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Abstract— For meaningful interaction between a robot and
a human, an autonomous robot must recognize whether the
experienced situation is created by people or by the environ-
ment. Using only proprioceptive data from a mobile robotic
platform, we discover that it is possible to distinguish sensory
data patterns involving interaction. These patterns are obtained
whilst navigating varying environments, both human populated
and unpopulated. The paper reports the initial set of trials
using Roball, a spherical mobile robot. Also described is the
experimental methodology currently followed to validate the
hypothesis that child interaction can be perceived directly from
navigation sensors onboard a robotic platform.

Index Terms— Human-Robot Interaction (HRI), Adaptive Mo-
bile Robots, Recognizing Interaction, Sensor Evaluation.

I. INTRODUCTION

An important capability for an interactive robot is to be

able to recognize when it is receiving interaction from people,

compared to when it is simply navigating in the world. Human-

robot interaction (HRI) is a growing field with researchers

increasingly looking at how children interact with and perceive

robots [1], [2], [3], [4], [5]. Achieving natural communication

or interaction within the field, of HRI (children or otherwise)

is still a long way off. Current popular forms of interac-

tion involve sophisticated sensing, such as vision and audio

processing (e.g. [4], [5], [6], [7]), but at a high cost in sensing

equipment, energy consumption and processing power. Some

systems utilize buttons that must be pushed in order to register

touch or communication from people (e.g. [6], [8], [9]). People

working with children or in therapy are beginning to recognize

that natural touch is an important form of interaction or

communication with a robot (e.g. [1], [7], [10], [11]). In

previous work [10], [11], [12], it was shown that infrared

sensors, usually exploited for navigation purposes, can be used

to record interactions or natural touch coming from children

playing with a mobile robot. The research demonstrates that it

is even possible to detect personality traits (e.g., boisterous, or

cautious) of a child interacting with a wheeled robot, simply

from the analysis of infrared sensor data.

To demonstrate that such capability can be seen on a

different robotic platform with other types of proprioceptive

or navigation sensors, we have tested the principle on a

spherical robotic ball named Roball [13]. The objective is to

see if, through the analysis of Roball’s sensor readings, it is

Fig. 1. Roball, the autonomous mobile robot used in the trials.

Fig. 2. Pictures of children playing with Roball. In a school environment
(left) and at a play group (right).

possible to recognize the environmental conditions the robot

is experiencing, whilst in a human populated setting. More

specifically, the research question we are studying is: can we

distinguish from sensor readings whether the robot is receiving

interaction from humans, and what type of interaction is the

robot receiving (e.g., being carried, being pushed, receiving no

interaction, etc.)? To answer this question, we systematically

tested and analyzed Roball’s sensory readings taken during

controlled laboratory experiments. The preliminary knowledge

gained from these experiments is utilized and applied in the

analysis of the children-robot trials which have been conducted

in a school environment and also in a play group setting.

In this paper we describe the systematic investigation of

the readings produced by the accelerometers and tilt sensors

onboard Roball and the results obtained. Also briefly discussed

are the positive preliminary results from the child-robot study

we have conducted, and a planned trial where we hope to

use results to adapt the robots behavior to the child that is
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interacting with it.

II. EXPERIMENTAL SETUP

Shown in Fig. 1, Roball is 6 inches in diameter and

weighs about 4 pounds. It consists of a plastic sphere (a

hamster exercise ball) constructed from two halves that are

attached to each other. The plastic sphere is used to house the

fragile electronics (sensors, actuators, processing elements),

thus making it robust and ideal for interaction with children.

The robot is equipped with three accelerometers, one for each

axis (X, Y and Z), and three tilt sensors, one for left tilt, one

for right and one for forward/backward tilt. Analog ADXL311

miniature accelerometer devices are used to measure Roball’s

acceleration up to ±2g providing the three axis readings. Sharp

GP1S036HEZ miniature photointerrupters are used to detect

tilt direction caused by gravity. Tilt sensors are positioned

on Roball’s printed circuit board (PCB) to detect the internal

plateau’s front-back and left-right position inside the robot’s

shell. Two tilt sensors are placed on the left-right axis (the axis

corresponding to the line between Roball’s two propulsion mo-

tors). These are positioned in a symmetrical manner on each

side from the center of the left-right axis. This configuration

allows the detection of either left or right tilt with both sensors

giving the same value, and also allows detection of rotation

with readings from the sensors giving opposite left-right tilt

values due to centrifuge acceleration.

The motion produced by this platform creates interesting

interplay situations. Roball’s programming generates what can

be termed “catch-and-grab” cycles: during these trials the

robot wanders randomly around in the environment, moving

away from obstacles sensed from the horizontal angle of the

internal plateau. Once the robot detects an object, it reverses

for approximately half a meter and then it changes its direction

to the right by moving its counterweight to the -30 degrees

position (0 degree being perpendicular to the plateau). It

then proceeds in a random forward motion again. The speed

is set to approximately a 1
4 meter per second for both the

forward and backward motion (moderately slow, this is half

the maximum speed). This behavior is carried out for the

duration of the trial. At the end of the trial, the robot stops

by itself. The experimental arena is sectioned off by small

wooden walls which creates a pen, as shown in Fig. 3. The

pen is approximately 2.5m × 2m. The trials were broken down

into the seven experimental conditions listed below.

1) Alone i – Wandering in a laboratory’s normal environ-

ment with desks and chairs present (no pen or humans

present).

2) Alone ii – Roball wandering in the pen by itself, no

objects or humans present.

3) Light boxes – Light boxes were placed in the pen to

create obstacles that can be pushed by the robot and

move (no humans present).

4) Heavy boxes - Heavy boxes were placed in the pen to

create fixed obstacles that cannot be pushed by the robot

(no humans present).

Fig. 3. Pictures giving examples of the different environmental conditions
used for the trials. The robot carried out simple obstacle avoidance. The top
left is the setting for (1) Alone i, top right is the setting for (2) Alone ii, bottom
left is the setting for (3) Light boxes and (4) Heavy boxes, and bottom right
is the setting (7) Spinning with the experimenter spinning the robot.

5) Carrying – Experimenter carrying Roball whilst walk-

ing for the duration of the experiment.

6) Interaction – Experimenter using her feet and hands to

simulate interaction from a child pushing, banging and

getting in the way of the robot whilst in the pen.

7) Spinning – Experimenter purposely spinning the robot

for the duration of the experiment within the pen.

Three separate experiments were conducted for each of the

seven conditions and each individual experiment lasted for

a duration of five minutes (this is the approximate time

our child-robot trials are conducted for). Thus, in total, 21

experiments were carried out, lasting a total of 105 minutes.

III. DATA ANALYSIS

The data on interactions is obtained from the Roball’s sensor

readings. These sensor readings are memorized onboard the

robot 10 times per second. After each experiment, the data

is downloaded from the robot to a computer. The records

of the two different sets of sensor data are then analyzed

to investigate which data can be recognized as interaction

patterns.

Tilt sensors - Investigated were the different values pro-

duced by these sensors. Of interest was whether, as expected,

it was possible to tell when Roball was spinning from the

readings produced by the tilt sensors. This should be evident

when the two different tilt sensors produce different readings.

This should occur when the G force created by the robot

being spun pushes the tilt sensors to opposite sides of left/right

axis, thus given opposite readings. The difference between the

right and left tilt sensors for each data log, along with the

overall sum of this difference are analyzed. In previous work

with Roball, Michaud et al. [13] utilized mercury tilt switches

to detect spinning, whilst the robot was still (not moving).
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Fig. 4. Diagram showing the sum of opposite readings for the left/right tilt
sensors when (1) Alone i, (6) Interaction and (7) Spinning over a 5 minutes
trial. We can see that (7) Spinning produces the highest results.

However here, we are attempting to detect spinning whilst the

robot is in motion.

Accelerometers, X, Y and Z - Investigated were the

averages, variance, sums, and the difference between axis

readings compared to other the axis1 (i.e., the difference

between X and Y, the difference between Y and Z, and the

difference between X and Z). A variety of graphs were also

produced to visually investigate the readings (e.g., see Fig. 5

and Fig. 7).

IV. OBSERVATIONS AND RESULTS

Tilt Sensors Observations - Based on results shown in Fig.

4, readings from tilt sensors can be used to detect that the robot

is being spun. The most stable readings to detect spinning

occur when Roball has no longitudinal motion (i.e., no forward

or backward motion). Being still (not moving) whilst spinning

enables the robot to be stable on the Z axis, which thus allows

for right and left tilt sensors to indicate different readings

e.g. (1) from the right tilt sensor and (2) from the left. This

comes from the G force pushing them out. When the robot is

spinning off a perfect Z axis (i.e., tilted to one side), same tilt

sensor readings (e.g., 2 from both sensors) are observed. Since

Roball is programmed to always try to move either forward

or backward, its internal plateau does not remain still while

the robot is being spun, causing some misclassification. By

summing the opposite readings for the left/right tilt sensors,

a value of 895 is observed whilst the robot is moving (see

Fig. 4), we would expect to see around 3000 when the robot

is spinning but not moving (forward or backward motion).

Therefore, even whilst moving, the tilt sensors can still give

an indication whether the robot is spinning or not.

1When referring to the difference between two axis, e.g., X and Z, we mean
the calculation of X minus Z.

Fig. 5. Diagram showing the average reading of the X, Y and Z axis for
each of the seven different environmental conditions.

Fig. 6. Diagram showing the average reading of the difference between X
and Z axis for each of the seven different environmental conditions.

This information can be coupled along with other readings

from accelerometers to give a clearer indication (see Fig. 8

and Fig. 10).

Accelerometers, X, Y and Z Observations - Differences in

the readings from the accelerometers can be clearly seen in line

graphs (see Fig. 7, 8, 9, 10). Interaction and spinning can be

recognized as very sharp jagged lines on the graphs (see Fig. 9

for an example of ‘Interaction’). Without interaction (Alone),

we observe large gaps between the lines of the different

axis (see Fig. 7 for an example). Whilst being carried, we

see consistently low Y axis readings (see Fig. 8). We have

discovered two different ways of quantitatively analyzing the

accelerometer readings that yield such results.

• Simply looking at the average reading for each of the

three different axis, for each of the seven experimen-

tal conditions, can produce interesting information. We

recorded the readings over the three separate experiment’s

conducted for each condition. We then worked out the

average axis reading for each of these experiments and

then finally took the average from the three experiments.
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Fig. 7. Typical graph of sensor data from the accelerometers when Roball
is in experimental condition (1) Alone i. Gaps between each axis can be seen
and the axis rarely cross each other.

Fig. 8. Typical graph showing the unusually low Y axis sensor data
(compared to the other conditions) from the accelerometers when Roball is
in experimental condition (5) Carrying.

It appears that this analysis can indicate when the robot

is being carried and also when it is spinning (spinning

can further be confirmed by tilt sensor readings).

• Investigating the average difference (again over each

of the experiments) between the varying accelerometer

readings gives an indication as to whether the robot is

‘Alone’ and not receiving human interaction, or whether

the robot is receiving interaction from a human. In

particular, the average difference between X and Z has

produced interesting results.

Based on such observations, analysis of accelerometers has

yield the following results:

• (1) Alone i. Detecting when the robot is alone and in an

unconfined space appears to be the easiest to recognize of

all of the four (1 to 4) experimental conditions where the

robot does not receive interaction from a human. Condi-

tion 1 produces the highest average difference between X

and Z axis (0.13 shown in Fig. 6). Also this experimental

condition shows the lowest negative reading on the Z axis

(-0.12 shown in Fig. 5).

• (2) Alone ii. (3) Light boxes and (4) Heavy boxes.

Despite being confined in a cluttered environment and

Fig. 9. Typical graph of the erratic X, Y and Z axis sensor data from the
accelerometers when Roball is in experimental condition (6) Interaction. All
three axis readings show jagged readings that constantly cross with each other.

Fig. 10. Typical graph of X axis sensor data from the accelerometers when
Roball is in experimental condition (7) Spinning. Spinning gives us the highest
average reading for the X axis.

therefore banging against boxes or walls, Roball’s X and

Z accelerometer readings still show a large difference

during these conditions (see Fig. 6).

• (5) Carrying. We see very low average Y readings here

(0.06 shown in Fig. 5). Also, this condition is the only

time we see an average negative X axis reading (-0.02

shown in Fig. 5) and the only time we see a negative

average for the difference between X and Z (see Fig. 6).

• (5) Carrying and (7) Spinning. Only during conditions

5 and 7 do we receive positive Z axis readings (see Fig.

5).

• (6) Interaction. When the robot is interacting with

someone, we consistently see that the average difference

between the readings of all of the accelerometers is

lower than that of the other experimental conditions

(without being negative). This can be visualized from the

extremely jagged graph shown in Fig. 9, and also from

the histogram graph of all of the experimental scenarios,

shown by Fig. 6.

• (3) Light Boxes. This condition’s readings are closer to

the interaction condition (6) than any other. One possible

explanation for this may be that at times when the robot

181



hit light boxes, the boxes moved and therefore the robot

did not stop and backup to avoid the box, but instead

continued forward whilst still pushing and having contact

with the box. This may have caused interference with

the robot’s sensor readings, similar to when the robot is

receiving interaction.

V. RECOGNIZING INTERACTION FROM A ROBOT’S

PERSPECTIVE

Based on the results from above, we have assigned some

preliminary guidelines to create zones in which to classify the

readings coming from the robot’s sensors. These guidelines

will give indications as to the robot’s current environmental

condition (e.g., receiving interaction, being carried). We hope

to apply these zones in a planned future child-robot trial

involving Roball. Our aim is to develop an adaptive algorithm

onboard Roball that will recognize different environmental

conditions. The algorithm will contain and be based on the

following knowledge:

A Alone. If the average difference between the X and Z

axis is above 0.07, set current condition to ‘Alone’.

B Interaction. If the average difference between the X and

Z axis is below 0.05 but above zero, set current condition

to ‘Interaction’.

C Carrying. If the average difference between the X and

Z axis is negative, set current condition to ‘Carrying’.

D Spinning. If the average reading for the Z axis is

positive and coupled with an average Y axis reading of

above 0.08, set condition to ‘Spinning’; or if tilt sensors

show different readings (see tilt sensor results) and the

average reading for the Z axis is positive, set condition

to ‘Spinning’.

VI. DISCUSSION

Our ultimate aim is to develop a system to allow adaptation

of a robot to the interactions of children that are playing

with it. Unlike the previous work [10], our intention is not

to determine the personality type of the child, but to simply

have the robot react and adapt to the type of interactions it

is receiving. For example, the robot could adapt to general

interactions, such as, being picked up or receiving rough

and active interaction, thus making the robot’s behavior more

suited toward the individual interacting with it. The trials

documented in this paper have been conducted to ascertain;

what do the sensor readings produce in various situations

the robot is encountering whilst in a human (child) popu-

lated environment? e.g., what do the accelerometers register

when Roball is pushed? This gives us prior knowledge and

understanding when attempting to analyze sensor readings

from child-robot trials. If we are to achieve our ultimate aim

of the robot adapting to the children, we must have a clear

understanding and knowledge of what sensors register under

varying conditions. The more data we collect from child-

robot studies and further analysis we conduct, the greater our

understanding will be. This will enable us to better categorize

the different environmental conditions or interactions the robot

Fig. 11. Line graph of Roball’s sensor readings when interacting with an
active child. It is possible to see from erratic jagged lines that interaction
occurred throughout most of the trial.

Fig. 12. Line graph of sensor readings when interacting with a cautious
child. It is possible see that this child interacted with the robot most at the
beginning of the trial, indicated by jagged lines. Further on gaps between the
axis readings confirm lack of human interaction, or the robot being ‘Alone’.

is experiencing. As we further our knowledge we hope in the

future to be able to categorize more than the four categories

listed in section V.

As illustrated by Fig. 2, we have conducted trials at an

elementary school and at a child’s play group with children

aged between five and seven years old. A pen was constructed

with wooden planks. The children are asked to step inside

the pen and to play with Roball. Trials were held over a four

week period. Each trial lasted for four or five minutes. Sensors

readings were recorded for the duration of the trial and video

taped was used to verify the readings from the sensors. Initial

results from the school trials are positive. Preliminary analysis

appears to indicate that results described in this paper hold

true when Roball is in a real life setting with children. We

have observed the same type of readings as those recorded

in the laboratory. When the robot is in a child populated

environment but not receiving any interaction we see large

gaps in the line graphs, as shown in Fig. 12. We also observe

that interaction from the children is indeed indicated by two
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Fig. 13. Average difference between the X and Z axis for an active child
and a cautious child.

factors: jagged, erratics lines on graphs, see Fig. 11 and low

average X-Z readings, see Fig. 13. Finally, we observe greater

activity patterns from more active children as shown by Fig.

11 and 12.

This system has been tested under laboratory conditions,

also, at a school and playgroup. We are now finishing analysis

of the school and playgroup data and, developing an algorithm

that will hopefully, not only automate the system of analyzing

sensor data but, also allow the robot to adapt its behavior to

various interactions.

VII. CONCLUSION

From results obtained so far, it appears that it is possible to

detect different environmental conditions through the analysis

of proprioceptive sensors. This confirms previous work with

a different platform that had navigational sensors [10], [11].

This suggests two things, that the use of proprioceptive and

navigational sensors may surpass simply being used to traverse

the environment, and also, that it is likely, that this system

will transfer to other robots with other types of sensors.

Using accelerometers and tilt sensors, we found the detection

of carrying was the easiest, followed by spinning. Not so

easy but still possible was detection of interaction from a

person. Analysis does not require complex algorithms and

it is hoped that guidelines created from the results in this

paper will enable simple adaptation to the environmental

conditions the robot is experiencing. Carrying out preliminary

trials prior to conducting child-robot trials has certainly helped

in understanding what sensor readings are created onboard

Roball in various environmental conditions. This has given us

a greater knowledge and awareness when we are analyzing

the data from the school and play group trials. Future data

analysis will be carried out over a much shorter time period

rather than simply analyzing the whole trial. This is necessary

as the different actions or conditions the robot is experiencing

must be analyzed separately from each other so as not to

cause confusion or mistake in analyzing the results. For

example, we are currently working on a short time based

algorithm that will detect carrying and spinning first, and if

these conditions are found to be true no further analysis of

the accelerometers will be carried out. If these conditions are

found to be false, analysis of accelerometers will be carried

out in an attempt to ascertain whether the robot is receiving

any other form of interaction or whether it appears to be

alone. We have presented initial guidelines so as to classify

the readings coming from the onboard sensors into zones that

will detect four main environmental conditions: (A) Alone, (B)

Interaction, (C) Carrying and (D) Spinning. Our next step is to

carry out further analysis of data from the completed trial at

the school and playgroup, then to complete the algorithm that

is currently being developed, this will automate the process

of analyzing the sensor readings. Then we will conduct the

planned child-robot trial at the Université de Sherbrooke with

this algorithm onboard, hopefully allowing the robot to adapt

its behavior to the child it is interacting with.
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