

Paolo Dini, Chrystopher L. Nehaniv, Attila Egri-Nagy and
Maria J. Schilstra
Exploring the concept of interaction
computing through the discrete algebraic
analysis of the Belousov–Zhabotinsky
reaction

Article (Accepted version)
(Refereed)

Original citation:
Dini, Paolo, Nehaniv, Chrystopher L., Egri-Nagy, Attila and Schilstra, Maria J. (2013) Exploring
the concept of interaction computing through the discrete algebraic analysis of the Belousov–
Zhabotinsky reaction. Biosystems, 112 (2). pp. 145-162.
DOI: 10.1016/j.biosystems.2013.03.003

© 2012 Elsevier Ireland Ltd.

This version available at: http://eprints.lse.ac.uk/49851/
Available in LSE Research Online: May 2013

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE
Research Online website.

This document is the author’s final accepted version of the journal article. There may be
differences between this version and the published version. You are advised to consult the
publisher’s version if you wish to cite from it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/16378868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journals.elsevier.com/biosystems
http://dx.doi.org/10.1016/j.biosystems.2013.03.003
http://www.elsevier.com/
http://eprints.lse.ac.uk/49851/

Exploring the Concept of Interaction Computing through the Discrete
Algebraic Analysis of the Belousov-Zhabotinsky Reaction

Paolo Dinia,b,∗, Chrystopher L Nehaniva, Attila Egri-Nagya,c, Maria J Schilstraa

aRoyal Society Wolfson BioComputation Research Lab, Centre for Computer Science and Informatics Research,
University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom

bDepartment of Media and Communications, London School of Economics and Political Science, London, United Kingdom

cSchool of Computing, Engineering and Mathematics, University of Western Sydney, NSW, Australia

Abstract

Interaction Computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical
systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing
and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is
still at the early stages of theory development it focuses on the analysis of a particularly simple chemical
oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the
past several years from the physical, biological, mathematical, and computer science points of view, the paper
presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the
holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number
system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata
derived from a simplified Petri Net model of the BZ reaction. In the simplest possible and symmetrical case
the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second,
asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian
groups whose potential relevance arises from their ability to encode functionally complete algebras. The
possible computational relevance of these findings is discussed and possible conclusions are drawn.

Keywords: Interaction, discrete dynamical systems, non-linear dynamics, algebraic automata theory,
algebraic invariance, systems biology, open non-equilibrium systems, functional completeness

1. Introduction

The research reported in this paper aims to understand dynamical self-organizing behaviour in sub-cellular
systems through an algebraic perspective as part of a wider research programme aiming to achieve self-
organizing behaviour in software through algebraic automata theory. In this context, even though the Belousov-
Zhabotinsky (BZ) reaction [40] is not biological, it is relevant in several other ways, as we explain below.
The objective of understanding the mechanisms and structural properties underpinning self-organization in
biochemical systems, therefore, is to a large degree motivated by the desire to replicate such mechanisms
or properties in software. Even if self-organizing, the software will have to satisfy specific design or user
requirements, implying the presence of a synthetic or engineering design element to the research, in addition to
the more familiar analytical perspective that characterizes science in general. Finally, as a longer-term objective,
the insights and the greater ability to express complex behaviour on the part of the software that we expect to

∗Corresponding author
Email addresses: p.dini@lse.ac.uk (Paolo Dini), c.l.nehaniv@herts.ac.uk (Chrystopher L Nehaniv),

a.egri-nagy@uws.edu.au (Attila Egri-Nagy), m.j.1.schilstra@herts.ac.uk (Maria J Schilstra)

Preprint submitted to Elsevier April 4, 2013

come out of this work may lead to more flexible and scalable modelling frameworks for systems biology than
are currently available. As a consequence, it may help the reader to keep in mind that the discussion that follows
does not only build on multiple disciplinary perspectives, but is also motivated by a mixture of theoretical and
applied research interests.

1.1. Posing the Problem

In self-organizing systems, the “self-” or autonomous aspect is provided by the fall towards equilibrium, which
serves as the driver or energy source. As a consequence, a system that needs to maintain self-organizing
behaviour indefinitely must be open, since, if it were closed, once it had reached equilibrium it would stop
functioning. In order to keep going a self-organizing system must thus be open and connected to a source of
(free) energy that can keep it ‘far from equilibrium’, to use Prigogine’s famous phrase [38], even while it is
continually falling towards it. All living organisms are open and are kept far from equilibrium by food, implying
that, in this context, equilibrium is death. For the biosphere, the Sun is the (free) energy source that is captured
by photosynthesis and directly or indirectly drives most of the biological activity on Earth.1 At the other end,
the energy flows out of the biosphere in the form of high-entropy molecular motion as heat, exhausted of its
order-construction potential.

The kind of self-organization that we aim to understand in this work is associated with cellular processes –
regulatory and metabolic pathways – rather than with evolution, neural processes, or population dynamics.
Cell metabolic/regulatory systems are able to self-organize and/or construct order dynamically, through
random interactions between their components and based on a wide range of possible inputs. In many
systems biology models, the biochemical rate equations of such cellular processes are expressed as systems
of ordinary differential equations (ODEs) in the species concentrations, under an assumption of spatially
uniform concentration in a well-stirred vessel. Although this is a simplifying assumption and partial differential
equations are increasingly being used, the ODE approach has been the workhorse of systems biology for
decades and remains the predominant modelling methodology.

The fact that the ODEs populating such models are generally coupled and non-linear lends them a great deal of
expressiveness which can capture very complex dynamical behaviour. At the same time, these same properties
imply that systems biology is plagued with problems which, in most cases, cannot be solved analytically and,
to date, can only be approached with numerical methods. The development of an explanatory and predictive
mathematical theory of cellular self-organization, therefore, faces a challenging paradox: the properties that
seem to underpin this particular kind of self-organization – openness and non-linear coupling – also make such
systems extremely difficult if not impossible to solve analytically. Although numerical methods can be very
useful, they are mainly descriptive and cannot form the basis for an explanatory theory. Given a sufficiently
large number of molecular species and a sufficiently large number of tunable parameters complex biochemical
behaviour can often be reproduced, but the structural principles that are responsible for such behaviour remain
difficult to infer. Understanding the causal links between structure and behaviour becomes crucially important
in an applied context, whether it be software design or drug development, which motivates us to dig deeper in
order to arrive at a proper definition of the problem we are trying to solve.

The contribution of many disparate and granular system components at a small scale of description to an
emergent system-wide trend or behaviour at a larger scale of description can be seen as a metaphor for
mathematical integration. Regardless of whether we perform a formal integration step or we follow a
qualitative/intuitive inductive argument, a “constant of integration” is produced or discovered in the process,
which provides an additional, and deeper, level of causation [39]. For example, in frictionless mechanical
systems the observed system-wide motion can be understood to be caused by the forces acting on each part
of the system at each instant in time through Newton’s 2nd Law, which formalizes the proximate cause-effect

1The hydrothermal vents issuing from the mid-Atlantic ridge at the bottom of the ocean is another example of an energy source
driving a whole ecosystem, which in this case does not depend on the Sun at all.

2

relationship between force and motion. However, in the process of integrating Newton’s Law (when it is
expressed in differential form), we find that one of the constants of integration is the total energy of the system.
Knowing that the total energy is constant gives us a deeper and global “cause” for the observed behaviour,
along with the feeling that the system behaviour has been “explained” in a more satisfactory way. Analytical
solutions of (differential) mathematical models, therefore, are important because they give us insight into the
“fundamental” workings of the phenomena they model and because such insight then improves our ability to
create new applied systems that satisfy specific requirements through engineering design or applied biomedical
research.

Predictive and explanatory power can only be as good as the original differential model is expressive, however.
Consistently with a growing trend in systems biology, this has motivated us to adopt a critical and open-minded
attitude towards ODE models, and to try to imagine how they could be generalized and made more expressive.
The problem is not that they are not sufficiently non-linear – in fact, ODE systems can easily exhibit chaotic
behaviour – but that they are spatially homogeneous in the species concentrations. By accounting for spatial
variation, partial differential equations (PDEs) go a step further, but they still assume that the same species are
present throughout the domain. What is needed is a way to break up the domain so that different processes are
allowed to take place in different sub-domains, and are patched at the boundaries. Put otherwise, what is needed
is a way to represent non-linear behaviour in smaller sub-domains, where different species dominate, and to
allow the sub-domains to interact, perhaps also non-linearly. Thus, rather than dealing with a single completely
non-integrable and chaotic system, a better approach – that reflects the ordered and stable behaviour of healthy
organisms – may be to aim for multiple mildly non-linear systems that are “integrable” in some suitable sense
and that interact with each other in a similar manageably non-linear way.2 In other words, it seems that the
complexity should be lower at any individual scale of description, but distributed over multiple scales and
across different interacting systems.

Whereas a possible approach could be to use different ODE systems in each of the separate sub-regions, coupled
through suitable boundary conditions, the problem with such an approach is that its analytical complexity
increases very quickly with the addition of each new ODE system and sub-domain. It would be very unlikely
for analytical solutions to be obtainable, or for a theory to be developed that can account for the inherent multi-
scale structure of such a composite domain simultaneously with the analytical solution of each of the domains.
A numerical approach would be the only sensible option, but as we discuss at various points in this paper we
remain unconvinced about the explanatory power and generalizability of numerical solutions.

It is partly for this reason that in this line of research we have sought to complement more traditional systems
biology and dynamical systems modelling methods with the radically different discrete perspective of computer
science. That dynamical systems map to automata has been known for a long time [27], but the part that is more
difficult to model is the coupling between different degrees of freedom or between different sub-domains. We
are postulating that it should be possible for the behaviour of cellular systems to be reproduced in a controllable
way through interacting finite-state automata. If successful, this research programme will lead to a radically
new model of “bottom-up computation” with equal applicability to computer science and systems biology that
we call Interaction Computing (IC). This paper discusses the current status and the latest results of our research
towards this goal.

2We should not lose track of the importance of the system’s energy. For example, in the Elastica non-linear Hamiltonian system
[5] as one explores higher-energy shells (by choosing suitable higher-energy initial conditions) the response changes from periodic to
quasi-periodic to chaotic. In open, non-linear dissipative systems, as the energy flow through the system increases the response similarly
tends towards chaos. So in the development of a given modelling strategy one should keep both factors in mind: the functional form of
the coupling terms and the system’s energy.

3

1.2. Symmetry

The concept of regularity as an expression of order can be made more precise by relying on the mathematical
concept of symmetry.3 Since the mathematical formalization of invariance is expressed through the language
of algebra, IC research benefits from the merging of two research traditions: dynamical systems theory rooted
in physics and informing much of modern-day systems biology, and theoretical computer science rooted
in algebraic automata theory. In other words, since self-organizing behaviour in biological systems is a
consequence of regularities of physical laws, the IC concept has been developed mainly from a statistical
physics, systems biology, and dynamical systems point of view in a number of EU projects4 since 2003
[8, 9, 25]. On the other hand, the concept of interacting automata stretches back to the origins of algebraic
automata theory in the 1960s [30, 29, 43], and has greatly benefited from recent work in the same mathematical
tradition [37, 14, 17, 13, 11, 7].

In addition to openness and non-linearity, a third very challenging property of biological systems from the point
of view of model construction is their nested structure, which is to some extent mitigated by the scale invariance
of some of their dynamical properties. In other words, some of the abstract non-linear properties appear to
show up in similar ways at sub-cellular scales as well as on the scale of whole populations of organisms, as
demonstrated by the similarity in the corresponding (non-linear) ODE models of such systems. The manner
in which different scales depend on each other, on the other hand, is a rather more difficult phenomenon to
understand and model, as discussed below in the context of the cascade decomposition of finite-state automata.
In any case, the assumption of sufficiently similar order construction processes at widely different scales enables
us to draw correspondingly disparate theories together under the same conceptual framework.

For example, as shown metaphorically in Figure 1, in software systems the role of energy is played by
information, and the source of information are the users. Thus, the collection of all human minds interfaced to
the system serves a role analogous to the sun for the biosphere or food for a biological organism. If we replace
the biosphere by an individual cell, a similar framework is assumed to apply, and similar interaction rules are
assumed to be derivable from the biology and mappable to finite-state automata modelling or implementing
much smaller digital systems. In other words, the regularities observed in biological systems are formalized
as symmetries in the structure and behaviour of the corresponding discretized models, which are then to be
expressed as constraints on the possible structure and behaviour of the software. This paper begins to develop
some possibilities for what this might mean specifically.

Internet of
the future

Users

Extract regularities in
structure and behaviour

arising from physical law
Formalise as

structural & dynamical
symmetries

Impose as constraints on
automata interaction rules

Biological
Ecosystem

Sun

Figure 1: The beach-toy metaphor

3A symmetry is an invertible transformation that leaves some feature of a mathematical object invariant. The set of invertible
transformations of a mathematical object that leave some feature of that object invariant always forms a group.

4http://www.opaals.eu, http://bionets.eu, http://internet-science.eu

4

In the remainder of the paper, Section 2 discusses the analytical framework we have developed for building a
bridge between cell biology and computer science and the rationale for discretizing biochemical processes to
obtain the corresponding finite-state automata. Section 3 introduces some of the key concepts from algebraic
automata theory needed for the analysis of the BZ reaction in Section 4. Section 5 discusses some of the
possible interpretations of the results of the mathematical and computational algebra analysis, along with the
likely next steps in the research. Finally, Section 6 draws some conclusions.

2. Research Strategy and Methodology

The computational interpretation of the algebraic structure of automata derived from biochemical systems, as
presented in the algebraic automata theory references given above, is far from obvious. Therefore, one of the
purposes of this paper is to compare well-understood features of dynamical systems to features of the algebraic
structure of the automata derived from the same biochemical systems in the hope that the former will shed some
light on the latter. For example, the fact that periodic oscillations are probably the most clearly understood
property of dynamical systems was the main (epistemological) motivation for choosing the BZ reaction as an
object of study. In other words, although the BZ reaction is not necessarily the simplest chemical oscillator, it is
simple enough that it could be said to play a role for open and non-linear chemical systems that is analogous to
the role the simple harmonic oscillator (SHO) of Classical Physics plays for non-linear mechanical oscillators.

Thus, rather than breaking up the physical domain immediately, our strategy is first to strengthen our
understanding of how the mathematical properties of ODE systems map to the mathematical properties of
the discrete automaton formulation of the same (bio)chemical equations. The strategy is to use this mapping to
strengthen the explanatory theories of dynamical and computational behaviour in the two domains, respectively,
and to establish a virtuous circle between them whereby each theory informs the other, and can be made more
sophisticated and expressive with each iteration. This is the second (methodological) reason why in this paper
we focus on a relatively simple ODE systems such as the BZ reaction as the starting point of the research.

2.1. Analytical Framework

The BZ reaction has been studied extensively [40] because it was the first reaction to exhibit sustained
oscillations even in an isolated system, although they do die down eventually. Before Belousov’s discovery
in the 1930s and Zhabotinsky’s confirmation of the phenomenon in the 1960s, species concentrations were
believed to vary monotonically unless driven by a periodic forcing function. By contrast, in a constant-
flow stirred-tank (CFST) reactor the BZ oscillations are periodic and, counter-intuitively, can be sustained
indefinitely as long as the inflow and outflow are kept constant. This qualifies the BZ reaction as an open
system far from equilibrium. In this paper we analyse a simplified version of an ODE model of the BZ reaction,
the almost equally famous ‘Oregonator’ model, developed by Field and Noyes at the University of Oregon [19].

Oscillations have been observed also in cellular pathways such as the p53-mdm2 regulatory cycle. As discussed
at some length in [6], in [32] fluorescent labelling was used to monitor simultaneous changes in expression of
p53 and mdm2 following irradiation, and sustained oscillations were reported. However, the experimental work
in [6] shows that, somewhat unexpectedly, the labelling of mdm2 renders it functionally inactive. This raises
the possibility that the oscillations observed in the single-cell fluorescence experiment [32] might be due to
artefacts induced by the abnormalities in mdm2 function introduced by the labelling procedure. Nevertheless,
there is good evidence [33, 6] that the p53/mdm2 system does oscillate – but that these oscillations are damped.
There are several possible explanations for such damped oscillations – for example that p53 and mdm2 operate
in a simple feedback loop but with a discrete time delay [35].

Be that as it may, the point is that oscillations appear to play a central role in one of the most important
regulatory pathways of the cell. Further, ideally we would like our theory to be able to handle not only periodic
or damped oscillations, but more complex behaviour that may not be solvable analytically by present methods.
In other words, the definition of the kinds of problems to be solved should be derived from biological systems

5

that are functioning and “healthy”, even if such systems happen to correspond to mathematical models that we
cannot currently solve by elementary analytical methods. We assume that it may be possible to define formally
the boundary between healthy and pathological behaviour; since the theory is not advanced enough for such
formal definition, however, in the meantime we use the intuitive concept of “dynamical stability” as a synonym
for “health”. The indications from dynamical systems theory are that the notion of dynamical stability links
to what we said above about models that are larger and scalable, but with a wide range of possible behaviours
between rigid periodicity and chaos.

Dynamical stability is an intuitive concept that can be associated with a middle ground between entirely
predictable and totally chaotic behaviour. In other words, it pushes the boundary of integrability of the
dynamical governing equations of a system. Integrability of ODEs is intimately linked with their Lie group
structure.5 Thus, a way in which the dynamical stability of the systems of ODEs associated with cellular
pathways could be studied is by searching for so-called global symmetries through a Lie group analysis. Finding
Lie symmetries in systems of ODEs is a very complex task; however, luckily it is amenable to algorithmic
formalization [46, 41, 26]. Several open source implementations of Lie’s method have been developed and are
available for a number of mathematical analysis environments such as Mathematica [2].

The problem with Lie symmetries is that they are global: to each global symmetry of a system there corresponds
a globally conserved quantity [39] (i.e. the “constant of integration” we mentioned above). When this happens
the differential mathematical model can be integrated one step towards its analytical solution, i.e. its order
can be reduced by a whole unit. This is great but, for the same reason, it does not happen very often. And
when it does happen, it can be as much a consequence of mathematical idealization in developing the model
as of the presence of a truly fundamental conserved quantity. Another way to put it is that Lie symmetries
are “rigid”: they either apply to the whole system or not at all. By contrast, biological systems are full of
compromises. Ordered structures or behaviour may apply to a particular sub-system, or over a certain parameter
range, or at certain times, but never for all time, space, and parameter values. Therefore, it is likely that Lie’s
theory will need to be generalized, for example from Lie groups to Lie groupoids [47], which is the analytical
analogue of the domain fragmentation we mentioned above. In any case, we think that a critical and iterative
dialogue between continuous and discrete models of dynamical systems may well be the best way to advance
the mathematical theories of both. Thus, while on the one hand IC research is necessarily concerned with the
study of universal mathematical properties of dynamical systems, on the other hand we have also placed a great
deal of attention on how sub-cellular systems can be mapped to discrete automata [14, 17].

With this context, we can finally show in Figure 2 the analytical framework that underpins the emerging
mathematical theory of IC in general and the work discussed in this paper in particular. The purpose of this
diagram at this point of the paper is mainly motivational; it is explained more fully below, in the discussion
of the results. In the rest of the paper we focus mainly on the right-hand side of this diagram. In the figure,
‘SNAG’ stands for ‘simple non-abelian group’ and will be discussed later in the paper.

2.2. Discretization Method

To be able to analyse the (Oregonator model of the) BZ reaction from the perspective of algebraic automata
theory we must find a way to discretize it and we must convince ourselves that doing so retains the main
features of the dynamics of the original system. Cell metabolism relies on ultimately undirected bottom-up
and random/stochastic processes that can only “execute” through the spontaneous interaction of the various
components. The interactions are driven by a combination of electrostatic forces (usually conceptualized as
minimizing the potential energy of interaction) and most probable outcomes (maximization of entropy). In
spite of this, however, a healthy cell behaves in an organized and finely balanced way that is more evocative

5Lie groups are continuously parameterized transformations of the dependent and independent variables of a problem that leave
the functional form of the ODEs invariant; thus, each element of a Lie group is, by definition, a (Lie) symmetry. Because they are
continuous, Lie groups can also be visualized as manifolds (i.e. (hyper)surfaces) defined in the same space as the solution of the ODEs.

6

Cellular pathway

ODE model Petri Net and/or
Automaton model

Lie group analysis Holonomy
decomposition

Lie Groups &
simple Lie algebras

SNAGs + prime-
order groupsMap

Algebraic structure of dynamical systems & automata

Figure 2: Analytical framework for mathematical research in Interaction Computing

of a deterministic, even if very complex, machine than of random chaos. The cell in fact has a definite
physical structure and executes well-defined “algorithms” in the form of cellular processes such as metabolic
or regulatory biochemical pathways. This suggests a description and modelling of the internal dynamics of the
cell at a level of abstraction that is higher than the molecular, and through mechanisms or constraints that are
complementary to stochastic processes.

In particular, our perspective views the stochastic nature of cell biochemistry mainly as a mechanism of
dimensional reduction that does not necessarily need to be emulated in detail. For example, a gene expresses
hundreds of mRNA molecules which, in turn, engage hundreds of ribosomes for no other reason than to
maximize the probability that a particular, single genetic instruction will be carried out, such as the synthesis
of a particular enzyme. As a consequence of this dimensional reduction (hundreds to 1), a higher level of
abstraction than that at which stochastic molecular processes operate is justified in the modelling approach – in
particular, a formalization that retains, and builds on, the discrete properties of cell biology. In this manner, the
practically continuous distribution of millions of molecules per species is discretized into a handful of species
concentrations. However, even the resulting lower-dimensional system can’t plausibly be imagined to perform
the complexity of a cell’s functions driven simply by a uniform distribution of interaction probability between
its (now fewer) components. Additional structure and constraints must be at play.

Not surprisingly, additional structure that is consistent with a low-dimensional description of the biochemical
process is provided by casting the problem as a low-dimensional dynamical system derived from the
biochemical rate equations expressed as (usually coupled and non-linear) ODEs in the species concentrations.
Furthermore, the system can be discretized also in the time dimension according to explicit and implicit time
models ([43]: 38). Transformations can simply be induced by the passage of time in discretized steps, so in
this case time appears explicitly as the input of the system. However, there is another interpretation where the
inputs of the system are perturbations to steady states and the state transition finishes when the system settles
again to a new steady state, regardless of the time it takes. Thus time only appears implicitly and the dynamical
system has a more natural discrete structure. On the strength particularly of the latter view, cellular processes
can be treated as finite-state automata or discrete low-dimensional dynamical systems. This appears to be the
most appropriate level of abstraction and entry point to understand biological construction of order in a way
that is relatively easy to transfer to computer science. A good way to achieve this is with a Petri net (PN)
model, although Kauffman’s Boolean networks [28, 14] and Rhodes’s reaction digraphs [43] are also useful
possibilities, all amenable to algebraic automata-theoretic methods.

The PN notation, invented to describe interaction and transformation in discrete distributed systems [42, 13], is
highly suitable to depict the structure of biochemical reaction networks at the level of interaction between
molecules, but can also account for discretized species concentration levels. In combination with kinetic
information, PN models are useful tools in the derivation of the coupled ODE systems that describe the dynamic
behaviour of these networks [44] (or vice versa, as we are doing here). Once such a PN has been obtained, it

7

is straightforward to derive a finite-state automaton by treating each possible marking of the PN as a different
state of the automaton. In order to obtain a finite-state automaton the number of tokens is bounded, and the
bound is called the “capacity” of the place. This can be viewed as discretizing concentration levels or bounding
the number of molecules of each type. Since the resulting number of states can be very large, normally the
markings-to-states mapping is done for a specific choice of initial conditions, which yields a subset of the
global automaton of all possible states.

In the next section we present the basic concepts of algebraic automata theory that we need in order to begin to
understand the algebraic analysis of the computation in the BZ system.

3. Krohn-Rhodes Theory

A finite-state automaton can be defined mathematically as a finite set of transformations acting on a finite set of
states Q. In general, these transformations can be composed by following one transformation by another one.
The set of all finite sequences of transformations thus yields a set of tranformations that satisfies the axioms of
a semigroup, meaning that it is closed with respect to a multiplication law (here, functional composition) that
satisfies the associative property. However, not all of its members need have an inverse. By convention, the
empty sequence of transformations yields an identity transformation so, including this, what we have is actually
a monoid (i.e. semigroup with identity element). For mathematical convenience we may always include the
identity transformation, although we continue to use the term ‘semigroup’. Further, all semigroups we will
be concerned with will be finite. Thus, the algebraic version of a finite-state automaton is a ‘transformation
semigroup’, or ‘ts’ for short, defined as

X = (Q, S), (1)

where Q is the set of states and S is the semigroup acting on Q. S can be regarded as a subsemigroup of all
maps from Q to itself under composition. The ts is a direct generalization of the permutation group concept to
semigroups. As for permutations groups, a potential cause of confusion arises from the fact that one element
s of the semigroup S of a given ts X acts as an operator on all of the states q ∈ Q “simultaneously”. In other
words, the element s ∈ S should be seen as the whole function s : Q → Q that is defined over the whole state
set at once. By contrast, the execution of a single step of a given algorithm implemented by a given automaton
yields a ‘state transition’ and should be seen as a single value of such a function, for a given starting state q:

s(q) = q′. (2)

We revisit this point below.

3.1. The Krohn-Rhodes and Holonomy Theorems

The Krohn-Rhodes prime decomposition theorem for finite automata [30] has been discussed, explained, and
applied in a large number of books and articles since the theorem was published in 1965 ([1] and many others).
The language and formalism found in the proofs in the various sources can be either from automata theory or
from algebra, the former possibly being more accessible to a wider audience. Therefore, Table 1 shows the
statement of the theorem along with the main definitions and concepts as expressed in these two “languages”.
In the rest of the paper, where possible, we continue to use both notations, hoping that the two descriptions
side-by-side will make the concepts more understandable than they would be if presented in either formalism
by itself.

In this table, A is the symbol for a (semi-)automaton, which is defined as a triplet6 composed by an input

6We do not explicitly consider the output of the automaton as it can be recovered from the state and the input symbol.

8

Automata Theory Algebra
Any deterministic automaton can be decomposed into Any transformation semigroup is the homomorphic image
a cascade of two kinds of elementary automata: prime of one embedding in the wreath product of two kinds of

group automata and two-state identity-resets fundamental algebraic objects: simple groups
(flip-flops). and flip-flop monoids.
A = (A,Q, δ) X = (Q, S)
Automaton Transformation semigroup

Cascade Wreath product
Cascade decomposition Homomorphic image of subsemigroup

of wreath product
Elementary automaton Irreducible semigroup

Group automaton (e.g. counters, loop) Finite permutation group
Flip-flop, memory overwrite Identity-Reset semigroup, constant map

Table 1: Translation table between automata theory and algebra terms

alphabet A, a set of states Q, and a state transition function δ : Q × A→ Q such that

δ(q, a) = q′, q, q′ ∈ Q, a ∈ A (3)

In the algebraic notation, by contrast, the corresponding object is a ts X = (Q, S) as we described above with
semigroup S generated by all the transformations a ∈ A.

Figure 3 shows different types of action that a semigroup element s ∈ S can induce on a set of six states. In Case
3a, s is a member of a group that is a subgroup of S ; in Case 3b, s is a constant map, which is non-invertible;
the remaining two cases are other examples of non-invertible transformations. Thus, in cases 3b, 3c, and 3d,
s cannot belong to a group action that permutes the states. Maler states it in a somewhat different way: ‘A
permutation is reverse-deterministic, while in resets the degree of reverse non-determinism is maximal’ [34].
The attribute ‘fundamental’ that we used in Table 1 refers to the fact that the elementary automata7 or algebraic
structures cannot be decomposed further, so that they can be regarded as analogous to the prime factors of
an integer – hence the name of the theorem. Furthermore, permutation groups and identity-resets could be
regarded as “mutually orthogonal” in the sense that no combination of one type can yield a member of the other
type. In other words, they are analogous to a generalized basis into which an automaton can be decomposed.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

a) An invertible
(cyclic) permutation

b) A non-invertible
constant map or reset

1

2

3

4

5

6

1

2

3

4

5

6

c) A non-invertible
transformation

1

2

3

4

5

6

1

2

3

4

5

6

d) Another
non-invertible
transformation

Figure 3: Different kinds of transformations of 6 states (after [34])

In 1967 Zeiger [48] proved a variant, called the holonomy decomposition (HD) theorem, according to which
any finite automaton can be decomposed into a cascade of permutation-reset automata arising from a study of
how inputs act on certain subsets of the powerset of the state set. A permutation-reset automaton is one whose
semigroup has only two kinds of elements: the first kind of element is a permutation and therefore belongs to a
group, which is a subgroup of S and therefore is analogous to Case 3a; the second kind of element is a constant
map and analogous to Case 3b. Any other kind of non-invertible transformation, such as 3c or 3d, cannot occur

7These turn out to be automata whose transition semigroups are irreducible, i.e., as Krohn and Rhodes proved, simple groups or
subsemigroups of the flip-flop (See [43]).

9

in a permutation-reset automaton. The permutation-reset automata can then be further decomposed into (finite
and discrete) groups and two-state identity-reset automata (also known as flip-flops).8 Finally, using the Jordan-
Hölder theorem ([3]: 244) each group can be further subdivided into a sequence of simple groups,9 known as
its composition factors, recovering the Krohn-Rhodes decomposition into irreducible “atomic” groups (simple
groups) and combinatorial semigroups (cascades of banks of flip-flops). One of the clearest and most accessible
explanations and proofs of the holonomy theorem is due to Maler [34].

The HD has continuously been improved in efficiency over the years (e.g., [18, 23, 10, 34, 12], finally leading
to computer algebraic realization ([17], which has more recently been reimplemented in GAP [20] as SgpDec
[16]), making possible the decomposition and analysis of structures previously well beyond human capacity to
analyse.

3.2. Hierarchical Structure

One of the reasons the holonomy (or Krohn-Rhodes) theorem is difficult to grasp is that the decomposition is
hierarchical: the hierarchy refers to a particular description of the action of the semigroup on its set of states,
whereby each level indicates the action of subsets of semigroup elements on certain sets that are collections
of subsets of states. The latter are the dynamic analogues to the physical subdomains of the previous section.
‘Subsets of semigroup elements acting on certain sets that are collections of subsets of states’ is analogous to
identifying a (“coarse-grained”) sub-automaton.10 Thus, the components are arranged in a manner that can be
viewed as a partly nested hierarchy of sub-automata, or groups and identity-reset semigroups acting on nested
sets of states. This means that a state that is being acted upon by a group element at one level, for example, could
in fact be a macrostate composed of multiple states, each of which belongs to a lower level and is acted upon
in another way by semigroup elements at that lower level. This structure is recursive and the number of levels
reached can be very high. We say ‘partly nested’ because at any one level multiple groups and identity-reset
semigroups could be present, each of which can belong to different and partly overlapping nested hierarchies
of states and transformations, i.e., each of which can act upon different and partly overlapping collections of
(macro)states at the same level. This implies that each level of the hierarchy can be interpreted as separate
parallel machines or sub-automata operating at a different “scale”.

Another important property of the holonomy decomposition is that a part of the “resolution hierarchy” relates
higher levels to lower levels. This is called the “loop-free” property in the sense that the unidirectional
downward mappings imply that lower levels depend on higher ones, but not the reverse. A very useful example
to clarify this point is the unidirectional dependence of the components of a human arm with respect to position
in space: if only the fingers move, this action has no effect on the position of the upper arm, whereas if the
upper arm moves then the fingers will necessarily have to move with it. Although some levels are not reachable
from the levels above, as one moves down the hierarchy the subsets of states shrink in size. This is why the
hierarchy can also be interpreted as a “nested” cascade of automata, where the resolution of the automata
increases as one moves down the hierarchy (the macrostates get smaller until they correspond to single states
on the bottom level). The algebraic construction that formalizes these properties is the wreath product. It turns
out that the wreath product of the elementary components of an automaton encodes a “larger” automaton than
what one started with (this is shown explicitly through a detailed example by Maler [34]). This is why we say
that a transformation semigroup “embeds” into the wreath product of its holonomy decomposition components.
More precisely, we can also say that the original transformation semigroup is a homomorphic image of a sub-
transformation semigroup of a wreath product of its irreducible components. Alternatively, this can be stated
as: An automaton can be emulated by a subautomaton of the cascade of elementary automata that correspond

8In an identity-reset automaton with state set Q each input either acts as the identity map or as a constant map (reset) on Q.
9A simple group has no nontrivial normal subgroups and therefore cannot be decomposed further (see, e.g. [3] for more details).

10Actually the inputs to the “sub-automaton” may be words, not necessarily letters, of the original automaton. Moreover, the action
in the holonomy decomposition using these words, say, is to map subsets of states to other subsets of states in a manner such that at the
level of subsets each such mapping is either a permutation or a reset (for details see any reference on the holonomy decompostion, e.g.
[43, 10, 18]).

10

to irreducible “pieces” of its semigroup.

If a group is present at any one level, it indicates a permutation group that acts on subsets of states from the
levels below. For example, if A5 were present in the decomposition of a given automaton, it would indicate
that there are elements of the semigroup of that automaton that satisfy the group axioms and permute subsets
of states in the levels below, and necessarily this subgroup of the semigroup would either be isomorphic to A5
itself or map homomorphically onto A5 acting faithfully on the permuted subsets.

An example of a single permutation is shown in Figure 3a in the form of a single element of the cyclic group
C6. The fact that a group may be operating on a (sub)set of states has several interpretations algorithmically.
For example, if we define a system state as a singleton (which is the default definition in applications), by such
definition of “state” a given system cannot be in more than one state at any one time. In other words, the 6 states
shown in Figure 3 (for any of the 4 cases) cannot all transition at the same time. Therefore, in this case the most
natural interpretation of the action of each group or semigroup element operating on a given subset of states is
as state transitions that are induced by the same element but that can potentially occur at different points in time.
In other words, according to this interpretation the same semigroup element happens to be responsible for the
transitions between different pairs of states that might otherwise be regarded as entirely unrelated. This concept
hints at the possibility that using semigroup elements explicitly could lead to a more efficient formalization
or encoding of algorithms.11 In addition, the presence of groups embedded within the semigroup of a given
automaton obviously implies that (1) such subsets of transitions comprising the group are intimately related by
the closure property with respect to functional composition – a fact that to be sure applies also to subsemigroups
– and (2) each of the transformations belonging to one such group has an inverse. In other words, that automata
whose semigroups have subgroups are generally characterized by pools of reversibility embedded in a larger
“sea” of irreversible computation [37, 14, 43].

3.3. Visualization

It is most fruitful to regard a HD as a particular representation of the original finite-state machine. In other
words, the fact that a particular automaton is in a particular state can be shown by highlighting that state in
a normal state transition diagram, but – in principle – it can also be shown graphically on the decomposition
diagram of that same automaton. Thus, although a direct visualization of a HD does not yet exist, Figure 4 is
an attempt to show this intuitively rather than with a formally precise diagram because the latter would be too
complex, defeating the purpose to clarify the most basic concepts. In particular, Figure 4 shows two states of the
original automaton, q and q′, and the transition between them. Assuming that the original automaton splits into
three components, at three different levels, each level is in principle a separate machine with its own set of states
and set of transformations acting on the states. However, when the interdependencies shown in Figure 4 are
enforced, these three machines taken together are closely related to the original automaton. Thus, the starting
state of the original automaton, q, could be thought of as a vector that is “projected” onto its components (3
in this case), yielding a component representation as q = (q1, q2, q3). The transition in the original automaton
(not shown) corresponds to the three transitions that are shown here, ending in a hypothetical q′ = (q′1, q

′
2, q
′
3).

The semigroup elements acting on the three sub-machines are shown as s1, s2, and s3. As shown in the figure,
whereas s1 depends only on the input symbol, s2 and s3 are given by dependency functions taking increasing
more arguments with each level.

For more realistic examples we have developed a visualization that we call the “skeleton” of the HD and
that shows the essential features of the structure. Skeleton diagrams do not show an automaton’s semigroup
explicitly or, if any, its embedded groups. They show the subsets of states that are being acted upon by these
different semigroup elements or by these different kinds of groups. Before discussing an example in more detail
we need to introduce an additional concept whose importance cannot be overstated.

11Alternatively, action on a subset by the elements of the semigroup can be interpreted as acting in parallel, simultaneously, on
multiple copies of the system via a natural diagonal embedding. Algorithmically, this could lead to parallel computation possibilities.

11

a

q1

q 2

q 3

q'1

q'2

q'3

s1

s 2

s 3

f

h

(Next states
as outputs)

a Automaton
notation

Transformation
Semigroup
notation

b

q = (, ,) q' = (, ,)

Transition from starting state to end state lifted to
"positional notation":

Cascade Wreath Product

d = Dependency functions associated with input a

Q1

(A, ,)Q 1 δ 1

(A, ,)Q2 δ2

(A, ,)Q 3 δ 3

(Q , S)1 1

(Q , S)2 2

(Q , S)3 3

Q2

Q3

S1

S2

S3

q1

q2

q3

b = f(,a)q1

c = h(, ,a)q1 q2

= (,a)q'1 δ 1 q1

= (,f(,a))δ2q'2 q1q2

= (,h(, ,a))δ 3q'3 q1 q2q3

q'3q'2q'1q 3q 2q1

= d ()as1
s = d (q)a2 1

s = d (q , q)a3 1 2

a

Figure 4: Comparison of cascade and wreath product decompositions

3.4. Automata as Generalized Number Systems

A crucially important point for understanding what the HD says about an automaton is that the whole hierarchy
is needed to indicate each state of a machine, with each level as one moves downwards narrowing down the
resolution. Although this point may at first sound difficult to grasp, we all first learnt it in elementary school:
we are only talking about the expansion of the state set of an automaton into a generalized positional “number”
system in a way that is formally and precisely analogous to the expansion of a given integer into a positional
number system in a given base. For example, if we were to say that to represent in base-10 the integer expressed
as the following list of sticks

| | | | | | | | | | | | | | (4)

we need to use both the units and the tens positions of the decimal system in order to write down ‘14’, nobody
would find such a statement particularly strange. In other words, just as a given “number” is a Platonic concept
that can have many different incarnations or representations (positional, Roman, etc), so can the state of an
automaton be represented in different ways. The HD is a way to make explicit, through a generalized positional
notation (of uncertain and variable base!), a generalized number system that a given automaton implicitly
defines [43]. For this reason the HD of an automaton is also referred to as its ‘coordinatization’ [36, 37].
Informally, a coordinate system can be considered to be a notational system for some object or process. Every
state and transformation of the modelled system is described by an ordered list of coordinate values coming
from simpler basic building blocks, the components. By using coordinates we can address the components
separately and also their relations in a decomposition. Therefore, a coordinate system creates the possibility
of developing simple algorithms to manipulate the original structure via the coordinates. For instance, in the
Cartesian coordinate system we can uniquely specify any point of the n-dimensional Euclidean space by n
coordinates and define vector operations coordinatewise. The Cartesian coordinate system is an example of an
inherently non-hierarchical coordinate system for a totally homogenous system, therefore the coordinates can
be reordered arbitrarily. More generally, however, different coordinate positions have different roles, addressing
parts of the system different in size or in function. If the ordering of the coordinate positions is not arbitrary
then we talk about hierarchical coordinate systems. A prominent example is our positional number notation
system, a coordinate system built from copies of C10, modulo-10 counters. It is hierarchical since shuffling
the coordinate positions yields different numbers, and it is loop-free since the carry goes only in one direction.
The algorithms to calculate with these coordinatized numbers are so simple and powerful that they are taught
in primary schools. In general these coordinate systems can be called cognitive tools for understanding and
manipulating transformation semigroups and the processes modelled by them.

12

3.4.1. Decomposition of Modulo-16 Counter as a 4-Bit Counter Automaton

To explain these concepts in more detail we analyse a modulo-16 counter, which we can think of as the right-
regular representation of the cyclic group C16, i.e. as C16 expressed as a permutation group acting on itself. For
this simple example, we will show how the familiar 4-bit binary representation arises as a ‘coordinatization’.
Table 2 shows how such an object could be rendered as an automaton and as a permutation group. Figure
5 shows the automaton version in binary and decimal notation, where we treat each number reached by the
counter as a different state.

Automata Theory: A = (A,Q, δ) Algebra: X = (Q, S)
S = C16 = {0,+1,+2,+3,+4,+5,+6,+7,+8,

A = {0, 1} +9,+10,+11,+12,+13,+14,+15}
(mod 16)

Q = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} Q = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
(For example:) δ(2, 0) = 2, δ(2, 1) = 3, etc Identity = 0 Generator = +1

Table 2: 16-counter as automaton and as permutation group

The HD is not needed and strictly does not apply since we started with a group. However, this example is
useful for introducing the graphical notation used to depict the different levels of the HD, which we will use
below in the analysis of rather more complex automata. The Jordan-Hölder theorem tells us that C16 can be
decomposed using the composition series C16 D C8 D C4 D C2 D {e}, with the quotient of any two successive
series components in this case equalling the same factor C2, which is trivially simple. Now, Figure 6 shows
how the four C2 factors can be arranged as four binary counters to match the binary positional notation of any
number within the original set of 16. Further, Figure 6 also shows how the elementary operation 13 + 1 = 14
can be expressed as the result of these four elementary automata or binary counters acting together. The rule
by which they do so is the familiar ‘carry-bit rule’, which we are all able to do automatically although here it is
formalized as a complicated-looking set of dependency functions between the levels.

0001

0010

0011

0100

0101

0110

0000

0111

1000

1001

1010

1011

1110

1111

1100

1101

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

2

3

4

5

6

0

7

8

9

10

11

14

15

12

13

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

Figure 5: Automaton representation of 16-counter in binary and decimal notation

More specifically, when using the carry-bit rule, the input is fed only to the least significant bit (LSB), and it is
“carried” to the next bit only if the LSB = 1. At the second bit the same rule is applied again, and so on. When
using dependency functions, on the other hand, we can envisage the input +1 as being applied separately to all
4 levels at the same time. The state transition of any of the binary counters at a given level then depends on the
states of the levels above, implying that the highest level is free to transition subject only to the input symbols.
Thus, when +1 is fed to the counter, the top level (LSB) will always toggle between 0 and 1. The level below,
on the other hand, will switch from 1 to 0 or from 0 to 1 only if the top level is in state 1 when the +1 input
symbol arrives. This is shown by the string ‘(1)’ next to the label of the transition arc. Level 3 transitions only
when both the levels above are at 1, shown as ‘(1, 1)’. Finally, the lowest level (most significant bit, MSB) will
toggle only when all three levels above are simultaneously at 1, shown as ‘(1, 1, 1)’. The dependency functions

13

{4,12} {2,10} {6,14} {1,9} {5,13} {3,11} {7,15}

1 1 0 1 + 1

0 1

+1

+1

0 1

+1(1)

+1(1)

0 1

+1(1,1)

+1(1,1)

0 1

+1(1,1,1)

+1(1,1,1)

1

0

1

1

0

1

1

1

= 1 1 1 0

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

{0,2,4,6,8,10,12,14} {1,3,5,7,9,11,13,15}

{0,4,8,12} {2,6,10,14} {1,5,9,13} {3,7,11,15}

{0,8}

{8}{0} {4} {12} {2} {10} {6} {14} {1} {9} {5} {13} {3} {11} {7} {15}

C2

C2

C2

C2

(LSB)

(MSB)

Figure 6: Left: Binary positional notation for non-negative integers < 16 expressed as a composition of binary
counters, with dependency conditions (carry bit) shown explicitly. Right: Corresponding group coordinatization
in decimal notation.

at each level could in principle be anything, i.e. ‘(1, 0, 1)’, but if we want the counter to behave correctly, i.e. in
a manner equivalent to the carry rule, they need to be implemented as explained and as shown.

On the right of the figure, the numbers 13 and 14 are represented as states of an automaton that can take on any
value from the original set of states. This representation is highlighted with Blue and Red lines, respectively,
connecting the subsets of the original set, of increasing resolution, that contain the number in question at the
different levels. The top box corresponds to the coarsest resolution for the number 13: all it says is that 13 is
somewhere in the set of numbers {0, · · · , 15}. The ‘C2’ label above the box refers to the fact that there is a
constituent subgroup of C16, C2 in fact, that operates on two subsets of states, or two macro-states. The same is
then true also for each of these two, which therefore fork again, and so forth.

‘C2 operates on two subsets of states’ means, more precisely, that there exists a two-element group which maps
the two subsets to each other. Since one element must be the identity, that leaves only one transformation.
Thus, the C2 shown above the top level refers to the group {0,+1} acting on the two sets of states
{0, 2, 4, 6, 8, 10, 12, 14} and {1, 3, 5, 7, 9, 11, 13, 15}. This means that if +1 (mod 16) is added to any of the
states in one subset an element from the other subset is obtained, which is certainly true. The second level also
has a C2 label above it, indicating that each of its two subsets, in turn, splits into two more subsets. Furthermore,
the same (new) C2 group will map the two 4-state subsets in each pair to each other, swapping them; in this case
this (different) C2 = {0,+2} acts, e.g. on ‘macro-states’ {0, 4, 8, 12} and {2, 6, 10, 14}, by swapping them. The
next group, operating on the next level with macro-states (called ‘cosets’ in group theory) {0, 8} and {4, 12}, is
C2 = {0,+4}, and finally C2 = {0,+8} permuting {0} and {8}.12 These four instances of C2 are indeed different
groups, but since they are all isomorphic the same symbol is used: from the point of view of the algebraic
structural analysis that group theory enables they are as good as identical.

The fact that the same group applies multiple times at any one level is shown by the subsets at each level
(oval or rectangular tiles) appearing within the same wider rectangle. Further, the two kinds of lines the tiles
are drawn in, solid and dotted, highlight that when the states are expressed in binary notation, as shown in
Figure 7, an isomorphic copy of exactly the same group C2 = {0,+1} is operating not only within each level
but also at different levels. In other words, a single binary automaton is sufficient to perform the action of
each level, on any of the solid/dotted subset pairs. Within each long rectangle, the rectangular tile plays a role
similar to a coset representative. In fact, each such tile contains the 0 state or identity, making it analogous to

12Each of these C2’s also permutes the other cosets at the same level of the diagram in the same way, by swapping pairs of them.

14

a subgroup. The ovals then become the remaining cosets. The analogy is particularly convincing here because
the automaton states (shown) and the group elements acting on them (not shown) are indistinguishable (since
elementary counters such as this are implemented with groups using their right regular representation).

{0100,1100} {0010,1010} {0110,1110} {0001,1001} {0101,1101} {0011,1011} {0111,1111}

{0000,0001,0010,0011,0100,0101,0110,0111,1000,1001,1010,1011,1100,1101,1110,1111}

{0000,0010,0100,0110,1000,1010,1100,1110} {0001,0011,0101,0111,1001,1011,1101,1111}

{0000,0100,1000,1100} {0010,0110,1010,1110} {0001,0101,1001,1101} {0011,0111,1011,1111}

{0000,1000}

{1000}{0000} {0100} {1100} {0010} {1010} {0110} {1110} {0001} {1001} {0101} {1101} {0011} {1011} {0111} {1111}

C2

C2

C2

C2

Figure 7: Group coordinatization for non-negative integers < 16 in binary notation

3.4.2. Example of Simple Automaton

The previous automaton example has the simplifying property, once it is decomposed into 4 binary counters,
that the state labels are the same as the input symbols: both can only take on values of 0 or 1. Furthermore,
there is only one sub-automaton per level, all the levels have the same identical sub-automaton, and all the
sub-automata have identical state labels. A holonomy decomposiiton for a more general automaton, although
it will still provide a hierarchical coordinate system, will not usually have any of these nice properties. For
example, Figure 8 shows a randomly generated automaton with 5 states Q = {1, 2, 3, 4, 5} and an input alphabet
A = {x, y}. Figure 9 shows the holonomy decomposition of this automaton on the right, obtained with SgpDec

[16], and its decomposition into different sub-automata at different levels on the left.

{1, 2, 3, 4, 5} {3, 4, 5}

{2, 3}

3

x,y

x

x

x

y

y

y

1

2

3

4 5

x

y

y

y

y

x
x

x,y

x

Figure 8: Small, randomly generated automaton and its top-level state image sets

First, the skeleton or tiling diagram depicting the holonomy decomposition (center of Figure 9) shows several
differences from the previous example (Figure 6):

• Most of the rectangles are white rather than dark gray. This means that most transformations in the coordinate
system are identity-resets, i.e. trivial or irreversible. For example, the map, under either x or y, from the original
full set of 5 states to the subset {2, 3} is not reversible. Once the system is in this subset, it can never recover States
1, 4, or 5.

• Moreover, State 1 is a “Garden of Eden” state: once the system leaves it, it can never come back. The dotted line
from the top level to State 1 in the lowest level indicates that this state is not the image of {1, 2, 3, 4, 5}, under any

15

1

2

3

4 5

x

y

y

y

y

x
x

x,y

x
{1, 2, 3, 4, 5}

{3, 4, 5} {2, 3}

{2}{4}{3}{1} {5}

{3, 4, 5} {2, 3} 1

y x

3

5

y({3,4,5})
2 3

y({2,3})

y({3,4,5})

x({3,4,5})x({1})

C2

y({1})

4

Shorthand
1: 1
2: C2 1

Level 1

Level 2

Figure 9: Holonomy decomposition of the small automaton, with its sub-automata. The compact notation used on
the left side of this figure highlights how action at each level of an HD can only be given by dependency functions
whose values are either resets or permutations. Gray block arrows show resets within a given level. Black arrows
indicate permutations. If arrows for possible dependency functions are not shown, then these have no effect (like
the identity map), e.g. at level 2, x({2, 3}) is the identity permutation, and y({3, 4, 5}) fixes all states but 4 and 5.

transformation in the semigroup (since such a transformation would have to have 1 in its range). Within the subset
{2, 3}, State 2 plays a similar role, which is why it too is connected by a dotted line. Finally, neither {4} or {5} is the
image of {3, 4, 5}.

• The subset {3, 4, 5} is in a gray rectangle denoting that the automaton harbours a group acting on its sub-macrostates
(in this case the singletons {3}, {4}, and {5}); in fact, this group is another C2, even though the action is on 3, rather
than 2 states. Thus, the action is reversible, meaning that there exists a symbol string (e.g. y) permuting the subsets
under {3, 4, 5} with order 2. It will take the system back to 4 (or 5) if it starts in 5 (or 4), while fixing 3. Note that
in general a group (or semigroup) element need not correspond to a single input symbol, but normally a string of
input symbols is needed to encode such elements; for example, yy realizes the identity permutation on {3, 4, 5} in
this C2. Note also that such strings realizing transformations could be quite long.

Now, for the sub-automata, we notice the following differences from Figure 6:

• At each level the sub-automata are different.

• At level 2, we have two sub-automata in which the state of the second coordinate can lie.

• For each sub-automaton, the state labels are quite different.

• A block arrow in gray denotes a constant map taking the constant value pointed to. That is, it resets any state at
the given level of the decomposition to the value pointed to. Black arrows denote permutations (which fix all other
states).

But there are also two crucial similarities:

• When an input x or y arrives the system changes state, just as before. Thus, feeding an input symbol to an automaton
can be seen as a generalization of adding two numbers.

• Whether and how a particular sub-automaton at a lower level transitions upon the arrival of an input symbol
depends on the state(s) of the sub-automata above it in the diagram. This is shown with dependency functions
similar to those of the 4-bit coordinatization of the C16 counter. Thus, the dependency functions in the wreath
product decomposition of an automaton are a generalization of the carry rule in simple addition.

Finally, the red box labelled ‘Shorthand’ on the right of the figure is a very compact way to represent the HD
skeleton for this example. It is shown here because for the larger systems to be discussed below the full skeleton
or tiling diagram is too large (esp. too wide) and if shrunk to fit the page width would be unreadable. This very
small automaton, therefore, provides us with the opportunity to show both versions, to help the interpretation
of the larger examples expressed in shorthand notation in the next section. The 1s indicate either identity-reset

16

components (whose transformations are just the identity mapping or constant maps), and the group C2 is shown
with its symbol. Note that the shorthand does not show what sets these groups and identity-reset semigroups
act on, nor does it determine the cardinality of these sets.

Intriguingly, the decomposition of automata derived from metabolic and regulatory pathways often uncovers
the presence of groups at different levels in the hierarchy. Since every group is associated with one or more
symmetries and since biological systems exhibit – in fact, depend on – many symmetries in their structure
and behaviour, it seems inescapable that the groups appearing in the holonomy decomposition of biological
automata have something to do with their self-organizing properties. Indeed, as mentioned above, these groups
are symptomatic of pools of reversibility in the dynamics of the biological system. Although in this paper we
will not discuss any such biological systems, we now have enough tools at our disposal to present the algebraic
analysis of the BZ reaction as a reference example that further work with cellular pathways will be able to build
on.

4. Analysis of BZ Reaction

The BZ reaction has been analysed by many people over the last 50 years. In addition to the Field, Noyes, and
Körös work already cited [40, 19] a useful reference is Scott [45], on whom we mostly rely. The BZ reaction
is very complex, but can be described in broad outline as comprising three main processes, whose “resultant”
reactions are:

Process A: BrO−3 + 2Br− + 3H−→ 2HOBr (5)

Process B: BrO−3 + HBrO2 + 2Ce(III) + 3H+−→ 2HBrO2 + 2Ce(IV) + H2O (6)

Process C: 2Ce(IV) + CH2(COOH)2 + BrCH(COOH)2−→ f Br− + 2Ce(III) + (other products) (7)

The three processes feed into each other in a cycle so that, as long as the input and output flows are held constant,
they will repeat indefinitely. Process A reduces Bromide ion (Br−), producing Bromous Acid (HBrO2).13 When
the Bromide ion concentration falls below a certain threshold, the main reaction channel switches to Process B,
which is very fast because it is autocatalytic (in HBrO2) and produces Cerum IV (Ce(IV)). This causes Process
C to start, which reduces Cerum IV to generate the Bromide ion again and restarts the cycle. As the system
cycles through these three processes the colour of the solution changes cyclically, whereas if the reaction is
taking place in a Petri14 dish the familiar concentric colour waves of the BZ reaction can be observed.

4.1. Oregonator Model

Following [45], the Oregonator chemical equations are:

A + Y → X + P rate = k3AY (8)

X + Y → 2P rate = k2XY (9)

A + X → 2X + 2Z rate = k5AX (10)

2X → A + P rate = k4X2 (11)

B + Z → (1/2) f Y rate = kcBZ (12)

X, Y , and Z correspond to the three compounds that undergo periodic oscillations under steady-state boundary
conditions, meaning inside the CFST reactor. A, B, and P, by contrast, do not vary as a function of time, a
consequence of the CFST reactor setup. The three colours Red, Green and Blue shown correspond to the three

13Reaction (5) is the resultant of two other reactions, not shown here, that produce HBrO2. HBrO2 is one of the intermediate
products of the BZ reaction whose concentration is of interest here due to its oscillations. Reaction (5) only shows the production of
hypobromous acid (HOBr), whose concentration is kept constant in a CFST reactor by a constant rate of extraction of this compound.

14A different Petri from the one who invented the Petri nets.

17

processes the BZ reaction is conceptually divided into.15 Table 3 describes the variables in question, and Figure
10 shows the Petri net corresponding to the Oregonator model.

Oregonator Chemical Chemical Association with
Variable Compound Symbol BZ Reaction Process

X Bromous Acid HBrO2 Process B (reduces X, generates Z)
Y Bromide Ion Br− Process A (reduces Y , generates X)
Z Cerum 4 Ce(IV) Process C (reduces Z, generates Y)
A Bromate BrO−3 All 3 processes
B Malonic Acid CH2(COOH)2 Process C
P Hypobromous Acid HOBr Process A and C

Table 3: Summary of Oregonator variables

A

Z

B

P

t5

t3

t4

t1 t2

X = HBrO2

Y = Br-

Z = Ce(IV)

A = BrO3-

B = Org (Malonic Acid)

P = HOBr

t8

t6 1

1 1

11

1

2

1

1

2

1

1

1

2

2

1

1

1

t7 1

X 1

Y

Figure 10: Petri net corresponding to Eqs. 8-12

From Eqs. 8-12 the rate equations are easily derived as a set of three ODEs [45]:

dX
dt

= k3AY − k2XY + k5AX − 2k4X2 (13)

dY
dt

= −k3AY − k2XY + 1/2 f kcBZ (14)

dZ
dt

= 2k5AX − kcBZ, (15)

where the colours indicate the contribution to the rates of change of the three variables due to the three processes
A, B, and C.

4.2. Further Simplifications

The size of the HD tends to increase exponentially with automaton size. Thus, although SgpDec has made it
possible to analyse systems that are immensely greater than what could previously be done only by hand, we still
need to keep the systems analyzsd as small as possible. Therefore, although the Oregonator model is already a
significant simplification relative to the full set of chemical equations of the BZ system, we had to simplify it
further in order to bring the corresponding automaton to a size amenable for algebraic analysis. In fact, since,

15Using the potentially confusing accepted notation, the names of the processes have nothing to do with the letters A, B, and P
assigned to three of the compounds.

18

as we shall see below, the HD results can be very difficult to interpret even with very simple automata, it is
important to start with the simplest possible system. In order to see behaviour that is close to a non-equilibrium
dynamical system’s we needed each place to have a capacity of at least 4 tokens, so we reduced the number of
places to the smallest number possible, i.e. 3. The justification for eliminating the three compounds A, B, and P
lies in the fact that for a CFST reactor they remain constant. Thus, including them greatly increases the size of
the state space of the automaton derived from the PN in spite of their not contributing to the dynamics we are
investigating. Furthermore, we eliminated also k2 and k4 in Eqs. 13-15. The motivation is that although they are
important for reproducing the shape of the BZ oscillations, the oscillations themselves can be generated with a
simpler system, which is preferable for now. Similarly, the factor of 2 in front of the first term on the right-hand
side of Eq. 15, which comes from the factor of 2 in front of Z in Eq. 10, is also ignored in constructing the
PN. This will need to be brought back in at a later stage because it is responsible for the characteristically fast
growth of the Z compound (in Process A).

The problem with these modifications is that the resulting system is so different from the original BZ system
that it may not even oscillate. This is remedied by artificially introducing inhibition, which is applied cyclically
around the three active compounds. Unfortunately once this step is taken it becomes impossible to compare
directly the resulting PN to the original ODE system, even if simplified. It is actually possible to extend the
ODE model by including each instance of inhibition as an algebraic equation using a sigmoid function that
approximates the step function of the PN. However, this is an artificial addition to the system in the sense that
it models a desired effect rather than its physical cause, just like the inhibition arc in the PN. Whereas our
derivation of the simplified PN is motivated by our desire to investigate the algebraic structure of an automaton
corresponding to an oscillating system, obtained even through the artificial addition of inhibition arcs, in the
case of the physical system we can afford to have higher aims because the rate equations embody a great deal of
dynamical information at a more fundamental level. But, if an analytical study of the ODE system (e.g. through
Lie groups) is to provide useful insights about its physical behaviour, the relationship between the oscillations
and the original rate equations needs to be preserved. By radically simplifying the latter we have already lost
a lot of valuable physical information that an artificial sigmoid function will not regain for us. In this sense,
therefore, we feel there is less to be gained at this point from recovering some ODE system that matches in
some formal way the radically simplifed PN system. As our ability to analyse larger PN systems improves, we
will become better able to match the original ODE systems without much simplification. For now we are more
focused on the more modest aim of understanding the discrete algebraic structure, and therefore of relating
it to oscillatory behaviour obtained even artificially. From this point of view the radical simplification of the
PN is actually a good thing since, as we will see below, even this extremely simplified system can still exhibit
staggering algebraic complexity.

In summary, our primary interest is to relate the algebraic structure of oscillatory dynamical systems (which
we understand fairly well) to the computational properties of the algebraic structures contained in the
corresponding finite automata (which we do not yet understand). Therefore, using the BZ reaction as little more
than initial inspiration to arrive at a much simpler oscillatory system should be seen as a necessary step in the
analysis at this stage of the research. These simplifications are further justified by a fundamental and extremely
useful property of stochastic systems demonstrated by Gillespie [21]: since the average place concentrations
obtained with a stochastic PN simulator will converge to the ODE results as the number of runs approaches
infinity,16 we can still analyse the resulting system as if we did know the governing equations. The result of
all these simplifications and modifications is an extremely simple and highly symmetrical PN, shown in Figure
11. A weight n of the inhibition arc between, for example, Place Y and Transition t1 means that t1 is inhibited
if Y contains n or more tokens.

16It is relevant in this context to note that also Gillespie analysed the BZ reaction with a discrete stochastic model [22], reproducing
the qualitative features of the physical system. However, in his case he used a number of molecules on the order of 8000. Although our
stochastic Petri net simulator can handle systems of this size, the number of states associated with such a large capacity would be on
the order of 8, 0003 = 512, 000, 000. It is unlikely that the algebraic analysis of such a large automaton could ever be performed, thus
demonstrating the value of seeking mathematical/theoretical insight.

19

4.3. Results

Figure 11 shows the GAP input file prepared for our PN package [15] and the 15-state automaton corresponding
to the initial condition (0, 4, 0). States 5, 8 and 10 are not reachable and are not shown. Rather, the figure also
lists the states that are reachable and in the order in which the system visits them, which matches the automaton
shown. An in-depth discussion of the mapping from a Petri net to its corresponding automaton is provided in
[13]. At the bottom of Figure 11 the output of our stochastic PN simulator coded in Mathematica can be seen
as a time series of the token values in the three places of this PN. The traces shown are the average of 2000
runs. Damped oscillations are clearly visible, as well as the fact that this PN conserves mass (1.3 · 3 ≈ 4). The
states of the automaton shown are the possible markings of the PN from the given initial condition. The rate
constants for this example are all 1 (K = (1, 1, 1)). Finally, SgpDec was used to generate the HD, revealing
12 cascaded permutation-reset levels, whereby ‘1’ indicates either an irreversible component or a trivial group,
and the other groups are shown in standard notation. It is not very surprising that ins this extremely simple and
symmetric example most of the levels of the decomposition are groups, and they are particularly simple groups
(in the colloquial sense of the term), since they are all cyclic groups.

0 5 10 15 20 t0

1

2

3

4
PHiL

Z
Y
X

petrinet := rec(
inputs:= [[1,0,0],
 [0,1,0],
 [0,0,1]

],

outputs := [[0,0,1],
 [1,0,0],
 [0,1,0]

],

inhibcons := [[0,0,1],
 [1,0,0],
 [0,1,0]

],

capacity := [4,4,4],
initial := [[0,4,0]]

);

K = (1, 1, 1)

1: 1
2: C11
3: C10
4: C9
5: C8
6: C7
7: C6
8: C5
9: C4
10: C3
11: C2
12: 1

HD
040
130
031
220
121
310
022
211
400
112
301
013
202
103
004

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

States
Stochastic Petri Net Simulator

Average over 2000 runs

Z t3

t1 t2

1

11

1

1 1

X

Y

11

1

6
4

2

1

3
712

15

14

9

13

11 a
a

a

a
c c c

c

b

b
bb

040
130
220
310
400
301
202
103
004
013
022
031

1
2
4
6
9
11
13
14
15
12
7
3

States
visited

Figure 11: Stochastic simulation and HD analysis of very simple, symmetric BZ-like system

The behaviour of the automaton is also oscillatory. This can be seen from Figure 12a, which is the frequency
distribution over 2000 runs, and from Figure 12b, which shows a few representative traces. Whereas Figure 11
seems to say that the time evolution of the concentration levels (number of tokens) approaches the same constant
for all three places, in fact this is only the average response. Figure 12 does not involve any averaging and shows
that after some initial transient behaviour the system settles into a fairly stable pattern (i.e. independent of t)
involving the 12 reachable states. The sampling time-step17 is 0.1 seconds. The rise in frequency around States
6, 14, and 3 (ordinal 4th, 8th and 12th states from the initial marking) can be explained by the fact that the
probability of firing increases when more tokens are present in the place feeding a given transition. Thus, as
the tokens are used up the time-to-fire becomes longer, on average. This is not shown directly along the time
axis, but at any given time the probability that the system is in one of these states is higher simply because
it takes longer for it to transition out of them (see Figure 12b, esp. the slowest trace). Hence the frequency
distribution shows higher values there. Figure 12b also shows the average of the 2000 state traces. The fact

17Since the stochastic simulation involves a decaying probability distribution of firing for each of the transitions, the times at which
the system changes state are not evenly distributed. Thus, a uniform-time array is created after the stochastic run to sample the system
state at even time intervals to simplify the tasks of calculating the average values and displaying the results.

20

that it approaches a constant indicates that the system settles into a periodic steady-state mode after the initial
transient response. This can also be seen from the state traces, which show the system visiting the states shown
in the automaton of Figure 11, in order, and cycling back. In other words, the system settles into a limit cycle
whose average over many runs shows up as the limiting value of the damped oscillation of Figure 11.

Time State visited
(ordinal number)

Frequency

0 50 100 150 200 dt0

2

4

6

8

10

12

State Visited

Avg 2000 runs
Avg firings
Most firings
Least firings

Figure 12: Frequency distribution of the states visited, and representative state traces for the case of Figure 11

Although these considerations are beginning to shed some light into possible interpretations of the abstract
concept of algebraic structure, we are still far from imagining how it could be applied. Fortunately, as
discussed in Section 3.4, using the coordinatization point of view the different levels of the Krohn-Rhodes
decomposition of an automaton become analogous to the different positions in our positional number systems.
The decomposition then becomes an “expansion” of a given automaton into an “abstract number system” that
is defined by the automaton itself: each state is expressed as a different multi-digit “number”, where the
position of each “digit” corresponds to a level in the decomposition. The significance of this insight is that
the coordinatization perspective gives us at once powerful cognitive and calculational tools for manipulating
an automaton in our mind or with possible software support, and also gives us the starting point of a general
computer science methodology.

Figure 13 shows a rather different story. Here the PN is not symmetrical since one of the inhibitions is missing,
and the other two have different values. The stochastic simulation shows strongly damped oscillations, and
the automaton is more complex. The automaton has the same states as the previous example, and all of them
are reachable. Since multiple paths can be followed through this automaton we have not attempted to reorder
the states. To put things in perspective, the total number of possible transformations of 15 states is 1515 =

4.38 × 1017 (approximately). The semigroup acting on the automaton of Figure 11 is a small subset, with
12,558,414 elements. For Figure 13, despite the fact that we could decompose the automaton, the number of
elements of its semigroup could not be computed by GAP with 14GB of RAM.

The most interesting output is by far the HD. The decomposition shows 35 levels, with a fair number of groups.
This case is remarkable because of the presence of very large groups (the symmetric group S 9 has 9! = 362, 880
elements acting on subsets of the states shown, at level 14). The groups shown in red all contain simple
non-abelian groups (SNAGs): the alternating groups A9, A8, A7, A6, A5, each a subgroup of the corresponding
symmetric group S n appearing in the HD (Figure 13).18

Finally, Figure 14 shows the frequency distribution and the state traces for the asymmetric case. The frequency
distribution does not present surprises, it is qualitatively similar to the symmetric case but with emphasis on
different states, as we might expect. The state traces, on the other hand, are different because they are not all
monotonic within one cycle. This is because the automaton is more complex, with multiple paths possible,
which implies that there is no single “natural” ordering of the states analogous to the symmetric case.

18In the holonomy decomposition, at any one level there can be many isomorphic copies of a given (permutation) group acting
on different sets of subsets of states. The holonomy decomposition allows one to use just one such representative group from an
equivalence class of these. In particular, for each group symbol in the HD of the two cases discussed here there are in fact many copies
of that group in the semigroup and at the same level.

21

0 5 10 15 20 t0

1

2

3

4
PHiL

Z
Y
X

Z t3

t1 t2

1

11

1

1 1

X

Y

petrinet := rec(
inputs:= [[1,0,0],
 [0,1,0],
 [0,0,1]

],

outputs := [[0,0,1],
 [1,0,0],
 [0,1,0]

],

inhibcons := [[0,0,0],
 [2,0,0],
 [0,1,0]

],

capacity := [4,4,4],
initial := [[0,4,0]]

);

21

HD

�

�

�

�

�

��

�

�

	

�

�

�

	

��

�

	

��

�

	

	

��

�

	

��

�

	

�

�

�

�

�

	

	

	

1: 1
2: 1 1
3: 1
4: 1 1
5: 1 1 1
6: 1 1 1 1
7: 1 1 1 1 1
8: 1 1 1 1 1
9: 1 1 1 1 1 1 1 1 1 1
10: 1 1 1 1 1 1 1 1 1 1 1 1
11: 1 1 1 1 1 1 1 1 1 1 1 1 1
12: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13: 1 1 1 1 1 1 1 1 1
14: S9 1 1 1 1 1 1 1
15: S8
16: 1
17: 1
18: 1 1
19: 1 1
20: S7
21: 1 1
22: 1 1
23: 1 1 1
24: 1 1 1
25: S6
26: 1
27: 1
28: 1 1 1
29: 1 1 1
30: S5
31: 1
32: 1
33: S4
34: S3
35: C2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

040
130
031
220
121
310
022
211
400
112
301
013
202
103
004

States

K = (1, 1, 1)

Stochastic Petri Net Simulator
Average over 2000 runs

Figure 13: Analysis of asymmetric variant of our very simple BZ-like system

Time State

Frequency

0 50 100 150 200 250dt0

2

4

6

8

10

12

14

State

Avg 2000 runs
Avg firings
Most firings
Least firings

Figure 14: Frequency distribution of the states visited for the case of Figure 13, and state traces

5. Discussion and Outlook

The algebraic automata theory perspective is so general that one might struggle to imagine how its results
could be narrowed down to the point where they can be harnessed even for relatively simple applications. For
example, the purposefully idealized and simplistic symmetric case, which only has 12 states, is acted upon
by more than 12 million possible transformations between these states! The fact that this is approximately a
millionth of the total possible number of transformations between 12 states (8.9×1012) does not improve things
much.

However, the HD also suggests that the great majority of what the 12 million semigroup elements are doing
can be described using group elements at multiple levels, and the groups are shown at the different levels of
the decomposition. Therefore, there is a huge level of redundancy simply due to the highly symmetric nature

22

of this system: there are many combinations of subsets of states that behave in exactly the same way. The fact
that all the groups present are cyclic matches our intuition about the physical behaviour of this system, which
can actually be played in one’s mind by simply reading the state markings downwards, in the ‘States Visited’
table of Figure 11. For example, upon a t2 transition the initial state (0,4,0) maps to (1,3,0). The fact that Place
Y still has more than 1 token means that t1 is inhibited, and since there are no tokens in Place Z the only thing
that can happen is that Y fires again. And so it does, moving the system to the next state, (2,2,0). The next state
is (3,1,0), and finally (4,0,0). At this point t1 is not inhibited any longer, and Place X is “loaded”, so t1 begins
firing. The pattern repeats as the tokens make their way around the PN to recover the initial state, at which
point the whole cycle starts over. Morever, running these transitions in reverse order actually gives the cyclic
generator of the corresponding group acting on the subsets of states in a manner that cyclically permutes them.
(For details of how this works, see the editorial footnote by Nehaniv in [43, p. 160]).

The symmetric case is a bit contrived in the sense that it is so simple that it is difficult to imagine what kind
of “algorithm” it might implement beyond the wave-like cyclic movement of the 4 tokens around the 3 places.
So the fact that so many potential transformations between the states happen to satisfy the group axioms is not
necessarily very useful or relevant in practical terms, especially since cyclic groups have a very simple structure.
A similar statement could be made about the groups found in the asymmetric case, except that now even such a
small modification apparently renders the system so much more complex that it is much more difficult to “see”
what it is doing or what it can do physically. Thus, the presence of a wide variety of different groups containing
simple non-abelian groups (SNAGs) is both intimidating – how many million combinations are we dealing
with? – and reassuring, as the algebraic structure appears to be rather sophisticated and, therefore, potentially
quite “expressive”.

In fact, a very important property of the SNAGs is that they are exactly the functionally complete groups
[31, 24] and are also considered to be related to error correction [43]. The former property of SNAGs makes
them a natural candidate for realizing an analogue of “universal computation” within the finite realm [43, 31,
24, 8]. Therefore, we can conclude that the appearance of SNAGs indicates that even such a simple system
is capable of functionally complete computation (i.e. like Boolean algebra). In particular, this implies that
there are reversible subsystems of this system whose dynamics realize this (SNAG) computation by permuting
certain “higher-level” (or macro-) states. Natural emerging research questions now are: (1) How, in detail, do
oscillatory systems such as the simple BZ-like one analysed here realize this kind of (functionally complete)
computation in terms of the dynamics of specific reversible subsystems? And (2) How might the finitary
universal computational potential of these BZ subsystems be harnessed? The first problem can be addressed
by more detailed study of generators and states of the permutation groups arising in the decompositions, to
find insights from particular example oscillatory systems like those studied in this paper into the roles that
SNAGs can play. It is likely that the solution to the second, more practical question will benefit from a more in-
depth understanding of the analytical framework shown in Figure 2. This statement is based on our experience
analysing and modelling non-linear dynamical systems: although often non-integrable, when some analytical
solution – even to an approximate form of a given system – can be found, usually a great deal of insight is
gained. Our research is aiming at extending the reach of current analytical methods by making a formal bridge
between the symmetry properties of ODE systems, formalized through Lie groups, and the symmetry properties
of their corresponding discrete automata, formalized through the Krohn-Rhodes or holonomy decomposition
of their semigroups. In particular, we seek to understand the formal relationship between:

• Lie group structure of the dynamical systems modelling a given cellular pathway expressed as a system of ODEs;
and

• Algebraic structure of the automata modelling the same cellular pathway, in particular the presence of the
functionally complete SNAGs.

An introduction to some of the basic concepts underlying Lie groups is given in [25], and detailed discussions
can be found in [41, 46, 26] and many others. In very simple terms, Lie groups are groups of continuous
transformations acting on the dependent and independent variables of a given differential problem. For a single
ODE, they can be visualized as smooth curves that cross a given solution curve of the ODE at some transversal

23

angle and, since they leave the functional form of the ODE invariant, they map such a solution to a different
solution of the same ODE. For this reason they are also called ‘symmetry curves’. It turns out that this property
greatly facilitates the integration of the ODE. In fact, the reason Lie groups are effective, in some cases, at
solving non-linear problems is that their continuous structure makes it possible to work with their infinitesimal
generators, which break the original problem down into linear sub-problems. The infinitesimal generators can
be visualized as vectors tangent to the symmetry curves. The tangent vector space in which these tangent
vectors live is called the Lie algebra of the given Lie group.

As first discussed by Chevalley [4], the construction of certain groups of automorphisms of certain Lie algebras
over finite fields rather than over the real or complex number fields yields SNAGs; and the modern classification
of SNAGs asserts that ‘most’ of them arise in exactly this or closely related ways. Therefore, as shown in
Figure 2, our next steps will involve a study of the relationship between a Lie group (and its corresponding Lie
algebra) that helps solve the ODE problem of a particular cellular system and the corresponding finite groups,
whose irreducible building blocks are SNAGs and prime-order cyclic groups, embedded in the transformation
semigroup of the automaton derived from the discretization of the same biochemical system.

6. Conclusion

The main conclusion we can derive from the foregoing is that even though the precise algorithmic significance
of the groups present in the decomposition of our model of the BZ reaction is not yet clear, the interpretation
of the HD as an abstract positional number system provides a way to understand its “computation” in the
most elementary sense of the term, i.e. as an abstract form of “counting”. In other words, the Krohn-Rhodes
or holonomy decomposition has enabled us to imagine the execution traces of automata as meanderings of
abstract “counters” through a complex terrain of reversible and irreversible families of transformations on their
state sets. Further, since a Krohn-Rhodes decomposition for each automaton implicitly defines a different
abstract number system expanded in a different generalized base that can vary at each level, a starting point for
the formal investigation of Interaction Computing could be hypotheses expressed as compatibility conditions
on the “number systems” defined by automata that are meant to interact or on the “bases” used at particular
levels by automata that are meant to communicate.

From the point of view of systems biology quite a lot of work still needs to be done to develop an appropriate
modelling formalism based on Interaction Computing with which to construct discrete models that reflect
dynamical and/or self-organizing properties that are relevant to sub-cellular systems. The motivation and the
hope is that if we are able to map non-linear dynamical properties from ODEs modelling biochemical systems
to discrete primitives we will have a much more powerful “language” at our disposal with which to formalize,
analyse, and model systems biology problems.

Acknowledgements

The work reported in this article was funded in part by a number of EU projects: DBE, contract number
INFSO-FP6-507953; BIONETS, contract number INFSO-FP6-027748; OPAALS, contract number INFSO-
FP6-034824; EINS, contract number INFSO-FP7-288021; and BIOMICS, contract number CNECT-ICT-
318202. Their support is gratefully acknowledged.

References

[1] M A Arbib, editor. Algebraic Theory of Machines, Languages, and Semigroups. Academic Press, 1968.

[2] G Baumann. Symmetry Analysis of Differential Equations with Mathematica. Springer-Verlag, Berlin, 2000.

[3] P Cameron. Introduction to Algebra (2nd Ed.). Oxford University Press, Oxford, 2008.

[4] C Chevalley. Sur certains groupes simples. The Tohoku Mathematical Journal, 7:14–66, 1955. 2nd Series.

24

[5] J P Cusumano and F C Moon. Chaotic non-planar vibrations of the thin elastica parts I & II. Journal of Sound and
Vibration, 179(2):185–208, 209–226, 1995.

[6] P Dini, G Briscoe, I Van Leeuwen, A J Munro, and S Lain. D1.3: Biological Design Patterns of Autopoietic
Behaviour in Digital Ecosystems. OPAALS Deliverable, European Commission, 2009. Available from: http:

//files.opaals.eu/OPAALS/Year_3_Deliverables/WP01/.

[7] P Dini, C L Nehaniv, A Egri-Nagy, and M J Schilstra. Algebraic Analysis of the Computation in the Belousov-
Zhabotinsky Reaction. In M Lones, S L Smith, S Teichmann, F Naef, J A Walker, and M A Trefzer, editors,
IPCAT2012: 9th International Conference on Information Processing in Cells and Tissues, pages 216–224,
Cambridge, UK, 30 March-2 April, 2012. Springer LNCS 7223 (Short paper).

[8] P Dini and D Schreckling. A Research Framework for Interaction Computing. In Fernando A B Colugnati, Lia
C R Lopes, and Saulo F A Barretto, editors, Digital Ecosystems: Proceedings of the 3rd International Conference,
OPAALS 2010, pages 224–244, Aracaju, Sergipe, Brazil, 22-23 March, 2010. Springer LNICST.

[9] P Dini, D Schreckling, and G Horváth. Algebraic and Categorical Framework for Interaction Computing and
Symbiotic Security. In E Altman, P Dini, D Miorandi, and D Schreckling, editors, Paradigms for Biologically-
Inspired Autonomic Networks and Services: The BIONETS Project eBook, 2010. Available from: http://www.

bionets.eu.

[10] P Dömösi and C L Nehaniv. Algebraic Theory of Automata Networks. SIAM, Philadelphia, 2005.

[11] A Egri-Nagy, P Dini, C L Nehaniv, and M J Schilstra. Transformation Semigroups as Constructive Dynamical
Spaces. In Fernando A B Colugnati, Lia C R Lopes, and Saulo F A Barretto, editors, Digital Ecosystems:
Proceedings of the 3rd International Conference, OPAALS 2010, pages 245–265, Aracaju, Sergipe, Brazil, 22-23
March, 2010. Springer LNICST.

[12] A Egri-Nagy, J D Mitchell, and C L Nehaniv. Algorithms for the Efficient Calculation of the Holonomy
Decomposition. In P Dömösi and S Iván, editors, Automata and Formal Languages: Proc. 13th Intern. Conference
AFL2011, Debrecen, Hungary, 17-22 Aug, 2011. Institute of Mathematics and Informatics, College of Nyı́regyháza.

[13] A Egri-Nagy and C L Nehaniv. Algebraic properties of automata associated to Petri nets and applications to
computation in biological systems. BioSystems, 94(1-2):135–144, 2008.

[14] A Egri-Nagy and C L Nehaniv. Hierarchical coordinate systems for understanding complexity and its evolution with
applications to genetic regulatory networks. Artificial Life, 14(3):299–312, 2008. (Special Issue on the Evolution
of Complexity),.

[15] A Egri-Nagy and C L Nehaniv. PN2A: Petri Net Analysis GAP Package, 2010. Available from: http:

//sourceforge.net/projects/pn2a/.

[16] A Egri-Nagy, C L Nehaniv, and J D Mitchell. SgpDec – software package for hierarchical coordinatization of groups
and semigroups, implemented in the GAP computer algebra system, Version 0.6.67, 2012. http://sgpdec.sf.net.

[17] A Egri-Nagy, C L Nehaniv, J L Rhodes, and M J Schilstra. Automatic analysis of computation in biochemical
reactions. BioSystems, 94(1-2):126–134, 2008.

[18] S Eilenberg. Automata, Languages, and Machines, Vol B. Academic Press, New York, 1976.

[19] R J Field and R M Noyes. Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical
reaction. Journal of Chemical Physics, 60(5):1877–1884, 1974.

[20] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.5.6, 2012. http://www.gap-system.org.

[21] D T Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical
reactions. Journal of Computational Physics, 22:403–434, 1976.

[22] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25):2340–2361,
1977.

[23] W Holcombe. Algebraic Automata Theory. Cambridge University Press, 1982.

[24] G Horváth. Functions and Polynomials over Finite Groups from the Computational Perspective. The University of
Hertfordshire, PhD Dissertation, 2008.

25

http://files.opaals.eu/OPAALS/Year_3_Deliverables/WP01/
http://files.opaals.eu/OPAALS/Year_3_Deliverables/WP01/
http://www.bionets.eu
http://www.bionets.eu
http://sourceforge.net/projects/pn2a/
http://sourceforge.net/projects/pn2a/
http://sgpdec.sf.net
http://sgpdec.sf.net
http://www.gap-system.org

[25] G Horváth and P Dini. Lie Group Analysis of p53-mdm2 Pathway. In Fernando A B Colugnati, Lia C R Lopes, and
Saulo F A Barretto, editors, Digital Ecosystems: Proceedings of the 3rd International Conference, OPAALS 2010,
pages 285–304, Aracaju, Sergipe, Brazil, 22-23 March, 2010. Springer LNICST.

[26] P E Hydon. Symmetry Methods for Differential Equations: A Beginner’s Guide. Cambridge University Press, 2000.

[27] R E Kalman, P L Falb, and M A Arbib. Topics in Mathematical System Theory. McGraw-Hill, New York, 1969.

[28] S Kauffman. The Origins of Order: Self-Organisation and Selection in Evolution. Oxford University Press, Oxford,
1993.

[29] K Krohn, R Langer, and J Rhodes. Algebraic Principles for the Analysis of a Biochemical System. Journal of
Computer and System Sciences, 1:119–136, 1967.

[30] K Krohn and J Rhodes. Algebraic Theory of Machines. I. Prime Decomposition Theorem for Finite Semigroups
and Machines. Transactions of the American Mathematical Society, 116:450–464, 1965.

[31] Kenneth Krohn, W. D. Maurer, and John Rhodes. Realizing complex boolean functions with simple groups.
Information and Control, 9(2):190–195, 1966.

[32] G Lahav, N Rosenfeld, A Sigal, N Geva-Zatorsky, A J Levine, M B Elowitz, and U Alon. Generation of oscillations
by the p53-mdm2 feedback loop: a theoretical and experimental study. Natural Genetics, 36:147–150, 2004.

[33] R Lev Bar-Or, R Maya, L A Segel, U Alon, A J Levine, and M Oren. Generation of oscillations by the p53-
mdm2 feedback loop: a theoretical and experimental study. Proceedings of the National Academy of Science USA,
97(21):11250–11255, 2000.

[34] O Maler. On the Krohn-Rhodes Cascaded Decomposition Theorem. Web publication. Available from: http:

//www-verimag.imag.fr/~maler/.

[35] N A M Monk. Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Current
Biology, 13(16):1409–1413, 2003.

[36] C L Nehaniv. Algebraic models for understanding: coordinate systems and cognitive empowerment. In Proceedings
of the Second International Conference on Cognitive Technology, 1997: Humanizing the Information Age, pages
147–162, Aizu-Wakamatsu City, Japan, 1997.

[37] C L Nehaniv and J L Rhodes. The Evolution and Understanding of Hierarchical Complexity in Biology from an
Algebraic Perspective. Artificial Life, 6:45–67, 2000.

[38] G Nicolis and I Prigogine. Self-Organization in Nonequilibrium Systems. Wiley, New York, 1977.

[39] E Noether. Invariante Variationsprobleme. Math-Phys Kl, pages 235–257, 1918. English Translation: Transport
Theory and Stat. Phys., 1:186-207, 1971.

[40] R M Noyes, R J Field, and E Körös. Oscillations in Chemical Systems I. Detailed Mechanism in a System Showing
Temporal Oscillations. Journal of the American Chemical Society, 94(4):1394–1395, 1972.

[41] P Olver. Applications of Lie Groups to Differential Equations. Springer, 2nd edition, 1993.

[42] C A Petri. Kommunikation mit Automaten. Schriften des IIM, 2, 1962.

[43] J Rhodes. Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology,
Physics, Psychology, Philosophy, and Games. World Scientific Press, 2010. Foreword by M W Hirsch, edited by C
L Nehaniv (Original version: University of California at Berkeley, Mathematics Library, 1969).

[44] M J Schilstra and S R Martin. Simple stochastic simulation. In L Michael and B Ludwig, editors, Methods in
Enzymology, pages 381–409. Academic Press (Elsevier), 2009.

[45] S Scott. Oscillations, Waves, and Chaos in Chemical Kinetics. Oxford University Press, Oxford, 1994.

[46] H Stephani. Differential equations: Their solution using symmetries. Cambridge University Press, Cambridge,
1989.

[47] A Weinstein. Groupoids: unifying internal and external symmetry. Notices of the American Mathematical Society,
43:744–752, 1996.

[48] H P Zeiger. Cascade synthesis of finite-state machines. Information and Control, 10(4):419–433, 1967.

26

http://www-verimag.imag.fr/~maler/
http://www-verimag.imag.fr/~maler/

	Dini_Exploring_concept_interaction_2013_cover
	Dini_Exploring_concept_interaction_2013_author
	Introduction
	Posing the Problem
	Symmetry

	Research Strategy and Methodology
	Analytical Framework
	Discretization Method

	Krohn-Rhodes Theory
	The Krohn-Rhodes and Holonomy Theorems
	Hierarchical Structure
	Visualization
	Automata as Generalized Number Systems
	Decomposition of Modulo-16 Counter as a 4-Bit Counter Automaton
	Example of Simple Automaton

	Analysis of BZ Reaction
	Oregonator Model
	Further Simplifications
	Results

	Discussion and Outlook
	Conclusion

