely-related paper

(Hansen, McMahon, and Velasco 2013), we, together with a co-author, make use of the

identification channel described in this paper to explore the extent and implications of

heterogeneity in preferences and expertise for policymakers on the Bank of England’s

Monetary Policy Committee (MPC).

2 Theory

In this section, we present the theory underlying the Bayesian decision-making model we

(and MIMS) consider and discuss two alternative ways of identifying preference param-

eters separately from those of of expertise; one is the identification proposed in MIMS

4This is in contrast to MIMS who claim that “if there were only one decision maker, for example, it
would not be possible to disentangle the independent effects of ideology and information.”

5For example, Iaryczower, Lewis, and Shum (2013) compare the expertise of elected and appointed
judges using State-Based Identification and the MIMS estimator, whereas our results suggest the es-
timates from an alternative specification incorporating Prior-Based Identification would allow a more
accurate comparison.
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while the other is our proposal. We discuss how the channel of identification that we

propose differs and when it is likely to be important.

2.1 Single decision maker

Consider a single decision maker DM who must take some binary decision dt ∈ {0, 1} at

time t. Her utility u (dt | ωt) from dt depends on a binary, unobserved state variable ωt ∈
{0, 1} drawn from a prior distribution with Pr [ωt = 1 ] = qt. We assume that DM always

prefers to match the decision to the state; i.e., that u (dt = ωt | ωt)− u (dt 6= ωt | ωt) > 0

for ω ∈ {0, 1}.
Before choosing dt, DM observes a signal st ∼ N(ωt, σ

2). σ is an inverse measure of

expertise in the sense that when DM has a lower σ, st provides a more informative signal

of the unknown state. DM chooses dt = 1 only if she is sufficiently convinced of ωt = 1.

Formally, conditional on st, DM chooses dt = 1 if and only if

Pr [ωt = 1 | st ]

Pr [ωt = 0 | st ]
≥ u(0 | 0)− u(1 | 0)

u(1 | 1)− u(0 | 1)
≡ 1− θ

θ
. (1)

When DM views the wrong decision in state 0 as relatively worse than the wrong decision

in state 1, she requires more evidence that the state is 1 in order to choose dt = 1. The

parametrization in terms of θ is a common convention in the theoretical voting literature

that we adopt for our empirical exercise. We shall refer to θ as DM’s preferences.

Applying Bayes’ Rule and manipulating the normal density gives the relationship

ln

(
Pr [ωt = 1 | st ]

Pr [ωt = 0 | st ]

)
= ln

(
qt

1− qt

)
+

2st − 1

2σ2
. (2)

An examination of (2) reveals a key relationship between signal precision and posterior

beliefs: when DM has more expertise (a lower σ), she puts more weight on her signal and

less weight on the prior qt in forming her posterior distribution over states. So, intuitively

speaking, the prior is less influential in determining her decision. In the limit as σ → 0,

qt is irrelevant for determining dt, while as σ →∞, qt alone determines it.

To make these arguments more formally, note that (1) and (2) imply that DM adopts

a threshold decision-making rule in which she chooses dt = 1 high whenever

st ≥
1

2
− σ2

[
ln

(
θ

1− θ

)
+ ln

(
qt

1− qt

)]
≡ s∗t (θ, σ, qt) . (3)
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So, the probability she chooses dt = 1 in state ωt is

P (qt, ωt, θ, σ) ≡ Pr [ dt = 1 | qt, ωt, θ, σ ] = 1− Φ

[
s∗t (θ, σ, qt)− ωt

σ

]
. (4)

The following limit arguments are useful for understanding how variation in the prior

probability generates differential responses in P (qt, ωt, θ, σ) depending on the DM’s un-

derlying preference and expertise parameters.

Proposition 1

1. limσ→0 Pr [ dt = 1 | ωt, θ, σ, qt ] = 1(ωt).

2. limσ→∞ Pr [ dt = 1 | ωt, θ, σ, qt ] = 1(qt ≥ 1− θ).

3. limθ→0 Pr [ dt = 1 | ωt, θ, σ, qt ] = 0 ∀qt ∈ (0, 1).

4. limθ→1 Pr [ dt = 1 | ωt, θ, σ, qt ] = 1 ∀qt ∈ (0, 1).

This proposition, proven by simply taking limits of P (qt, ωt, θ, σ), illustrates that large

differences in expertise can generate very different responses to changes in the prior. In

either state, as σ gets sufficiently small, Pr [ dt = 1 | ωt, θ, σ, qt ] is essentially unresponsive

to the prior: DM always “knows” the state and simply chooses the decision to match it

(from part 1 of the proposition). In contrast, as σ gets sufficiently high, small changes

in the prior can generate very large changes in decision making. In both states, when

the prior moves from just below 1− θ to just above it, the probability of choosing dt = 1

high jumps from close to 0 to almost 1 (from part 2 of the proposition). On the other

hand, large θ differences do not manifest themselves in terms of different responses to

changes in prior (from parts 3 and 4 of the proposition). As preferences become extreme

on either end of the (0, 1) interval, decision-making behavior becomes unresponsive to

changes in the prior, because DM always selects whatever decision corresponds to her

extreme preferences.

These limit arguments suggest that a useful way of distinguishing the effects of changes

in the parameters is to think about changes in θ as shifting P , while changes in σ cause

P to rotate.6 Of course, P is non-linear and its range is (0, 1) on qt ∈ (0, 1) and so

these statements are only heuristically true. Nevertheless, as we show in figure 1, they

are by and large correct for reasonable parameter values and non-extreme values for

the prior; each sub-figure shows P plotted over qt ∈ (0.01, 0.99) with the first (second)

column capturing P conditional on the state being 0 (1), and each row shows different

6When σ changes in the interior of the parameter space, one can formally show that there exists a
q∗(ωt, θ, σ) in the neighborhood of which P flattens when σ decreases.
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combinations of parameter values. The first (second) row illustrates the situation in which

decision makers differ only by preferences (expertise); the final row shows a situation in

which both preferences and expertise differ.

These observations lead to our first claim:

Claim 1 Different behavioral responses to changes in the prior, qt, can be used to em-

pirically distinguish preferences, θ, from expertise, σ.

We show using Monte Carlo simulations in section 3 that this claim holds.

2.2 Several decision makers

While so far we have focused on a single decision maker, in many applications of inter-

est N ≥ 2 decision makers (who we will hereafter index by i, and each of whom are

characterized by θi and σi) must take binary decisions dit, and all of their utilities are

affected by the realization of the same state variable ωt. For example, one might have

panel data on the buy/hold (or sell/hold) recommendations of equity analysts, and wish

to estimate the expertise of each analyst separately from his or her inclination towards

one alternative.

With such data MIMS argue that θi and σi are separately identifiable for a given

prior via unconditional correlation in decisions. Those with high expertise have observed

decisions that are highly correlated and on average in line with the prior, while those

with less have observed variability in their decisions but are in the minority relatively

frequently. Moreover, a large bias is identified via low variability in decisions, which tend

to conform to the bias.

MIMS also argue that one should control for period-t characteristics when applying

their identification strategy. Within this decision-making model, though, the only reason

that the characteristics of a certain time period are relevant is if different periods have

different associated values of the prior qt. And, as we have discussed, whenever different

periods have different priors, one can exploit members’ differential responses to changes

in those priors to better identify whether they differ in terms of preferences or exper-

tise. While the estimator that MIMS construct (and which we discuss below in section

3) indeed incorporates period-t controls, it does not allow different members to react

differently to changes in those controls, thus shutting down the prior-based identification

channel.

One would expect the failure to account for differential responses to changes in the

prior to be particularly problematic when members differ in terms of expertise. As

suggested by our previous discussion, when expertise differences between two members are
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Figure 1: Distinguishing Preferences versus Precisions

Notes: These figures show the theoretical probability that DM chooses dt = 1 as a function

of the prior belief that ωt = 1 (qt). The different curves represent different combinations

of preferences and precisions to show how the probability of selecting dt = 1 changes with

the prior.



the most extreme possible (say σA → 0 and σB →∞), member A is totally unresponsive

to the prior while member B has a near infinitely high response to changes in prior

around 1− θ. In terms of less extreme differences, figure 2 shows how differences in the

probability of choosing dt = 1 grow faster over intermediate values of the prior when

differences in σ grow. These observations lead to our second claim:

Claim 2 Controlling for member-specific reactions to changes in qt is more important

for identification of θ and σ differences the larger are σ differences.

In section 3 below, we show that this claim is true.
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Figure 2: Differences in the Probability of Voting High by State

Notes: These figures show the difference in the theoretical probability that different types

of member choose the high decision as a function of the prior belief. In both cases θA =

θB = 0.5. The different curves represent different differences in the expertise parameter

between the members being considered to show how different members react differently to

changing priors depending on the gap in their expertise.

We emphasize that we do not challenge the basic identification argument of MIMS,

but simply wish to point out that it holds for a fixed prior and exploits differences across

states; instead our idea relies on holding fixed a state and exploits differences in the prior.

Of course, in actual time-serious data one cannot usually perfectly identify the prior nor

the state, so an ideal estimation approach would allow for both sources of identification.

To do so, we propose an alternative specification of MIMS’ estimator in section 4, which

we have applied in Hansen, McMahon, and Velasco (2013).

Before proceeding, it is important to discuss another natural model in which several

decision makers’ utilities are affected by the same state variable: voting in committees.
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Indeed, although their estimator has broader applicability, this is precisely the model

that MIMS use to motivate their work. The model we have developed so far is directly

applicable to committee voting models if members vote sincerely ; that is, they behave as

if they get utility from matching their vote to the state. In this case, each member votes

high (dit = 1) whenever sit ≥ s∗it (θi, σi, qt), as described in (3).

However, if they behave as if they get utility from the committee decision, regardless

of what they voted for, and are fully rational, they vote strategically and condition their

vote on the probability of changing the decision, or, in the language of jury models, on

being pivotal. Although the strategic model is more consistent with economic rationality,

the complexity of computing the probability of being pivotal in heterogeneous committees

of even modest size under majority is daunting.7 Rather than undergo such elaborate

reasoning, committee members may simply follow the rule of voting for whichever al-

ternative they feel most is most likely to match the state. Also, committee designers

sometimes explicitly encourage members to behave sincerely, such as the Bank of Eng-

land, which tells members of its Monetary Policy Committee to “vote to set interest rates

at the level they believe is consistent with meeting the inflation target.” For this reason,

we feel comfortable interpreting our results as relevant for committee voting in addition

to other applications.8

3 A New Econometric Methodology to Estimate In-

dependent Decision Data

We begin with an analysis of the case in which there is only variation in the prior that

allows us to identify the decision parameters. This is a particularly interesting starting

point because it allows us to isolate the effect of our Prior-Based Identification from State-

Based Identification. To do this, we focus on estimating the case of a single independent

decision maker who acts repeatedly over time; for example, consider a Governor of a

central bank who is in sole-charge of making interest-rate decisions such as at the Reserve

Bank of New Zealand. This approach also allows us to compare multiple decision makers

operating independently at potentially different points in time.

7For example, in a nine person committee, each member is pivotal in 70 different events—the number
of ways the eight other members can split evenly between voting for 0 and 1. Additionally, within each
of these events, the voter must compute the ratios of the probabilities of having arrived at that event in
states 1 and 0.

8We have also run all simulations under a strategic-voting scenario and generally found the results,
including the baseline MIMS specification, so much noisier than for the sincere case that comparing
across specifications was difficult. As such, we don’t present the results here but they are available on
request.
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Being able to estimate in such an environment requires one to find good (though not

perfect) proxies for the prior because it is not possible to separately estimate the prior

qt (or, econometrically speaking, the mixing probability). Using data to proxy for the

prior probability (q̂t), we can directly estimate the parameters from the model-implied

likelihood function LDMt over the time t decision.

LDMt = qt

[
1− Φ

(
s∗t (·)− 1

σ

)]dt [
Φ

(
s∗t (·)− 1

σ

)]1−dt
+

(1− qt)
[
1− Φ

(
s∗t (·)− 1

σi

)]dt [
Φ

(
s∗t (·)
σ

)]1−dt (5)

In order to test this approach, we carry out the following Monte Carlo exercise:

1. Consider a single DM characterized by σ and θ

2. For each of 200 decisions, qt is drawn from U [0.2, 0.8] (independent across periods)

3. ωt is drawn from a Bernoulli distribution with Pr [ωt = 1 ] = qt

4. dt is drawn from a Bernoulli distribution with Pr [ dt = 1 ] = 1 − Φ
(
s∗t−ωt

σ

)
where

Φ is the normal cdf and s∗t is DM’s “critical” threshold defined in (3).

5. Generate a proxy q̂t = qt + εt where εt ∈ U [−x, x] for x ∈ {0, 0.05, 0.1}

6. Plug in dt and q̂t into (5); maximize the corresponding log-likelihood over σ and θ;

store values

7. Repeat 1,000 times.

We also explore a simulation with multiple independent decision makers. That is, we

modify the above procedure to allow the first 100 decisions to be made by decision maker

A, and the second 100 decisions to be made by B; A and B differ in both their preference

and expertise parameters. We modify the log-likelihood by allowing the parameters to

vary depending on the decision maker we are analyzing.

The results of these simulations are reported in table 1. Although decisions are in-

dependent across time and do not exploit State-Based Identification, we generally get

reliable estimates if our proxy is sufficiently correlated with the true prior. For example,

when q̂t has ±0.05 noise, which we regard as a good proxy, the biases are in the range of

3%-7%. This shows that in order to implement this estimator, it is simply necessary to

find data that correlates well with the the probability of the high state having been real-

ized. For example, if studying the behavior of an independent central banker, it would be

necessary to get proxies that correlate with the state of the world being inflationary and
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favoring higher (rather than lower) interest rates. Our results also show that as the level

of noise increases (decreases) the performance of our estimator deteriorates (improves).

Moreover, for the multiple decision maker case, our approach correctly ranks the different

decision-makers’ parameters for the vast majority of cases.

4 Incorporating Prior-Based Identification into MIMS’s

Estimator

In the case of multiple decision makers within a given time-period, one must allow for

the correlation of decisions within t and so the period t likelihood of observing the vector

of decisions dt becomes:

LMD
t = qt

∏
i

[
1− Φ

(
s∗it (·)− 1

σi

)]dit [
Φ

(
s∗it (·)− 1

σi

)]1−dit
+

(1− qt)
∏
i

[
1− Φ

(
s∗it (·)− 1

σi

)]dit [
Φ

(
s∗it (·)
σi

)]1−dit (6)

MIMS rewrite (6) as

qt
∏
i

(κ1it)
dit (1− κ1it)1−dit + (1− qt)

∏
i

(κ0it)
dit (1− κ0it)1−dit (7)

where κ1it ≡ 1 − Φ
(
s∗it(·)−1
σi

)
and κ0it ≡ 1 − Φ

(
s∗it(·)
σi

)
are the probabilities of deciding

dit = 1 in states 1 and 0. They then model qt and the κ terms as functions of observed

covariates (potentially time-varying individual characteristics Xit and time characteristics

Zt) as follows:

qt =
exp (α · Zt)

1 + exp (α · Zt)
(8)

and

κ0it =
exp (β0 ·Xit + β1 · Zt)

1 + exp (β0 ·Xit + β1 · Zt)

κ1it =
κ0it + exp (γ0 ·Xit + γ1 · Zt)
1 + exp (γ0 ·Xit + γ1 · Zt)

. (No PBI)

The reduced form specification in (No PBI) imposes the restriction that all members,

regardless of their underlying heterogeneity, respond to changes in the time specific vari-

ables that capture the prior in the same way. As we point out in section 2 above, members

with different signal precisions will react differently to changes in the prior. But in this

10



Table 1: Monte Carlo Estimates of the Single Decision Maker Environment

Noise Range θA
1−θA

θB
1−θB

θA
1−θA

− θB
1−θB

σA σB σA − σB
Single DM

Type A - 2 - - 0.6 - -

0 2.00 0 0.61 2

0.1 2.15 7 0.58 -3

0.2 3.20 60 0.46 -24

Type B - - 0.5 - - 1.4 -

0 0.50 0 1.41 1

0.1 0.49 -3 1.34 -4

0.2 0.45 -11 1.15 -18

Correct Correct

2 Ind. DMs - 2.00 0.50 1.50 Rank (%) 0.60 1.40 0.80 Rank (%)

0 1.95 -3 0.50 0 1.45 -3 99.6 0.64 7 1.45 3 0.83 3 97.4

0.1 2.12 6 0.49 -3 1.63 9 99.7 0.60 0 1.37 -2 0.79 -2 96.6

0.2 2.84 42 0.45 -10 2.41 61 99.4 0.49 -18 1.20 -14 0.71 -11 95.7

Notes: This table shows the Monte Carlo estimates of the decision parameters for different environments characterized by a single decision

maker. Bolded numbers are imposed parameters of the decision making problem, while in cells with two numbers the median of the 1000

draws is presented on the left and the percentage deviation from true value is on the right in italics. For the environment in which we

compare two independent decision makers, we also list the percentage of the 1000 draws for which the estimated parameters correctly rank

the decisions makers in line with the true ranking.
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specification there is no Prior-Based Identification, hence the No PBI label.

In order to capture this potentially important channel of identification, we adopt the

following more flexible functional forms for the κ terms that include interactions between

time and individual characteristics:9

κ0it =
exp (β0 ·Xit + β1 · Zt + β2 ·Xit · Zt)

1 + exp (β0 ·Xit + β1 · Zt + β2 ·Xit · Zt)

κ1it =
κ0it + exp (γ0 ·Xit + γ1 · Zt + γ2 ·Xit · Zt)
1 + exp (γ0 ·Xit + γ1 · Zt + γ2 ·Xit · Zt)

. (PBI)

This specification incorporates PBI via the γ2 coefficients that allow responses to changes

in Zt to vary depending on Xit.

Under either specification, the estimation of the structural parameters follows a two-

step procedure:

1. Estimate the α, β, and γ parameters via the mixture model using maximum likeli-

hood estimation and obtain fitted values q̂t, κ̂0it, and κ̂1it.

2. Use the fitted values to recover the structural parameters from the theoretical de-

cision making probabilities. An estimate of period-t expertise comes via

σ̂it =
1

Φ−1 (1− κ̂0it)− Φ−1 (1− κ̂1it)
(9)

and of period-t preferences via

ŝ∗it =
Φ−1 (1− κ̂0it)

Φ−1 (1− κ̂0it) + Φ−1 (κ̂1it)
(10)

along with q̂t and (3) above.

The second stage yields an estimate of preference and precision parameters for each

decision maker for each unique value of q̂t. We consider the median values of these

estimates, θ̂i and σ̂i, to be the point estimates.10

4.1 Monte Carlo tests of No PBI versus PBI

In order to test the extent to which our Prior-Based Identification matters for the esti-

mation of the multiple decision-maker environment, we again proceed using Monte Carlo

analysis. Specifically, we:

9We do not claim this is the only possible way of incorporating Prior-Based Identification into the
estimation of Bayesian decision problems. It may be the case that more elaborate functional form
specifications would outperform our proposal, but we leave this for future research.

10For further details on this two-step procedure, see MIMS and Hansen, McMahon, and Velasco (2013).
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1. Generate a group of 9 decision makers each making 150 decisions in consecutive

time periods.

(a) 5 members are type A with preferences θA and expertise σA; 4 members are

type B with preferences θB and expertise σB

(b) In order to explore the relationship between the importance of Prior-Based

Identification and heterogeneity in expertise in light of claim 2 above, we use

various parameter values that are “reasonable” in the sense of being in line

with estimates in MIMS and Hansen, McMahon, and Velasco (2013). For most

of the text we examine θA = 2
3

and θB = 1
3
, and σA = 1−x and σB = 1 +x for

x ∈ {0, 0.05, 0.1, . . . , 0.5}. This means that our baseline comparisons are for

eleven unique sets of parameters. As a robustness exercise we keep the same

values for σ but take θA = 1
3

and θB = 2
3
.

2. For each unique set of θ and σ values, we run 1,000 simulations. For each simulation,

we generate theoretical decision data according to the following procedure:11

(a) In each period t, qt is drawn from U [0.2, 0.8] (independent across periods)

(b) ωt is drawn from a Bernoulli distribution with Pr [ωt = 1 ] = qt

(c) dit is drawn from a Bernoulli distribution with Pr [ dit = 1 ] = 1 − Φ
(
s∗it−ωt

σi

)
where Φ is the normal cdf and s∗t is DM’s “critical” threshold defined in (3).

3. Given these data, we construct Zt = (1, qt) and Xit = (1, DA), where DA is a

dummy variable that indicates membership of group A (and thus not actually time-

varying). We use these data to estimate two separate specifications of the first-stage

regressions given by (No PBI) and (PBI).

4. After we obtain estimates of first-stage coefficients, we use structural equations to

back out θ̂x and σ̂j for j ∈ {A,B} as described above.

Figure 3, which shows the the percentage bias for each value of the expertise difference,

summarizes the main results of the simulation exercise.12 When expertise differences are

small, the results confirm that PBI does not outperform state-based identification alone;

the estimates of the parameter levels and differences are estimated reasonably accurately

in both cases. However, as σA − σB increases, the estimates that do not allow for PBI

11All estimation is done in R via maximum likelihood using the BFGS algorithm. All code is available
on request.

12In the online appendix, we present a table which shows the true value, the point estimate and the
percentage bias for each parameter as we gradually increase the expertise difference. We also repeat this
figure for the level of the bias.
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deteriorate quickly, especially in the estimates of the differences between groups, while our

proposed specification actually improves in accuracy. For example, when σA − σB = 0.8,

our PBI specification estimates θA
1−θA

− θB
1−θB

and σA − σB to 3% accuracy,13 whereas the

No PBI specification displays biases of 20% and 70% respectively.

Figure 4 shows that this main result is unaffected by our decision to make the type

A decision makers more expert. If instead we maintain the assumption that θA > θB but

make A less expert, we change the direction of the bias in the levels estimates of θ, but

the over-estimation of the difference remains as expertise differences grow.14

Finally, we plot the complete distribution of the simulation results for the cases of

σA = 1 and σB = 1 (figure 5), and σA = 0.6 and σB = 1.4 (figure 6).15 With no σ

differences, the results are almost identical and PBI may even do slightly worse for some

parameters. But even at relatively modest expertise differences, the results show that

not only does the PBI specification ensure that the results stay anchored around the true

parameters, but also that the distribution around the estimates is less dispersed too. This

further supports our argument that this is an important channel of identification.

4.2 Re-estimation of US Supreme Court Justice Characteristics

In order to test our procedure on real data, we conclude this section by re-estimating the

structural parameters for the US Supreme Court voting data that MIMS consider. Their

dataset contains the vote of every justice (31 in total) on every case from 1953-2008.

dit = 1 corresponds to a vote for the plaintiff in a legal case, and dit = 0 to a vote for

the defendant. They run separate regressions on four subsets of cases according to the

issue at stake (business, basic rights, criminal, federalism).16 We focus on the results for

economics and basic rights cases, the two subsets MIMS treat as their baseline cases.

The first specification we run on the data is (No PBI), taking Xit and Zt as the same

sets of variables that MIMS use; that is, we follow the approach and data of MIMS.17 The

second is to run a modified version of (PBI) in which we interact what appears to us to

be the relevant subset of individual and meeting characteristics for influencing justices’

prior beliefs.18

13In the tables we report estimates of θ
1−θ so that biases and expertise are presented on the same on

the same range R+.
14In the online appendix we present the table of these alternative results.
15The online appendix contains the complete distirubtions for all the cases.
16They exclude the small fraction of cases without nine votes
17There are two reasons that we cannot simply take results straight from MIMS. First, when we

estimate the first-stage coefficients taking their reported estimates as starting values, we obtain new
estimates that reduce the value of the log-likelihood. Second, they do not report the median value of the
structural parameters across all values of the fitted priors.

18We do not interact the mean value of other justices’ Segal-Cover ideology or quality scores—covariates
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(f) Bias in σ Difference Estimates

Figure 3: Biases of Estimates (Percent)

Notes: These figures plot the estimated values as a percentage of the true value (percentage

of bias) for the baseline case of θA = 2
3 and θB = 1

3 for different values (along the horizontal

axis) of the expertise difference (σA falls while σB increases). The first column reports the

results for θA
1−θA (row 1), θB

1−θB (row 2) and the difference between these quantities (row 3).

The second column shows σA (row 1), σB (row 2) and σA − σB (row 3).
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Figure 4: Biases of Estimates - Reversed θ

Notes: These figures plot the estimated values as a percentage of the true value (percentage

of bias) for the alternative case of θA = 2
3 and θB = 1

3 for different values (along the

horizontal axis) of the expertise difference (now σA increases while σB falls). The first

column reports the results for θA
1−θA (row 1), θB

1−θB (row 2) and the difference between these

quantities (row 3). The second column shows σA (row 1), σB (row 2) and σA−σB (row 3).
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Figure 5: Densities of Estimates with σA = 1 and σB = 1

Notes: These figures plot the complete distribution of the simulation results for the case of

σA = 1 and σB = 1. The first column reports the results for θA
1−θA (row 1), θB

1−θB (row 2)

and the difference between these quantities (row 3). The second column shows σA (row 1),

σB (row 2) and σA − σB (row 3).
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Figure 6: Densities of Estimates with σA = 0.6 and σB = 1.4

Notes: These figures plot the complete distribution of the simulation results for the case of

σA = 0.6 and σB = 1.4. The first column reports the results for θA
1−θA (row 1), θB

1−θB (row

2) and the difference between these quantities (row 3). The second column shows σA (row

1), σB (row 2) and σA − σB (row 3).
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Figure 7: Histograms of Estimated Priors

Notes: This figure plots, for business cases (left figure) and rights cases (right figure),

histograms of the estimated priors qt from the (No PBI) specification.

The first point of interest is that there is a large range of estimated priors in the voting

data. Figure 7 plots histograms of the estimated priors from the (No PBI) specification

(the results for the (PBI) specification are very similar), and shows they range from

around 0.3 to around 0.9, with a fairly dispersed distribution. This variation in the prior

indicates that allowing for PBI is potentially important in this dataset.

Our two specifications each produce 31 estimates (corresponding to the number of

justices) of θ19 and σ for business and rights cases. Table 2 displays a number of summary

statistics related to the distributions of these estimates. The main message from our

simulation exercises is that not using PBI tends to inflate estimated differences between

decision makers. As the table shows, PBI reduces justice heterogeneity both in terms of

variances and ranges. For rights case this reduction is particularly notable: the variance

with PBI is around 1/6 the value of the variance without. This illustrates that PBI can

have substantial effects in real world datasets.

In order to compare the distributions of PBI and No PBI estimates more directly,

the radar charts in figure 8 are helpful. Justices are ordered lowest to highest moving

clockwise based their No PBI estimates. Within this disc we plot both sets of estimates.

A distribution with less heterogeneity produces a more circular plot; the PBI estimates,

within Xit—with any Zt variables, nor chief justice dummies—covariates within Zt—with any Xit vari-
ables. They are included within Xit and Zt without interactions in the κ and q terms.

19Here we return to reporting θ rather than θ
1−θ in order to maintain comparability with MIMS.
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Table 2: Re-estimation Exercise

Business Cases Rights Cases

θ estimates σ estimates θ estimates σ estimates

No PBI PBI No PBI PBI No PBI PBI No PBI PBI

Variance 0.013 0.006 0.011 0.006 0.020 0.006 0.037 0.006

Inter-quartile Range 0.1597 0.0993 0.1532 0.1051 0.1826 0.0925 0.1925 0.0924

Minimum 0.390 0.411 0.396 0.392 0.285 0.446 0.360 0.415

Median 0.532 0.582 0.543 0.516 0.358 0.540 0.492 0.515

Maximum 0.773 0.750 0.759 0.699 0.784 0.775 1.255 0.726

Notes: This table shows various measures of dispersion of the distribution across judges of the estimated values of θ and σ when we use

both the flexible specification (PBI) and the original MIMS specification (No PBI).
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particularly for rights cases, display less heterogeneity (are more circular).
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Figure 8: Radar Plots of Supreme Court Data Re-estimation Exercise

Notes: These figures show, for θ (row 1) and σ (row 2), the estimate of each Justice’s pa-

rameter using MIMS specification (No PBI) along with the equivalent parameter estimated

under the more flexible specification (PBI). In each case, the Justices are ordered lowest to

highest moving clockwise based their No PBI estimates. Column 1 refers to Rights Cases

and column 2 to Business Cases.

5 Conclusion

Given the high level of interest within economics in how individuals and groups of in-

dividuals make decisions under uncertainty, it is important that we can can empirically

estimate the different channels that drive the behavior of decision makers to test proposed
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theories. We have provided an important channel through which it is possible to empir-

ically identify the decision-making parameters in standard Bayesian decision problems;

our approach relies on variation in decision-making behavior over heterogeneous priors

and differs from the most important existing contribution, which relies on comparing a

group of decision makers across different states for a fixed prior.

While there are likely still a number of steps that can be taken within this growing

empirical literature, our proposed identification strategy can be viewed as an important

contribution in two dimensions. First, unlike the existing method, our approach can be

used to estimate decision-making parameters of single decision makers, and of decision

makers serving at different points in time or taking independent decisions. Second, we

show that where there is greater heterogeneity of expertise amongst decision makers

operating contemporaneously, ignoring our proposed channel of identification becomes

increasingly costly in terms of accuracy of estimated parameters. Fortunately, there are

relatively straightforward ways of augmenting existing approaches and we show that as

expertise heterogeneity grows, our proposed specification is increasingly accurate relative

to the existing methods.
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