"Necessary for" ${ }^{1}$

Giovanna Corsi
Università di Bologna
giovanna.corsi@unibo.it

Abstract

A new language for quantified modal logic is presented in which the modal operators are indexed by terms: "it is necessary for t_{1}, \ldots, t_{n} ". Systems of quantified modal logic are defined in that language and shown to be complete with respect to transition semantics. Formulas such as the Barcan formula, the Ghilardi formula, the necessity of identity can be expressed in a natural way in the new language and are shown to correspond to particular properties of the transition relation.

1 Introduction

Quantified modal logic, as usually understood, is the study of theories in a firstorder language plus the box-operator. Typically, $\square P(x)$ is read
'it is necessary that $P(x)$ '.
A considerable variety of such theories have been studied from the pioneering work of Rudolf Carnap and Ruth Barcan to more recent publications such as [6] and [1]. Some dissatisfaction is still felt in particular when one tries to analyse natural language or to deal with semantical structures more general than Kripke frames. Attempts to build richer modal languages by modifying the underlying first-order language have been made in two directions:

- by adding the λ-abstraction operator so as to distinguish, e.g., between de re vs de dicto sentences, $\lambda x \square P(x)$.i vs $\square P(i)$, ‘The first pilot was necessarily a pilot' vs 'Necessarily, the first pilot was a pilot'.
- by the introduction of a language with types. A wff $\square A: n$ is of type n when the free variables occurring in it, either implicitely or explicitely, are x_{1}, \ldots, x_{n}. Moreover $\square A: n$ is going to be satisfied or not satisfied by n-tuples of elements of the domain. See [2], [4] and [1].

We introduce a new language which combines features of languages with λ abstraction operator and languages with types. $\square P(x)$ is not a well-formed formula anymore since x is free in $P(x)$ and it has to be replaced by

$$
|x| P(x)
$$

to be read as

[^0]'it is necessary for x to be $P(x)$ '.
$|x|$ is a box-operator indexed by x. A more complex form of the box-operator is the following one
$$
\left|{ }_{x}^{i}\right| P(x)
$$

The notation has two roles:

- it binds the variable x
- it says that it is necessary for the individual i to have the property $\lambda x \cdot P(x)$.

Dually,

$$
\left\langle\begin{array}{l}
i \\
x
\end{array}\right\rangle P(x)
$$

says that it is possible for i to have the property $\lambda x . P(x)$. Again,

$$
\left|\begin{array}{ll}
i & i \\
x & j \\
y
\end{array}\right| R(x, y)
$$

says that 'it is necessary for i and j to stand in the relation $\lambda x \lambda y \cdot R(x, y)$ '. This reading emphasizes that the modal operator depends on i and j and it is alternative to ' i and j stand in the relation $\lambda x \lambda y . \square R(x, y)$ '.

Some examples:
$|x y| G(x)$: it is necessary for x and y that x gets a job.
$|x y z| G(x)$: it is necessary for x, y and z that x gets a job.
$\left|{ }_{x}^{m}{ }_{y}^{j}\right| G(x)$: it is necessary for Mary and John that she gets a job.
$|x, y|\langle y\rangle \exists w F(y, w)$: it is necessary for x and y that it is possible for y to have a friend.
$|x, y| \exists w\langle y, w\rangle F(y, w)$: it is necessary for x and y that there is someone of whom y is possibly a friend.

2 A language with indexed modalities

A language \mathcal{L} with indexed modalities is a standard first-order language with identity whose logical symbols are $\perp, \rightarrow, \forall,\left|\begin{array}{|c}t_{1} \\ x_{1}\end{array} \ldots{ }_{x_{n}}^{t_{n}}\right|, n \geq 0$, where x_{1}, \ldots, x_{n} are pairwise distinct variables and t_{1}, \ldots, t_{n} are terms. When $n=0$ we write $|\star|$.
Definition 1 Well-formed formulas and free variables occurring in a wff A, $f v(A)$.

- $\quad \perp$
- $P^{n}\left(t_{1}, \ldots, t_{n}\right)$
- $A \rightarrow B$
- $\left|{ }_{x_{1}}^{t_{1}} \ldots{ }_{x_{n}}^{t_{n}}\right| A$, where

$$
f v(A) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}
$$

- $\forall x A$

$$
f v(\forall x A)=f v(A)-\{x\}
$$

$\neg A, A \vee B, A \wedge B, A \leftrightarrow B, \exists x A,\left\langle t_{t_{1}}^{t_{1}} \ldots{ }_{x_{n}}^{t_{n}}\right\rangle A$ are defined as usual, $\left|x_{1} \ldots x_{n}\right| A$ and $\left\langle x_{1} \ldots x_{n}\right\rangle A$ stand for $\left|\begin{array}{l}x_{1} \\ x_{1}\end{array}{ }_{x_{n}}^{x_{n}}\right| A$ and $\left\langle\begin{array}{l}x_{1} \\ x_{1}\end{array} \ldots{ }_{x_{n}}^{x_{n}}\right\rangle A$, respectively.

Advantages:

- de re / de dicto distinction
$\left|{ }_{x}^{i}\right| P(x)$ is a de re sentence, 'it is necessary for i to be $P(x)$ ', whereas
$|\star| P(i)$ is a de ditto sentence, 'it is necessary that $P(i)$ '.
- substitution

As we shall see in a moment, $\left|{ }_{x}^{t}\right| A$ is nothing but $(|x| A)[t / x]$; substitution is indicated inside the modality, it is not carried out in A. Substitution does not commute in general with modalities; actually, the modal operators prevent substitution from being performed in the formula that follows them.

- a richer language

In a language with λ operator, $\lambda y(\lambda x \square P(x) . m) \cdot j$ is equivalent to $\lambda x \square P(x) . m$ by λ-conversion, whereas their corresponding wffs $\left.\right|_{y} ^{j},{ }_{x}^{m} \mid P(x)$ and $\left|{ }_{x}^{m}\right| P(x)$ are not equivalent.

3 Transition semantics, t-semantics.

Given a frame $\mathcal{F}=\langle W, R\rangle$, where $W \neq \emptyset$ and $R \subseteq W^{2}$, a system of domains over \mathcal{F}^{2} is a triple $\langle W, R, D\rangle$, where D is a function such that $D_{w} \neq \emptyset$, for each $w \in W . D_{w}$ is said to be the domain of w. Domains are interrelated by the transition relation

$$
\text { if } \quad w R v \quad \text { then } \quad \mathcal{T}_{\langle w, v\rangle} \subseteq D_{w} \times D_{v}
$$

If $a \mathcal{T}_{\langle w, v\rangle} b$, then b is said to be an inheritor of a in v, or a counterpart of a in v.

Figure 1:

Definition $2 A$ transition frame or a t-frame, \mathcal{F}^{t}, is a quadruple $\langle W, R, D, \mathcal{T}\rangle$ where $\langle W, R, D\rangle$ is a system of domains and $\mathcal{T}=\biguplus_{w, v \in W}\left\{\mathcal{T}_{\langle w, v\rangle}\right\}$, where $\mathcal{T}_{\langle w, v\rangle}$ is defined as above.

[^1]Particular cases of \mathcal{T} :

\mathcal{T} is a	total	relation	Kripke bundles
	surjective	relation	
	partial	function	
	total	function	Kripke sheaves
	$1-1$	function	
	inclusion		Kripke frames with increasing domains

Definition 3 At-model \mathcal{M} for \mathcal{L} based on a t-frame $\mathcal{F}^{t}=\langle W, R, D, \mathcal{T}\rangle$ is a pair $\left\langle\mathcal{F}^{t}, I\right\rangle$, where I is a function such that for all $w \in W, I_{w}$ is an interpretation function relative to w such that:

- for all relations $P^{n}, I_{w}\left(P^{n}\right) \subseteq\left(D_{w}\right)^{n}$
- $I_{w}(=)=\left\{\langle a, a\rangle: a \in D_{w}\right\}$
- for all constants $i, I_{w}(i) \in D_{w}$
- for all functions $f^{n}, I_{w}\left(f^{n}\right):\left(D_{w}\right)^{n} \rightarrow D_{w}$.

Rigid designators

In the context of a t-model, an individual constant i is a rigid designator iff if $I_{w}(i)=a$ and $w R v$, then $I_{v}(i)$ is one of the inheritors of a in v. In the above example, $I_{v}(i)$ is one among $\left\{c, b^{\prime}, b\right\} .{ }^{3}$ So terms are rigid designators iff:

- if $w R v$ then $I_{w}(i) \mathcal{T}_{\langle w, v\rangle} I_{v}(i)$
and
- if $a_{i} \mathcal{T}_{\langle w, v\rangle} b_{i}, 1 \leq i \leq n$, then $\left(I_{w}\left(f^{n}\right)\right)\left(a_{1}, \ldots, a_{n}\right) \mathcal{T}_{\langle w, v\rangle}\left(I_{v}\left(f^{n}\right)\right)\left(b_{1}, \ldots, b_{n}\right)$

Definition 4 Assignments are world-relative functions $\sigma: V A R \rightarrow D_{w}$. Where σ is a w-assignment, by $\sigma^{x \triangleright d}$ we denote the w-assignment that behaves exactly like σ except that the variable x is mapped to $d \in D_{w}$.

Definition 5 Interpretation of terms. Given a w-assignment σ, the interpretation of t in w under $\sigma, I_{w}^{\sigma}(t)$, is so defined

- $I_{w}^{\sigma}(x)=\sigma(x)$
- $I_{w}^{\sigma}(i)=I_{w}(i)$
- $I_{w}^{\sigma}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=I_{w}(f)\left(I_{w}^{\sigma}\left(t_{1}\right), \ldots, I_{w}^{\sigma}\left(t_{n}\right)\right)$.

[^2]When w and I are clear from the context, we write $\sigma(t)$ instead of $I_{w}^{\sigma}(t)$.
Definition 6 Simultaneous substitution for terms. Given a term t containing the free variables x_{1}, \ldots, x_{k}, we define the term $t\left[s_{1} / x_{1} \ldots s_{k} / x_{k}\right]$ where s_{i} is substituted for $x_{i}, 1 \leq i \leq k$. Let $[\mathbf{s} / \mathbf{x}]={ }_{d f}\left[s_{1} / x_{1} \ldots s_{k} / x_{k}\right]$.

- $t=y$

$$
y[\mathbf{s} / \mathbf{x}]= \begin{cases}y & \text { if } y \neq x_{i}, \text { for all } i, 1 \leq i \leq k \\ s_{i} & \text { if } y=x_{i} \text { for some } i, 1 \leq i \leq k\end{cases}
$$

- $t=i$

$$
i[\mathbf{s} / \mathbf{x}]=i
$$

- $t=f\left(t_{1}, \ldots, t_{n}\right)$

$$
f\left(t_{1}, \ldots, t_{n}\right)[\mathbf{s} / \mathbf{x}]=f\left(t_{1}[\mathbf{s} / \mathbf{x}], \ldots, t_{n}[\mathbf{s} / \mathbf{x}]\right)
$$

Lemma 1 Interpretation and substitution for terms. Let t and s be terms and σ be a w-assignment. Then

$$
\sigma(t[s / x]) \quad=\quad \sigma^{x \triangleright \sigma(s)}(t)
$$

If z doesn't not occur in t,

$$
\sigma^{z \triangleright a}(t[z / x]) \quad=\quad \sigma^{x \triangleright a}(t)
$$

Proof By induction on t.

$$
\begin{array}{lll}
t=x & \sigma^{x \triangleright \sigma(s)}(x)=\sigma(s)=\sigma(x[s / x]) \\
t=z \neq x & \sigma^{x \triangleright \sigma(s)}(z)=\sigma(z)=\sigma(z[s / x]) \\
t=i & \sigma^{x \triangleright \sigma(s)}(i)=\sigma(i)=\sigma(i[s / x]) \\
t=f\left(t_{1}, \ldots, t_{n}\right) & \sigma^{x \triangleright \sigma(s)}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & = \\
& \left.\left(I_{w}(f)\right)\left(\sigma^{x \triangleright \sigma(s)}\left(t_{1}\right), \ldots, \sigma^{x \triangleright \sigma(s)}\left(t_{n}\right)\right)\right) & = \\
& \left(I_{w}(f)\right)\left(\sigma\left(t_{1}[s / x]\right), \ldots, \sigma\left(t_{n}[s / x]\right)\right) & = \\
& \sigma\left(f\left(t_{1}[s / x], \ldots, t_{n}[s / x]\right)\right)=\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)[s / x]\right)
\end{array}
$$

Let z not occur in $t . \sigma^{z \triangleright a}(t[z / x])=\sigma^{z \triangleright a, x \triangleright \sigma^{z \triangleright a}(z)}(t)=\sigma^{z \triangleright a, x \triangleright a}(t)=\sigma^{x \triangleright a}(t)$, since z doesn't occur in t.

Definition 7 Satisfaction for formulas. We define when a wff A is satisfied at w under σ in a t-model $\mathcal{M}, \sigma \models_{w}^{\mathcal{M}} A$.

$$
\begin{aligned}
& \sigma \not \forall_{w}^{\mathcal{M}} \perp \\
& \sigma \models_{w}^{\mathcal{M}} P^{k}\left(t_{1} \ldots t_{k}\right) \quad \text { iff } \quad\left\langle\sigma\left(t_{i}\right), \ldots, \sigma\left(t_{k}\right)\right\rangle \in I_{w}\left(P^{k}\right) \\
& \sigma \models_{w}^{\mathcal{M}} B \rightarrow G \quad \text { iff } \quad \sigma \not \models_{w}^{\mathcal{M}} B \text { or } \sigma \models_{w}^{\mathcal{M}} G \\
& \sigma \models_{w}^{\mathcal{M}} \forall x G \quad \text { iff } \quad \text { for all } d \in D_{w}, \sigma^{x \triangleright d} \models_{w}^{\mathcal{M}} G \\
& \sigma \models_{w}^{\mathcal{M}}\left|{ }_{x_{1}}^{t_{1}} \ldots{ }_{x_{n}}^{t_{n}}\right| G \quad \text { iff for all } v, w R v \text { and all } v \text {-assignments } \tau \text {, such } \\
& \text { that } \sigma\left(t_{i}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{i}\right), 1 \leq i \leq n, \tau \models_{v}^{\mathcal{M}} G \\
& \text { Consequently, } \\
& \sigma \models_{w}^{\mathcal{M}}\left\langle\begin{array}{l}
t_{1} \\
x_{1}
\end{array} \ldots x_{x_{n}}^{t_{n}}\right\rangle G \quad \text { iff } \quad \text { for some } v, w R v \text { and for some } v \text {-assignment } \tau \\
& \text { such that } \sigma\left(t_{i}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{i}\right), 1 \leq i \leq n, \tau \models_{v}^{\mathcal{M}} G
\end{aligned}
$$

When no ambiguity can arise, we write $\sigma \models_{w} A$ instead of $\sigma \models_{w}^{\mathcal{M}} A$.
A is true at w in $\mathcal{M}, \models_{w}^{\mathcal{M}} A$, iff for all w-assignments $\sigma, \sigma \models_{w}^{\mathcal{M}} A$.
A is true in $\mathcal{M}, \not \models^{\mathcal{M}} A$, iff $\models_{w}^{\mathcal{M}} A$ for all $w \in W$.
A is valid on a t-frame $\mathcal{F}^{t}, \mathcal{F}^{t} \models A$, iff $\models{ }^{\mathcal{M}} A$ for all models \mathcal{M} based on \mathcal{F}^{t}. A is t-valid, $t \models A$, iff $\mathcal{F}^{t} \models A$, for all t-frames \mathcal{F}^{t}.

An idea which is at the basis of the above definition of satisfaction is that only the worlds where an individual exist or its inheritors exist do matter in order to establish its modal properties, for

$$
\sigma \models_{w}^{\mathcal{M}}\left|{ }_{x}^{i}\right| P(x)
$$

iff all the inheritors of $\sigma(i)$ in all related worlds satisfy $P(x)$. Worlds where there are no inheritors of $\sigma(i)$ are not taken into consideration. It turns out that inferences such as

$$
\frac{\sigma \models_{w}|x y| Q(x, y) \quad \sigma \models_{w}|x y|(Q(x, y) \rightarrow A(y))}{\sigma \models_{w}|y| A(y)}
$$

are not valid. Let $\sigma(x)=a$ and $\sigma(y)=b$. Suppose it is true in w that " a always quarrels with b " and that "every time that a quarrels with b, then b gets angry", but from this it doesn't follows that " b is always angry", for b may not be angry in those worlds where a is absent. ${ }^{4}$

de re vs de dicto modalities

There is an intuitive sense according to which the truth conditions for $\left.\right|_{x} ^{i} \mid P(x)$ are different from those for $|\star| P(i)$: in one case it is said that "it is necessary for i to have the property $P(x)$ ", in the other, the necessity of a sentence is asserted. In transition semantics we do justice to this difference in the following obvious way: in the first case, first we interpret i in the actual world (or the world we are in) and then we see if all its inheritors in all accessible worlds (where they exist) do satisfy the property $P(x)$, in the second case, we first consider all worlds accessible from the actual one and then check if the interpretation of i in those worlds satisfies

[^3]$P(x)$. This semantical analysis parallels that of Fitting, [5], p.114: "In short, there are two basic actions: letting i designate, and moving to an alternative world. These two actions commute only if i is a rigid designator. Ordinary first-order modal syntax has no machinery to distinguish the two alternative readings of $\square P(i)$. Consequently when non-rigid designators have been treated at all, one of the readings has been disallowed, thus curtailing expressive power.". According to Fitting, if i is a rigid designator then $\left.\right|_{x} ^{i} \mid P(x) \leftrightarrow \square P(i)$ holds, or, in his notation, the equivalence $\lambda x(\square P(x))(i) \leftrightarrow \square[\lambda x \cdot P(x)(i)]$ holds. We are going to disagree on this point, for we shall show that the failure of the equivalence ${ }_{x}^{i}|P(x) \leftrightarrow| \star \mid P(i)$ does not depend on i being a non-rigid designator: in transition semantics this equivalence does not hold for rigid designators either.

Rigid designators

If i is a rigid designator, the implication $\left.\right|_{x} ^{i}|P(x) \rightarrow| \star \mid P(i)$ is t-valid, whereas $|\star| P(i) \rightarrow{ }_{x}^{i} \mid P(x)$ admits of countermodels. The t-validity of $\left.\right|_{x} ^{i}|P(x) \rightarrow| \star \mid P(i)$ is shown as follows. $\left.\sigma \models_{w}\right|_{x} ^{i} \mid P(x)$ iff for all v such that $w R v$ and for all v assignment τ such that $\tau(x)$ is an inheritor of $I_{w}(i)$ in $D_{v}, \tau \models_{v} P(x)$. Since i is a rigid designator, $I_{v}(i)$ is one of the inheritors of $I_{w}(i)$, therefore if τ is such that $\tau(x)=I_{v}(i)$, then $\tau(x) \in I_{v}(P)$, hence $I_{v}(i) \in I_{v}(P)$, so for all $v, w R v$ and all v-assignment $\tau, \tau \not \models_{v} P(i)$, consequently $\sigma \models_{w}|\star| P(i)$.

A countermodel for $\left.|\star| P(i) \rightarrow\right|_{x} ^{i} \mid P(x)$ can be readily constructed: assume that v is the only world related to w and that $I_{v}(i) \in I_{v}(P)$, so for all $v \cdot w R v$. and all v-assignment $\tau, \tau \models_{v} P(i)$, therefore $\sigma \models_{w}|\star| P(i)$. Assume moreover that $I_{w}(i)$ has two distinct inheritors in v, namely $I_{v}(i)$ and c and that $c \notin I_{v}(P)$, consequently there is a v-assignment τ such that $\tau(x)=c$ hence $\tau \not \vDash_{v} P(x)$, and so $\sigma\left|\not{ }_{w}\right|_{x}^{i} \mid P(x)$.

Variables are rigid designators so, in particular

$$
\left|{ }_{x_{1}}^{y} \ldots{\underset{x}{n}}_{y}^{y}\right| P\left(x_{1}, \ldots, x_{n}\right) \rightarrow|y|(P(y, \ldots, y)
$$

is t-valid.
Let $w R v$ and τ be a v-assignment. If $\sigma \models_{w}\left|\underset{x_{1}}{y} \ldots{\underset{x}{n}}_{y}^{y}\right| P\left(x_{1}, \ldots, x_{n}\right)$, then $P\left(x_{1}, \ldots, x_{n}\right)$ is satisfied in v by any n-tuple of inheritors of $\sigma(y)$, therefore it is satisfied in v by the n-tuple $\langle\tau(y), \ldots, \tau(y)\rangle$, for some particular inheritor $\tau(y)$.

Stable designators

The validity of $|\star| P(i) \rightarrow{ }_{x}^{i} \mid P(x)$ requires the assumption that $I_{w}(i)$ has at most one inheritor in any related world v and that the inheritor (if any) in v of $I_{w}(i)$ coincides with $I_{v}(i)$.

An individual constant i is stable iff

- if $w R v$ and $I_{w}(i) \mathcal{T}_{\langle w, v\rangle} c$ then $I_{v}(i)=c$.

If an individual constant i is stable, then in particular

$$
\left|x_{1} \ldots x_{n}\right| A\left(x_{1}, \ldots, x_{n}, i\right) \rightarrow\left|x_{1} \ldots x_{n}{ }_{x}^{i}\right| A\left(x_{1}, \ldots, x_{n}, x\right)
$$

is t-valid.
Definition 8 Simultaneous substitution for formulas. Given a wff A containing the free variables x_{1}, \ldots, x_{k}, we define the wff $A\left[s_{1} / x_{1} \ldots s_{k} / x_{k}\right]$ where s_{i} is substituted for $x_{i}, 1 \leq i \leq k$. Let $[\mathbf{s} / \mathbf{x}]={ }_{d f}\left[s_{1} / x_{1} \ldots s_{k} / x_{k}\right]$.

- $\perp[\mathrm{s} / \mathrm{x}]=\perp$
- $\left(P^{n} t_{1}, \ldots, t_{n}\right)[\mathbf{s} / \mathbf{x}]=P^{n} t_{1}[\mathbf{s} / \mathbf{x}], \ldots, t_{n}[\mathbf{s} / \mathbf{x}]$
- $(A \rightarrow B)[\mathbf{s} / \mathbf{x}]=(A[\mathbf{s} / \mathbf{x}] \rightarrow B[\mathbf{s} / \mathbf{x}])$
- $(\forall y A)[\mathbf{s} / \mathbf{x}]=$

$$
= \begin{cases}\forall y A & \text { if } y \in \mathbf{x} \\ \forall z((A[z / y])[s / x]) & \text { if } y \notin \mathbf{x} \text { and } y \in \mathbf{s} \\ \forall y(A[s / x]) & \text { wherez doesn't occur in } \forall y A \\ \text { if } y \notin \mathbf{x} \text { and } y \notin \mathbf{s}\end{cases}
$$

- $\left(\left|{ }_{y_{1}}^{t_{1}} \ldots{ }_{y_{n}}^{t_{n}}\right| A\right)[\mathbf{s} / \mathbf{x}]=\left.\right|_{y_{1}} ^{t_{1}[\mathbf{s} / \mathbf{x}]} \ldots{\underset{y_{n}}{t_{n}}[\mathbf{s} / \mathbf{x}]} \mid A$, in particular
- $\left(\left|x_{1} \ldots x_{k}\right| A\right)\left[s_{1} / x_{1} \ldots s_{k} / x_{k}\right]=\left|{ }_{x_{1}}^{s_{1}} \ldots{ }_{x_{k}}^{s_{k}}\right| A$

Lemma 2 Let A be a wff and z a variable that doesn't occur in A. For all t-models \mathcal{M} and w-assignments σ,

$$
\sigma^{x \triangleright a} \models{ }_{w} A \quad \text { iff } \quad \sigma^{z \triangleright a} \models_{w} A[z / x] .
$$

Proof By induction on A.
$\sigma^{z \triangleright a} \models{ }_{w} P\left(t_{1}, \ldots, t_{n}\right)[z / x]$ iff $\sigma^{z \triangleright a} \models_{w} P\left(t_{1}[z / x], \ldots, t_{n}[z / x]\right)$ iff $\left\langle\sigma^{z \triangleright a}\left(t_{1}[z / x]\right), \ldots, \sigma^{z \triangleright a}\left(t_{n}[z / x]\right)\right\rangle \in I_{w}(P)$ iff by lemma $1,\left\langle\sigma^{x \triangleright a}\left(t_{1}\right), \ldots, \sigma^{x \triangleright a}\left(t_{n}\right)\right\rangle \in$ $I_{w}(P) \quad$ iff $\quad \sigma^{x \triangleright a} \models_{w} P\left(t_{1}, \ldots, t_{n}\right)$.
$\sigma^{z \triangleright a} \models_{w}\left(| |_{x_{1}}^{t_{1}} \ldots{\stackrel{t}{x_{n}}}_{t_{n}}^{T} \mid A\right)[z / x] \quad$ iff $\left.\quad \sigma^{z \triangleright a} \models_{w}\right|_{x_{1}} ^{t_{1}[z / x]} \ldots x_{n}^{t_{n}[z / x]} \mid A$ iff $\tau \neq_{v} A$, where $\sigma^{z \triangleright a}\left(t_{1}[z / x]\right) \stackrel{x_{\mathcal{T}}}{x_{1}}\left(x_{1}\right) \ldots \sigma^{z \triangleright a}\left(t_{n}[z / x]\right) \mathcal{T} \tau\left(x_{n}\right)$, therefore, by lemma 1, $\sigma^{x \triangleright a}\left(t_{1}\right) \mathcal{T} \tau\left(x_{1}\right) \ldots \sigma^{x \triangleright a}\left(t_{n}\right) \mathcal{T} \tau\left(x_{n}\right)$, so $\sigma^{x \triangleright a} \models_{w}| |_{x_{1}}^{t_{1}} \ldots x_{x_{n}}^{t_{n}} \mid A$

Lemma 3 (Alphabetic change of bound variables) Let A be a wff and z be a variable not occurring in A.

$$
\sigma \models_{w} \forall x A \quad \text { iff } \quad \sigma \models_{w} \forall z(A[z / x])
$$

Proof $\sigma \neq_{w} \forall x A$ iff $\sigma^{x \triangleright a} \models_{w} A$ for all $a \in D_{w}$ iff (by lemma 2) $\sigma^{z \triangleright a} \models_{w}$ $A[z / x]$ for all $a \in D_{w}$ iff $\sigma \models_{w} \forall z(A[z / x])$.

Lemma 4 Substitution and satisfaction for formulas. Let σ be a w-assignment.

$$
\sigma \models_{w} A[s / x] \quad \text { iff } \quad \sigma^{x \triangleright \sigma(s)} \models_{w} A
$$

Proof By induction on A.

- $A=P^{n}\left(t_{1}, \ldots, t_{n}\right)$ $\sigma^{x \triangleright \sigma(s)} \models{ }_{w} P^{n}\left(t_{1}, \ldots, t_{n}\right)$ iff $\left\langle\sigma^{x \triangleright \sigma(s)}\left(t_{1}\right), \ldots, \sigma^{x \triangleright \sigma(s)}\left(t_{n}\right)\right\rangle \in I_{w}\left(P^{n}\right)$ iff $\left\langle\sigma\left(t_{1}[s / x]\right), \ldots, \sigma\left(t_{n}[s / x]\right)\right\rangle \in I_{w}\left(P^{n}\right) \quad$ iff $\quad \sigma \models_{w} P^{n}\left(t_{1}[s / x], \ldots, t_{n}[s / x]\right)$ iff $\sigma \neq_{w} P^{n}\left(t_{1}, \ldots, t_{n}\right)[s / x]$.
- $A=\forall y B$
$\sigma^{x \triangleright \sigma(s)} \models_{w} \forall y B \quad$ iff \quad for all $d \in D_{w}, \sigma^{x \triangleright \sigma(s), y \triangleright d} \models_{w} B \quad$ iff for all $d \in D_{w}, \sigma^{y \triangleright d, x \triangleright \sigma(s)} \models_{w} B$ iff, by induction hypothesis, for all $d \in D_{w}$, $\sigma^{y \triangleright d} \models_{w} B[s / x] \quad$ iff $\quad \sigma \models_{w} \forall y(B[s / x]) \quad$ iff by def. of substitution $\sigma \models{ }_{w}(\forall y B)[s / x]$.
- $A=\left|{ }_{y_{1}}^{t_{1}} \ldots y_{y_{n}}^{t_{n}}\right| B$
$\left.\sigma^{x \triangleright \sigma(s)} \models_{w}\right|_{y_{1}} ^{t_{1}} \ldots{ }_{y_{n}}^{t_{n}} \mid B$ iff for all v-assignment τ such that $\sigma^{x \triangleright \sigma(s)}\left(t_{i}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(y_{i}\right)$,
$1 \leq i \leq n, \tau \mid={ }_{v} B$ iff for all v-assignment τ such that $\sigma\left(t_{i}[s / x]\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(y_{i}\right)$,
$1 \leq i \leq n,\left.\sigma \models_{v}\right|_{y_{1}} ^{t_{1}[s / x]} \ldots y_{y_{n}}^{t_{n}[s / x]} \mid B \quad$ iff $\quad \sigma \models_{v}\left(| |_{y_{1}}^{t_{1}} \ldots y_{y_{n}}^{t_{n}} \mid B\right)[s / x]$.

3.1 Relevant formulas

PRM (Permutation)

$$
\left|x_{1} \ldots x_{n}\right| A \leftrightarrow\left|x_{i_{1}} \ldots x_{i_{n}}\right| A
$$

for any permutation $x_{i_{1}} \ldots x_{i_{n}}$ of $x_{1} \ldots x_{n}$.
RG (Rigidity of terms)

$$
\left|{ }_{x_{1}}^{t_{1}} \ldots x_{x_{n}}^{t_{n}}\right| A \rightarrow\left|v_{1} \ldots v_{k}\right|\left(A\left[t_{1} / x_{1} \ldots t_{n} / x_{n}\right]\right)
$$

where $v_{1} \ldots v_{k}$ are all the variables occurring in $t_{1} \ldots t_{n}$.
$\mathbf{R G}^{v}$ (Rigidity of variables)

$$
\left|{ }_{x_{1}}^{y_{1}} \ldots{ }_{x_{n}}^{y_{n}}\right| A \rightarrow\left|y_{1} \ldots y_{k}\right|\left(A\left[y_{1} / x_{1} \ldots y_{n} / x_{n}\right]\right)
$$

where $y_{1} \ldots y_{k}$ are the variables $y_{1} \ldots y_{n}$ without repetitions.
RNM (Renaming)

$$
\left.\left|x_{1} \ldots x_{n}\right| A\left(x_{1} \ldots x_{n}\right) \rightarrow\right|_{y_{1}} ^{x_{1}} \ldots{ }_{y_{n}}^{x_{n}} \mid\left(A\left[y_{1} / x_{1} \ldots y_{n} / x_{n}\right]\right)
$$

where $y_{1} \ldots y_{n}$ are pairwise distinct variables.
BF (Barcan Formula)

$$
\forall z\left|x_{1} \ldots x_{n}, z\right| A \rightarrow\left|x_{1} \ldots x_{n}\right| \forall z A
$$

CBF (Converse of Barcan Formula)

$$
\left|x_{1} \ldots x_{n}\right| \forall z A \rightarrow \forall z\left|x_{1} \ldots x_{n}, z\right| A
$$

GF (Ghilardi Formula)

$$
\exists z\left|x_{1} \ldots x_{n}, z\right| A \rightarrow\left|x_{1} \ldots x_{n}\right| \exists z A
$$

CGF (Converse of Ghilardi Formula)

$$
\left|x_{1} \ldots x_{n}\right| \exists z A \rightarrow \exists z\left|x_{1} \ldots x_{n}, z\right| A
$$

SHRT (Shortening)

$$
\left|x_{1} \ldots x_{n}, z\right| A \rightarrow\left|x_{1} \ldots x_{n}\right| A
$$

LNGT (Lenghtening)

$$
\left|x_{1} \ldots x_{n}\right| A \rightarrow\left|x_{1} \ldots x_{n}, z\right| A
$$

CRG (Converse of RG)

$$
\left|v_{1} \ldots v_{k}\right|\left(A\left[t_{1} / x_{1} \ldots t_{n} / x_{n}\right]\right) \rightarrow\left|{ }_{x_{1}}^{t_{1}} \ldots x_{x_{n}}^{t_{n}}\right| A
$$

where v_{1}, \ldots, v_{k} are all the variables occurring in t_{1}, \ldots, t_{n}.
$\mathbf{C R G}^{v}$ (Converse of RG^{v})

$$
\left|y_{1} \ldots y_{k}\right|\left(A\left[y_{1} / x_{1} \ldots y_{n} / x_{n}\right]\right) \rightarrow\left|{ }_{x_{1}}^{y_{1}} \ldots{ }_{x_{n}}^{y_{n}}\right| A
$$

where $y_{1} \ldots y_{k}$ are the variables $y_{1} \ldots y_{n}$ without repetitions.
SIV (Substitution that Identifies Variables)

$$
\left|v_{1} \ldots v_{k}\right|\left(A\left[y / x_{1}, y / x_{2}, t_{3} / x_{3} \ldots t_{n} / x_{n}\right]\right) \rightarrow\left|\begin{array}{|ccc}
y & y & t_{3} \\
x_{1} & x_{2} & x_{3}
\end{array} \ldots x_{x_{n}}^{t_{n}}\right| A
$$

where v_{1}, \ldots, v_{k} are all the variables occurring in y, t_{3}, \ldots, t_{n}.
FCS (Full Commutativity of Substitution)

$$
\left|v_{1} \ldots v_{k}\right|\left(A\left[t_{1} / x_{1} \ldots t_{n} / x_{n}\right]\right) \leftrightarrow\left|\left.\right|_{x_{1}} ^{t_{1}} \ldots x_{x_{n}}^{t_{n}}\right| A
$$

where v_{1}, \ldots, v_{k} include all the variables occurring in t_{1}, \ldots, t_{n}.
NI (Necessity of Identity)

$$
x=y \rightarrow|x, y|(x=y)
$$

ND (Necessity of Distinction)

$$
x \neq y \rightarrow|x, y|(x \neq y)
$$

LBZ (Leibniz's law)

$$
t=s \rightarrow(A[t / x] \rightarrow A[s / x])
$$

4 A quantified modal logic with indexed modalities: $Q . K_{i m}$.

Axioms

Tautologies

PRM

$$
\left|x_{1} \ldots x_{n}\right| A \leftrightarrow\left|x_{i_{1}} \ldots x_{i_{n}}\right| A
$$

for any permutation $x_{i_{1}} \ldots x_{i_{n}}$ of $x_{1} \ldots x_{n}$

K
$\left|x_{1} \ldots x_{n}\right|(A \rightarrow B) \rightarrow\left(\left|x_{1} \ldots x_{n}\right| A \rightarrow\left|x_{1} \ldots x_{n}\right| B\right)$
UI $\quad \forall x A \rightarrow A$
LNGT
$\left|x_{1} \ldots x_{n}\right| A \rightarrow\left|x_{1} \ldots x_{n}, z\right| A$
$\mathrm{RG}^{v} \quad\left|\begin{array}{l}y_{1} \\ x_{1}\end{array} \ldots{ }_{x_{n}}^{y_{n}}\right| A \rightarrow\left|y_{1} \ldots y_{k}\right|\left(A\left[y_{1} / x_{1} \ldots y_{n} / x_{n}\right]\right)$
where $y_{1} \ldots y_{k}$ are the variables $y_{1} \ldots y_{n}$ without repetitions. ${ }^{5}$
ID
$x=x$

LBZ
$t=s \rightarrow(A[t / x] \rightarrow A[s / x])$

Inference rules

$$
\begin{array}{ll}
\frac{A \quad A \rightarrow B}{B} & \text { Modus Ponens (MP) } \\
\frac{A}{\left|x_{1} \ldots x_{n}\right| A} & \text { Necessitation (N), provided }\left\{x_{1}, \ldots, x_{n}\right\} \supseteq f v(A) . \\
\frac{A \rightarrow B}{A \rightarrow \forall x B} & \text { Universal Generalization }(\mathrm{UG}), \text { provided } x \notin f v(A) . \\
\frac{A}{A[s / x]} & \text { Substitution for Free Variables (SFV) }
\end{array}
$$

Theorem 1 (Soundness.) Every theorem of $Q . K_{i m}$ is t-valid. Every theorem of $R . K_{i m}=Q . K_{i m}+R G$ is true in all t-models with rigid designators based on any t-frame.

Some derivations

[^4]Q. $K_{i m} \vdash \mathrm{RNM}$
\[

$$
\begin{aligned}
& \left|y_{x_{1}}^{y_{1}} \ldots x_{n}^{y_{n}}\right| A \rightarrow\left|y_{1} \ldots y_{n}\right|\left(A\left[y_{1} / x_{1} \ldots y_{n} / x_{n}\right]\right) \\
& \left(\left|y_{1} x_{1} \ldots y_{n}\right| A\right)\left[x_{1} \ldots x_{n} / y_{1} \ldots y_{n}\right] \rightarrow\left(\left|y_{1} \ldots y_{n}\right|\left(A\left[y_{1} / x_{1} \ldots y_{n} / x_{n}\right]\right)\right)\left[x_{1} \ldots x_{n} / y_{1} \ldots y_{n}\right] \\
& \left|x_{1} \ldots x_{n}\right| A \rightarrow{ }_{y_{1}}^{x_{1}} \ldots y_{n} \mid\left(A\left[y_{1} / x_{1} \ldots y_{n} / x_{n}\right]\right)
\end{aligned}
$$
\]

where $y_{1} \ldots y_{n}$ are pairwise distinct variables not occurring in A.

$$
\begin{aligned}
& Q . K_{i m}+L N G T \vdash C B F \\
& \forall x A(\vec{x}, x) \rightarrow A(\vec{x}, x)
\end{aligned}
$$

$$
|\vec{x}, x| \forall x A(\vec{x}, x) \rightarrow|\vec{x}, x| A(\vec{x}, x) \quad \mathrm{N}
$$

$$
|\vec{x}| \forall x A(\vec{x}, x) \rightarrow|\vec{x}, x| A(\vec{x}, x) \quad \text { LNGT }
$$

$$
|\vec{x}| \forall x A(\vec{x}, x) \rightarrow \forall x|\vec{x}, x| A(\vec{x}, x) \quad \text { UG }
$$

$$
Q . K_{i m}+C B F \vdash L N G T
$$

$$
A(\vec{x}) \rightarrow A(\vec{x}) \quad \text { ID }
$$

$$
A(\vec{x}) \rightarrow \forall x A(\vec{x}) \quad x \notin A \quad \text { UG }
$$

$$
|\vec{x}| A(\vec{x}) \rightarrow|\vec{x}| \forall x A(\vec{x}) \quad \mathrm{N}
$$

$$
|\vec{x}| A(\vec{x}) \rightarrow \forall x|\vec{x}, x| A(\vec{x}) \quad \mathrm{CBF}
$$

$$
|\vec{x}| A(\vec{x}) \rightarrow|\vec{x}, x| A(\vec{x}) \quad \text { UI }
$$

$$
Q . K_{i m}+S H R T \vdash G F
$$

$$
A(\vec{x}, x) \rightarrow \exists x A(\vec{x}, x)
$$

$$
|\vec{x}, x| A(\vec{x}, x) \rightarrow|\vec{x}, x| \exists x A(\vec{x}, x)
$$

$$
|\vec{x}, x| A(\vec{x}, x) \rightarrow|\vec{x}| \exists x A(\vec{x}, x)
$$

$$
\exists x|\vec{x}, x| A(\vec{x}, x) \rightarrow|\vec{x}| \exists x A(\vec{x}, x)
$$

$$
Q . K_{i m}+G F \vdash S H R T
$$

$$
\neg A \rightarrow \neg A
$$

$$
\neg A \rightarrow \forall x \neg A \quad x \notin A
$$

$$
\exists x A(\vec{x}) \rightarrow A(\vec{x})
$$

$$
|\vec{x}| \exists x A(\vec{x}) \rightarrow|\vec{x}| A(\vec{x}) \quad \mathrm{N}
$$

$$
\exists x|\vec{x}, x| A(\vec{x}) \rightarrow|\vec{x}| A(\vec{x}) \quad \quad \mathrm{GF}
$$

$$
|\vec{x}, x| A(\vec{x}) \rightarrow \exists x|\vec{x}, x| A(\vec{x}) \quad \text { from UI }
$$

$$
|\vec{x}, x| A(\vec{x}) \rightarrow|\vec{x}| A(\vec{x})
$$

trans.
$Q . K_{i m}+S I V \vdash N I$
$x=x \quad$ ID

$$
|x|(x=x) \quad \mathrm{N}
$$

$$
|x|((x=y)[x / x, x / y]) \rightarrow\left|\begin{array}{l}
x, x \\
x, y
\end{array}\right|(x=y) \quad \text { SIV }
$$

$$
|x|(x=x) \rightarrow\left|\begin{array}{l}
x, x \\
x, y
\end{array}\right|(x=y)
$$

$$
\left|\begin{array}{l}
x, x \\
x, y
\end{array}\right|(x=y) \quad \text { MP }
$$

$$
\left|\begin{array}{l}
x, x \\
x, y
\end{array}\right|(x=y) \rightarrow\left(x=y \rightarrow\left|\begin{array}{l}
x, y \\
x, y
\end{array}\right|(x=y)\right) \quad \text { LBZ }
$$

$$
x=y \rightarrow|x, y|(x=y) \quad \text { MP }
$$

$$
Q \cdot K_{i m}+N I \vdash S I V
$$

Let $B(x, y)$ be given, and, for simplicity's sake, let us assume it to be atomic.

$x=y \rightarrow(B(x, x) \rightarrow B(x, y))$	LBZ
$\|x y\|(x=y) \rightarrow(\|x y\| B(x, x) \rightarrow\|x y\| B(x, y))$	N
$(x=y) \rightarrow\|x y\|(x=y)$	NI
$(x=y) \rightarrow(\|x y\| B(x, x) \rightarrow\|x y\| B(x, y))$	
$\begin{aligned} & (x=y)[x / x, x / y] \rightarrow(\|x y\|(B(x, x))[x / x, x / y] \rightarrow \\ & \quad(\|x y\| B(x, y))[x / x, x / y]) \end{aligned}$	SFV
$(x=x) \rightarrow\left(\left.\begin{array}{ll}x & x \\ x & y\end{array}\|B(x, x) \rightarrow\| \begin{array}{ll}x & x \\ x & y\end{array} \right\rvert\, B(x, y)\right)$	
($x=x$)	ID
$\left\|\begin{array}{ll}x & x \\ x & y\end{array}\right\| B(x, x) \rightarrow\left\|\begin{array}{ll}x & x \\ x & y\end{array}\right\| B(x, y)$	MP
$\|x\| B(x, x) \rightarrow\|x y\| B(x, x)$	LNGT
$\left.{ }_{x}^{x}\|B(x, x) \rightarrow\|_{x}^{x} \begin{aligned} & x \\ & y\end{aligned} \right\rvert\, B(x, x)$	SFV
${ }^{x}\left\|\begin{array}{l}x \\ \mid\end{array} B(x, x) \rightarrow{ }_{x}^{x} \begin{array}{l}x \\ y\end{array}\right\| B(x, y)$	trans.

$Q . K_{i m}+C R G \vdash S I V$
$\left|v_{1} \ldots v_{k}\right|\left(A\left[y / x_{1}, y / x_{2}, t_{3} / x_{3} \ldots t_{n} / x_{n}\right]\right) \rightarrow\left|\begin{array}{ccc}y & y & t_{3} \\ x_{1} & x_{2} & x_{3}\end{array} \ldots x_{x_{n}}^{t_{n}}\right| A$
where v_{1}, \ldots, v_{k} are all the variables occurring in y, t_{3}, \ldots, t_{n}
SIV is a particular case of CRG, exactly when $t_{1}=t_{2}=y$ so the same variable y is substituted for x_{1} and x_{2}.
Q. $K_{i m}+F C S \vdash L N G T$
$\left|{ }_{x_{1}}^{x_{1}} \ldots{ }_{x_{n}}^{x_{n}}\right| A \rightarrow\left|x_{1} \ldots x_{n}, z\right|\left(A\left[x_{1} / x_{1} \ldots x_{n} / x_{n}\right]\right)$
FCS
where x_{1}, \ldots, x_{n}, z include all the variables among x_{1}, \ldots, x_{n}
$\left|x_{1} \ldots x_{n}\right| A \rightarrow\left|x_{1} \ldots x_{n}, z\right| A$

$$
\begin{aligned}
& Q . K_{i m}+F C S \vdash S H R T \\
& \left|x_{1} \ldots x_{n}, z\right|\left(A\left[x_{1} / x_{1} \ldots x_{n} / x_{n}\right]\right) \rightarrow\left|{ }_{x_{1}}^{x_{1}} \ldots{ }_{x_{n}}^{x_{n}}\right| A
\end{aligned}
$$

where x_{1}, \ldots, x_{n}, z include all the variables among x_{1}, \ldots, x_{n}

$$
\left|x_{1} \ldots x_{n}, z\right| A \rightarrow\left|x_{1} \ldots x_{n}\right| A
$$

Trivially, $Q . K_{i m}+F C S \vdash R G, C R G, N I$. In the presence of the principle of full commutativity of substitution, indexed modalities are unnecessary, in fact every box-operator can be thought of as implicitely indexed by the variables of the formula that follows it. This yelds that the standard modal language will do, but, as we shall see, we are confined to t-frames where the transition relation is a totally defined function. See [3].

A Quinean sentence: 'Necessarily the number of planets is greater than $7 .{ }^{\prime}$

Let i denote 'the number of planets'. Then, according to Quine the following derivation:

1. $\square(7<9)$
2. $\quad i=9$
3. $\square(7<i)$
transforms the truth $\square(7<9)$ into the falsehood $\square(7<i)$. We want to point out that the conclusion is not obtained merely by an application of the substitution of identical terms, but rather it relies on the acceptance of strong principles about substitution. The above inference can be analyzed in a language with indexed modalities as follows:
$\frac{i=9 \frac{\left.\frac{|\star|(7<9)}{\left|{ }_{x}^{7},{ }_{y}^{9}\right|(x<y)} C R G \quad \frac{\left.\right|_{x} ^{7},{ }_{y}^{9} \mid(x<y) \rightarrow\left(i=9 \rightarrow\left|{ }_{x}^{7},{ }_{y}^{i}\right|(x<y)\right)}{i=9 \rightarrow \mid}\right|_{x} ^{7},{ }_{y}^{i} \mid(x<y)}{} M P}{i B Z} M P$
Even if we can accept that 9 and 7 are stable designators and so CRG holds for them, i can hardly be called a rigid designator.

5 Correspondence

$B F$

$$
\mathcal{F}^{t} \models \forall x\left|x_{1} \ldots x_{n} x\right| A \rightarrow\left|x_{1} \ldots x_{n}\right| \forall x A \quad \text { iff } \quad \mathcal{T} \text { is surjective. }
$$

We show that if \mathcal{T} is not surjective then $\mathcal{F}^{t}|\vDash \forall x| x_{1} \ldots x_{n} x|A \rightarrow| x_{1} \ldots x_{n} \mid \forall x A$, where \mathcal{T} is surjective iff for all w, v, if $b \in D_{v}$ then there is an $a \in D_{w}$ such that $a \mathcal{T}_{\langle w, v\rangle} b$.

Let $a \notin I_{v}(P), b^{\prime} \in I_{v}(P)$ and $\sigma(x)=a$. Then $\sigma \models_{w} \forall x|x| P(x), \tau \not \models_{v}$ $\forall x P(x), \sigma \not \forall_{w} \forall x|x| P(x) \rightarrow|\star| \forall x P(x)$.

$G F$

$$
\mathcal{F}^{t} \models \exists x\left|x_{1} \ldots x_{n} x\right| A \rightarrow\left|x_{1} \ldots x_{n}\right| \exists x A \quad \text { iff } \quad \mathcal{T} \text { is totally defined. }
$$

We show that if \mathcal{T} is not totally defined then $\mathcal{F}^{t} \not \vDash \exists x\left|x_{1} \ldots x_{n} x\right| A \rightarrow\left|x_{1} \ldots x_{n}\right| \exists x A$, where \mathcal{T} is totally defined iff for all w, v, if $a \in D_{w}$ then there is an $b \in D_{v}$ such that $a \mathcal{T}_{\langle w, v\rangle} b$.

Let $b^{\prime} \notin I_{v}(P)$ and $\sigma(x)=a$. Then $\sigma \models_{w}|x| P(x)$, so $\sigma \models_{w} \exists x|x| P(x)$, therefore $\sigma \not \vDash_{w} \exists x|x| P(x) \rightarrow|\star| \exists x P(x)$.

NI

$$
\mathcal{F}^{t} \models x=y \rightarrow|x y|(x=y) \quad \text { iff } \quad \mathcal{T} \text { is a partial function. }
$$

We show that if \mathcal{T} is not a partial function then $\mathcal{F}^{t} \not \vDash x=y \rightarrow|x y|(x=y)$, where \mathcal{T} is a partial function if for all w, v, if $a \mathcal{T}_{\langle w, v\rangle} b$ and $a \mathcal{T}_{\langle w, v\rangle} c$ then $b=c$.

Let $\sigma(x)=\sigma(y)=b$. Then $\sigma \models_{w} x=y$, but $\sigma \not \models_{w}|x, y|(x=y)$, so $\sigma \not \models_{w} x=$ $y \rightarrow|x y|(x=y)$.

ND

$$
\mathcal{F}^{t}|=x \neq y \rightarrow| x y \mid(x \neq y) \quad \text { iff } \quad \mathcal{T} \text { is not convergent. }
$$

We show that if \mathcal{T} is convergent then $\mathcal{F}^{t} \not \vDash x \neq y \rightarrow|x y|(x \neq y)$, where \mathcal{T} is not convergent iff for all w, v, if $a \mathcal{T}_{\langle w, v\rangle} c$ and $b \mathcal{T}_{\langle w, v\rangle} c$ then $a=b$.

$F C S$

$$
\mathcal{F}^{t} \models\left|v_{1} \ldots v_{k}\right|\left(A\left[t_{1} / x_{1} \ldots t_{n} / x_{n}\right]\right) \leftrightarrow\left|{ }_{\text {iff }}^{t_{1}} \ldots{ }_{x_{1}}^{t_{n}}\right| A
$$

\mathcal{T} is a totally defined function,
where v_{1}, \ldots, v_{k} include all the variables occurring in t_{1}, \ldots, t_{n}.

6 Completeness theorem for R. $K_{i m}$

We start by considering the modal logic $R \cdot K_{i m}=Q \cdot K_{i m}+R G$, where $R G$ is the axiom of rigidity of terms.

6.1 Preliminaries

First we define a classical first-order language \mathcal{L}^{c} that mimics the modal language $\mathcal{L} .{ }^{6}$

- \mathcal{L}^{c} contains all the predicate and function symbols of \mathcal{L},
- for each wff of \mathcal{L},

$$
\left|x_{1} \ldots x_{n}\right| A
$$

\mathcal{L}^{c} contains the n-ary predicate symbol

$$
P_{\left|x_{1} \ldots x_{n}\right| A}
$$

To every modal formula A of \mathcal{L} we assign a classical formula $A^{c} \in \mathcal{L}^{c}$

$$
\begin{array}{lll}
\left(P^{n} t_{1}, \ldots, t_{n}\right)^{c} & = & P^{n} t_{1}, \ldots, t_{n} \\
(A \sharp B)^{c} & = & A^{c} \sharp B^{c} \\
(\forall x A)^{c} & = & \forall x\left(A^{c}\right) \\
\left(\left.\right|_{t_{1}} \ldots t_{x_{n}} \mid A\right)^{c} & = & P_{\left|x_{1} \ldots x_{n}\right| A}\left(t_{1} \ldots t_{n}\right)
\end{array}
$$

[^5]We can easily see that if A contains no modal operators, then A^{c} is just A and that every formula B of \mathcal{L}^{c} is equal to A^{c} for some $A \in \mathcal{L}$.

Second, we define the classical theory $C_{R . K_{i m}}$ whose axioms are

$$
\left\{A^{c}: R . K_{i m} \vdash A\right\}
$$

and whose inference rules are MP, UG and SFV.
Lemma $5 X \vdash_{R . K_{i m}} A$ iff $X^{c} \vdash_{C_{R . K_{i m}}} A^{c}$.
Proof It is easy to see that $\vdash_{R . K_{i m}} B_{1} \wedge \cdots \wedge B_{n} \rightarrow A$ iff $\vdash_{C_{R . K_{i m}}} B_{1}^{c} \wedge \cdots \wedge B_{n}^{c} \rightarrow$ A^{c}, where $B_{1}, \ldots, B_{n} \in X$.
\Rightarrow holds by definition of $C_{R . K_{i m}}$.
\Leftarrow holds because the axioms of $C_{R . K_{i m}}$ are the c-translation of the theorems of $R . K_{i m}$ and the inference rules of $C_{R . K_{i m}}$ are also inference rules of $R . K_{i m}$.
$C_{R . K_{i m}}$ is a first order theory, so models of $C_{R . K_{i m}}$ are pairs $w=\left\langle D_{w}, I_{w}\right\rangle$ composed on a non-empty domain D_{w} and an interpretation function I_{w} such that the universal closure of all the theorems of $C_{R . K_{i m}}$ is true in them.

We use the letters w, v, \ldots to denote $C_{R . K_{i m}}$ models. By $\langle\sigma, w\rangle \models A^{c}$ we denote that A^{c} is satisfied in the model $w=\left\langle D_{w}, I_{w}\right\rangle$ under the w-assignment σ.

An admissible relation $\mathcal{T}_{\langle w, v\rangle}$ among $C_{R . K_{i m}}$-models w and v is a relation $\mathcal{I}_{\langle w, v\rangle} \subseteq D_{w} \times D_{v}$ satisfying the following two requirements
(A) for every term t, for every w-assignment π and for every v-assignment μ,

$$
\text { if } \quad \pi\left(y_{1}\right) \mathcal{T}_{\langle w, v\rangle}, \mu\left(y_{1}\right), \ldots, \pi\left(y_{k}\right) \mathcal{T}_{\langle w, v\rangle} \mu\left(y_{k}\right) \quad \text { then } \quad \pi(t) \mathcal{T}_{\langle w, v\rangle} \mu(t)
$$

where t contains at most the variables y_{1}, \ldots, y_{k}.
(B) for every formula A of \mathcal{L}, for every w-assignment π and for every v assignment μ,

$$
\text { if } \quad \pi\left(y_{1}\right) \mathcal{T}_{\langle w, v\rangle} \mu\left(y_{1}\right), \ldots, \pi\left(y_{k}\right) \mathcal{T}_{\langle w, v\rangle} \mu\left(y_{k}\right),
$$

then

$$
\langle\pi, w\rangle \models P_{\left|y_{1}, \ldots, y_{k}\right| A}\left(y_{1}, \ldots, y_{k}\right) \quad \text { only if } \quad\langle\mu, v\rangle \models A^{c},
$$

where A contains at most the variables y_{1}, \ldots, y_{k}.
Lemma 6 Let w, v be $C_{R . K_{i m}}$-models and σ and τ be assignments in w and v, respectively. If for every formula A of \mathcal{L} containing at most the variables x_{1}, \ldots, x_{n},

$$
\langle\sigma, w\rangle \models P_{\left|x_{1}, \ldots, x_{n}\right| A}\left(x_{1}, \ldots, x_{n}\right) \quad \text { only if } \quad\langle\tau, v\rangle \models A^{c} \text {, }
$$

then there is an admissible relation $\mathcal{T}_{\langle w, v\rangle} \subseteq D_{w} \times D_{v}$ such that

$$
\sigma\left(x_{1}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{n}\right)
$$

Proof Define $\mathcal{T}_{\langle w, v\rangle}$ as follows:
$e \mathcal{T}_{\langle w, v\rangle} e^{\prime} \quad$ iff \quad there is a term s containing at most the variables x_{1}, \ldots, x_{n}, such that $\sigma(s)=e$ and $\tau(s)=e^{\prime}$.

Trivially $\sigma\left(x_{1}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{n}\right)$. We show that condition (A) holds. Let t be a term containing the variables y_{1}, \ldots, y_{k}, and let π and μ be w and v assignments, respectively, such that

$$
\pi\left(y_{1}\right) \mathcal{T}_{\langle w, v\rangle} \mu\left(y_{1}\right), \ldots, \pi\left(y_{k}\right) \mathcal{T}_{\langle w, v\rangle} \mu\left(y_{k}\right)
$$

then we have to show that

$$
\pi(t) \mathcal{T}_{\langle w, v\rangle} \mu(t)
$$

This amounts to show that there is a term s contaning at most the variables x_{1}, \ldots, x_{n} such that

$$
\sigma(s)=\pi(t) \quad \text { and } \quad \tau(s)=\mu(t)
$$

By the definition of $\mathcal{T}_{\langle w, v\rangle}$ above, we know that for each $i, 1 \leq i \leq k$, there is a term s_{i} containing the variables x_{1}, \ldots, x_{n}, such that

$$
\sigma\left(s_{i}\right)=\pi\left(y_{i}\right) \quad \text { and } \quad \tau\left(s_{i}\right)=\mu\left(y_{i}\right)
$$

Let $s=t\left[s_{1} / y_{1}, \ldots, s_{k} / y_{k}\right]$. Then $\sigma(s)=\sigma\left(t\left[s_{1} / y_{1}, \ldots, s_{k} / y_{k}\right]\right)=($ by lemma 1$)$ $=\sigma^{y_{1} \triangleright \sigma\left(s_{1}\right), \ldots, y_{k} \triangleright \sigma\left(s_{k}\right)}(t)=\pi(t)$, since $\sigma\left(s_{i}\right)=\pi\left(y_{i}\right), 1 \leq i \leq k$.

As to condition (B), let A be a formula of \mathcal{L} and let us assume that its free variables are among y_{1}, \ldots, y_{k}. Let π and μ be assignments in w and v, respectively, such that

- $\pi\left(y_{1}\right) \mathcal{T}_{\langle w, v\rangle} \mu\left(y_{1}\right), \ldots, \pi\left(y_{k}\right) \mathcal{T}_{\langle w, v\rangle}, \mu\left(y_{k}\right), 1 \leq i \leq k$
- $\langle\pi, w\rangle \models P_{\left|y_{1}, \ldots, y_{k}\right| A}\left(y_{1}, \ldots, y_{k}\right)$

We have to show that $\langle\mu, v\rangle \models A^{c}$. By the definition of $\mathcal{T}_{\langle w, v\rangle}$, there are terms s_{i} containing at most the variables x_{1}, \ldots, x_{n}, such that $\sigma\left(s_{i}\right)=\pi\left(y_{i}\right)$ and $\tau\left(s_{i}\right)=$ $\mu\left(y_{i}\right), 1 \leq i \leq k$. So

$$
\left\langle\pi^{y_{1} \triangleright \sigma\left(s_{1}\right), \ldots, y_{k} \triangleright \sigma\left(s_{k}\right)}, w\right\rangle \models P_{\left|y_{1} \ldots y_{k}\right| A}\left(y_{1}, \ldots, y_{k}\right),
$$

and consequently

$$
\left\langle\sigma^{y_{1} \triangleright \sigma\left(s_{1}\right), \ldots, y_{k} \triangleright \sigma\left(s_{k}\right)}, w\right\rangle \models P_{\left|y_{1} \ldots y_{k}\right| A}\left(y_{1}, \ldots, y_{k}\right),
$$

since all the free variables are among y_{1}, \ldots, y_{k}. Then by lemma 4 ,

$$
\langle\sigma, w\rangle \vDash P_{\left|y_{1} \ldots y_{k}\right| A}\left(s_{1}, \ldots, s_{k}\right) .
$$

Since

$$
R . K_{i m} \vdash\left|\begin{array}{l}
s_{1} \ldots s_{k} \\
y_{1} \ldots y_{k}
\end{array}\right| A \rightarrow\left|x_{1} \ldots x_{n}\right|\left(A\left[s_{1} / y_{1}, \ldots, s_{k} / y_{k}\right]\right),(\text { axiom } R G)
$$

then

$$
C_{R . K_{i m}} \vdash P_{\left|y_{1} \ldots y_{k}\right| A}\left(s_{1}, \ldots, s_{k}\right) \rightarrow P_{\left|x_{1} \ldots x_{n}\right|\left(A\left[s_{1} / y_{1}, \ldots, s_{k} / y_{k}\right]\right)}\left(x_{1}, \ldots, x_{n}\right)
$$

so

$$
\langle\sigma, w\rangle \models P_{\left|x_{1} \ldots x_{n}\right|\left(A\left[s_{1} / y_{1}, \ldots, s_{k} / y_{k}\right]\right)}\left(x_{1}, \ldots, x_{n}\right) .
$$

By the hypothesis of the lemma

$$
\langle\tau, v\rangle \models\left(A\left[s_{1} / y_{1}, \ldots, s_{k} / y_{k}\right]\right)^{c}
$$

i.e.

$$
\langle\tau, v\rangle \models A^{c}\left[s_{1} / y_{1}, \ldots, s_{k} / y_{k}\right]
$$

therefore by lemma 4

$$
\left\langle\tau^{y_{1} \triangleright \tau\left(s_{1}\right), \ldots, y_{k} \triangleright \tau\left(s_{k}\right)}, v\right\rangle \models A^{c}
$$

then

$$
\langle\mu, v\rangle \models A^{c},
$$

since

$$
\tau\left(s_{1}\right)=\mu\left(y_{1}\right), \ldots, \tau\left(s_{k}\right)=\mu\left(y_{k}\right)
$$

Lemma 7 Let w be a $C_{R . K_{i m}}$-model and $\left|x_{1} \ldots x_{m}\right| A$ be a formula of \mathcal{L} such that $\langle\sigma, w\rangle \not \vDash P_{\left|x_{1} \ldots x_{m}\right| A}\left(x_{1}, \ldots, x_{m}\right)$. Then

1. the set of classical formulas

$$
\Gamma=\left\{B^{c}:\langle\sigma, w\rangle \models P_{\left|x_{1} \ldots x_{m}\right| B}\left(x_{1} \ldots x_{m}\right)\right\} \cup\left\{\neg A^{c}\right\}
$$

is $C_{R . K_{i m}}$-consistent, where B contains at most the variables $x_{1} \ldots x_{m}$,
2. there is a classical model v of Γ and a v-assignment τ such that

$$
\langle\tau, v\rangle \models \Gamma,
$$

3. there is an admissible relation $\mathcal{T}_{\langle w, v\rangle}$ such that

$$
\sigma\left(x_{1}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{1}\right), \ldots, \sigma\left(x_{m}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{m}\right)
$$

Proof

1. Assume by reductio that

$$
C_{R . K_{i m}} \vdash B_{1}^{c} \wedge \cdots \wedge B_{r}^{c} \rightarrow A^{c}
$$

Then

$$
\begin{gathered}
R . K_{i m} \vdash B_{1} \wedge \cdots \wedge B_{r} \rightarrow A \\
R . K_{i m} \vdash\left|x_{1} \ldots x_{m}\right| B_{1} \wedge \cdots \wedge\left|x_{1} \ldots x_{m}\right| B_{r} \rightarrow\left|x_{1} \ldots x_{m}\right| A \quad \text { by } \mathrm{N}
\end{gathered}
$$

$$
\begin{gathered}
C_{R . K_{i m}} \vdash P_{\left|x_{1} \ldots x_{m}\right| B_{1}}\left(x_{1} \ldots x_{m}\right) \wedge \cdots \wedge P_{\left|x_{1} \ldots x_{m}\right| B_{r}}\left(x_{1} \ldots x_{m}\right) \rightarrow \\
P_{\left|x_{1} \ldots x_{m}\right| A}\left(x_{1}, \ldots, x_{m}\right) .
\end{gathered}
$$

Therefore

$$
\langle\sigma, w\rangle \models P_{\left|x_{1} \ldots x_{m}\right| A}\left(x_{1}, \ldots, x_{m}\right)
$$

contrary to the fact that

$$
\langle\sigma, w\rangle \not \vDash P_{\left|x_{1} \ldots x_{m}\right| A}\left(x_{1}, \ldots, x_{m}\right)
$$

2. By classical model theory.
3. By lemma 6.

Subordination model. A subordination model is a tree $\langle S, \Sigma\rangle$ each node of which is (associated to) a classical model $w=\left\langle D_{w}, I_{w}\right\rangle$ together with an assignment $\sigma: V A R \rightarrow D_{w}$, so any element of S (any node of the tree) is a triple $\left\langle\sigma, D_{w}, I_{w}\right\rangle$. Given the node $\left\langle\sigma, D_{w}, I_{w}\right\rangle$ an immediate subordinate node $\left\langle\tau, D_{v}, I_{v}\right\rangle$, i.e. one for which the relation $\left\langle\sigma, D_{w}, I_{w}\right\rangle \Sigma\left\langle\tau, D_{v}, I_{v}\right\rangle$ holds, is defined according to the following procedure.

1. For each formula $\exists x A \in \mathcal{L}$ such that $\left\langle\sigma, D_{w}, I_{w}\right\rangle \vDash \exists x A^{c}$, consider a triple $\left\langle\sigma^{x \triangleright a}, D_{w}, I_{w}\right\rangle$ such that $\left\langle\sigma^{x \triangleright a}, D_{w}, I_{w}\right\rangle \vDash A^{c}$, for some $a \in D_{w}$.
We say that $\left\langle\sigma, D_{w}, I_{w}\right\rangle \Sigma\left\langle\sigma^{x \triangleright a}, D_{w}, I_{w}\right\rangle$.
2. For each formula $\exists x A \in \mathcal{L}$ such that $\left\langle\sigma, D_{w}, I_{w}\right\rangle \not \vDash \exists x A^{c}$, consider all the triples $\left\langle\sigma^{x \triangleright a}, D_{w}, I_{w}\right\rangle$ such that $\left\langle\sigma^{x \triangleright a}, D_{w}, I_{w}\right\rangle \not \vDash A^{c}$, for any $a \in D_{w}$.
We say that $\left\langle\sigma, D_{w}, I_{w}\right\rangle \Sigma\left\langle\sigma^{x \triangleright a}, D_{w}, I_{w}\right\rangle$, for all $a \in D_{w}$.
3. For each formula $\left|x_{1} \ldots x_{m}\right| A \in \mathcal{L}$ such that $\left\langle\sigma, D_{w}, I_{w}\right\rangle \not \vDash P_{\left|x_{1} \ldots x_{m}\right| A}$, consider a triple $\left\langle\tau, D_{v}, I_{v}\right\rangle$ such that
$\left\langle\tau, D_{v}, I_{v}\right\rangle \models\left\{B^{c}:\left\langle\sigma, D_{w}, I_{w}\right\rangle \models P_{\left|x_{1} \ldots x_{n}\right| B}\left(x_{1}, \ldots, x_{n}\right)\right\} \cup\left\{\neg A^{c}\right\}$.
We say that $\left\langle\sigma, D_{w}, I_{w}\right\rangle \Sigma\left\langle\tau, D_{v}, I_{v}\right\rangle$ and that $\sigma\left(x_{1}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{1}\right), \ldots$, $\sigma\left(x_{m}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{m}\right)$.

Steps 1 and 2 are feasible thanks to classical model theory, step 3 thanks to lemma 6.

Lemma 8 Let $R . K_{i m} \nvdash A$. Then there is a t-model $\mathcal{M}=\langle W, R, D, \mathcal{T}, I\rangle$ with rigid terms such that $\mathcal{M} \not \vDash A$.

Proof Let us first build a subordination model $\langle S, \Sigma\rangle$ having at its root a node $\left\langle\sigma, D_{w}, I_{w}\right\rangle$ such that $\left\langle\sigma, D_{w}, I_{w}\right\rangle \models \neg A^{c}$. Then we define a transition model $\mathcal{M}=\langle W, D, R, \mathcal{T}, I\rangle$ as follows:

- $W=\left\{\left\langle D_{w}, I_{w}\right\rangle\right.$: for some $\left.\sigma,\left\langle\sigma, D_{w}, I_{w}\right\rangle \in S\right\}$
- D is such that $D\left(\left\langle D_{w}, I_{w}\right\rangle\right)=D_{w}$
- $R \subseteq W^{2}$ is such that $\left\langle D_{w}, I_{w}\right\rangle R\left\langle D_{v}, I_{v}\right\rangle$ iff $\left\langle\sigma, D_{w}, I_{w}\right\rangle \Sigma\left\langle\tau, D_{v}, I_{v}\right\rangle$ for some σ and τ
- $\mathcal{T}=\left\{\langle a, b\rangle\right.$: for some $\left\langle\sigma, D_{w}, I_{w}\right\rangle$ and $\left\langle\tau, D_{v}, I_{v}\right\rangle, a \in D_{w}, b \in D_{v}$, $\left\langle\sigma, D_{w}, I_{w}\right\rangle \Sigma\left\langle\tau, D_{v}, I_{v}\right\rangle, a=\sigma(x), b=\tau(x)$, and $\left.\sigma(x) \mathcal{T}_{\langle w, v\rangle} \tau(x)\right\}$
- I is such that $I\left(\left\langle D_{w}, I_{w}\right\rangle\right)=I_{w}$

In the following, we write w instead of $\left\langle D_{w}, I_{w}\right\rangle$ and $\langle\sigma, w\rangle \vDash D^{c}$ instead of $\left\langle\sigma, D_{w}, I_{w}\right\rangle \models D^{c}$. It remains to show that

$$
\sigma \models_{w}^{\mathcal{M}} D \quad \text { iff } \quad\langle\sigma, w\rangle \models D^{c}
$$

for all $w \in W$ and all formulas $D \in \mathcal{L}$.
By induction on D. We examine just one case.

$$
D=\left|\left.\right|_{y_{1}} ^{t_{1}} \ldots{ }_{y_{n}}^{t_{n}}\right| A
$$

where $\left(f v\left(t_{1}\right) \cup \cdots \cup f v\left(t_{n}\right)\right)=\left\{x_{1}, \ldots, x_{m}\right\}$.
If

$$
\left.\sigma\left|\vDash_{w}^{\mathcal{M}}\right|\right|_{y_{1}} ^{t_{1}} \ldots \ldots{ }_{y_{n}}^{t_{n}} \mid A
$$

then by lemma 4

$$
\pi\left|\models_{w}^{\mathcal{M}}\right| y_{1} \ldots y_{n} \mid A
$$

where $\pi=\sigma^{y_{1} \triangleright \sigma\left(t_{1}\right), \ldots, y_{n} \triangleright \sigma\left(t_{n}\right)}$. Then by definition of satisfaction there is a v and a v-assignment τ, such that $\tau \not \forall_{v}^{\mathcal{M}} A$, and $\sigma\left(t_{i}\right) \mathcal{T} \tau\left(y_{i}\right), 1 \leq i \leq n$. By induction hypothesis $\langle\tau, v\rangle \not \vDash A^{c}$, whence $\langle\pi, w\rangle \not \vDash P_{\left|y_{1} \ldots y_{n}\right| A}\left(y_{1}, \ldots, y_{n}\right)$, because of condition (B). Consequently $\langle\sigma, w\rangle \not \vDash P_{\left|y_{1} \ldots y_{n}\right| A}\left(t_{1}, \ldots, t_{n}\right)$.

If

$$
\langle\sigma, w\rangle \not \vDash P_{\left|y_{1} \ldots y_{n}\right| A}\left(t_{1}, \ldots, t_{n}\right),
$$

then by lemma 4

$$
\langle\pi, w\rangle \not \vDash P_{\left|y_{1} \ldots y_{n}\right| A}\left(y_{1}, \ldots, y_{n}\right)
$$

where $\pi=\sigma^{y_{1} \triangleright \sigma\left(t_{1}\right) \ldots \ldots . y_{n} \triangleright \sigma\left(t_{n}\right)}$. Then by lemma 7 there is a model v of $\Gamma=$ $\left\{B^{c}:\langle\pi, w\rangle \models P_{\left|y_{1} \ldots y_{n}\right| B}\left(y_{1}, \ldots, y_{n}\right)\right\} \cup\left\{\neg A^{c}\right\}$ and a v-assignment τ such that $\langle\tau, v\rangle \models \Gamma$ and $\sigma\left(t_{i}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(y_{i}\right), 1 \leq i \leq n$. Hence

$$
\langle\tau, v\rangle \not \models A^{c},
$$

therefore by induction hypothesis $\tau \not \models_{v}^{\mathcal{M}} A$, so

$$
\pi\left|\forall_{w}^{\mathcal{M}}\right| y_{1} \ldots y_{n} \mid A
$$

Consequently

$$
\sigma\left|\vDash_{w}^{\mathcal{M}}\right|{ }_{y_{1}}^{t_{1}} \ldots \ldots{ }_{y_{n}}^{t_{n}} \mid A
$$

7 Completeness theorem for $Q . K_{i m}$

The completenes theorem for $Q . K_{i m}$ is easily obtained from the corresponding theorem for R.K.Kim. A relation $\mathcal{T}_{\langle w, v\rangle}$ among $C_{Q . K_{i m}}$-models w, v is an admissible relation iff condition (B) is satisfied. In the proof of Lemma 6, define $\mathcal{T}_{\langle w, v\rangle}$ as follows:

$$
e \mathcal{T}_{\langle w, v\rangle} e^{\prime}
$$

iff there is a variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$, such that $\sigma\left(x_{i}\right)=e$ and $\tau\left(x_{i}\right)=e^{\prime}$.
Trivially $\sigma\left(x_{i}\right) \mathcal{T}_{\langle w, v\rangle} \tau\left(x_{i}\right), 1 \leq i \leq n$.
As to condition (B), take any modal formula A of \mathcal{L} containing at most the free variables y_{1}, \ldots, y_{k}, and a pair of assignments π and μ in w and v, respectively, such that

- $\pi\left(y_{1}\right) \mathcal{T}_{\langle w, v\rangle} \mu\left(y_{1}\right), \ldots, \pi\left(y_{k}\right) \mathcal{T}_{\langle w, v\rangle} \mu\left(y_{k}\right)$
- $\langle\pi, w\rangle \models P_{\left|y_{1}, \ldots, y_{k}\right| A}\left(y_{1}, \ldots, y_{k}\right)$

We have to show that $\langle\mu, v\rangle \models A^{c}$. By the definition of $\mathcal{T}_{\langle w, v\rangle}$, there are variables $x_{1}^{\star}, \ldots x_{k}^{\star}$ among x_{1}, \ldots, x_{n} such that $\sigma\left(x_{i}^{\star}\right)=\pi\left(y_{i}\right)$ and $\tau\left(x_{i}^{\star}\right)=\left(\mu\left(y_{i}\right), 1 \leq i \leq\right.$ k. So

$$
\left\langle\pi^{y_{1} \triangleright \sigma\left(x_{1}^{\star}\right), \ldots, y_{k} \triangleright \sigma\left(x_{k}^{\star}\right)}, w\right\rangle \models P_{\left|y_{1} \ldots y_{k}\right| A}\left(y_{1}, \ldots, y_{k}\right)
$$

and consequently

$$
\left\langle\sigma^{y_{1} \triangleright \sigma\left(x_{1}^{\star}\right), \ldots, y_{k} \triangleright \sigma\left(x_{k}^{\star}\right)}, w\right\rangle \models P_{\left|y_{1} \ldots y_{k}\right| A}\left(y_{1}, \ldots, y_{k}\right)
$$

since all the free variables are among y_{1}, \ldots, y_{k}. Then by lemma 4

$$
\langle\sigma, w\rangle \models P_{\left|y_{1} \ldots y_{k}\right| A}\left(x_{1}^{\star}, \ldots, x_{k}^{\star}\right) .
$$

Since

$$
Q . K_{i m} \vdash\left|\begin{array}{|c|c|c|}
x_{1}^{\star} \ldots x_{k}^{\star} \\
y_{1} \ldots y_{k}
\end{array}\right| A \rightarrow\left|x_{1} \ldots x_{n}\right|\left(A\left[x_{1}^{\star} / y_{1}, \ldots, x_{k}^{\star} / y_{k}\right]\right)\left(\text { axiom } R G^{v}\right),
$$

then

$$
C_{Q . K_{i m}} \vdash P_{\left|y_{1} \ldots y_{k}\right| A}\left(x_{1}^{\star}, \ldots, x_{k}^{\star}\right) \rightarrow P_{\left|x_{1} \ldots x_{n}\right|\left(A\left[x_{1}^{\star} / y_{1}, \ldots, x_{k}^{\star} / y_{k}\right]\right)}\left(x_{1}, \ldots, x_{n}\right),
$$

so

$$
\langle\sigma, w\rangle \models P_{\left|x_{1} \ldots x_{n}\right|\left(A\left[x_{1}^{\star} / y_{1}, \ldots, x_{k}^{\star} / y_{k}\right]\right)}\left(x_{1}, \ldots, x_{n}\right) .
$$

By the hypothesis of the lemma

$$
\langle\tau, v\rangle \models\left(A\left[x_{1}^{\star} / y_{1}, \ldots, x_{k}^{\star} / y_{k}\right]\right)^{c},
$$

i.e.

$$
\langle\tau, v\rangle \models A^{c}\left[x_{1}^{\star} / y_{1}, \ldots, x_{k}^{\star} / y_{k}\right],
$$

therefore by lemma 4

$$
\left\langle\tau^{y_{1} \triangleright \tau\left(x_{1}^{\star}\right), \ldots, y_{k} \triangleright \tau\left(x_{k}^{\star}\right)}, v\right\rangle \models A^{c},
$$

therefore since $\tau\left(x_{1}^{\star}\right)=d_{1}, \ldots, \tau\left(x_{k}^{\star}\right)=d_{k}$,

$$
\left\langle\tau^{y_{1} \triangleright d_{1}, \ldots, y_{k} \triangleright d_{k}}, v\right\rangle \models A^{c},
$$

whence

$$
\langle\mu, v\rangle \models A^{c}\left(y_{1}, \ldots, y_{k}\right)
$$

since

$$
\mu\left(y_{1}\right)=d_{1}, \ldots, \mu\left(y_{k}\right)=d_{k} .
$$

Acknowledgements

My deep gratitude to Professor Dag Prawitz for having discussed with me at length a preliminary version of this paper.

Bibliography

[1] Braüner, T., Ghilardi, S. First-order Modal Logic. In Handbook of Modal Logic, 549-620. Elsevier, 2006.
[2] Corsi, G. Counterparts and possible worlds. A study on quantified modal logic. Preprint, Università di Bologna, Dipartimento di Filosofia, 21:1-61, 2001.
[3] Corsi, G. A unified completeness theorem for quantified modal logics. The Journal of Symbolic Logic, 67:1483-1510, 2002.
[4] Corsi, G. BF, CBF and Lewis semantics. Logique \& Analyse, 181:103-122, 2003.
[5] Fitting, M., Mendelsohn, R. L. First-Order Modal Logic. Kluwer AP, 1999.
[6] Gabbay, D., Shehtman, V., Skvortsov, D. Quantification in Nonclassical Logic. Elsevier, 2009.

[^0]: ${ }^{1}$ The author is with Dipartimento di Filosofia, Università di Bologna, via Zamboni, 38-I40126 Bologna.

[^1]: ${ }^{2}$ This terminology is taken from [6].

[^2]: ${ }^{3}$ Recall that in Kripke semantics for all constants i, if $w R v$ then $I_{w}(i)=I_{v}(i)$.

[^3]: ${ }^{4}$ See [2, p.12]

[^4]: ${ }^{5}$ Axiom RG ${ }^{v}$ could be formulated in a more general form so as to imply axiom LNGT: $\left|{ }_{x_{1}}^{y_{1}} \ldots \stackrel{y_{n}}{x_{n}}\right| A \rightarrow\left|v_{1} \ldots v_{k}\right|\left(A\left[y_{1} / x_{1} \ldots y_{n} / x_{n}\right]\right)$, where $v_{1} \ldots v_{k}$ include all the different variables among $y_{1} \ldots y_{n}$.

[^5]: ${ }^{6}$ The proof we present here is based on Ghilardi's completeness proof in [1]

