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This dissertation addresses the task of learning to rank, both in the mgukand un-
supervised settings, by exploiting the interplay of convex functions, maiwinappings
and their fixed points. In the supervised setting of learning to rank, orneewi® learn
from examples of correctly ordered items whereas in the unsupervigewsene tries to
maximize some quantitatively defined characteristic of a “good” ranking.

A ranking method selects one permutation from among the combinatorially many
permutations defined on the items to rank. Accomplishing this optimally in the super-
vised setting, with minimal loss in generality, if any, is challenging. In this dissentatio
this problem is addressed by optimizing, globally and efficiently, a statisticatigistent

loss functional over the class of compositions of a linear function by aitramp strictly
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monotonic, separable mapping with large margins. This capability also enadnles pthe
parameters of a generalized linear model with an unknown link function.nfgthod can
handle infinite dimensional feature spaces if the corresponding kemmeidn is known.

In the unsupervised setting, a popular ranking approach is is link analysrs
a graph of recommendations, as exemplified by pagerank. This dissedhtiars that
pagerank may be viewed as an instance of an unsupervised consetigugation prob-
lem. The dissertation then solves a more general problem of unsupecaissensus over
noisy, directed recommendation graphs that have uncertainty over toé “seit” edges
that emanate from a vertex. The proposed consensus rank is essénéglygerank over
theexpecteaddge-set, where the expectation is computed over the distribution thateshiev
the most agreeable consensus. This consensus is measured geomélyicabyitable
Bregman divergence between the consensus rank and the rankedraludtem specific
distributions

Real world deployed ranking methods need to be resistant to spam, a laalticu
sophisticated type of which is link-spam. A popular class of countermesasdeespam”
the corrupted webgraph by removing abusive pages identified byvésgefearning. Since
exhaustive detection and neutralization is infeasible, there is a neechfangaunctions
that can, on one hand, attenuate the effects of link-spam without ssiperand on the
other hand, counter spam more aggressively when supervision isbéwaila family of
non-linear, iteratively defined monotonic functions is proposed thatagates “rank” and
“trust” scores through the webgraph. It relies on non-linearity, mornoitgrand Schur-

convexity to provide the resistance against spam.
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Chapter 1

Introduction

Many applications, such as information retrieval and recommender sysequée items
to be ordered according to user preference. Usually, the “scoretidtiimes theransitive
relation of order among the items is unavailable and only the sorted order of training items
can be observed. This inaccessibility motivates the learning to rank (LEP@RIem. In
the supervised setting the learner has access to representative exafrophesctly ordered
items from which it is expected to minimize the number of ordering “mistakes”.

In general, a LETOR problem consists of a set of que@les {q1,q; . . .q|Q|} and
a set of items) that are to be ranked in the context of the queries. For every query
there is a subsét; C V whose elements have been ordered, based on their relevance. This
ordering is customarily expressed via a rank score vettar R%=!Vil whose components
7;; correspond to the score of thié" items. In some cases the actual values;pfare of
no significance except for establishing an order over thé’setn this case the problem
becomes that of predicting a permutation. In this dissertation we distinguishattmenig
to rank task from a related one of learning binary pairwise relations winansitivity is
not required.What differentiates learning to rank (LETOR) from otmedjgtion problems,
e.g. classification and regression is this combinatorial structure of thetmtace.

Existing LETOR techniques fall in the following 3 categories:



1. point-wise,
2. pair-wise
3. list-wise methods.

In point-wise methods, the higher ranked items are assigned higher tacges.s
These methods then ignore the structure and solve a regression prolaemwiseé meth-
ods capture some structure by posing the task as a classification prolderallopairs.
However, this results in a quadratic growth in the training set, often amelidogtddwn-
sampling. However, pairwise-methods also suffer from insufficienttitra: their predic-
tions need not obey transitivity. Aarder-reconciliation steps necessary for predicting
ordered outputs which is NP hard Cohen et al. (1999), necessitatimgxapgtions and
heuristics. List-wise methods wrestle with the full combinatorial structure ams lthve
to deal with formidable optimization problems. Typically, they have to cut cernsing
sampling (Weston and Blitzer, 2012) and or approximations (Ailon and M&b68) to
make the algorithms scale.

Many cost functions have been designed to evaluate rankings, e.gnglized)
discounted cumulative gain ((N)DCG) af¥elin and Keklainen, 2000), expected recipro-
cal rank (ERR) (Chapelle et al., 2009), mean average precision (NBd&)za-Yates and
Ribeiro-Neto, 1999), etc. Implicitly or explicitly, these are functions ovanpeations.
They are reasonably easy to compute given a ranking, but hard to traecause they lead
to difficult combinatorial problems.

An ideal LETOR formulation should (i) capture the combinatorial structurethike
list-wise methods, but with (ii) algorithms that are no more complicated than poist-wis
methods. While this seems too much to ask for, this dissertation makes somespriogre
that direction. The dissertation uses a flexible family of statistically consistiictently
optimize-able cost functions capturing the desirable characteristicslohgan

Both supervised and unsupervised techniques are addressed indbitadisn. Su-

pervised learning algorithms for ranking require representative exanopleorrectly or-

2



dered items. Obtaining this information can be quite expensive. So it is imptotaate
complementary techniques that do not need training examples. In the wisageset-
ting, algorithms do not receive information about how the set of training itdmosld be
ranked. Typically they exploit some axiomatic characterization of order gritems, for
example, an unsupervised paradigm that has been very successfoking items based
on a graph of recommendations is link analysis. Pagerank (Brin and F2@f),and HITS
(Kleinberg, 1999a) are two of the most well known algorithms in this cateddrgy view
the graphg as a distributed recommendation system where each vertex recommends other
vertices through its out-edges (directed edges that leave the vertewjevelothese algo-
rithms are (i) susceptible to spam and (ii) do not incorporate fluctuations iadbe set
of the graph. This dissertation explores convexity and monotonicity bgg@oaches to

incorporate these properties.

Main Contributions

A novel approach for learning to rank (LETOR) based on the notion afatome retar-
geting is introduced irChapter 3. Monotone retargeting (MR) minimizes a divergence
between all monotonic increasing transformations of the relevance saodea parame-
terized prediction function. The novelty lies in the fact that the minimization is thesr
transformations as well as over the parameters. MR is applied with Bregwergelices, a
large class of “distance like” functions that were recently shown to berilgpia class that
is statistically consistent with the normalized discounted gain (NDCG) criteriamikie-
mar et al., 2011). The algorithm uses alternating projection style updatehjéh ane set
of simultaneous projections can be computed independent of the Bregweagettice and
the other projection reduces to parameter estimation of a generalized lineal. nitis
results in an easily implementable and efficiently parallelizable algorithm for tieOERE
task that enjoys global optimum guarantees under mild conditions. We pess@irical

results on benchmark datasets showing that this approach can substautiadigform the



state of the art NDCG consistent techniques.

Tools of convexity and large margins are brought to bear upon the tdskmiing
permutations from examples. This leads to novel and efficient algorithms wéttagteed
prediction performance in the online setting and on global optimality and thefredenzer-
gence in the batch setting. As a result, an effective algorithm is obtainedrtottaasitive
relationship over items. It captures the inherent combinatorial chardaterighe output
space Yyet it has a computational burden not much more than a generaleaathtiodel.

Statistical consistency of different LETOR algorithms with respect to rangiral-
ity metrics is an active area of research. Ravikumar et al. (2011) idemtifyerhaustively
characterize the cost functions that are consistent with respect to NB@Gpular rank
quality metric. This turns out to be the loglikelihood of canonical generalizetimod-
els (McCulloch and Searle, 2001), a traditional technique of paramegyiession popular
among statisticians and machine learners alike. Each member of this family isteniaex
by a finite dimensional vector that needs to be estimated from data. A natwstian to
ask is whether it is possible to search not only over the parameters bowalsall members
of the family. Note that this entails a search over all monotonic functions, wvagntly
all convex functionsChapter 4 of this dissertation introduces efficient techniques for this
purpose. The difference of this model from that pursued in Chaptethaighe loss func-
tion and the monotonic transform are tied to each other, this coupling leadarangees of
joint convexity. The added generality of simultaneously optimizing over momofanc-
tions and parameters comes only at an extra cokteaf whered is the dimensionality of
the data.

An unsupervised method is proposedGhapter 5 to solve a consensus ranking
problem defined over noisy, directed recommendation graphs. In tlesg directed
graphs, the edge weights indicate endorsement of a vertex by anothbelwiis uncer-
tainty over the set of “out” edges that emanate from a vertex. This uitgria modeled

by weights over the discrete set of such possible “out” edge-setsiatezbwith every ver-



tex. Pagerank induces a ranking over the vertices of a graph fottiaytar choice of an
“out” edge-set, whereas the proposed method combines the multiple rankatgsould
be induced by the different choices. The proposed consensussraggentially the pager-
ank over theexpectededge-set, where the expectation is computed over the distribution
that achieves the most agreeable consensus. The consensus issthgasunetrically by
a suitable Bregman divergence between the consensus rank andkbénduced by the
pure distributiong' over the choices of the “out” edge-sets. The practice of ranking ver-
tices by the stationary distribution of a random walk overagse-freegraph is extended
to noisygraphs. The method can be applied to (multi-)graphs with (i) different tgpes
labeled edges whose label weights are unknown, (ii) per vertex etig&rsmvn to lie in
a polyhedron of uncertainty, possibly defined by partial order canssta Two families
of algorithms are provided to solve this optimization problem by exploiting newitees
concerning Bregman divergences that were derived for this perpos

Finally, Chapter 6 deals with spam resistance. The ranking scheme of a search
engine needs to be resistant to spam, a particularly sophisticated type &f iwHiok-
spam. Current countermeasures “de-spam” the corrupted webgyajgimioving abusive
pages identified by supervised learning. Since exhaustive detectioneamicilization is
infeasible, there is a need for ranking functions that can, on one htteduate the effects
of link-spam without supervision and on the other hand, counter spam aggressively
when supervision is available. A family of non-linear functions is propdkatipropagate
“rank” and “trust” scores through the webgraph. It includes Pagdeas a special case and
relies on non-linearity, monotonicity and Schur-convexity to provide spesistance. The
main contributions here are (i) the proof of convergence and unige@fése iterates, and

(if) empirical comparison with Pagerank and other established anti-spaimgan

Ydistributions over a discrete set concentrated fully on one item.



Chapter 2

Background

In this chapter we give a brief summary of convexity and properties afiBam divergences
that recur throughout the dissertation.

Notation: Vectors are denoted by bold lower case letters. #heomponent of
the vectorz is indicated byz;. When suitable, we also indicate tkatire vector x by
decorating itg** component as followsz;. This form is used to convey succinctly how a
vector has been constructed from its components. The syffibmidicates the transpose
of matrix 7. Random variables are also indicated by capital Iettgﬁws’; [f(X)] represents
the expectation of a functiofi(-) of a random variablé& having a distributiorp. Sets are
denoted by (matching) calligraphic letters, for instance random varighkkes values in
a setX. The unit simplex is denoted kY, its dimensionality will be implicit. For the most
part we deal only with sets in the Euclidean vector sga¢eThe notatiorR.. will denote
the positive orthant oR?, andR¢ will denote the se{x|z € RY N x; > ¢ V;}, whereas
the symbolA, will indicate the sef{xz|x € A Nz; > € V;} and the symbok, the set

{x| >, z; <1 x e R;}. Familiarity with convex analysis is assumed.



2.1 Convex Analysis Review

This section is a brief review of convex analytic notions that are used inisserthtion. A

function isconvexif the following inequality holds for any points, y in its domain:

dplaxz+ (1 - a)y) < ag(x) + (1 — a)d(y).

The function isstrictly convex if the previous inequality is strict. It hasodulus of strong

convexity s if the following inequality holds:

dloz + (1= a)y) < ad(@) + (1 - a)o(y) - Jal-alle — gy’ @1)

which for differentiables(-) is equivalent to:

(Vo(x) — Vo(y),z —y) > s|lz — yl|*. (2.2)

For a twice differentiable(x), this means that eigenvalues of its Hessian are lower bounded
by s.

The epigraph of the functiong is the set{(x,y) | v > ¢(x)}. The sub-levelset
of the function¢ for the levely is a set{x | ¢(x) < ~}. The function is defined to be
closed(equivalently lower semi—continuous) if its epigraph is closed, as a caeseq the
sub level sets are closed as well. A convex functida proper if dom ¢ is non-empty and
Vo € dom ¢ s.t. ¢p(x) > —oc.

TheLegendre conjugatey(-) of the functiong(-) is defined as

(9)"(X) £ 9(X) £ sup((A, @) — §()).

The superscripk when applied to functions will indicate the conjugation operation. If

¢ is closed, proper, strictly convex function, as will always be the caseisnpiper,



Vo()

dom ¢

V() = (Vo) ()
Figure 2.1: The gradient mapping between domains of Legendre conjugatens
((¢(-)*)* = ¢(-) and(Ve(-)) ! = Vi(-) is a one to one map (See figure 2.1).

A closed, proper convex functiop is of the Legendre typeif its domain has a

non-empty interior and the following holds
e ¢ is strictly convex and differentiable dnt dom ¢,
e Vy € bd(dom ¢), V& € int(dom ¢). the limitlimg_,, || Vo ()| — oo

In convex analysis, thimdicator function is defined as as:

0 ifzxeXx
o(z|X) =
oo otherwise
Itis closed and convex if the satis closed and convex. The Legendre dual ofititkcator

function of a closed convex set is a sublinear function called thgupport function of

the setX. The support function of any sét is independently defined as

5" x(s) 2 sup (w,5).
xreX

If X is closed and convex then it follows that support function can be usédt@a gomplete
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characterization of the set using the propetty= {z | (z,s) < 6" x(s)}. All sublinear
functions are support functions, as a result there is a one to onspongence with closed
convex sets and sublinear functions.

A non-negative, positively homogeneous, proper function with defjreay be
obtained from a convex sgt containing the origin. Such a function is callebaugeand
is defined as:

Gaugey(y) = inf{\ | y € AV}

Given a convex functiog(x) one can define for all > 0 its perspective function

T\ ) = Agb(;).

The functionm (), ) when treated as a function afalone is called the dilation af(-).
Both thedilation and theperspectivefunctions are convex functions. Note however, that
some domain qualification may apply that limits the range of valuesitban take.

The Fenchel-Younginequality (2.3) is fundamental to convex analysis and plays

an important role in our analysis.

Y(y) + ¢(z) — (y,x) > 0. (2.3)

2.2 Bregman Divergence

Definition 1. Bregman Divergence:Let¢ : © — R, © = dom¢ C R be a strictly
convex, closed function, differentiable o ©. For x € dom(¢), y € int ©, the Bregman

divergenceDd)(-‘ ‘) : dom(¢) x int(dom(¢)) — R corresponding tap, is defined as

Dy(a||y) 2 o@) ~ o) ~ (@ — v, Vo(y))

Itis easy to show thab, (x‘ ’y) >0 andD¢(m’ ‘y) = 0iff = y. As the readers



will notice, Bregman divergences are asymmetric in general and guadatttde strictly
convex only in the first argument. A convenient identity that helps in anayaimvexity

properties with respect to the second argument is:

Dy (Vo(y)||Vo(@)) = Dy(a||y). (2.4)
We will require a few additional properties of the functionThese are:
P1: limgy_,g,chao) IVO(0)]| = oo
P2: If sequencer; € int(dom ¢) and lim x; = x then lim Dd,(a;’ ‘cct) =0
t—o00 t—00
P3: The left sublevel set
o L, (y) = {a:|D¢(a:Hy) < r} is bounded for aly € int ©

In this dissertation, we only consider functions of the fapifa) : R" > « — >, wio(z;)
which are weighted sums dflentical scalar convex functions applied to each component.
We refer to this class ageighted, identically separab(@VIS) or simply IS if the weights
are equal. This class has properties particularly suited to ranking. Mattatodistance
with diagonallV, weighted KL divergence/K L (z||y) and weighted and shifted general-
ized |-divergencevGI (x||y) are in this family (Table 3.1).

When the interior of the domain of the functignis empty special care is required
to define the Bregman divergence because the gradient as it is usuatigdddoes not
exist. In ane neighborhood of a point in the relative interior of the function, the valubef
function is finite on the intersection of this neighborhood with the affine hutiefdomain
but infinite at other points of the neighborhood, thus making the functiordiftarentiable
in the customary sense. It is however possible to define a linear functitreatfine hull
of the domain that approximates the convex function imatative neighborhoogdleading

to the notion ofrelative gradient
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Consider the restriction, of an everywhere defined functienthat is convex on

an affine subsetl of its domain, defined as follows:

(@) = o(x) ifa:EACdomqﬁ.

00 otherwise

The symbolA denotes the subspace parallel to the affinedsetsing the property
(Vo().d) = (Proj, (Vo(@)),d) Vd € A

one may define the relative gradient of the functigras

Viidr(x) £ Proj s, (Vo(x))

and a relative inner product

<ac,y>AH = <Pr0jA” (ar:),ProjAH (y)> ) (2.5)

Definition 2. Bregman Divergence(with Empty Interior): Let¢ : © — R, O =
dom ¢ C R¢ be a strictly convex, closed function, relatively differentiableidnt ©. For

x € dom(¢), y € riint ©, the Bregman divergend%(-H-) : dom(¢) xriint(dom(¢)) +
R corresponding te, is defined ad,, (w’ ’y) £ o) —d(Y)—(x — Y, Vi (Y)) s i dom ¢

Example 1. Consider the Bregman divergence obtained by the function

Zz(ll i — 1) forpe ACR"
o(p) = R TR R (2.6)

400 otherwise

The function is closed, strictly convex and differentiable inréisitive interior with the

gradient of) . (p; logp; — p;) given bylog p;. The relative gradien¥,;¢ can be obtained

11



by projecting the gradienbgpi on the subspace parallel to the affine hullafwhich is
the setd = {x| (1,x) = 0}. Thus

Vid(p) & Argminge 4 [|6; — logpill3 = | logp; — A | = | logpi — L 3" logp;

Here )\ is the Lagrange multiplier enforcing the constraint. Note that the

lim Vi = 0.
p—ri(bd(dom ¢)) H d)(p)H

Also, given a vectoy as the relative gradient one may invart; to obtain

%

p=(Violy) ' = | s | = Viog (Z)

= 9, |1 (0.9) — 9(9)] = V") @.7)

1 Using definition(2) we obtain the corresponding Bregman divergence betwegne A

YParticularly important is that the image of the simpkéwvithjespect to the relative gradient is whole of
R™ and convex, whereas the image with respect to the gratlignt is not. The image oA with respect to
V:i¢(p) is also the domain of the Legendre dy#él
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as

D¢(p‘ )q) = (pilogpi —pi) = > _(¢ilogqi — a:) — (P — q, Vrid(q)) 4

1

n 0

= Z(pi log p;) — Z(Qi log g;) +M

1 « 1 «
<p— 1,log q; — nzlogqi> + <q —1,log g; — nZIOgQi>
i (2.8)

)

=Zpilog(’>+ (= loggT(p—q) )+
- qi n =
1 K3
0

n n

Z(Qi log g; qilog q;)

3 7
=KL(pllq).

In the equality (a) we have used equat{@mb).

Note that definition (2) subsumes definition (1). To minimize clutter of notation
we will not decorate the inner product and the relative gradient spaltjfioVhether the
dot-product used is relative used will be evident from context (esdlgrfrom the nature

of the interior of the domain of the functiahused to generate the Bregman divergence).

Example 2. Consider the following function with domain

o(p) = Y i(pilogpi) + (1 =", pi)log(l—>,p;) forpe acC R1 2.9)

+00 otherwise

The term(1 — )", p;)log(1 — >, p;) is closed and strictly convex functiongfbecause it
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is an affine precomposition of a closed and convex funatioig . The gradient of2.9)is

Vo(p) = | log (&) | €R"

One can verify that the Bregman divergence obtain f(@®) has the same form as KL
divergence but defined as a mappiiag Ao) — R+ . Furthermore, unliké2.6)the function
(2.9)is a Legendre function with a non-empty interiat A. As a result there is an one to
one correspondence with the domaingofind its Legendre conjugatg* via the mapping

Vo and (V) 1g.

2.2.1 Bregman Projection

One can define a projection operation in terms of Bregman divergendesn & closed
setS, the Bregman-projection af on S is Proj® (¢, S) £ Argmin,, D(;,(p‘ ‘q) pES.
A result (lemma 1) similar to Pythagoras theorem holds for the proje®ian® (¢, S)
of a pointp outside the convex se& on S. One can show that for the same pojntits
projection on the supporting hyperplane®fassing through the projectidoj® (¢, S)
coincides with it. This result allows us to reduce the case of projection oregmets to

projections on suitable hyperplanes.

Lemma 1. (Censor and Lent, 1981) Consider the Bregman projedfianj® (¢, S) of g on
a convex sef and the supporting hyperplari® = {x| (a, ) = b} of the convex sef

throughProj® (¢,S) . Then

D¢(qu) = D¢(mHPr0j¢ (¢,9)) +D¢(Pr0j¢ (q,S)Hq) Ve
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Lemma 2. (Censor and Lent, 1981) Given a hyperplaie = {z|(a,z) = b1}, the

Bregman projectioProj? (¢, H1) satisfies the equation
Vé(Proj? (¢, H1)) = Vé(q) + A(Hi)a,

for some\(H;) and the symmetrized Bregman divergence betwgesnd its projection is

given by
Dy (Proj? (q, H1)Hq) + Dy (q’ ’Pr0j¢ (¢;H1)) = A(H)(D — (a,q)).

For a parallel hyperplané{s = {x| (a, ) = ba} with by > by, we have\(Ha) > A(H1).
Consider any poing such that; lies betweerny and#H,, then

Dy (Proj? (y. Ha)||y) = Ds (Proj® (y, Hz)||y) + Ds (Proj® (y, )| |Proj® (y, 10)).

2.2.2 Exponential Families, Generalized Linear Models and Bragan Diver-

gences

Bregman proposed the family of Bregman divergences as a means ofgsobrikex op-
timization problems. Perhaps surprisingly, these divergences arenfiemdally related to
exponential family distributions. Their intimate connection plays an importanimales
dissertation. A brief review follows:

A natural exponential familgensity? of a random variabl@” has the form
P(Y =y | 0) = expl@¥)—v(0)

These densities are indexed by what is known asatsrral paramete#. It is well known

2with respect to a base measure. For notational simplicity the base meakibedropped.
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(Lehmann, 1983) that not only is the domain

0= {0‘/ exp®¥ < oo}
Yy

of the parameter a convex set, the normaliz€6), a function defined or®, is also a
convex function (strictly so ify is affinely independent). Also called the log partition
function, (@) is of great importance because all moment¥ afan be recovered from it,
for example

E[Y] = Vgy(0).

In statistics and machine learning one is interested in an estimate of the parameter
0 that generated a sample Maximum likelihood obtains such an estimaié as the
maximizer of the sample log likelihood, or equivalently as the solution of the follgwin

optimization problem

0* = Argmaxg log P(y | 6)
= Argmaxg log P(y | 6) —log P(y | 6") = Argming ¢(0) — ¢(0") — (60 — 6", y)
= Argming ¥(6) — ¢(6*) — (0 — 0, Ve1p(6*)) [using optimality o]
— Argming Dy(6]|6") = Argmin, Dy (yH(ng)_l () [using (2.4) (2.10)

Generalized linear models (GLM) assume an exponential family probabilitsitgefior Y
conditioned on observed featuresThe paramete# is assumed to be a linear function of

x, as a result the corresponding conditional maximum likelihood optimization proisle

0" = Argming Dy (y[|(Vo) " ((@,w)),

16



Bregman'’s algorithm:

Initialize: A° € R+¢ andz? such that

Vo) = [Alva(y)| [\ 1]

Repeat: Till convergence
Update: Apply Sequentialor Parallel Update to obtain\!*!
Solve: V(z/*1) = [AUV@Z)(y)} [AH”, 1}*

Sequential Bregman Update: Parallel Bregman Update:

Selecti: LetH; = {z|(a;, z) < b;} For all 7 in parallel: Compute

Proj?® (zt,H;) , ¢!, (Lemma 2
Compute Proj® (zt,Hi),cg (see Lemma 2 J ( z) i ( )

V¢ (Proj? (zt, HZ)) = Vo¢(z')+cla;, || Update: )‘EH = X'+ 1,

Update: X' = \f + ¢, Synchronize: A" = (V¢) (32, VoA ™)

Table 2.1: Bregman’s Algorithm

2.2.3 Bregman’s Algorithm

Bregman divergences were first proposed (Bregman, 1967) in titextaf a generaliza-
tion of alternating orthogonal projection based algorithm for solving comgimization
problems, in particular

min Dd,(a:’ ‘y) st.Ax <b. (2.11)

A significant advantage of Bregman'’s algorithm is its scalability and suitabilityp&oal-
lelization. The algorithm operates by repeatedly projecting a dual feagifbié gnto the
constraints using Bregman projections. We list the algorithm in Table 2.1. dReathy
make special note of the simplicity of the parallel variant which applies directiyRo
This ease of parallelization was one the many reasons for basing the Migwak on

Bregman divergences.
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Chapter 3

Monotone Retargeting

This chapter introduces a novel approach for learning to rank (LETaBed on the notion
of monotone retargeting. Monotone retargeting minimizes a divergencedreailenono-
tonic increasing transformations of the relevance scores and a paraedterediction
function. The minimization is over the transformations as well as over the pteesn®IR
is applied with Bregman divergences, a large class of “distance like'tibmscthat were
recently shown to be the unique class that is statistically consistent with the limmuna
discounted gain (NDCG) criterion (Ravikumar et al., 2011). The algoritees @lternat-
ing projection style updates, in which one set of simultaneous projectiortsecemmputed
independent of the Bregman divergence and the other reduces togtarastimation of a
generalized linear model. This results in an easily implemented, efficiently piacile
algorithm for the LETOR task that enjoys global optimum guarantees undercuorildi-
tions. We present empirical results on benchmark datasets showing thappintsach can
substantially outperform the state of the art NDCG consistent techniques.

This chapter is organized as follows: In Section 3.1 we present a reduafti@an
optimization problem over the infinite class of all monotonic increasing functionisat
of alternating projection over a finite dimensional vector space. We inteo@uegman

divergences in Section 3.2 and discuss properties that make them pajtisulged to the
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ranking task. We show (i) that one set of the alternating projections caoreuted in
a Bregman divergence independent fashion (in Section 3.2.1), anégayable Bregman
divergences allow us to use sorting (in Section 3.2.2) that would havenstieerequired
exhaustive combinatorial enumeration or solving a linear assignment prabjgeatedly.
In Section 3.2.3 we show when that optimization problem is jointly convex bywiegathe
question of joint convexity of the Fenchel-Young gap.

Notation: Vectors are denoted by bold lower case letters, matrices are capital-
ized. x' denotes the transpose of the vectar||z|| denotes thel, norm. Diag(x)
denotes a diagonal matrix with its diagonal set to the veetor Adj-Diff () denotes
a vector obtained by taking adjacent difference of consecutive coem®f|{ |, thus
Cum-Sum(Adj-Diff (x)) = «. A vectorx is defined to be imlescending ordeif z; > z;
wheni > j, the set of such vectors is denotedRy. Vectorzx is isotonic withy if z; > x;
impliesy; > y;. The unit simplex is denoted b and the positive orthant bR <. Every-
where the symbo}(-) appears in this chapter it is used to denote the Legendre dual of the
function¢(-).

Background: In the chapter we make heavy use of known identities and algorithms
associated with Bregman divergences and their relation to generalized rinoelzls and
exponential family distributions. Chapter 2 summarizes the necessaryrbaoklg Several
new properties of Bregman divergences particularly relevant to theOBEEproblem are
described in Section 3.2

Structured output space models (Bakir et al., 2007) have dominated theftask
learning to rank (LETOR). Point-wise regression based models (inteadincChapter 1)
have been superseded by pairwise models (Freund et al., 2003), whiatm are being
gradually displaced by list-wise approaches (Cao et al., 2007b; Lan 20@9). This trend
has on one hand greatly improved the quality of the predictions obtainedhlibiemther
hand has come at the cost of additional complexity and computation. Théuootibns

of structured models are often defined directly on the combinatorial sp@esroutations,

19



which significantly increase the difficulty of learning and optimization comptoredgres-
sion based approaches. We propose an approach to the LETOR taskahmes the simplic-
ity of the regression based models, is simple to implement, is embarrassingly|zaialée

and yet is a function of ordering alone. Furthermore, the resulting algostijoys strong
guarantees of convergence, statistical consistency under uncegadhéyglobal minimum
under mild conditions. Our experiments on benchmark datasets show thabfesed
approach outperforms state of the art models in terms of several commdDR. BEtrics.

We adapt regression to the LETOR task by using monotone retargeting §mR)
Bregman divergences. MR is a novel technique that we introduce in thigerhand Breg-
man divergences (Bregman, 1967) are a family of “distance like” funstigell studied
in optimization (Censor and Lent, 1981), statistics and machine learning rjBaret al.,
2005) (See Chapter 1 for details). Bregman divergences are alsoitheclass of strongly
statistically consistent surrogate cost functions for the NDCG criteriorikRanar et al.,
2011), a de facto standard of ranking quality. In addition to these statishieghcteristics,
Bregman divergences have several properties useful for optimizataias we shall show,
specifically useful for ranking.

By combining Bregman divergences and MR we obtain provably conmege
ordinate descent algorithms with guarantees of global minimum under corsdé@asy to
satisfy. The LETOR task decomposes into subproblems that are equit@lestimating
(unconstrained as well as constrained) generalized linear models.régmBn divergence
machinery provides easy to implement, scalable algorithms for them, with a usssrch
level of granularity of parallelism. We hope the reader will appreciate thxébilidy of
choosing an appropriate divergence to encode desirable propettibe oankings while
enjoying the strong guarantees.

We motivate MR by first discussing direct regression of rank scor@&ighlighting
its primary deficiency: its attempt to fit the scores exactly. An exact fit is cessary since

any score that induces the correct ordering is sufficient. MR adesdbss problem by
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searching for a order preserving transformation of the target sttwaesmay be easier for the
regressor to fit: hence the name “retargeting”. Searching over all mdnttansformations

is a unigue characteristic of MR.

3.1 Monotone Retargeting

Consider a set of querie@ = {q1,¢; - - - go|} and a set of item¥ that are to be ranked in
the context of the queries. For every queryhere is a subsef; C V whose elements have
been ordered, based on their relevance. This ordering is customapilgssed via a rank
score vector; € R%=IVil whose component§; correspond to items ;. In this chaper
we assume that beyond establishing an order over the, stkte actual values aof;; are of
no significance. For a query the index; of 7;; is local to the seV; hencer;; andry;
need not correspond to the same object. We shall further assume, witbsrio fgenerality,
that the subscripf is assigned such thaj; is in a descending order for any. Note that
r; induces a partial order if the number of unique valikg the vector is less thad;.
For every query-object paifg;, v;; } a feature vectoR" > a;; = F'(g;, vi;) is computed
apriori with some predefine. The subset of training data pertinent to any qugrg the
pair {r;, A;} and is called its gset. The column vectgrconsists of the rank-scorég and
A,; is a matrix whosg!" row is a;;.

Given a loss function D; : R® x R®* — R, we may define a regression model
ngnZD(ﬂ,f(A,;,w)) wheref : R**™ x R" — RR® is some fixed parametric form with
the p;arametew. This is a common approach and in the context of LETOR these are called
point-wise methods. As discussed, this is unnecessarily stringent fkinganA better
alternative is:

whereY; : R® — IR? transforms the component of its argument by a fixed monotonic,

strictly increasing functiof(';, andM is the class of all such functions. Nof{A;, w) no
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longer need to equal; point-wise to incur zero loss. It is sufficient for some monotonic
increasing transform of (A;, w) to do so.

Optimizing a suitable loss function over all possible monotonic, strictly increasing
functionY; is the topic of Chapter 4. In this chapter we take simpler route of applying the
monotonic transform te@; and optimize over the range space generated. This avoids the
minimization over the function composition, but the need for minimizing over theerang
space of all monotone functions remains. One possible way to eliminate the minimizatio
over the function space is to restrict our attention to some parametric family at the
expense of generality. Instead, with no loss in generality, the optimizatiartlovénfinite
space of functions/{ can be converted into one over finite dimensional vector sgaces

provided we have a finite characterization of the constrairiR$etiefined as below:

Jmin 37 Dilrs, f(Asw) SR = {rlifth5 | (3.1)
i

The SetR|,: Itis the set of vectors isotonic #. The convex composition = ar; + (1 —

a)ro of two isotonic vectors:; andrq preserves isotonicity, as does the scaling for

anya € R. Hence the seR|, is a convex cone. This makes the problem computationally

tractable because the set can be described entirely by its extreme réysther extreme

rays of its polar. We claim the s&,; can be expressed as the image of thgBet}* ! xR

under a linear transformation by a particular upper triangular métmith positive entries:
R, =Uzx st zc{R. }*'xR

The matrixU is not unique and can be generated from any veeterR . *, but as we shall

see, any member from the allowed clasd/ois sufficient for anexhaustiveepresentation

of R|;. !

For regression functions capable of fitting an arbitrary additive offeegenerality is lost by constraining
the last component af to be non-negative.
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Lemma 3. The set of all vectors ifR¢ that are sorted in a descending order is given by
Uz stz € {R.}*! x R whereU is a triangular matrix generated from a vector

v € R, ¢ such that the®® row U (i, :) is {0} ! x v(i :)

Proof. Consider solving/x = #; for any vectorr; sorted in descending order. We have

x = (Diag) ' (v) x Adj-Diff(#;) whichis in{R;}*~! x R -

The SetAl: In addition to the seR|; we shall make frequent use of the set of
all discrete probability distributions that are in descending order,R&. N A, that we
represent byA! . The choice of this set is motivated by two reasons, to keep the contribution
of different gsets comparable in the cost function, and the need to keematlk-score
vector bounded away from the origin. Similar to the &t we may represent this set
by generating an upper triangular matiixfrom the vectorvy = {1,3,---1---1} and

consideringe € A.

Lemma 4. The setA, of all discrete probability distributions of dimensiahthat are in
descending order is the imagér s.t. x € A whereT is an upper triangular matrix

generated from the vectar = {1, 3 --- 1} such thatl'(i,:) = {0}"! x va(i 1)

Proof. The proof follows Lemma (3)7x is in the simplexA because it is a convex com-

bination of vectors im\. O

Given any choice of the distance like functién(-, -) and the curve fitting function
f(-,-) we obtain an optimization problem that can be optimized alternately in the rank
scores and parameters ¢6f It will certainly be convenient if the resulting optimization
problem is convex. We show that (i) by choosiny(-,-) to be a Bregman divergence
D¢(- ‘ ‘) obtained from a convex functiap(-) and (ii) f (-, -) to be a matching curve fitting

function(V¢) ' (A;Tw), one obtains from (3.1) a bi-convex optimizatiqeroblem over a

2A biconvex function is a function of two arguments such that with any onisaiirguments fixed the
function is convex in the other argument.
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Function: ¢(x) Divergence:Dy (z||y) Link: (V¢) *(x)
2l allz — ylliy T

>, wiiloga: @ € A wKL (zly) = 5, wi; log(2) S

> wi(x;logx; — x;) wGlI (x||y)

xeR.? =3 wi((z — 1) log(ifj) — i + i) exp()

Table 3.1: Examples of WIS Bregman divergences.

product of convex sets.

(|(Ve) ™! (Aﬁ'w)). (3.2)

Readers familiar with GLMs will recognize that optimization with respecivton
(3.2) is nothing but maximum log likelihood estimation of a GLM with the canonical link
function (Ws)‘l(-), as discussed briefly in Section 2.2.2 (see equation (2.10)). Table 3.1
shows some common Bregman divergences, the convex functions gregnétam and their
corresponding link functions. The optimization with respeat t R/; can also be seen as
maximum log likelihood estimation of an exponential family, but under linear cainssr
on the parameters, for which scalable techniques are available, (s€g,(@2nsor, 1981)).
The LETOR task has additional structure in the type of linear constraints ad@oxl these
can be exploited to give efficient solutions, as we shall see shortly. ladhel LETOR

task we augment (3.2) with a convex regularization term to take care dfttingr

3.2 Ranking Related Properties

In this section we explore properties that make the Bregman divergesed bast function
(3.2) particularly suitable for learning ranking. We shall see that the minimizatier

r can be made (almost) agnostic to the functign). The use of separable Bregman di-
vergences also allows one to obtain the best re-permutatientledt minimizes the cost

function where all other terms stay constant. Finally, we show under vamalitions the

24



cost function is not only separately convex-iandw, which is always guaranteed, but also
jointly convex. Although these properties play a pivotal role in the monotetegeting

formulation they are also significant in their own right.

3.2.1 Universality of Minimizers over Ordered Sets

A mean-variance like decomposition (described in appendix A.1, Thedk8)) bolds for
all Bregman divergences. It plays a critical role in Theorem 1 whichshgasficant impact

in facilitating the solution of the LETOR problem.

Proposition 1. For R} ¢ R? the entire set of vectors with descending ordered components,

the minimizery* = ArgminD,, (w‘ ‘y) is independent ob(-) if ¢(-) is WIS.
YyeR|
Proof. A more general case is proven in Proposition 2 O

Following our independent proof of Proposition 1, we have since comess@n older
proof (Barlow and Brunk, 1972) developed prior to the popularity afddnan divergences
and in the context of maximum likelihood estimators of exponential family modelsrund
conic constraints. Whereas the older proof uses Moreau'’s conengesition (Rockafellar,

1996), ours uses Theorem 15 (in appendix A) and yields a much sipootef

Corollary 1. If dom(-) = R? where(-) is the Legendre conjugate of the WIS convex

functiong(-) andz* = Argmin, ., ||z — z||* then

Argmin Dy(y||(Vo) (@) = (Vo) ' (=").
yeR|Ndom ¢

Note that Corollary 1 is directly applicable to formulation (3.2). It implies that
for an infinitely large class of convex functiogs-) for which the dual domain i®?, the
minimization over; € R|.Ndom ¢ can be obtained by transforming the equivalent squared
loss minimizer by(V¢) '(:). The squared loss minimization is not only simpler but its

source code implementation can now be shared across instantiations a¥i{B.8jfferent
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¢(-)s whenever Corollary 1 applies. It is clear from the precondition of thmellemy that
the class of convex functions where the corollary applies is identical te teined as

“essentially smooth” (Rockafellar, 1996). Three such functions arallistéable 3.1.

3.2.2 Optimality of Sorting

For any sorted vectae, finding the permutation of that minimizesD,, (m’ ‘y) shows up
as a subproblem in our formulation that needs to be solved in an inner ldmys. sSblving
it efficiently is critical and this is yet another instance where Bregmangtrees are very
useful.

For an arbitrary divergence function the search for the optimal permatatia
non-linear assignmeriroblem that can be solved only by exhaustive enumeration. For an
arbitrary separable divergence the optimal permutation may be foundagga linear
assignment problem, which is an integer linear program and expensigtvéo(especially
in an inner loop, as required in our algorithm). On the other hangl(-ifis IS, the solution
is remarkably simple, as shown in Lemma 5 whéfg] denotes a partitoned vector with

vector components; andzs.

Lemma5. If 21 > 29 andy; > yo andg(-) is IS, thenD¢([£§]

and Dy ([ ]| [22]) < Do([37]]|[z8])-

[83)) = Do([22]]|[42)) = ((Vo(2) = Vo). a1 — w2) . There exists
¢ >0 st x; —x2 = c(y1 — y2). Proof follows from monotonicity oV ¢, ensured by

[53)) < Do (2]

152

Proof. Dy ([3}]

convexity of¢. We can exchange the order of the arguments using the property (2[4).

Using induction overl for y € R¢ the optimal permutation is obtained by sorting.
Not only is Lemma 5 extremely helpful in generating descent updates, iundarmental

consequences related to the local and global optimum of our formulatieréema 6).
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3.2.3 Joint Convexity and Global Minimum

In this section we are concerned about the joint convexity of the formuléB@). Joint
convexity, if ensured, guarantees global minimum even for coordinese-avinimization
because the objective function is smooth and the constraint set is a Qarestact of
convex sets.

Using Legendre duality one recognizes that equation (3.2) quantifieafhia ghe
Fenchel-Young inequality (2.3) (normalized B¥%|).

Dg(ri||(Vo) ™" (Aiw)) = (Asw) + ¢(ri) — (i, Asw) . (3.3)

Although this establishes separate convexitwimndr;, the conditions under which joint

convexity is obtained are not obvious. We resolve this important questiongarém 1.

Theorem 1. The gap in the Fenchel-Young inequalityy) + ¢(x) — (x,y) for any con-
tinuously differentiable, strictly conveX-) with a differentiable conjugatép)™ (-) = ¥(+)

is jointly convex if and only if, ignoring affine terms(x) = c||z||? for all ¢ > 0.

Proof: sketched in appendix A.
It follows from Theorem 1 that cost function 3.3 is jointly convex if and oiflly

¢(x) = cllz|*,c > 0.

3.3 LETOR with Monotone Retargeting

Our cost function is an instantiation of (3.2) with a WIS Bregman divergelmcaddition,
we include regularization and a query specific offset. Note that the wostion (3.2) is not
invariant to scale. Squared Euclidean, KL divergence and genetalitigergence are ho-
mogeneous functions of degree 2, 1 and 1 respectively. Thus theatole reduced just by
scaling its arguments down, without actually learning the task. To remedy thisgstrict

ther;’s from shrinking below a pre-defined size. This is accomplished by ainstgr;’s
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to lie in an appropriate closed convex set separated from the originxéonme, an unit

simplex or a shifted positive orthant. This yields:

|Q] 1
51',10;?61%%“37; ; ‘VZ| ¢ (TZ

(Vo) ! (Ayw + Bil)) + %HwHQ, (3.4)

or equivalently

Q]
. 1 co
&,w,genﬂimsi g WDd’ (Aiw + ;1 ‘V¢ (r:)) + 5||w|| ; (3.5)

whereS; are bounded sets excludifg chosen to suit the divergence. The paramétés
the regularization parameter. In non-transductive settings, the quecifispffsetss; will
not be available for the test queries. This causes no difficulty be¢huk®es not affect the
relative ranks over the documents. We updatertfeeand{w, {3;}} alternately.

If S; = dom¢ anddomy = R?, the optimization over; reduces to an order
constrained least squares problem (corollary 1). Examples of suchedapairs are (i)
wK L (-||-) andA;, and (i) shiftedwGT (+||-) and1 + R, <. A well studied, scalable al-
gorithm for the ordered least squares problem is pool of adjacentaisléPAV) algorithm
(Best and Chakravarti, 1990). One may also use Lemma 3 to solve it asreegative least
squares problem for which several scalable algorithms exist (Kim et)48)2

To be able to use Bregman'’s algorithm, it is essential ®jgtbe available as an

intersection of linear constraints. This is readily obtained for any presttital order, as:

Rl = {rij+1 —rij < O0}vjes,,

A7 =R N {Z rij = 1} N {r;q, > 0}. (3.6)
J

The advantages of the Bregman updates (2.2.3), are that they are @apietnent
(more so wherProj® (-,-) is available in closed form e.g. squared Euclidean) and have

minimal memory requirements. Hence they scale readily and allow easy switclafse-
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guential to a parallel update. The parallel Bregman updates applied to (&) clearly
exposes massive amounts of fine grained parallelism at the level of indivitequalities
in R|; or A¢ that can be exploited using Bregman’s algorithm with parallel updates de-
scribed in Section 2.2.3. They are well suited for implementation on a GPGPUo(iic
et al., 2008). We note that the optimization #gris independent for each query, thus can
be embarrassingly parallelized further. In our experiments on a rejatise set of largest
available LETOR datasets (reported in Section 3.4) each iteration took namaora cou-
ple of seconds, as a result we had little incentive for parallelization. Hemfev industrial
scale applications, for example ranking web pages, parallelization will piagnportant
role.

For optimizing overw one may use several techniques available for parallelizing
a sum of convex functions, for example, parallelizing the gradient cortipntacross the
terms or use more specialized technique such as alternating direction methatlipfiers
(Boyd et al., 2011). Furthefw, {f;}} can be solved jointly simply by augmenting the
feature matrix4; with 1 for each query. We hope the readers will appreciate this flexibility

of being able to exploit parallelism at different levels of granularity oficbo

3.3.1 Partial Order

Recall that a partial order is induced if the number of unique rank sdorgsr; is less
thand;. In this case, our convention of indexing in a descending order is ambiguous.
To resolve this, we break ties arbitrarily. Consider a subs#t @fhose elements have the
same training rank-score. We distinguish between two modeling choicethie(@gms in
that subset are not really equivalent, but the training set used a tiesdllnat could not
make fine distinctions between the itefnsge call this the “hidden order” case, and (b) the
items in the subset are indeed equivalent and the targets are constraieiedithe same

block structure, we call this case “block equivalent” and model it apptedy.

3or that, we only care to reduce the error of predicting> r;; whens;; < 7;;. Note the strict inequality.
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Partially Hidden Order

In this model we assume that the items are totally ordered, though the finengrdetween
similar items is not visible to the ranking algorithm. LBt = {Pz-k},’zi:1 be a partition of
the index set oV;, such that all items i, have the same training rank-score. We denote
their sizes byi;; = |P,;|. Although the relevance scores specify an order between items
from two different set$’; and P;;, the order within any se;;, remains unknown. The high
cost of acquiring training data in a totally ordered form makes this scenarjocommon
in practice.

The setfR; : Denote the set of rank-score vectors having the same partially ordered

structure ag; by *R;. For partial order we may describ& by linear inequalities as follows:
ki—1
{rim > rin};1 Viep, o, m € Pij, n € P j4a,

with eachj generatingl;;d; ;11 inequalities. One may now replace the occurrencRlgf
by 9; in the formulation 3.4 to obtain the formulation for the partial hidden order case.

Thereby we obtain:

2] 1

i — . -1, . ¢ 2
m,w,ii.‘é%msi;wﬂqb(” (Vo)™ (Aw+ Bi1) + S [lwl®. (37)

The optimization problem may be solved using either an inner or an outesegpiation of
the constraint sets, both offer different advantages.

Outer representation: Recall that Bregman’s algorithm 2.2.3 is ideally suited for
the outer representation (3.6). Note that the number of inequalities used repttesen-
tation of R; can be very large. This proliferation of inequalities may be controlled by

introducing auxiliary variable$fi,l}f;jl and inequalities:

{Fija1 > i, > Tij}Vien, o)) (3.8)
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To this relatively parsimonious representationfdfs one may apply Bregman’s
algorithm to obtain the scores. However, since Bregman's algorithms are essentially
coordinate-wise ascent methods, their convergence may be slow unieggdined par-
allelism can be exploited, which are best performed in specialized hagdfearexample
GPGU (Nickolls et al., 2008). For commodity hardware, an alternative toxtiegier point
methods are proximal and interior point methods that use an inner retaéserof the
convex constraint set. In our experiments we used the inner repriégerdaad proximal
methods. Experimental details are in Section 3.4.

Inner representation: To construct the inner representation of the set of (hidden)
partially ordered vectors we introduce a block-diagonally restricted pation matrixP;
that, when multiplied to a vector, permutes the components in éacindependently.
Since the items irP;; are not equivalent they are available for re-ordering as long as that
minimizes the cost (3.7). The inner representation of an arbitrary (higdetially ordered
vector inR” is therefore obtained as = P;Ux; with U andx as defined in lemma 3, and
for ordered vectors id\;, it is given byP; Tx;, whereT'i andx are as defined in lemma 4.

The cost function (3.7) may now be reduced by alternately minimizing ®ye®;
andw. In our experiments we have used the inner representation and moreeveavwe
constrained the score vectors to the simphexto keep different gqsets comparable and to
keep the retargeted scores bounded away fidsee discussion preceding Lemma 4). The
updates are shown in Figure 3.1.

When there are additional constraints on the set of hidden partially ardemze
vectors, the vecto may be updated by the method bf proximal gradients, where the
proximal term is a Bregman divergence defined by a Legendre conwekién whose do-
main is the required constraint set (lusem, 1997), (Censor and Zd8988). We do not
go into the details of proximal methods as it lies beyond the scope of this chapris
relevant is that this method automatically enforces the required constraoitstht in the

formulation (3.7) the additional constraint is denotedSpyln our setting, the sef; is A;,
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Input: Convex functionyp, feature matrice$ A;} with rows sorted by relevance, reg
larization parametef.

Repeat Until Convergence:

Pitt = Argmin Dy (Tzt||(Vo) ! (mAw’ + BY)) Vi (3.9)
21 = Argmin Dy TacH Vo)t (P At + BY)) Vi (3.10)

[ ASYAN o ;
w5} = Avgmin 3 Dy (Tai (Vo) (B A + 50)) + 5wl
B (3.11)

Return: w.

Figure 3.1: Algorithm for Partially Hidden Order

in this case the corresponding proximal gradient update isfthe exponentiated gradient

algorithm (Kivinen and Warmuth, 1995).
Recall that block weighted IS Bregman divergences have the speojadnpy th

at

sorting minimizes the divergence over all permutations (Lemma 5). Thus uf&i@jean

be accomplished by sorting. Tlie updates are obtained by sorting each block indepen-

dently.

The updates (3.9), (3.10) and (3.11) each reduce the lower bouasg@), there-

fore the algorithm described in Figure 3.1 converges in function valugueMer, the vital

guestion whether the updates converge to the stationary point of theuogcsibh (3.7) re-

mains. Make note of the fact that though (3.7) is differentiable;iit is not differentiable

in the trifactored representation = IP;Tx; because of the discrete naturelfof The non

differentiability may raise doubts about convergence to the stationary @iofBt7). Thus

in the next couple of paragraphs we clarify why indeed the specifiedtapadonverge to

such a stationary point.

Convergence to a Stationary Point: The tri-factored form-; = P;Ux; is a cause

32



for concern, though it is reassuring that the rang®,éfx; is R; which again is a convex
cone and that the tri-factored representation of any point in that comsdsided uniquely.
This, however, is not sufficient to ensure that a minimum is achieved b@)(arid (3.9)
because though the constraint set is convex, the cost function (3.4} onvex in the
tri-factored parameterization. Worse still, the parameterization is disérete.

If sorting (3.9) and constrained minimization (3.10) achieves the minimdan a
fixedw!+!, {5f+1}, then convergence to the stationary point is guaranteed by the following

theorem:

Theorem 2. (Bertsekas, 1999) Let functiof(x;, z2) be continuously differentiable in its
domainllX;. Suppose for eachandz € &; the coordinate-wise minimumingcy, f(-, €, -)
is uniquely attained. Then every limit point of the sequence of coordimigiminimizers

is a stationary point off.

Thus we explore the question whether (3.9) and (3.10) together achielreado-
cal minimum, because together they can be considered an instance of apdeta-ihat
achieves minimality while the other parameters are kept fixed in a continuoufdyedhf
tiable cost function. Note that we may consider the permutation to be applied kefitthe
argument without any loss of generality, because the divergenceuimadgo be WIS with
weights constant in each block. We shall do so as it simplifies the reasdtaegll that the

sorting Lemma 5 works for both right and left arguments.

Lemma 6. Let z be an arbitrary vector in the domain of a Bregman divergeﬁgf(-H-)
andy be partitioned ag}!]. Let [Z1] denote the conformal partition ef. LetD¢(-‘ ’) be

a separable WIS Bregman divergence where the weights are constiaint tive partitions.

“While one may address the discreteness problem via a real-relaxafforoafoubly stochastic matrices,
the local minima attained in such a case will be in the interior of the Birkhofftpply and not at a vertex of the
polytope that is representable By and reachable by sorting based updates (3.9). Therefore sulgxatian
cannot answer whether (3.10) and sorting (3.9) achieves the Idnahom of the cost function for a fixed
{w, B;} Surprisingly enough, sorting followed by a singte update achieves the local minimum of (3.4) on
the coneR;.
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Let

. ’
[0 = Argmingengy, ) Do([})!]
Y12Yh

El)

wherell(y;) is the set of all permutations of the vectgy, theny; is isotonic withax; Vi =

1,2

Proof. The proof is by contradiction. Assumg is a minimizer that is not isotonic with
z;, then according to lemma 5 one may permyfeto match the order of; to reduce the

divergence further, yielding a contradiction. Ol

Thus in spite of the caveats mentioned above, one can identify the optimahgrde
of the components of the left argument that achieves the minimum for adiketl {Bf“}
even before optimak; has been determined. With this optimal order obtained, one may
then compute the optimal; (see (3.11)) for a fixeadv! ™, {Bf“} with relative ease using

any convex optimization solver (in our experiments we use LBFGS (Liu et389)).

Block Equivalent Partial Order

Without any loss of generality we represéht as the image of/x = M,;U;x wherex €
R..*. U; is an upper triangular matrix, similar in spirit&in Lemma 3, but of sizé; x k;.

For the constraini\! we use matrixI; = M,T; instead ofU; and constrainc to A. The
110---0
run length decoding matrixz;t = | oo11... | iS structured to select componentdgi (or

T;x) and copy them at the right position.

For the partially hidden order case (Section 3.3.1) the algorithm (Figurec&ril)
exploit the fact that multiplication by/; (or 7;) or its inverse is a linear time operation.
Therefore, a pertinent concern is whether something similar holds for tlok bljuiva-
lent partial order scenario for soIvingggnDd,(ﬁiw‘ ‘y) and the the solution of the equation
Uz = 4. The rank deficiency of/ seems troublesome. Indeed, the corresponding com-

puations for the block equivalent partial order case too can be obtaffieigntly thanks
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to favorable properties of Bregman divergences, to whit: we preserfottowing semi-
closed form: It is easy to see that multiplication Byis O(d;) because it consists offa

dimensionalCum-Sum and redistribution to obtain a vector v .

Lemma 7. Given an IS Bregman divergence,

ArgmmD¢ U T
m€R+ i

y ={z*|U;x = Proj? (,u¢(rl) R, )}

and

ArgmlnD¢ T x
xTEA

y = {z*|Tjx = Proj® (qu(rl) Aok, )}

Proof. Let R* 5 ¢ = U,z. The cost function reduces to

k;
mind > Dy (ax ;)

k=1j€P,

= mlgz Z Dw Vo(y; Hgf) qk (3.12)
9€° 121 jep,

_mmZZD¢ (yj HEP Vo(y))] +ZD¢1 IE Vo(y)) H¢ Qk

€s
95° 4=1 jep,

(3.13)

= Dy (60)| o wip,)) + min D (] 10 w1r,)) (3.14)

Equality (a) follows from switching argument order identity (2.4)%) from optimality
of mean (A.7) andc) from Corollary (8). The first term in (3.12) is constant hence the
minimizer is obtained by minimizing the second term over the appropriat® spécified,

obtaining the projection. Ol

This reduces the optimization problem into a Bregman projection problem of a sig
nificantly reduced dimensionality. The updates are shown in Figure 3.X-&deing with

U; is O(k;) and computing.,(7;) is O(d;) if V¢ andV~1¢ can be computed in constant
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Input: Convex functionyp, feature matrice$A;} with rows sorted by relevance, reg-
ularization parameter'.

Repeat Until Convergence:

ot = {x*|Tiw = Proj? (ue(7:), Aor,)} (3.15)
Q]

w't {ph = Argminz Dy (Tiwt”l H(V(]ﬁ)_l (AiTw + Bfl)) (3.16)
Y=t

Return: w.

Figure 3.2: Algorithm for Block Equivalent Partial Order

time. If ¢ belongs to the “essentially smooth” class, e.g. wKL, wGl, Corollary 1 cdnge

computation even further.

3.4 Experiments

We evaluated the ranking performance of the proposed monotone tetgrgpproach on
the benchmark LETOR 4.0 datasets (MQ2007, MQ2008) (Liu et al., 200Wedl as the
OHSUMED dataset (Hersh et al., 1994). Each of these datasets isitped into five-
fold validation sets for easy comparison across algorithms. For OHSUMIEDysed the
QueryLevelNornpartition. Each dataset contains a set of queries, where each doasment
assigned a relevance score from irrelevant(0) to relevant { = 2).

All algorithms were trained using a regularized linear regression functiith, a
regularization parameter chosen from the Get {10-2°,10-1°,107°,10°,10'}. The
best model was identified as the model with highest mean average predig\t) on the
validation set. All presented results are of average performance ongtheete As the
baseline, we implemented the NDCG consistent re-normalization approachviky/ar
et al., 2011) (using the NDCG normalization) for the squared loss and the I-divergence

(generalized KL-divergence). The baseline constitutes the latest $ttite art in super-
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vised ranking methods. It incorporates NDCG consistency into the formulatid was
recently shown to outperform the then state of the art LETOR algorithms Li§Geo

et al., 2007a), RankCosine (Ravikumar et al., 2011) and other NDC@sigtent metrics,
see (Ravikumar et al., 2011) for details.

ListNet was implemented (Cao et al., 2007a) as the KL divergence baseioee s
their normalization has no effect on KL-divergence. MR was implementidj ulse par-
tially hidden ordermonotone retargeting approach (Section 3.3.1). We compared the per-
formance of MR (Normalized MR) to the MR method with the normalizaﬁiﬁpremoved
(Unnormalized MR).

The algorithms were implemented in Python and executed on a 2.4GHz quad-cor
Intel Xeon processor without paying particular attention to writing optimizesteccAm-
ple room for improvement remains. Square loss was the fastest with tasp@eerage
execution times per iteration at 0.58 seconds whereas KL achieved 1ddsqmer itera-
tion and I-div 1.14 seconds per iteration. We found that although MQZ06ibre than 4
times larger than MQ2008, MQ2007 only required about twice the time executiawer-
age, highlighting the scalability of MR. On average SQ, KL and I-div took%®and 65
iterations.

Table 3.4 compares the algorithms in terms of expected reciprocal retuRR) (ER
(Chapelle et al., 2009), mean average precision (MAP) and NDCG. fitveronalized KL
divergence cost function led to the best performance across datadetsmost signifi-
cant gains over the baseline were for the I-divergence cost fundlonotone retargeting
showed consistent performance gains over the baseline across mMebIC&( ERR, Pre-
cision), suggesting the effectiveness of MR for improving the overakirgy performance.

Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 show the performance thatcs
measured according to NDCG@N and Precision@N metrics of MR with |-givere, KL-

divergence and Sg-loss and the corresponding state of the art leaselar experiments

4 The baselines are obtained by applying NDCG consistency correctioawiinar et al. (2011) to the
base models and were shown to outperform then state of the art algosititmsis ListNet,RankCosine etc.
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MQ 2007 NDCG
I-div SQ KL
Unnormalized MR| 0.6961| 0.7398| 0.6978
Normalized MR | 0.6954| 0.6953| 0.6981
Baseliné 0.5512| 0.6927| 0.6952
MQ 2007 MAP \
I-div SQ KL
Unnormalized MR| 0.5379| 0.5361| 0.5398
Normalized MR | 0.5358| 0.5282| 0.5399
Baseliné 0.3611| 0.5330| 0.5380
MQ 2007 ERR \
I-div SQ KL
Unnormalized MR| 0.3698| 0.3703| 0.3737
Normalized MR | 0.3702| 0.3601| 0.3731
Baseliné 0.1953| 0.3639| 0.3643

Table 3.2: Test NDCG, MAP and ERR on dataset MQ 2007. The bedtgesa noted in
bold.

0.6 - - -
. e—e |-div Baseline
0.5+ R rpnnTROT Fao 4. |-div Proposed Normalized
- ' v . .
Fovm g e el eor AT s T . = -u |-div Proposed Unnormalized
0.5+ Y - 1
A LI -
Biahet CP PR
0.4r ] X
0.4f
0.3F
0.3+
0.2}
e—e |-div Baseline
a: - |-div Proposed Normalized 0.2F
= -a |-div Proposed Unnormalizec
01 2 3 4 7 8 9 1 2 3 4 5 6 7 8 9 10

5 6
NDCG@N Pre@N

Figure 3.3: NDCG (left) and Precision (right) on MQ2007 obtained by MR with
divergence and I-divergence based baselines.
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Figure 3.4: NDCG (left) and Precision (right) MQ2007 obtained by MR witHoss and
sg-loss based baselines.
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Figure 3.5: NDCG (left) and Precision (right) on MQ2007 obtained by MR wWith
divergence and KL-divergence based baselines.
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MQ 2008 NDCG \

[-div

SQ KL

Unnormalized MR| 0.7339

0.7398 | 0.7451

Normalized MR | 0.7346

0.7396 | 0.7330

Baseliné 0.5892| 0.7344 | 0.7399
MQ 2008 MAP |
I-div SQ KL

Unnormalized MR| 0.6439

0.6532 | 0.6571

Normalized MR | 0.6449

0.6549 | 0.6461

Baseliné 0.4513| 0.6428 | 0.6530
MQ 2008 ERR \
I-div SQ KL

Unnormalized MR| 0.4137

0.41559| 0.4238

Normalized MR | 0.4144

0.41392| 0.4085

Baseliné 0.2724

0.40978| 0.4132

Table 3.3: Test ERR, MAP and NDCG on MQ2008 dataset. The best resaltsoted in

bold.
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Figure 3.6: NDCG (left) and Precision (right) on MQ2008 obtained by MR with
divergence and Idivergence based baselines.
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Figure 3.7: NDCG (left) and Precision (right) on MQ2008 obtained by MR wWith
divergence and KL-divergence based baselines.
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Figure 3.9: NDCG (left) and Precision (right) on OHSUMED obtained by Mighw+
divergence and I-divergence based baselines.
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Figure 3.10: NDCG (left) and Precision (right) on OHSUMED obtained by ik I-
divergence and I-divergence based baselines.
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OHSUMED ERR
I-div SQ KL
Unnormalized MR| 0.5657| 0.5410| 0.5410
Normalized MR | 0.5796| 0.5093| 0.5093
Baseliné 0.2255| 0.5450| 0.5467
OHSUMED MAP
I-div SQ KL
Unnormalized MR| 0.4537| 0.4417| 0.4531
Normalized MR | 0.4463| 0.4394| 0.4506
Baseliné 0.3421| 0.4465| 0.4524
OHSUMED NDCG \
I-div SQ KL
Unnormalized MR| 0.7000| 0.6878| 0.6997
Normalized MR | 0.6935| 0.6798| 0.6916
Baseliné 0.5805| 0.6892| 0.6947

Table 3.4: Test ERR, MAP and NDCG on OHSUMED dataset. The bedtsesa in bold.

show a significant improvement in performance on the range of datasktestfunctions.
Across datasets, the difference between the baseline and our resdtmagt significant
with the I-divergence (generalized KL divergence) cost function.

There are two things worth taking special note of: (i) although the baselie alg
rithms were proposed specifically for improving NDCG performance, MR avgs the
ranking accuracy further, even in terms of NDCG. (ii) MR seems to be icigi@eak per-
formance early, consistently. This property is particularly desirable aeddsded specif-
ically in the cost functions such as NDCG and ERR. In our initial formulationused
WIS Bregman divergence so that the weights could be tuned to obtainedrthgeaking
behavior. However that proved unnecessary because even tleéghted model produced
satisfactory performance. The effect of query length normalization h@sever, incon-
sistent. Some of our results were insensitive to it, whereas other resultsagreersely
affected. We conjecture that the restriction of the scores to the unit simpbadg normal-

izes the gsets based on item sizes and thus additional normalization is wamgces
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3.4.1 Joint Convexity

Now we extend the property of joint convexity beyond squared Euclidéstance. This
can be done using a careful balance between regulariziagdw. We regularizer; via

the termC;.; D ('ri (qu)_1 (qi)) to ensure joint convexity. Necessary and sufficient con-

ditions for are established for the coefficigrt;.
Vector (Vo) '(g;) acts as the “center” of regularization fe;. We use#; =
(ch))_l(qi) in the batch setting andrgmin,, ¢ in the online setting. Incorporating this

regularization we obtain

Fi(ri,w) = nii(l%(m (Vo)™ (Aw)) + CriDg (ri||(Vo) ™ (g;)) +
5wl + 5 g hell) - .17

Our first update of the cost function (3.4) K {r;},w) = Zlg Fi(r;,w). Note thats
terms may be absorbed intd; by augmenting the features by a vector of ones, so no

generality is lost in equation (3.17) and that we assurteebe strongly convex.

Lemma 8. Let ¢ be s strongly convex with. Lipschitz continuous gradients, then main-
taining C; + 17 > 0,

$(Cp; +1)(Cuwi + 1) > 1 ensuresF; is jointly convex.

1+Cr;)H, —A
Proof. V2F;(r;, w) L[ e

= 1| _at AJ(HWCM)A#C‘W‘I} wherev is the Legendre

21e]
conjugate ofb andH,, H,, the corresponding diagoraHessians. Substitutin g the relation

betweenC,,;, C;; and bounding the smallest eigenvalue, the result follows. O

Lemma 9. Leta; = , then

_1
1+C¢i

(Vo) (s Aiw + (1 — a)g)).

Argmin Fj(r;,w) = Argmin Dg (ri
T‘iemiﬁsi Tiemiﬁsi

®Recall thaig(-) and consequenthy(-) are separable by assumption.
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Proof. Follows as a consequence df |:D¢(xHS)} = E [Dqs(pr,)] + D¢(,uHs)

T~TT VT

(Banerjee et al., 2005). O

Thusr;'s can be updated usinggflectedprediction(Ve) ! (cAw + (1 — a)g;).
Strong convexity ofp is a mild assumption that is satisfied by all the com monly used

Bregman divergences, e.g. squared Euclidean, KL-divergeftegigence etc.

3.4.2 Marginal Strong Convexity

SinceF ({r;}, w) is jointly convex we may work with the marginal function

Gi(w) = min F({ri},w), G(w) = Z Gi(w) (3.18)

which is guaranteed to be convex (Rockafellar, 1996). This luxury isamatiabl e in
MR. A quasi-Newton method (Liu et al., 1989) appliedd¢w) would require computing

VG(w), this is easily obtained as

12l 19|

VG(w) = Z Gi(w) = Z VE({ri}, w) (3.19)

wherer; = Argmin,. .z Fi(r;, w). Observe that thgradient computation trivially par-
allelizes because the;s are all independentlt is indeed beneficial fo€(w) to be con-
vex, but strong convexity ofs;(w) would further facilitate super-linear convergence of
guasi-Newton methods, and guarantee logarithmic regret in the online settimgr( et al.,
2007). Using assumptions of continuous second order differentiabilitytendhorthand
F} = F;(r}, w) we obtain

(2

1
VQGi(w) =V2F -V F:T(V2FZ)71 V F} = A Hw—l—Cwi—;
1+Cy,

w w,T; (2 w,r; |VZ|

(H¢)’1]Ai+‘—g‘f (3.20)

Lemma 10. Conditions of Lemma 8 ensure th@{w) is C strongly convex an¥ G(w) is

> 197(Cwi — satery) + C Lipschitz continuous, wher; is the singular value of;.

45



3.4.3 Lipschitz Continuity of Hessian

In order to enjoy local quadratic convergence, quasi-Newton methqdgeehat the ob-
jective function (i) is twice differentiable, (ii) is strongly convex and (iii) hagschitz
continuous Hessians (Boyd and Vandenberghe, 2004)GFar) the first two criteria holds
directly, here we explore when is the third satisfied. Observe from equia0) that we

only need to be concerned about t he sensitivity of the tHﬁm + Cyi — 1+c (H¢) ]

to va riations inw. We make the notation more precise about dependencyz.ortet
ri(w) = Argmin,. .5, F;(r;, w) and the paranthesis indicate where the Hessians are eval-

)

uated in:[Hy(w) + Cuwi — 1y, (Ho(r} (w )~

Lemma 11. Lets)(-) be the Legendre conjugate of-) that defines the cost functi@i(w)
in equation(3.18) Then ify(-) has a Lipschitz continuous Hessian théitw) has a

Lipschitz continuous Hessian.

Proof. [Hy(w)+Cui—ye,- (Hs(ri(w))) '] = [Hy(w)+Cui— 55, Hu (Vo(ri (w))]
using Legendre duality. Further, the vectés(r;(w)) turns out to be the Euclidean pro-
jection of the vectord;w on the setR|; (see Proposition2). Now, since projection is a

non-expansive operatai],(Vo(r! (w))) is Lipschitz continuous in variations .  [J

3.4.4 Margins on Target Vectors

We now augment the cost function by introducing a pair of fixed margin {3(322) and
a pair of large margin variants (3.23), (3.24). We enforce an order itatget vector; but
also enforce a gap between the target values of two adjacently orderectjtg 7; ;1.

Since our modification takes the form of addition of linear inequalities and terms,
the properties of strong convexity and Lipschitz continuity of the gradiemticue to hold.
By controlling the margin we can model the notion that errors at the top of theréishore
severe than at the bottom. More separated the targets, higher the tenfldreyegression

function to maintain the separation and, consequently, the order.
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Thefixed margin formulations are posed in terms of positive pre-prescribed mar-

ginst; ; as follows:

Q]
Eﬂnl’lIvlz -Fi(’l"i,’lU) S.t. {Ti,j—I—l —Tij > ti,j}VjG[O,di—l];
"= VielL,|Q]
{rio = tio}tvien, gy (3.21)
Q]
min }  Fi(ri,w) St {rije —rij > tijtvjefod-1;
=1 Vie[1,|Q]]
{ria, < tid}vien,o)- (3.22)

Thelarge margin formulations are posed in terms of a vector @wardsc; asso-

ciated with the vector of gapgs > 0 as follows: for every query;i € Q, solve:

|9
InlI%5 Fi(’f’i; 'w) — <Ci,ti> S.t. {7”1'7]'_;,_1 —Tij > tiﬂ' > O}Vje[(),difl];
Ti,W,t; im1 Vie[L‘Q”
{rio = tio}tvien, o) (3.23)
Q]
InlI%5 Fi(’f’i; 'w) — <Ci,ti> S.t. {T‘i7j+1 —Tij > tiJ’ > O}Vje[(),difl];
Ti,W,t; im1 Yielt lal
{ria; <tid;bvie,)Q|- (3.24)

In all the formulations (3.21), (3.22), (3.23), (3.24) the components dEenote the gap
between the adjacent targets. In (3.21) and (3.22) the gaps areqmiéiexp It is natural to
specify a comparatively higher gap at the top. In (3.24) and (3.23) {heay& not specified
explicitly, but a reward:; is awarded per unit gap.

The optimization ovetw is regularized maximum likelihood parameter estimation
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for GLMs (McCulloch and Searle, 2001). Since this procedure is stdnga will focus

onr andt.

3.4.5 Bregman Projection onR|,

If we fix ¢ andw in equations (3.21), (3.22), (3.23), (3.24) we obtain the following problem
onr:

@nggﬂhv¢r%Auu)sLAmJnﬁ@ggt. (3.25)

Can (3.25) be reduced to a squared loss minimization problem ? Under dsmergf

strong convexity and/or Lipschitz continuity gfwe can respond in the affirmative.

Proposition 2. Let¢(-) be s strongly convex, then
(V¢YJQU::A@mmTDMﬂMV¢Y%AuO)+hgﬂsiA@Jﬁﬁ@ﬂgt (3.26)

where z*=Argmin, ||z—Aw|| + (v,r) s.t. Adj-Diff(z) < st. (3.27)

2|

Proof. For the moment let us ignore the linear tefmr) . Let the set of points satisfying

the KKT conditions for (3.25) be

A:{g

Vo (r)=Aw—Adj-Diff(),
Adj-Diff (r)<t

and the set of points satisfying the KKT fofin, ||z — Aw|| s.t. Adj-Diff(z) < ct be

B={x

z=Aw—Adj-Diff (\) } - {V(b('p)
Adj-Diff (z)<ct - by

V(r)=Aw—Adj-Diff(A) }
Adj-Diff (Vg(r))<ct

(the latter is obtained by simple change of variables). Frem — r; > ¢; and strong
convexity we haveVeo(rj1) — Vo(r;) > stj thus A C B. A, B are unique minimizers,
therefore the minima of the two problems coincide. The téom) maintains the relation

betweenAd andB. O
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Proposition 3. Let¢(-) be strictly convex and let gradieRte(-) be% Lipschitz continuous,

then minimi zee* of (3.26)is z* = Argmin, ||z — Aw|| + (v, r) s.t. Adj-Diff(z) < Lt.

2|

Proof. Define.A andB3 as before. FrorV¢(r;1)—Vé(r;) > Lt; and Lipschitz continuity

we haver;,; —r; > t; thereforeB C A, but.A and3 are unique minimizers. O

It is critical to solve quadratic program (QP) in equations (3.27) efficidrglyause
r minimization forms a part of the gradient computation (3.19) thus we canratdfie
expense of a generic QP solver in an inner loog.3f 0 the equivalent QP can remarkably
be solved in linear time by the PAV (Grotzinger and Witzgall, 1984) algorithm ffitsency
heavily depends on the blockwise constant structure of the optimal (pchat al., 2012).
No such structure is guaranteed for the QPs obtained by Proposition2 &levertheless,
these too can be solved in linear time.

A key tool that we employ to obtain the solution efficiently is the pool adjacent

violators algorithm, it solves
min ||z — Aw|| s.t. Adj-Diff,(z) <0 (3.28)

called the isotonic regression. PAV is essentially a block coordinate astdrd dual of
(3.28). It runs infinite time

Our interest lies in solving (3.21), (3.22), (3.23) and (3.24) which lo@stically
different from (3.28). We show that by a series of non-linear and linkange of variables

one can reduce these problems to minor variations of the isotonic regressimem.

Decomposing the Max Margin Formulation

For a fixedw, a plausible way to optimize (3.24) and (3.23) is to ffjxand optimizer;
and alternate, keeping fixed. One may update» oncet; andr; converge. This fails
to obtain the optimum because the constraints couplendt;. However, we show that

an affine transformation can not only correctly decompose the problana/dmuseparate
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out the problem into versions of isotonic regression problems: namely isotmression
with a lower-bound on the smallestfor (3.24) and isotonic regression with an upper-
bound on the largest for (3.23). Thus they add another (scalar) constraint to the system
Adj-Diff(r) < —t. For convenience we denote both Ayj-Diff*(r) < —t to give them

an unified treatment. Both the variants are solved in finite time by variations ofAte P
algorithm (denoted by AV*) (Grotzinger and Witzgall, 1984) and the time scales linearly
in dimension.

Because of Propositions 2, 3, we only need to consider:
1 2 s e
min iHr —y||* — (¢, t) s.t. Adj-Diff*(r) < —t, t>0
T,

for the maximum margin formulations. Substituting= — Adj-Diff*(d), z = r — d

obtains
1
éﬂz+d—mﬁ+@;A@4xﬁ%d» st Adj-Diff*(z) <0, Adj-Diff*(d) < 0. (3.29)

The variableg andd are completely decoupled, the constraints are the ordering constraints,
and if eitherz or d fixed, the other is a PAV problem. Fdr some algebraic manipulation

is necessary to expose the PAV form. Thus, one may alternatezamdd as follows:

2 = pAV*(y — d) (3.30)

d = PAV*(y — 27! — Adj-Diff*T(¢)) (3.31)
and obtain the large margin solution by recovering from converged: andd.

Decomposing the Fixed Margin Formulation

Problems (3.21), (3.22) can be decomposed similarly using Propositiorena, tBe exact

same affine transformation= — Adj-Diff*(d) andz = r — d. Hered is immediately
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determined by equatioh = — Adj-Diff*(d), so no iteration over andd is necessary .
Solvingz = PAV*(y—d) is sufficient to recover the optimal Since this requires a single

instance of PAV, it is obvious that this converges in finite time, linear in the dilmens

3.4.6 Convergence Rates for Batch and Online settings

Convergence rate guarantees are readily available for i) batch graésrent with (3.19)
evaluated in parallel. As a result of strong marginal convexity this corgdigearly (Bert-
sekas, 1999). ii) Stochastic gradient descent by sampling an index(8d®). Again
strong convexity ensures that this has linear rate of convergence @xpatted sense)
(Rakhlin et al., 2012). iii) Quasi-Newton and Newton methods with paralldLatian of
gradients: The former will only use the gradient computation (3.19), velsete latter will
use the explicit Hessian (3.20) which has a simple diagonal structure, wiititiden the
off diagonal blocks. These will have superlinear convergencetgBleais, 1999). In our
experiments we use LBFGS (Liu et al., 1989) as our Quasi-Newton metid-irfally,
like in the MR paper (Acharyya et al., 2012) one can use block coordieseent, that due
to lemma 8 is guaranteed linear rate of convergence (Bertsekas, 199@)thdr; can be
trivially parallelized because they are independentzoone again has the opportunity to
compute the gradient in parallel.

Online setting: Since the focus of the paper is on transitive rankings, we concen-
trate on online loss models that have more structure than just weighted sunoodiened
pairs. The only such model that we are aware of assigns a linear @ysth@vassignment
matrix of objects to that rank position (Helmbold and Warmuth, 2009), or theghtexd
analogue, doubly stochastic matrix that does a “soft matching”. The mdstrpant al-
gorithm in this class is PermELearn (Helmbold and Warmuth, 2009). This alguosith
objective is to perform close to the best possiibdted assign ment matridts cumulative
complexity overT” rounds of the algorithm i€ (T'd® log(T'd). For any large problem this

is intractable becausegis the size of the universe of all items to rank.
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In comparison, our model can deal with varying set of items that need tralleesal
in each round. The adversary provides the feature matyiaf d; items that it has ranked at
roundt, but that order is not revealed untill the learner responds with a “sgpusator”w;.
The learner is then charged a costhf w; ) as defined in (3.18) using a twice differentiable
o strongly convex functiory; with L Lipschitz continuous gradient. The order and the
function ¢; is then revealed for the learner. The objective is to minimize the cumulative
loss) ", G¢(w;). Here we will essentially plug in the known regret bound results obtained
for online gradient descent for strongly convex, Lipschitz gradientfions (Hazan et al.,
2007). For the'" gradient update we use thé term of the gradient (3.19) with a learning
rate of . as

1
wiyr = w — — VG ({ri},w)
ot
wherer; = Argmin,, cg ns, Gi(re, w).

Theorem 3. (Hazan et al., 2007) The online gradient algorithm applied in an online setting

to a s strongly function that ha& Lipschitz continuous gradients has reg(é(%2 logT).

Neither the algorithm nor the bound is new, what is novel though is that tie ra
ing problem of such combinatorial nature can be transformed into a formoutitbss in

generality, that this algorithm can exploit.

3.5 Experiments

We evaluated the ranking performance of the proposed margin equippsstone retar-
geting (MEMR) approach on the benchmark LETOR 4.0 datasets (MQZQ@8kt al.,
2007) as well as the OHSUMED dataset (Hersh et al., 1994). Eachs# tagasets is pre-
partitioned into five-fold validation sets for easy comparison across algwithiVe follow
the experimental setup described in (Acharyya et al., 2012). The regatlan parameter

for the targets were set so that the marginal cost function was 0.003lsticonvex. The
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MQ 2008 NDCG

l-div | SQ KL
MEMR 0.7418| 0.7619| 0.7553
MR 0.7339] 0.7398] 0.7451

(Ravikumar et al., 2011) 0.5892| 0.7344| 0.7399

Table 3.5: Test NDCG on datasets MQ 2008.

] OHSUMED NDCG \

I-div SQ KL
MEMR 0.6983| 0.7250| 0.6944
MR 0.7000| 0.6878| 0.6997

(Ravikumar et al., 2011) 0.5805| 0.6892| 0.6947

Table 3.6: NDCG on OHSUMED dataset.

best model was identified as the model with highest NDGIBvglin and Kek&lainen, 2000)
on the validation set.

The MR algorithm on which MEMR is based is our primary baseline. Recall that
the MR algorithm has been shown to handsomely outperform many of thentwstate
of the art techniques such as Listnet and RankCosine. For refenenaéso tabulate the
results obtained by the state of the art NDCG consistent methods intrody&s/ikumar
et. al (Ravikumar et al., 2011). We did not re-implement the MR family of algmstbut
use the numbers reported in Acharyya et. al. including the baselines thatdhgared
against.

The results are reported in tables 3.5 and 3.6. MEMR does indeed outperfo
MR, but this is not observed for all Bregman divergences. One prorhiliference from
the MR family is that square loss with MEMR does significantly better than sdaase
with MR. Our working hypothesis for the much improved behavior of sql@ss is that
the simplex normalization used in MR artificially constraints the system from drglor

regions of the parameter space with good test performance.
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3.6 Conclusion

In this chapter we introduced a family of new cost functions for rankirige dost function
takes into account all possible monotonic transforms of the target semies/e show how
such a cost function can be optimized efficiently. Because the sole okjedtiearning
to rank is to output good permutations on unseen data, it is desirable thatstHeraction
be a function of such permutations. Though several permutation degeras functions
have been proposed, they are extremely difficult to optimize over andam®lresort to
surrogates and/or cut other corners. We show that with monotoneettgrgvith Bregman
divergences such contortions are unnecessary. In addition, thege cost function and
algorithms have very favorable statistical, optimization theoretic, as well as ieallyir
observed properties. Other advantages include extensive parallélizdbe to simple
simultaneous projection updates that optimize a cost function that is convenlyoin

each of the arguments separately but also jointly under appropriate choice
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Chapter 4

Learning Bregman Divergences for

Ranking

This chapter is concerned with prediction using generalized linear modelamvithknown
link function and is particularly suited for learning to rank. We begin with a naditig
example, several of its assumptions will be relaxed later on.

Let a generalized linear relatiap = g({u,x;)) hold with an unknown, continu-
ously differentiable, strictly monotonic functigri-) and an unknown vectar € W C R",
on the data seb = {(x;,v;)!",}. We have to recover and predict on future examples.
The setV is a mechanism to control the complexity of the resulting predictor. It can be
given explicitly, for example as afi or an/, ball, or it can be given implicitly by a regu-
larizing function that will be denoted H(-). Although we motivate our cost function in
terms of a perfect:, no such vector need to exist, neither for the algorithms proposed nor
for the analysis.

Wheng(-) is the identity function, the canonical technique is to minimijize—
Xwl|? with respect tow € W. lterative methods applied to this problem generate a se-

quencew — w, that satisfiesV y—w, ||y — Xw||? € —Nyy(w,), where Ny (w,) is a

normal direction of the constraint sg¥ at w,. Strict convexity of the cost inv ensures
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w, =uifueWw.

Whenyg(-) is a known function, but not identity, the iterative technique of generating
w — w, that satisfiesV,—w., ||y — g(Xw)||? € —Nw(w.) loses its effectiveness in
the general case. In this ca$g — g(Xw)||> need not be convex im and may contain
exponentially many (in dimensionality af) local minima (Auer et al., 1995). Without
further assumptions it becomes impossible to resfirief — w/||? to an arbitrary low value,
making recovery intractable.

An effective alternative, that applies to a knowf), is to minimize amatching
Bregman divergence (Auer et al.,, 1995). Recall that given a strictiweoqg continu-
ously differentiable functior(-) the corresponding Bregman divergencd]§(x“y) =
o(x) — d(y) — (z —y, Vé(y)) . I the relation(Ve) ~*(-) = g(-), holds then the divergence
Dy (yHg(Xw)) becomes convex imv, strictly so if X has rankn (Auer et al., 1995).
This ensures recovery, and the divergence in this case is said to “ntlaécttansforny(-).

Its minimizer is the maximum likelihood estimate of a canonical generalized linear model
(GLM) (McCulloch and Searle, 2001) whose inverse link function(i$ = (V¢) '(-) : a
familiar object for statisticians and machine learners.

It should now be clear that the ability to recowelis affected by whether the loss
function matches the transforgg-) or not. An explicit form of the functiory(-) is often
assumed for convenience, which in turn fixes the choice of the matchiaggdivce. How-
ever, unless one has explicit control over the data generating prg¢ess rarely known.
Practioners typically assume a suitable or popular form(ofand proceed. Furthermore,
the infinite cardinality of possiblg(-)’s rules out exhaustive hypothesis testing. Thus, there
is a convincing case fdearning the recovery-facilitating loss function whert-) is un-
known. This is the focus of this chapter. Given a strictly (or strongly\vegrregularizer

R(w), a non-negative scalarandy of dimensionalityn, a candidate cost functional that
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captures this notion is the following:

1
wf,i??ec Do (yH(qu)’1 (Xw)) + cR(w) 4.1)
= e Pelw[(70)” )+t et 42

The space” of all continuously differentiable strictly convex functions is convex. It is
also infinite dimensional. In the absence of other simplifying restrictions, tedbathe

to make, such as assuming a finite dimensional parameterization of a sulset 6fting
g(+) with a spline and enforce monotonicity, this seems a challenging problem.

Close in intent and particularly notable is the paper by Kalai and Sastry9)200
where they propose thesot r on algorithm that achieves @(%) bound on square loss
lly — g(Xw)||? (note, not on|w, — u||?) in spite of the non-convexities introduced by
g(-). Reading the paper one readily appreciates how lack of convexity makesahesis
significantly more cumbersome. We believe that the approach proposed ohéfiter is
simpler, and under mild assumptions, the convergence rates are explbnéstar. This
does not diminish the value of the paper (Kalai and Sastry, 2009), to ttieacpit shows
that non-convexity can at times be partially (if but painfully) conquered, @s we shall
show for thei sot r on algorithm, by virtue of some hidden convexity.

Although developed independently, there are intriguing connections betthe
two approaches. We devote Section 4.6 to explain them. In retrospect, tevehad an
unintended consequence of our proposition has been that it shedstight question:
how or why was it possible to conquer non-convexity in this particular.case

The Learning to rank problem provides another strong motivation for the cost
function (4.1). Let{(x;,y;)!",} be drawn from a se&’ ordered byy(x). We want to
learnu such that the order induced by tkwe, «) suffers low permutational loss. The only
loss function family, statistically consistent with the popular permutational l0$3C®l

(Jarvelin and Keklainen, 2000), ist,(yH(qu)_1 ((w,x))) (Ravikumar et al., 2011).
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Structural risk minimization (Vapnik, 1998) then justifies minimizing the regularemd
pirical lossD, (y‘ ’(V¢)_1 ((w,x))) over, w to reduce expected loss in the future.

For the ranking case it is possible to push the model even further. Notiéharte-
dictions need not recovey pointwise to obtain the correct ranking. Predicting any mono-
tonic transformation ofy would be sufficient. This observation points to the following,

natural modification of (4.1):

. 1 »
w7¢(')€HCI,1£€RL(y) EDd’ (z‘ ‘ (Vo) (X'w)) + cR(w)

whereR|(y) is the set of vectors isotonic

Restricted Output Space:In prediction problems one often has some prior knowl-
edge about output space, for example one might know that the outconesmamding to
anx is in some strict subset dk. Indeed a common way to choose the link function of
a canonical GLM is to choose the link function such that its domain matches thatou
space. For example to predict probabilities, the popular link function is dtaty-avhose do-
main is the interval [0,1]. This choice obtains the logistic regression modelfr@uework
can easily incorporate knowledge about the output space, in partimgamay specify a
convex subset oR (in other words an interval) to be the output spaceafphowever the
output space foX has to have a Cartesian product structure.

Notation: Vectors are denoted by bold lower case letters, matrices are capitalized.
||z|| denotes the, norm. The space of all strictly convex differentiable and separable
functions is denoted bg. When decorated with a superscript, e®'.,it denotes a subset
consisting of all strongly convex functions, the superscript specifeesnibdulus. We use
subscripts similarly for the subset of functions with Lipschitz continuoudigrds e.g_;.

We use the wildcard symbdk to stand for one of, C;, C*, Cj when the discussion applies
uniformly. The symboltR| c RR™ will denote a set of all vectors that are sorted by the
component (it does not matter whether such vectors are sorted up ar dswng as that

choice remains fixed).
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Background: Convex duality, Bregman divergences and their relation to exponen-
tial family densities will play a major role in the chapter. Relevant results are suzeda
in Chapter 2. Recall thatenchel-Young Inequality ¢(y) + ¢*(0) — (y,0) > 0 plays an
important role in convex analysis (Rockafellar, 1996), and as we siallis this work as
well.

Theinfimal convolution of ¢, (-) and¢,(-) is denoted in this chapter by, © ¢,
and is defined asf¢; ® ¢,|(y) = infy ¢, (x) + ¢5(y — x) (Rockafellar, 1996). The

following identities will be useful:

[ap(N)]" = a@’)*(g% [P1+ o] () = [#1 © D3] (). (4.3)

Recall that arexponential family density 1 of a random variabl@ has the form
P(Y =y |6) =exp'®¥ ¥ These densities are indexed byrntatural parametes. It
is well known (Lehmann, 1983) that not only is the dom@ir= {0 ‘fy expl@¥) < oo} of
the parameter a convex set, the normaliz@), is also a convex function (strictly soJf is
affinely independent) called the log partition function. All moment¥ afan be recovered
from it, for example:

E[Y] = Vev(8) = (Vo) '(8). (4.4)

The log partition function)(-), its domain®, its Legendre duap(-) which is the negative

entropy of the random variable will all play an important role in the chapter.

Maximum likelihood obtains an estimate & as the maximizer of the sample log
likelihood: 8 = Argmaxg log P(y | ). For exponential family this is related to Bregman
divergence as follows:

6" = Argmax, log P(y | 8) — log P(y | 67) = Argming %:(6) — w(87) — (6 — 6", y)

— Argming 1:(6) — ¥(87) — (0 — 0", Vou(8")) = Argming D,,(6]|6") = Argming Dy (y||(V4) " (6)).

Generalized linear models (GLM) assumgpecificexponential family probability density

Lwith respect to a base measure. For notational simplicity the base meakiyeomitted.
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for Y conditioned onz. In particular, the natural paramet@ris assumed to be a linear
function of x € X. Note that choosing a particular exponential family is equivalent to
choosing a particular convex functigit-). As can be seen from equation (4.4), the gradient

of ¢(-) maps the expectation space into the natural parameter space and this mapping is

called theink function Estimating@ using conditional maximum likelihood leads to

0" = Argming DMyH(ng))fl ((x, w))) = Argming Dy (yH E [y])
ywexp(evy>*¢ (0)
(4.5)
Thus the objectivéd.1) can be also seen as finding the member from the exponential family

that fits the empirical conditional expectatiogssubject to regularization.

4.1 Formulation

The key objects of our study are the properties of (4.1) and algorithms to maitmkzrom
equation (4.5), it should be clear that wh&) is known, this is a well understood problem
with existing and well vetted algorithms (McCulloch and Searle, 2001), (Reetrh, 1997).
The novelty is in optimizing over the infinite dimensional space)0). In light of this
optimization, however, even equation (4.5) takes on new complexities. Agtimipe
iteratively over¢, we will not know the value ofs(-) everywhere (after all we only have
finitely many evaluations of its gradient), in fact we will not have any direptesentation
of ¢(-) at all, making evaluation of (4.5) impossible. The optimization algorithm has to deal
with this.

A major source of complication and one of the reasons why formulation (drt) c
not be trivially handled over to a standard convex optimization packagetig itha func-
tion, hence infinite-dimensional. There are no basis set for such fusctimakking (linear)
parameterization that is both complete and contained impossible.

The fact thaty(-) couples the divergence as well a one of the arguments, is an-

other significant impediment. It prevents us from exploiting a strikingly niapeity of

60



Bregman divergences that the minimizer of some associated optimization prdideore
independent of the choice of the convex function used to define thegdivee, a prototypi-
cal example is Proposition 1 of Banerjee et al. (2005). The followingtrebtained in our

prior work (Acharyya et al., 2012) comes closest to our current:need

Lemma 12. (Acharyya et al., 2012) If the Bregman divergermg(-H-) is separable, and
R| the set of vectorg in R" that are in sorted order, that isy; < v; if i < j then the

minimizerArgmin, ¢z, D¢(m’ ‘y) is independent af for all z € dom ¢(-).

Unfortunately these results are for the uncoupled case and cannsetielinectly.
So in what follows, we have to overcome: (i) infinite dimensionality and (ii) siogp We

will, however, make use of the following property although somewhat intyrec

Corollary 2. Let A be a symmetric positive definite matrix that defines the squared Ma-
halonobis distance, the minimiz&rgmin, ., ||z — yl|%, is independent of the choice of

A if it diagonal.

Proof. Squared Mahalonobis distan¢er)—(y)||% is a Bregman divergence and separable

whenA is diagonal. O

4.1.1 Uniqueness of the Minimum

For a fixed, strictly conve, equation (4.5) has an unique optimum because (4.5) is strictly
convex. In formulation (4.1) botlw and ¢(-) vary, so it is important to know whether
the joint optima is unique. We show thax, (yH(VQS)_l (Xw)) is jointly convex in the
function ¢(-) and vectorw. Thus with a strictly convex regulariz&t(w) the optimum is

unigue inw.
Theorem 4. If ¢ € C then the functionaD, (yH(V¢)_1 (Xw)) is jointly convex inp, w.

Proof. Let @ = (x,w) andd = af; + (1 — a)8-. It will then be sufficient to show that
Dy (yH(VqS)_l (6)) is convex ing(-) and@. RecallDd,(yH(Wb)_1 () = o(y)+1(0)—
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(y, 0) is the Fenchel-Young gagi(y) + ¢*(0) — (y, @) defined in Chapter 2 and denoted
here byF<3).

A ~
of 21
Showing joint convexity is equivalent to showimg?(f;;) +(1- a)F(gg) > F( ((1(91));)) .
“e

A=[agy + (1 - a)ga](y) +at(6r) + (1 - a)(62) — (y,0).
= [ag1 + (1 — a)¢2] (y) —(9,0) + [agr + (1 — Oé)¢2]*<é>-

A= B = a¢i(01) + (1 - a)$3(02) — [adr + (1 — a)p2]*(6)
= ag](01) + (1 — )¢3(82) — [(ag1)" @ ((1 — a)¢2)"](6)
= ag1(01) + (1 — a)d5(02)—
( )

min(ag)* () + (1 = a)$2)* (@B + (1 — a)8 — z)}
>0, obtained by setting = 6,
O

Corollary 3. If ¢(-) is convex andi(w) is strictly(strongly) convex then the cost function

(4.1)inf, Dy (y‘ ‘ (Vo)™ (Xw)) + ¢R(w) is strictly(strongly) convex imv.

Using equation (2.4)D¢,(yH(Vq§)_1 (Xw)) can be represented in terms of the
function ¢* as D, (XwHqu (y)). Obviously, the cost function continues to enjoy the
uniqueness of the minimum, but what is interesting is whether it is also jointly ganve

this representation.
Theorem 5. If ¢* € C thenD,, (Xw’ ’Vqﬁ (y)) is jointly convex ovep* andw.

Proof. Follows from a similar sequence of arguments as used in Theorem 4. Ol
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Fenchel-Young Divergenceit should be evident from the proof of Theorem 4 that
using the Fenchel-Young gap forimiy) + ¢*(Xw) — (y, Xw), instead of the divergence
form Dy (yH(VgZ))_1 (Xw)) gets rid of the coupling present in the divergence form. The
values computed by both the forms are of course equal when both ardefieéd. We now
argue that the Fenchel-Young gap representation is to be prefercaddgeit widens the
scope of the formulation from differentiable convex functions to closesr@ofunctions.

At the (at most finitely many) points where a closed convex funcion is not
differentiable, the expression for the Bregman divergence becomdgwouab. There are
not one, but many “gradient” like (lower bounding) functions definesugh points, called
subgradients. One among them needs to be chosen to evaluate theierpr@ss— ¢(x) —

(y —x,0(x)) . Some such choices asep,(,) (y — =, 0(x)), infy(z) (y — z,0(z)) (Ki-
wiel, 1988).

For our purposes, however, this ambiguity is artificial. Note thlves in the do-
main of ¢(-) wherea®) = X w lives in the domain of the dual*(-). The function(V¢)
was enlisted to brin@ into the domain ofp so that the divergence could be evaluated.
However, using the Fenchel-Young gap form one can evaluate the $eengethce directly,
without the need for a mapping, which as we have shown may cease to e argeven
exist) at certain points in the domain.

The Fenchel-Young gap form has been caljedieralized Bregman divergenite
literature (Gordon, 1999), however since the same term has also beertaudescribe
(y) — d(x) — supy(s) (y — =, 9(x)) we prefer the more explicit name Fenchel-Young

divergence.

4.1.2 Role of Curvature and Smoothness of the Divergence

Let us denotgV(8)) ' by s(6) and a small positive number iy A scenario that we
must avoid is the following{|y — s(6;)|| — 1 > 0 yet Dy, (y||s(6;)) — 0. The limiting

¢(-) andw so obtained would be useless as devices of prediction or recovergmBre
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divergence being the “excess” of a convex function over its local lispproximation, it is
possible to reduce the divergence between two distant points by makingrhexdunction
approach linearity in between. Let us examine the nature of the deggitgraonsidering
a sequence of functions

lign ot(y) — ay + c.

In this case the limiting Fenchel-Young divergence is given by

_ . 0if0=a
lim ¢y (y) + ¢7(0) — Oy —
oo otherwise

Thus our cost function may approach zero evefiyf— s(6,)|| — 1 > 0. This can be

achieved by settingm; ¢;(y) — 6;y + ¢, in the intervaljy;, s(6;)) for all ;. Note, however,
that this cannot done arbitrarily. Convex functions are restricted to imavetone increas-
ing gradients, hence the degenerate situation is possible only&vaedy are in the same
order. Thus as long as the componenté afe distinct, this degeneracy is not a problem in
case of a ranking application, because we want the cost to be zerodndrety are in the
same order. However, it must be ensured thdbes not converge to a vectar. For this
we would require a data dependent condition E,E%tangéi&)vteclﬂv —t|| > 1.

Restricting thep(-) optimization in (4.1) to a subset 6fwith a minimum, non-zero
curvature clearly prevents such a degeneracy. This subset is ddryaté and is the set of
s—strongly convex functions.

Enforcing curvature has the following additional benefits: (i) Strongrexrity in
#(-) (equivalently Lipschitz continuity iiv¢) ' (-)) facilitates prediction. Without further
assumptions the functiofV¢) " can at best be known at finitely many points. Curvature
and Lipschitz continuity allow one to make principled extrapolation outside o&thomts.

(i) Smoothness and curvature play an important role in yielding faster ogenee rates of

the optimization algorithms as shown in Table 4.1. The functiohis irrelevant to the rank
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Cx R(w) Convergence Raté Algorithm

Convex Strictly Convex % Gradient Descent (GD

Convex Strongly Convex % Accelerated GD
Convex and smooth Strictly Convex % Accelerated GD
Convex and smooth Strongly Convex and smooth  exp(—AT) Accelerated GD

Table 4.1: Convergence rates of gradient descent based algorithms

order and hence plays a lesser role in making rank predictions. Hovetiarg convexity
controls the ‘learning capacity’ of the function and directly affects its gaization.

Usually, constrained optimization is more time consuming than unconstrained and
therefore one might anticipate that restricting the curvature(of in optimization (4.1)
comes at a higher computational burden. However, not only is theretreoa®mputational
burden, the presence of curvature gives rise to very fast coeweeg summarized in Table
4.1.

Total and Uniform Convexity: As convenient as curvature restriction is, there
is no denying that it rules out many continuously differentiable strictly cotfiwactions,
for examplelog (> exp(x;)). This begs the question can the uniform curvature restriction
be relaxed. Indeed, the weakest restrictions under which this is pqssitheut making

assumption on the dat¥ is thate(-) belongs to the class

1 .
{¢|5 <6> - ||m—s(101;|ﬁ2%>0 D¢(st(0>) = 0} '

For reasons of convenience, we work with a slightly stronger, sufficlass called
uniformly strictly convexthese are functions that have a modulusmformly strictly con-

vexitystrictly greater than 0 . The modulusuriformly strictly conveis defined as follows
1 ad(z) + (1 — a)o(y) — ¢(ax + (1 — a)y)

0(-) = inf
(6) lly—=||>1, a€[0,1] a(l — )

Unlike modulus of strong convexity which is a number, the modulusroformly strict

convexityof ¢(-), is a function ofe. For any convex functiom(-) this modulus is (i) non-
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decreasing, (iip(||¢||?) for somed > 0i.e. ase — 0 §(e) — 0. It can further be shown
that@ is non decreasing. We recoverstrong convexity by choosing(||ly — s||) =
s||ly — s||?. For an application where we do not want to be restricted to strongly gonve
functions alone, one can choose an appropigteand restrict the formulation (4.1) to
suchuniformly strictly convesfunctions. The modulus quantifies the trade off between the
distancel|y — s|| and how small can the Bregman divergence be and further, satisfies the
properties of non-decrease an(d|||?) for somed > 0.

For convenience we shall further impose that the modulusfgrsatisfiesy(||y —
s||) = s771||ly — s||” for v > 2. For such a functio(-) we obtain the following inequal-

ities
6(lly — sl) < (Vé(y) — Vo(s).y — s) < |[Vo(y) — Vo(s)|[«|ly — s]| (4.6)

where|| - || is the dual norm of] - ||. Usingé(||y — s||) = s7!||y — s||” we obtain that

[[Vé(y) — Vo(s)|l« > s||s — y|[*~! and therefore

1

(Vo)™ (w) = (Vo) ()] < éllw —ol[d7 (4.7)

in other words(Ve)™'(-) is (1, ﬁ) Holder continuous. This is important because the
gradient of the cost functiof,, (yH(ng)’1 (6)) with respect t and evaluated at some
particularg(-) has the same smoothness coefficient\as) ' (-).

Holder continuity of the gradient will be beneficial because gradienédatgo-

rithms that are optimal in the first order oracle model for convex functioitts (L, , /)

Holder continuous gradients are known (Nesterov, 2013). They\ahieate of T~ 5.
Quite remarkably theccelerated gradient methddee Section 4.2) that we recommend
for the case thab(-) is s—strongly convex, can be re-used for the Holder continuous gra-
dient case and still achieve the optimal rate (Devolder et al., 2011), mebad adjusted,

effective Lipschitz constant is used.
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Although we can handleniformly strictly convefunctions, we emphasize that the
associated convergence rates are slower. Unless there are comziiongs to consider a
class beyond strongly convex functions there are little justification for ofiting slower

method.

4.2 Optimization

Convex Marginal Function:

In the forthcoming analysis a prominent role will be played by the conveximelrg
functionsinf yca Do (yH(Vqﬁ)_l (Xw)), they will be collectively denoted bynx (w).
Note thatmx (w) is a function ofw alone. It follows from joint convexity (established in
Theorem 4) that the marginals are convex, but do they also inherit snesstiofgradients
? In the next Lemma we establish that if we minimize over convex functior)gor which

(V)" '¢(-) isl Lipschitz continuous, this property continues to hold for the marginal.

Lemma 13. If ¢(-) is % strongly convex, then the convex marginal functiof(w) =

infyec, Dy (y‘ ‘ (V¢)~' (Xw)) has a gradient with Lipschitz constant at least

Proof. Let ¢ € Argmin,ee, Dy (y‘ ‘ (V$)~! (Xw1)). ThenD; (yu(v&)’l(Xw)) is a
tight upper bound ofin; (w) with the same gradient & w; . Sinceg € C;, the upper bound
hasi Lipschitz gradient, therefore gradient:af (w) has a Lipschitz constant at ledst []

An optimization technique that is very popular in machine learning when there ar
two or more sets of variables that need to be optimized over, is block cotgdieacent
(Tseng, 2001). However in our setting, naive block coordinate minimizakenw and
¢ does not readily apply. First of all, it is not clear how one may optimize owesgace
of functionsCx without parameterization. Secondly, even if one could optimize over the
infinite dimensional sefx, for a fixedw, the optimizingfunctionneed not be unique be-

causeD, (y’ ’ (qu)_1 (Xw)) is only convex iny(-) and not strictly so. This is problematic
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| Gradient Descent (Nemirovski, 2001) |  Accelerated Gradient Descent (Nemirovski, 2001}

Input: Vmx (+), Lipschitz constant
Initialize w®,a® = 1,t = 0.

Input: Vmx (-),a,b

Initialize w®,t = 0. repetat L t
repeat ' =w" — ;Vmx (w")
w'l = w' — S Vmx (w) ot — @

until Converged t4+1 tq t—1
9 wt =z 4+ S (2 —2')

until Converged

Table 4.2: Accelerated and (un-accelerated) Gradient Descent

because in absence of other assumptions, unigue attainment of blockynisaum is re-
quired for convergence of block coordinate descent (BertseR&9)1In our case even the
otherwise standard optimization over theblock requires special consideration because
we cannot evaluate the cost function. This is so because the furgtipwill neither be
known in closed form, nor everywhere.

On the other hand if we could compute the gradient of
mx (w) = infyec Dy (yH(ws)*l (Xw)) and minimizem» (w) + R(w) with this infor-
mation, we would have achieved objective (4.1). This is the strategy we.allepnovelty
primarily lies in constructing an efficient computational scheme to obtain théegtad he
proposed gradient computation scheme will be referred & asiMaPr . We shall soon
see that its time complexity is at mdsg; factor worse than computing the gradient of the
GLM loglikelihood with aknowng(-). The gradient, once computed, will be used in an op-
timization algorithm that is optimal in the black-box first order oracle sensen{ifdgski,
2001) exploiting smoothness properties that the gradient may have. Tyheooicern in the
latter part is that the optimization algorithm that uses the gradient must nate égpction
evaluation. Now we state the kind of rates that could be achieved with an opfieiént
based method, assuming that we would be successful in computing thengafdie: (w).

Gradient descent (Table 4.2 left) optimizegw) + R(w) s.t. ¢ € C such that
sub-optimality

m(w') + R(w') — infm(u) + R(w)] < 0(\2).
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Accelerated gradient descent (Table 4.2 right) optimizés) + R(w) s.t.¢ € C;

such that sub-optimality
m(w') + R(w') — inffm(u) + R(w)] < O(tl?).

Note that wherever the algorithms in Table 4.2 require the gradient, a call to the
functionGr adMaPr will be made. Setting aside the details@fadMaPr that we shall
describe shortly, the Table 4.2 shows the complete algorithms for optimizingsufunc-

tion (4.1).

4.2.1 G adMaPr : Gradients by Marginalization and Projection

If one can compute a (sub)gradientof ,cc. Dy (y‘ ‘ (qu)’1 (Xw)), one can optimize the
functional (4.1). Computing the (sub)gradient is the goal of this sectione&se of refer-
ence we will call the proposed gradient computation metBoadMVaPr . What one does
with a (sub)gradient once computed is a concern separated@@dMaPr itself, and
any optimization algorithm that can work without function evaluation, or amatianal
inequality solver will suffice. The key here is to tackle the infinite dimensionafity(e).
Accomplishing this efficiently, and without loss of generality is one of the ketributions
of the chapter.

A striking feature ofGr adMaPr is that, in spite of the infinite dimensional struc-
ture, the time complexity of computing the gradient is at masigafactor worse than the
GLM case: the linear in the dimension af whereas foiG adMaPr the complexity is
O(dlogd). In terms of time complexity, the added generality obtained over a fixed GLM
by virtue of searching over all possible convex functions comes at minixtra eost.

Recall that the set§, C;,C®, C; are all closed. This follows because the limit of a
sequence of convex (alternatively, convex with Lipschitz gradientygtyaonvex, strongly
convex with Lipschitz gradients) functions is a convex (alternativelyyermith Lipschitz

gradient, strongly convex, strongly convex with Lipschitz gradientsgtion. Thus we can
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replaceinf by min in the expressior;}ng Dy (yH(Vqﬁ)_1 (Xw)). Using subdifferential
cCx

calculus (Rockafellar, 1996) we obtain

aggéicgpd,(y( ] (Vo)™ (9)) € ConvHull (Vé.) 1 (0) —y). (4.8)
Dx GA;ggéiinDd’ (y‘ ‘(V¢)—1(9))

To realize equation (4.8) word for word in an algorithm would entail computiiregset
{#+} = Argmingeg, Dy (yH(W))_1 (6)) first and then the subgradient from it. However
it is the first step that is problematic because it involves an infinite dimensiptiadiaation

over the space of functions. The remaining of this section is about howctneient this.

Circumventing the Computation of ¢,

In the forthcoming analysis, an important role will be played by the followimgyeasets

S(0) 2 {s|s=(Ve) 1 (0),0€C}, Si(8)2 {s|s=(Ve) '(0),0 €},
S%(0) £ {sls = (Vo) '(0),0€C"}, Si(0) 2 {s|s=(Ve) '(0),6<€C}.

They will be collectively denoted bgx when smoothness and/or strong convexity is not
important to the discussion.

A vectors € Sx (0) is in correspondence with eagh € Cx that satisfiess =
(V¢)~'(8). Each suchy(-) incurs a costDy (yH(V¢)_1 (6)). We define the functioh

Mx (s, 0) using their minimum

Mx (s,0) & i D = i Dy (60||V using (2.4
o M
(4.9)

2This defines all the variantsl (s, ), M1 (s, 8), M*(s, 8), M (s, 0) and the wildcardV/ « (s, 6).
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Now, note that our original objective (4.1) is equivalent to minimizing

min Mx (s,0) + inf cR(w). (4.10)
s€SX(0),0,Xw=60 Xw=0

What the reformulation (4.10) achieves is that now we have a finite dimemhsiptiaiza-
tion problem overS x . that is equivalent to the infinite dimensional optimization (4.1).
Although the functiong(-) does not occur in the cost (4.10) any more we still have not
circumvented the computation ¢f because it is needed to evaluate the funcliti(s, ).

However, let us establish some useful properties/fef(s, 8).
Theorem 6. The functionM/x (s, ) is convex ins € Sk

Proof. Consider two points;, sy. For a fixed@, each correspond to functiogg and ¢;
that achieves the minimum as indicated in (4.9), incurring theDg,s(iﬂ‘ ‘ng (y)) with the
respective functions. Now consider the paist + (1 —«)s2 = V@i (0)+(1—a)Vei(0)
wherea € [0, 1]. Itis clear that it corresponds to the functiag; + (1 — a)¢5. The cost

function D, (9‘ ‘ws (y)) has already been proved to be jointly convex 5. O

Optimizing Mx (s, 8): The (sub)gradient o/ (s, @) can be computed by differ-

entiating (4.9) and is obtained as follows:

s M (s,0) = ConvHull ([V263]) " (Vi (8) — )
$r EATgMIN 4« c 0 | s=v o+ (0) D (9 V¢('y))

¢*€Argmin¢ec*‘sz(v¢),1(9) Dy (y s

The HessiariV2¢*] is a diagonal positive definite matrix singé is separable and convex.

The derivative of\/* (s, 8) w.r.tw is obtained similarly as

D M (5,0) = X1 [V2!] dsMx(s,0) = XT(s—y). (4.12)

PrEATEMIN Y ey s=v o (6) Dy (9‘ ‘V¢(y))
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In (4.10) we have recast (4.1) as a regularized optimization featirgs, €), to which,
it seems, we could apply (sub)gradient descent in the joint spaee) using (4.11) and
(4.12). Even if we could, this is strongly discouraged because the canf=oaf the gra-
dient is clearly linearly dependent. Observe, however, that we still thane a computa-
tional scheme to identify(-); that is required to compuig Mx (s, ) numerically.

Descending along Marginalized\ (s, 0):

An alternative approach that is worth exploring is to use an optimal deswthbd
with respect tow on the marginal functioming M* (s, @) using its gradient, that is, we
short circuit gradient descent steps®hy minimizing it fully for a givenw and then take
a gradient step alon@, potentially saving several intermediate steps. Recallthats, 0)
itself involves a conceptual optimization ovére Cx, and now we have to minimize it
further overs to obtains. () = Argmin, Mx (s, ).

If we could carry out the minimization over the subgradient of the marginal would

be:

O jJufy M (s,0) = X109 duf ) M (s,0) = ConvHull,, gy XT(5.(0) —y). (4.13)

Perhaps surprisingly, as we shall show soon (Theorem 7), not osly(6§ unique, it ig
independent of.. but also can be computed very efficiently (i{d log d) time whered is
the dimension) as

5.(8) = Argmin,c s, ) ||y — s/|*. (4.14)

This computation is the core @ adMaPr and is the key that makes solving (4.1),| or
equivalently solving (4.10), not only a possibility, but also very efficieRbr the sets
§°,81, 87, the key steps oG adVaPr remain the same, it consists of marginalization
and projection. The different instances & only changes what set the aforementioned

projection is computed on. To expla@ adMaPr further requires an explanation of the

conic structure of the set$x (8), which is what follows.
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4.2.2 RepresentingSx (@) by Linear Inequalities

Central to our efficient computation ef(0) via (4.14) are two algorithmic devices (i) Breg-
man’s algorithm for solving linearly constrained convex optimization problénsgman,
1967) and (ii) The pool adjacent violators (PAV) algorithm (Best andKtavarti, 1990).
In fact the latter is a specialized invocation of the former. Both require fhresentation of
the constraints as a set of linear inequalities, whereas the representasiof@p described
so far does not have that form. In this section we give an alternativactesizations of the
setsSx* (@) that will enable the use of PAV and Bregman’s algorithm.

Let A be the adjacent-difference matrix. Now consider the sets

G(6) = {s|As < 0} = G(8),
GI(0) = {s|lAs < AB} = G1(6),
G°(0) = {s|A8 < sAs <0} = G%(G),

G (0) = {s|lA0 < isAs < sA0} = G| (0). (4.15)

W =~

collectively calledGx (6) andG« (0) respectively.

Lemma 14.

S(6) = G (8),
Si1(0) = m9Gi(0),
S%(6) = mG*(8),
SP(0) = mG;'(6)

wherery is the inverse permutation operator that sofits= X w in ascending order. When
the components @ are not all unique, the sorting operator is also non-unique. In this
case we forngx (0) as described by considering the unique value8 ofly and then add

equality constraint for every replicated value occurringdin
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Proof. We showSx(6) C Gx(6) andGx(6) C Sx(8). The first subset relation follows from
the facts that inverse gradient©fC;,C*, C; are monotone, strongly monotone, monotone
and Lipschitz continuous, and strongly monotone, Lipschitz continuougctggly. We
show the second subset relation, by explicitly constructing an appropdatex function
starting from the sefx (9).

To seej(0) C S(0) consider the integral of the monotonic cuée s), it is clearly
convex. To obtairs® (@) from G*(0) integrate the monotonic cur(@, s — s@). To obtain
S,(6) from G;(0) we use what may be calledfimal de-convolution Integrate(@, s), to
form a convex function, compute its Legendre conjugate, (this will be glyatonvex),
subtract the functior || - ||2, (this will be a convex function), then take its Legendre trans-

form. O

Corollary 4. s,(0) = g (Argminveg(e) v — (We)_l(y)HQ)

Proof. Follows from separability ob(-), theorem 7 and Lemma 14. O

Now let us get back to the central claim thatgmin,c s, ) M * (s, 6) and hence

Ow inf se 5,0y M (8, 0) is unique and independent ¢f.

Theorem 7. Argmin,cg, ) M*(s, 8) is unique, independent of the minimizings defined

in (4.9)and obtained as the Euclidean projectiompbn S« (9).

Proof. From (4.11), the KKT conditions ahin,cs,(g) M* (s, 0) are:

3(0) —y € ([V26.])) "N (S* (9)) ands(8) € S« (6).

The matrix([Vng*])_1 is positive definite and diagonal. Now observe that the
KKT conditions are exactly the definition of the projectiongfon S (8) according to
the squared Mahalonobis distance defined by the m(a{tﬁﬁqﬁ*])_l, which according to
Corollary 4.1 is independent c({v%s*])‘l if Sx (@) has the conic structure of sorted
vectors, as already shown in Lemma 14 and elaborated further in Sectién@liserve that
the matrix([quﬁ*})_1 was the only term that depended on a particilarThis concludes

the proof. O
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Corollary 5. The subgradient defined (4.8)is

Opym(w) = w(gg(i;*]_)d,(yH(vgb)*l (Xw))
= X109 it Dy(y/|(V6) ™ (Xw))

= ConvHull XT{(Ve,)1(0) -y} = XT(5.(0) — ).
Px EA;gerginDd, (y‘ )(V@—l (9))

Proof. m(w) andinf,cs,9) M* (s, 0) are the same function. O

4.2.3 Kernelization

Observe that, on taking the regulariféfw) to be||w||? in (4.10) we obtain
Lyt
w. = X' (s.(0) ~ v)

where the optimas..(6) has to be determined from the training set. An immediate conse-
guence of this is tha? and consequently the formulation can be posed entirely in terms
of a kernel K(-,-) and the parametarn = s,(0) to be determined. To see this note

0 = Xw = X XTa = Ka and therefore (4.1) is equivalent to
min 2D (v][ ) + clloxl
a n ¢ )

We do not pursue this further as it lies beyond our scope, but the methddst is straight-
forward and well known (Grunwald and Dawid, 2005).
4.2.4 Convergence oy adMaPr in Linear Time

The gradient computation usirg adMaPr takes finite and no more thahd log d time.
This comes about as a result of reducing the gradient computation to tganifaisotonic

regression which we then solve in time upper bounded by linear functiore afithension.
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To achieve this we will use the fact that the pool adjacent violators (PRy9rithm can
compute the squared Euclidean projection on the monotone cone in linear tirisebyTh
itself is not sufficient, but for two other results we have shown (i) the Matabis projec-
tion on the same cone defined by any diagonal matrix coincides with the gdtactdean
projection, and (ii) even if the monotone-conic structure is not appareranijtin our case,
be obtained following some affine transformations, detailed further in thitoeecAfter
the said transformations have been applied, the constraint set still ma rmoinic, for
example, when we have Lipschitz constraints(8h(-)) . In such cases, however, the
constraint set will be of the form of an monotone cone intersected withfiare ahanifold
(linear equality constraint) of special structure. For this special streioive shall show that
PAV followed by a single update of Bregman'’s projection obtains the soluéigardless of
the diagonal matrix used to define the Mahalonobis projection.

That the PAV algorithm can compute isotonic regression in linear time is known.
However, it appears that algorithm employed to solve the Lipschitz continoitgtained
variant, and the consequential improved time complexity bound achievedwislhanm-
proves upon the best known bound for solving isotonic regressioarurgschitz conti-
nuity constraints. Indeed the journal paper (Yeganova and WilbugQ)Jde@xclusively on
developing a finite time, quadratic time complexity algorithm for the problem, whéreie
it is solved in finite time but with linear complexity and is further invariant to charige
the the diagonal matrix used to define the Mahalonobis projection.

Recall from Theorem 7 that,(0) is the projection ofy on the setSx (8), and
Lemma 14 provides a characterization®# (0) in terms of linear inequalities. Clearly
Bregman'’s algorithm applies. Rather than invoking Bregman’s algorithrergedly, we
exploit the special structure presentSn(0), in particular the fact that the equivalent linear
inequalities are in terms of the adjacent-difference operatoiThis form is particularly

suited to the pool adjacent violators algorithm (PAV).
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Pool Adjacent Violators

The pool adjacent violators algorithm solves the following problem
min|[v —y|* st Av <0 (4.16)
v

called the isotonic regressiod is the adjacent difference matrix and the symisoin-
dicates that each row olv < 0 may either be an equality constraint or an inequality
constraint.

PAV is essentially an instance of Bregman’s algorithm using block projectiibns
runs infinite timeand a straight-forward implementation scalesyg?) whered is the
dimensions. However Grotzinger and Witzgall (Grotzinger and Witzgall4198served
that if implemented carefully it remarkably has linear complexity. It can, hewde easily
adapted to handle both lower and upper bound constraints on the corngpoferas well
as equality constraints on some of its adjacent components, all while maintaiaiagrtte
time complexity.

In the remaining of the section we adapt the PAV algorithm to the different con
straint setg;(0), G;(0), G°(#) andG;(0). The key is to ensure linear runtime of the algo-
rithm.

Restricted Output Space:As mentioned earlier in the introduction, one may have
additional information about the structure of the output space of eadhr sedued pre-
diction y;. It arises for example when predicting probabilities, in that case we know tha
(Vo) ' ((x;, w)) € [0,1] Vi. Since we are restricted to convex output spaces and hence in-
tervals, such structure can be easily incorporated by the addition of &wdenpper bound
inequalities to our characterization of the s&t6), G;(9), G°(0) andG;(0). For the pav al-
gorithm, this causes no loss in computational complexity. These additional émdarpper
bound inequalities are dropped from our description of 66, G;(0), G*(8) andG; (0)

for notational simplicity. Note however that if the trainimgitself is constrained to be in
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the Cartesian product of such intervals, no extra inequalities need kd addhe training
prediction is by nature of the pav algorithm constrained to lie in the intervalrsahbyy.
Caseg(0):

Here the constraint set used by the PAV algorithm, nam¥ly) < 0 coincides
with G(0) therefore PAV can be used directly with no change.
Caseg,(0):

In this case the constraint set is givenbys < A@ and thus it does not exactly
match the form used by the pav problem. However with the simple change iabkar

variabless(0) = (Is — ) the pav formulation is recovered exactly as

5(0) = mo(y) <Argming 15— (m0) L(y)|? st AZ< o) .

Cases(;(0),G;(0):
Here unlike the two previous cases the inequalities are constrained bothlfim/e
and below:

As > }AH and As < %AH.
s

Since we can recovej;(0) as a special case ¢f (6) we discuss the latter only.

To our knowledge the algorithm with the best runtime complexity for solving the
isotonic regression problem over the §gtf) is the Lipschitz PAV algorithm (Yeganova
and Wilbur, 2009) that has a finite time complexity®@fd?) whered is the dimensionality.
Here we obtain an orde&?(d) improvement by proposing an alternative algorithm that has
a finite time complexity bounded 9 (d) in the dimension. To explain the algorithm let us
split the variables (and the corresponding inequalities) to obtdis, < —%Ae, As_ <
%AH, and 0=sy+s_.

We write the constraints in a more suggestive form by concatenating thélesria
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as follows:(*).

A 0\ [sg A o) [-¢
< $ (4.17)
0 A) \s_ 0 A)\¢
S
(1 1) =0 (4.18)

This variable splitting induces an equivalent/conformal spliyasy _, vy, andin

the cost function as follows.

2
: S+ -1 [ 7Y+

min ~ (o)

(s || \s_ y_

S

(4.19)

Now we can apply Bregman'’s algorithm to the cost function (4.19) subjeketoonstraints
(4.17) and (4.18). Note that the variabkesands_ are decoupled in the constraints (4.17),
as well as in the cost function, hence the Bregman updates can be conmppizdllel
using PAV in linear time (see section (4.2.4)). In the next step we need tocptoge

solution obtained on the constraint (4.18) leading to the update (see s&8@3))

t+1 t
s s I
=TT e ] (4.20)

However, since this update does not violate the constraints (4.17) this téemtha itera-
tions of Bregman'’s algorithm and we obtain the optimum.

K Invariance We have established before that the minimizing the second argument
of a Bregman divergence over the monotone cone is independent afggmBn divergence
as long as it is separable. As a result Mahalonobis distance projecticthg omonotone
cone is invariant as long as it is defined Ky a diagonal positive definite matrix. Does the

invariance also hold for thig;(8), G;(8) case ?
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Note that equation (4.17) defines projections on monotone cones, sodhdgarly
unaffected byK. What remains to be shown is that constraint (4.20) remains unaffected as
well. Observe that because of variable splitting igto, v, , the matrixK gets replicated
along the diagonal in (4.19), therefore (4.20) continues to maintain théraomg4.18).

Convergence Rates of Realizable AlgorithmsNow that we can compute the gra-
dient of m(w) we can realize the algorithms described in Table 4.2. If we optimize over
¢ € C*® (equivalently over(0) € S;(6) with [ = 1/s) Lemma 13 ensures that the gradient
will have a Lipschitz constant, this coupled with accelerated gradient descent obtains a
convergence rate cﬁ)(%). Optimizing overC (equivalently oveiS) obtains convergence
rate of O(—L.). Both the rates are optimal for first order methods uniformly in the dimen-

VT
sion.

4.3 Prediction

We consider two types of prediction problems:
1. predicting they corresponding to an unseen test pairdnd

2. predicting the complete order over the set of new test items represamaisaof an

unseen test matriX;.

Recall that the prediction is given th)’%b((a:, w)). Although we obtainw explicitly at
the end of the training phase, an explicit representatiaf( 9fis not obtained. In facp(-)
cannot be obtained uniquely because the cost function is only conygX iand not strictly
convex. We only know the optimal(-) via its inverse gradients at the training points. For
a new test poink we can, however, narrow the prediction down to an interval.

Let w, be the optimalw returned by the algorithm, l&t; = (w.,x), 6, =
max x ;) w)<g, (X (1), w), 6y, = min xy)>6, (X(i),w) and the corresponding's be

y1, Yu. Then the predictiony corresponding te is given as:
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[t ] when (4.1) optimized ovet
Y € § max(y;, yu — L(0y — 0)), min(y,,y + s(0 — 6;))] when (4.1) optimized over?

[max(y;, Yo — 1(0y — 0), min(y,, v +1(0 — 6;))]  when (4.1) optimized ovef;.

Continuity: Note that the prediction function is a point-to-set mapping, note in
particular that this point-to-set-mapping is continuous at the training pointstendonti-
nuity of a point-to-set-map is defined in the usual way (Rockafellar, 1896dllows: A
point-to-set-may(x) is continuous if for all sequencas — x there exists g; — y such
thaty, € y(x:).

Recovering¢(-): Although we cannot recover an uniqyé-) one instance it can
be recovered upto agreement with the training data. To obtain such an estbmateceds
to select a continuous function from the point-to-set mapping y(x), where we use
to indicate a selection. Taking the Legendre dual of the integral of theeaurs y(x)
obtains a desired(-).

Restricted Output Space: If we have incorporated the restriction on the outputs
space in the definition of = (€) as indicated in Section 4.2.4, there is little that needs to
be done at prediction time. If testis such thalw.., ) € [min; (w., ;) , max; (W, x;)]
nothing needs to be done as the prediction functiGn) will automatically guarantee the
output space interval constraints. On the other han@vif, ) lies outside of the range

thresholding may be necessary.

4.4 Non-agnostic Case

As a pedagogic shortcut we have motivated the cost function (4.1) usengatiion of a
vectoru that achievey = g(Xw) = (V¢) ' (Xw) exactly. The optimization algorithms

presented, however, do not require the existence of sug¢hTdey obtain the minimum
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regardless. If, however, there is prior knowledge to indicate that ayshrfectu exists,
much more efficient techniques may be applied to recover it.

First observe that thgerfectu assumption implies the followinfd¢ € Cx s.t. Xu €
Vo(y)} = {Xu € (my) 'Gx (my(y))}. When the regularization o is specified using

a setV the vectoru can be obtained as the following convex feasibility problem
0 € {(my) "' Gx (my(y)} N {XW}. (4.21)

Any such convex feasibility problem may be solved by both the sequentiabthas the
parallel Bregman'’s algorithm (see section 2.2.3), the specific Bregmargéivce used in
Bregman’s algorithm to obtain convex feasibility, does not matter. It is thexeidvanta-
geous to choose the divergence for which the projections are the singpteshpute. The
Bregman projection on the sétr, ) ' G« (m,(y)} can be computed in linear time by the
PAV variants discussed in Section 4.2.4, as long as the Bregman divergeseparable.

In general, computationally convenient projections on two different setstraa
obtained by two different Bregman divergences. Using differengBen divergences,
tailored to the different sets is well explored in the context of these prolgatiesl the split
feasibility problem (Censor and Elfving, 1994).

For our framework, two cases are particularly convenientWi)s an/, ball and
(i) W = {z| |z||5%:y < L}. Choosing the Bregman divergence to be squared Euclidean,
we obtain the projection o{(wy)‘lG*(wy(y)} in linear time by the PAV algorithm and the
projection on the séty reduces to a regularized least squares in case of (i) and is obtained in
closed form for case (ii). Both the solutions can be obtained in time linear irirtendion.

In this case we obtain an overall linear convergence rate (DeutschuamibH 2006), as is
the case if we apply ADMM to the same problem (Luo, 2012).

It is known that if the intersection of the sets specified in the CFP problenmis no

empty both the sequential and parallel Bregman’s algorithm convergestsible point

(Censor and Zenios, 1997). On the other hand if the intersection is emppatallel Breg-
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man’s algorithm converges to a point that minimizes the sum of the Bregmangeinees
from the specified sets. On the other hand the sequential Bregman algooitiverges to a
limit cycle, where the projections on each of the sets themselves convary#(es exhibits
cyclic behavior).

Note that the case where the intersection is empty conforms to the agnosticecase
there is nou that achieves a IOSSD¢(yH(Vd>)_1 (Xw)). It is important to remember,
however, that though the parallel Bregman’s algorithm obtains a solutionsiragimostic
case it does not optimize the cost function (4.1) and is dependent @if-jhesed to obtain

the Bregman projections.

4.5 Sensitivity to Perturbation

So far we have largely motivated our cost function (4.1) assumingjtegualsy( X u) ex-
actly. An equivalent re-statement of this unrealistic assumption, is that we obpeirfect
empirical estimate of the conditional expectation (from an unknown GLM§ Whs a ped-
agogic device, used only to motivate the cost function. The proposedthiganinimizes
the cost function regardless of whether the noise-free assumptiondraids.

In practice we only have access to samples drawn from the condition&@bdisin.
Thus a vital question is: how well does the proposed algorithm perfornmiora realistic
setting. We denote our estimatesdsy andw., they correspond tg andy respectively

and hence satisfy the following conditions:

w, = Argmingee, ., Dy (yH(Vqﬁ)*l (Xw)) + R(w) (4.22)

. = Argmingec, . Do (3] (V6) " (Xw)) + eR(w). (4.23)

Now we quantify

e how far can the estimat@.. be fromw. when they used by the algorithm igy —

g(Xwu)|| away fromg(Xwu) , and
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¢ with what probability does the proposed algorithm recavemwith accuracy|w, —

w,|| <e.

The latter is computed without assumingarticular form of the exponential family that
generated the samplgs, but with the assumption, that were drawn independently con-
ditioned onx; from some unknown exponential family satisfying some curvature assump-
tions on its (negative)-entropy, for example: the negative entropystsongly convex, ob

uniformly convex. Both are proven by quite elementary techniques.

45.1 Deterministic Case

Lemma 15. (Rockafellar, 1996) Lei;, g; be the squared Euclidean projectionspf p;

on any closed convex séti.e. q; = Projc (p;) = Argming. ||z — p;||>. Then||g; —

q;ll <llp; — pjll-

Lemma 16. Letx. = Argmin,, f(y) wheref(-) is a differentiables(K)-strongly convex

function under the| - || x norm then||xz. — x||x < ||V f()||x-1.

Proof. The gradient of a&(K)-strongly convex function is(K)-strongly monotone, there-
fore (Vf(z) — Vf(zs),x — ) > s(K)||x — x.||%. Invoking Holder’s inequality with
the dual normg| - ||x and|| - ||x-1 we obtain||V f(x) — Vf(x.)||g-1 ||z — x|k >

(K@ — .| %- -

Lemma 17. Let R" 5 y = g(Xu) with g € {(V$) '|¢ € Cx}. If expression(4.22)
is minimized ovew in the classC;’ then ||u — w.| 414 < 21\/2¥ and if expression
(4.22)is minimized withy in the class of uniformly convex function with modulus of uniform

convexitys(-) and with L —Lipschitz continuous gradient then, || 11 4 < 201/5- 1 (2R (u))

Theorem 8. LetR" 5 y = g(Xu) withg € {(V$)'|¢ € Cx} and

w, = ArgminDy (QH(Vcb)*1 (Xw)) + R(w).
PECK,w
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Let the regularizefi(-) be continuously differentiable angk(K)-strongly convex where

K is any positive diagonal matrix.

|19 — yllxr-1x1
. 4.24
csm(K) (.29

[w0x — w.f[x <

Proof. w, is the stationary point afiinges, - M (s, w)+R(w) = Lm(w)+R(w). From
(4.12) we haveV,,m(w) = XTProjg, (y). Wheny is corrupted intoy we obtain the
corrupted gradient ,7m(w) asX Projg, (¥) . Let 1, be the stationary point ofi(w) +

R(w).

19 = yllxx-1xt = [[Vorn(ws) — Vom(w,)|| -
= [IVorn(w.)|[ -1

> cs(K) |6, — w. |

O]

K Invariance: A distinguishing characteristic of the bound (4.24) is that one can
tighten them by selectingl. We emphasize that the algorithm itself is oblivious to the
choice of K, it is the bound that holds for alll' that are positive definite and diagonal,
allowing it to be tightened. The reason it is possible to do so is because afoberty that

the projection orSx is invariant to the choice oK.

45.2 Probabilistic Case

So far in this section we have not made any probabilistic assumption og;iiswenerated.
Now we shall assume that-) is the expectation function of a canonical GLM (McCulloch

and Searle, 2001), equivalently:

P(y|z) = elmwy—¢"({@u),
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If each component of is a conditionally independent sample drawn from the distribution
above, what can one claim about the probabift{}|w. — w.||x < t). We bound this

probability simply be recognizing that this can be bounded as
P(llw. —w.|[x <t) 2 P([ly — yllxx-1xt < csn(K)t). (4.25)

We will first provide a bound assumitdy = C* i.e the set of alk-strongly convex functions,
and then relax the restriction to the larger classiniformly convex functionsith a known

modulus of convexity. Both of them are specializations of Cramer’s theorem.
Theorem 9. Lety have the probability density(y|x) = (¥ —¢"(®) and let the entropy
function bes(X K~ XT)-strongly convex. Then
~ g
P, —w.llic) = 1 - exp (~2ts(K)?)
for s(K') the modulus of strong convexity of the regularizer we use

Proof. Plugging in the result that &strongly convex function is uniformly convex with

moduluss(||x||) = s||z||? in Theorem 16 in Appendix B.1 obtains the result. O

Theorem 10. Lety have the probability density (y|x) = !?¥)—¢"(¥) and let the entropy

function be uniformly convex with the modulus func#i¢f) with norm|| - || x—1. Then

P(l|wx — wi|[r) = 1 —exp (=(ts(K)))

Proof. Follows directly from Theorem 16 in Appendix B.1. O

4.6 Comparing with Isotron

Kalai and Sastri introducedsot r on (Kalai and Sastry, 2009) updates for which they

showed performance guarantees for the |ags- g(Xw)||? for an unknown but Lipschitz
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continuous monotone functigy(-), in contrast our focus has been on keeping our estimate
wy close tou. The first surprising and impressive fact abostot r on is that its non-
convex cost function admits such guarantees, especially when the dijpdateneters were
not shown to converge either to the local or to the global optimum of the @ostibn, or to
anything atall. Theé sot r on update was more stated than derived, adding to the mystery.
This naturally provokes the question, where do the updates come frotated differently,

can those updates be derived by following some standard optimization mithppdo

Comparing the Isotron update and its improved vargdmtt r on , with the ones
proposed here lifts the mystery. One can see thait $ot r on update is upto differences
in learning rate, the same as the gradient descent update derived fi¥thease, whereas
thegl nt r on update is upto differences in learning rate, the same as the gradienhidesce
update derived for th€ « (0) case. Bothi sotron andgl ntron use, what in our
framework would be updates with learning rate fixed at unity.

Thusi sotron andgl ntron updates are actually unit step size gradient de-
scent updates on the cost function (4.1) rather thaliyof- g(Xw)||®. As much as this
observation sheds new light arsot ron andgl mt ron , it also exposes one of their
rectifiable limitations, that is, using step size fixed at unity. As shown in Sectiyr{Fable
4.2 right) considerable acceleration may be obtained by exploiting the smesthraper-
ties of the gradients, especially so fdrnt r on , because its gradients inherit the Lipschitz
smoothness from the cost function (4.1).

To answer why should one even consider minimizing (4.1) when one is c@tte
with the loss||y — g(Xw)||?, one only needs to realize that under the Lipschitz continuity
assumption they make gji-) (equivalent to strong convexity assumptionsggn), formu-

lation (4.1) is a convex upper bound|6§ — g(Xw)||? (assuming the same regularization).

D (y]| (V) (Xw)) = 21y — g(Xw)]?

S
2
Thus in addition to being interesting in its own right formulation (4.1) also turrigamu
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be an effective surrogate function (Reid and Williamson, 2009) for thecommvex loss
ly — g(Xw)|[2.

Comparison of the Results:

In this section we compare the nature of the results obtained here with those ob-
tained in (Kalai and Sastry, 2009) and its improved variant (Kakade etdll). First we
note that the current work was not motivated by the need to provide agsuer function
view of thei sotron andgl ntron algorithms. Given the independent development
the connection came as a pleasant surprise. In spite of the similarities, thesenae sig-
nificant differences in the results shown. We believe quite a few canrbied¢aver to the

other.

1. For the non-realizable cagsot ron andgl nt r on analysis applies to arbitrary
densities whose conditional expectation operator is Lipschitz continualisiano-
tone. The corresponding analysis here considers a wider class eftaiipn oper-
ators (those that are Holder continuous) it is less general in that it omlsiders

exponential family densities satisfying those constraints.

To be comparable in generality wittsot r on andgl nt r on it needs to be shown
that exponential family densities satisfying those constraints form a deuseaf ar-
bitrary densities whose conditional expectation operator is Lipschitz cantsand
monotone. Given that maximum entropy under constraints also obtains thiéyden
that is mini-max distant in the KL sense of all densities that satisfy the same con-
straints (Grunwald and Dawid, 2004), we are hopeful that the denss condition
holds.

2. isotron andgl ntron algorithms and the associated analysis apply only to the
Lipschitz continuous case, whereas those developed here apply teadtags of

Holder continuous transformy(-).

3. For the realizable case, i.e. whem @xists such thayy = g(Xwu), i sotron anal-
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ysis obtains a convergence rate®@f1.) whereas for the same realizable case the
projection methods discussed in Section 4.4 obtain exponential (also callag line
convergence, i.eO(exp —cT'). Furthermore unlike thé sot r on analysis Lips-

chitz continuity is not required.

4. Since the sotron andgl nt r on analysis is for vectors that satisfyj|z|| < 11t
hides the nature of dependence of the convergence rates on thetbiegéngfut. This
is particularly relevant to bounds obtained in Section 4.5 because they atlooice
over K to mitigate to a large extent the effects of a badly conditioned input. Often
there is predictive signal in the size of the input and although normalizatiamen
hand will make the sot r on andgl nt r on analysis applicable, it will also erase

predictive information if present.

5. The non-realizable case is also analyzed initeet r on andgl nt r on papers
(Kalai and Sastry, 2009), (Kakade et al., 2011). The practicabilityettrespond-
ing i sotron algorithm is, as admitted by its authors, significantly weakened be-
cause it requires: sets ofl’ examples withm > O(T' log(T)/1)? (I is the Lipschitz
constant assumed aJ{-)) to provide O(+) bound on the expected error. This is

significantly salvaged igl nt r on but results are not comparable with ours.

4.7 Revisiting the Cost Function

We would like to highlight what (4.1) accomplishes in terms of maximum likelihood. It
might be tempting to interpret it as if we are choosing a particular member ovexpt
nential family distributions that maximizes the likelihood of the observed data.iJ hist
what (4.1) optimizes. A careful study of the series of equalities show thagthminimiz-
ing the Bregman divergence is indeed equivalent to maximum likelihood whers fixed,
that interpretation does not hold when one optimigg's because the teritog P(y | 0*)

is no longer constant.
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We provide the following (equivalent) interpretations that can serve amatiee

formulation statements

° (ng)’1 (+) is the expectation function of the exponential family density with negative
entropy¢(-), thus the cost function clearly tries to match the empirical expectation
over the true expectation over the fam@lyL) by minimizing the Bregman loss in-

duced on the expectation parameter space.

e Consider a measurable spaggwith different measures defined on it) and the set
M(s) of all exponential family densities with expectatioand a% strongly concave
entropy function.y*, the dual ofY is the space of all linear functions defined n
and serves as the container of the parameter spaté(ej. Consider the set(0)
of all exponential family densities ov@f whose natural parameter space intersects
{0 = (z,w)|lw € W,z € X}. Formulation (4.1) minimizes the KL divergence
KL (M(s)]|M(8)) . KL divergence is not defined unless the measures are absolutely
continuous, this further restricts the optimization to that subs@t¢f) that has the

same log partition function as the dual of the negative entropy function.

e Again consider the set of densitidgl(s). Each member will be associated with a
corresponding natural parameter sp@cel he formulation minimizes the "distance”
between this natural parameter space ¢he- (z, w) |lw € W,z € X'} measured
according to the Bregman divergence induced on the natural parameatss by

the log partition function that is dual to the negative entropy.
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Chapter 5

Consensus Ranking Using Bregman

Divergences

The key task addressed in this chapter is that of consensus-basgeevised ranking of
vertices of a graph. It turns out that pagerank is a special casergiroposed method
where consensus is required only at an inter-vertex level, in a way ihdtenelaborated
further. We begin with a motivating example:

Alice, Bob and Carol are participating in a small academic conferenceevezah
person is allowed to submit only one single-author paper and each autlsorewiew all
submissions. The rules of this hypothetical conference have beereengihfor pedagog-
ical purposes. Alice is a well recognized expert, so it is desired thaek&ws count for
more. However, rather than recognizing her “expertise” as a selfréectpuantity, a mea-
sure of her level of expertise is designed to emerge through a procsssial consensus.
This process is modeled at two levels: “local” and “global”, or equival€fiifya-vertex™”
and “inter-vertex” respectively. Defining this consensus algorithmicalléssubject of
this chapter.

We assume that reviewers evaluate the papers on the basis of multiple cEtenina.

reviewer is allowed to have a set of personal criteria according to whahabsign a nor-
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malized score to a paper. It is possible that Alice, Bob and Carol haverdiff notions
about what constitutes a good paper. Bob’s overall score for Ggraper is obtained as a
weighted average of Bob’s multi-criteria scores for Carol’'s paper.’8uiteria may have
little or no overlap with other’s, however, the weights assigned to his critegigecided
through a process of “local” consensus. Other reviewers have mu#uen the weights at-
tached to each of Bob’s criteria. One may ask why not weigh the persoteala uniformly.
Non-uniform weights are used to account for situations were Bob ingladgiterion that
others might not deem very important, for example “how many of my own gagidrthe
reviewed paper refer to”.

The consensually agreed upon weights on Bob’s criteria only definedinessgiven
by Bob. To obtain the final score of a paper it is necessary to averaghescores given
by all the participants. It is in this “global” averaging process that the welakpertise
of the participants come in to play. Greater the expertise higher the weigktdikarin
the local case, this too is decided through a process of algorithmically deforesensus.
This chapter deals with a principled scheme for obtaining such conserges scores and
rankings.

The task has multiple real-world applications. For instance it is not uncommon
for a participant of multiple online social networks (such as Linkedin, bagk, G+ and
also different instant messenger networks such as Gtalk, Ymessetg)eto voluntarily
map their possibly different identities in the different networks into a commen esing
services like Openid. These common id’s can be used to conceptually tie theewlif
networks into a loose federation with common patrticipants. This chapter stisggevay
of computing social standing of the participants in such a federation, vdasie edge is

labeled by the identity of the social network that the edge exists in.

To elaborate, Alice maybe connected to Bob through Linkedin and FakelRerhaps the first indicates
that they are colleagues and the second that they are also persamds frizifferent people may use different
networks to organize their contacts into different roles. An engineerusay.inkedin for professional contacts
whereas a musician may use Myspace for the same. The task of defipgrgon’s social importance in this
combined network is isomorphic to the toy conference example givesrdyefvith the identity of the social
network acting as a proxy for different criteria.
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Some social networks, for example Google+ allow assigning differentterand
possibly overlapping roles to one’s contacts, organizing it into sevaés of contacts.
The labels assigned to such circles are entirely unrestricted and thustazemparable
across users. A user may have an implicit importance weight attached toiedefhat he
or she may not be willing to divulge. These user assigned roles can alsoasedifferent
criteria for ranking. This chapter provides a framework to rank suehsusven when the
weights are not available.

Consider the hyperlink graph consisting of the current blog posts efakblogs.
This graph is highly dynamic in nature and the cross references are anasts tagged
by keywords of the authors’ choice. Pagerank based ranking dmasgaph could benefit
from averaging out of the fluctuations. This chapter suggests how.

As a final application consider search engines that use link analysisk@ages.
They also can benefit from taking into account the role that they think ticplar link
plays in the graph, for example, navigational, commercial, endorsemeantsit, topical
description etc. Anchor text may be used to detect these roles. It mighengry clear
what the weights on these roles should be. This chapter addressesé@omag assign such
weights in a unsupervised but principled way.

The model is designed to address several kinds of uncertainty that mayndren
ranking in multigraphs. Although link analysis is a richly researched suf@etnberg,
1999h), (Brin and Page, 1998), the topic of how to achieve consensies uncertainty has
not received as much attention. The is an initial step in that direction.

Although one would like the ranking procedure to be as automated as passible
is often essential to have a mechanism to modify the results, for example teecoew
types of spam. One possible corrective intervention could be to definsiredigartial
order among the vertices. Our approach also provides for this capabilitstct the local
recommendations obtained may be exclusively in the form of partial ordatitse¢ than

rank-scores) that need to be aggregated and reconciled.

93



Notation: Vectors are denoted by bold lower case letters. :;fheomponent of the
vectorz is indicated byz;. When suitable, we also indicate thstire vectorx by decorat-
ing its i*» component as followsz;. This form is used to convey succinctly how a vector
has been constructed from its components. Probability distributions used ichtpser
are discrete and also denoted by bold lower case letters, with the Iptigrp reserved
for them. The symbol'! indicates the transpose of matfix Random variables are also
indicated by capital Ietters.XHEp [f(X)] represents the expectation of a functipfi) of
a random variableX having a distributiorp. Sets are denoted by (matching) calligraphic
letters, for instance random variabtetakes values in a séf. The unit simplex is denoted
by A, its dimensionality will be implicit. For the most part we deal only with sets in the
Euclidean vector spadg®. The notatiorR..¢ will denote the positive orthant d&?, and
R¢ will denote the se{x|z € RY N x; > ¢ V;}, whereas the symba\, will indicate the
set{z|r € ANz; > €V;} and the symboh, the set{z|) . x; <1z € Ry}

Basic knowledge of convex analysis is assumed. Interior, bounddrglasure are
denoted byint, bd andcl respectively, these are defined in terms of the native metric topol-
ogy. The only exception is for non-empty domains of functions that havéyamtgriors in
the native metric topology, in such cases we will consider the relative intditar relative
interior is the topological space defined by intersection of open sets in thve maetric
topology and the affine hull of the domaionvHull(-) and Extr(-) denote the convex
hull and the extreme points respectively.

In order to reduce the proliferation of symbols some are re-purposedxample,
decoration with a when applied to functions indicate the Legendre conjugation operation,
whereas when applied to variables denote some notion of optimality. With sorse abu
of notation we will indicate the set of limit points of the minimizing sequengef the
function f (x) by ArgInf f(x), thatis, for all sequences with lim;_,, ; = Arglnf f(z)
we havelim;_,, f(x) = inf f(a). This just a notational convenience, there may not exist

anargumentwhich achieves the inf.
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Since we deal with Markov chains as well as optimization, there is an un&igun
clash in terminology: “stationary point” is used to denote both a point whereastsfunc-
tion (or its Lagrangian) has a zero-gradient as well as a distribution thgs svariant
under a Markovian transition. To alleviate the potential confusion we willtheeterm

“0-gradient” point in the optimization setting.

5.0.1 Contributions

In the chapter we try to answer “what is the analogue of pagerank in gr@so where
there is uncertainty over the edge weights of the (multi) graph?” That thisimortant
problem is motivated in the introduction with several applications. The origiagérank
formulation is ill-equipped to provide an answer because it does not optimyziiaction.

To mitigate this, the chapter

e Obtains pagerank as a solution of an optimization problem whose cost fupetio

nalizes deviation of “local ranks” from the “consensus” rank.

e It establishes that pagerank may be obtained by minimizing such deviancedo

sensus iff the cost function has the particular Bregman divergence for

e The chapter provides algorithms that can be extended to the noisy multi-gaaph

and
e These iterative algorithms have simple and parallelizable updates that ceonoter
any onerous synchronization or locking.
5.1 Preliminaries

In this preparatory section we review pagerank. For readers whéaaréar with the
background, this only serves to introduce notation. Subsequently,wgeaghathematical

formulation of our general problem, albeit at a high level, the specificshidmare solved
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in the rest of the chapter. The problem include points of view that are leimetric as
well as information theoretic. We focus on the geometric view.

Pagerank: Some algorithms, such as pagerank (Brin and Page, 1998) and HITS
(Kleinberg, 1999b), rank vertices of a directed gr&phy mapping the vertices iv to R.
They viewg as a distributed recommendation system where each vertex recommends other
vertices through its out-edges (directed edges that leave the vertgpagémank théocal
recommendationby a vertexy; is represented as |¥| dimensional vectot;, whose;*"
component denotes the strength of recommendation of vertexvertexy;. The objective
then is to obtain a global rank-score.

A global rank-score may be obtained from the local scores by combinerg.tA
simple strategy is to use a convex combination, provided that the weights ofreioh are
known. Uniform weighting, although a possibility, is unjustified because ibiansistent
with the notion that vertices are inherently of unequal rankhus, it is natural to seek
weights of combination that are some monotonic increasing function of thelgknta
score that it defines. The simplest relation between the weights and thé glokas the
identity function. This yields pagerank, provided the local recommendataioks are
non-negative and; normalized.

Pagerank can also be viewed as the stationary distribution of a Markav ttiz
traverses the underlying graph by following outlinks uniformly at randdth wccasional
jumps to a random vertex. These two modes of traversal are chosemintieyly at each
step, with probabilitiesr and1 — «. The second mode of traversal called “teleportation”
serves as a mechanism to ensure that the chain is aperiodic and ergemiwigen the
underlying graph is not connected or acyclic.

Let A be the adjacency matrix of the graph aRg,; be the diagonal matrix of its
out-degreesS a row stochastic “teleportation matrix”, usually taken todgl x 1), where

1 is a column vector of ones. The transition matrix of the pagerank equivdkmnkibyv chain

2otherwise we would not be interested in ranking them.
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T=axD,xA+(1—a)x8.

From the property of aperiodic ergodic Markov chains it follows that thgepank is

uniquely determined for any < « < 1 and that the pagerank iteration

ritl = Z riti, + (1 — a)% (5.1)
JEN;

converges to the primary eigenvecjoof 77, the stationary probabilities of the Markov
chain.
Outline of Divergence Based Consensus Ranking Problem:

Keeping in view the pagerank approach, let us introduce the proposedehce
based formulation used to solve the general consensus ranking pro¥lerskip over a
lot of detail as this is intended to familiarize the reader with the high-level fesitoi the
underlying mathematical model. The finer details are filled in due course.

Consider a subsé&t ¢ R™ and a distance like divergence functiby-, -) : ($,3) —
R that only satisfies the requiremeb{x,y) = 0 <= « = y. Following the pager-
ank interpretation that vectots represent the “local” recommendations by iHevertex,
a constructive definition of a consensus rank-score vector is a vethat is closest to all
such local recommendatiots If however, the recommenders were to provide only the
sets of uncertaint{; in which their rank score vectdes lies, the consensus may be defined

as:

r*(w) = Argmin,. {triréiqr}i} XZ: wD(t;,r)

— Argmi i D(t;, 7)) . 5.2
rgmin, min (w, D(ti, 7)) (5.2)

The weight vectoww is a parameter that needs to be chosen. Here, we take inspiration from
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pagerank’s justification of the fixed point definition and choasthat satisfies

r*(w) = Argmin,, {t{g%} (w,D(t;,r)) = w, (5.3)

Brouwers fixed point theorem guarantees that there is at least améaatpoint, however,
there is likely to be many, all of which are equivalent in terms of (5.3). In treneof
multiple solutions one can take an optimistic view or a pessimistic view, where ons&ho

the fixed point that achieves the minimum distance

min (w, D(t;, w))

S.t. =A i i aD ti7
w rgmin,. {tI,iIéITni} (w, D(t;, 7)) (5.4)

t; = min Argming, .y (w, D(t;, 7))
r

or one that chooses the fixed point that achieves the maximum distance

max (w, D(t;, w))

w rgmin,, {t?él’.lr“li} (w, D(t;,r)) (5.5)

t; = min Argming ey (w, D(t;,7)) .
T

Specializations of (5.4) and (5.5) are the central problem that we solvésichhpter. It
should be readily apparent that for arbitrary divergence funciiprequation (5.3) is a
difficult, non-linear, implicitly defined and a cumbersome fixed point probl€dme key
difficulty is that the function*(w), defined in(5.2), whose fixed point we seek, is not
known in closed form, but specified (variationally) as an optimization probléhe obvious

guestions that crop up are:
e whether there exists a solution
e whether the solution is unique
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e are there algorithms that provably converge to these fixed points froitnaayhini-

tialization
¢ how fast do these algorithms converge.

We cannot address these questions for all divergence fundliolée study specializations
that can be solved tractably with provable convergence guaranteeslaivethat if we
restrictr to the sety C {x|) ,z; = c}, wherec is an arbitrary constant, the family
of Bregman divergences are the only choice fisuch that for every choice df € $
the »-minimization sub-problem (5.3) reduces to a linear eigen-problem. Theugiesd
existence of eigenvalues will play an important role in the algorithm proposed

For the special case of (Legendre) Bregman divergences definéesbentially
smooth” convex functions, it is quite surprising that we can solve (5.5)rbpging the
fixed point constraint. The constraint is automatically satisfied at the optimunzavet
emphasize it enough that this simplifies the cumbersome, variationally speciédgbint
problem into a much simpler optimization problem.

Before considering the problem in full generality of Bregman divergenwe in-
troduce the details by considering a specific member: KL divergenceal§bathms work
almost word for word for any Bregman divergence definedsonithout incurring much
additional complexity, allowing a practitioner to tailor the choice to an application.

We generalize to Bregman divergences in section 5.3 and finally genedialize
consensus ranking problem over sétdn section 5.4.1. In section 5.3 we present some
new results concerning Bregman divergences that are vital to theadeniof the updates
that are used in the ranking algorithm. The scope of these new resultsderemough to

be of independent interest.
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5.2 Pagerank as Consensus Ovéfectors

As indicated in Section 5.1 we will pursue two different optimization theoretiteoto
consensus ranks, one that will correspond to equation (5.4) and etotbquation (5.5).
Both these formulations are designed to handle sets of uncerf@inpyoviding a way to
obtain consensus rank score vegtofrom the setsl;. Rather than discussing consensus
over sets right away, we build up gradually by considering consengrsvectorst;. In
other words, initially we treal; = {¢;} to be singletons to show that pagerank is naturally
recovered. This will clarify that the two routes are alternative genetalizaof pagerank.

A key idea is to demonstrate that we are able to shed the fixed point baggagty.eand
pose pagerank as an optimization problem. This will simplify the approach&sgbd
(5.5) significantly.

Quite remarkably, if we optimize the functions with the fixed point set constraint
removed, under conditions, the fixed point condition is automatically reedvatrthe op-
timum. This lets us convert a difficult variationally specified fixed point pnobieto an
optimization or a saddle point problem.

To solve (5.4) specialized to KL divergence and single€fosm we provide acon-
ceptualalgorithm that converges to the global minimum. Further we show that pdgeran
is the limit point of this conceptual algorithm. This establishes that pageraniiésdhthe
global minimum of unconstrained (5.4). However the cost function is noteoand may
have more than one minimum and the conceptual algorithm requires the glolalumin
be obtained. In contrast, we provide a simalizablealternating minimization algorithm
parameterized by a penalty parametethat in the limit converges to the local minimum
of the cost function, and for finitg obtains the local minimum of an arbitrarily tight lower
bound. As an alternative to the Min-Min, alternating minimization formulation weiced
(5.5) to a Max-Min saddle point problem by replacing the complicated fix@t ponstraint
by a simple nested unconstrained minimization over another auxiliary variable.

Thus pagerank is posed as the outcome of two separate optimization probé¢ms th
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differ in the degrees of convenience and generality offered. Oneeof thlises a Min-Min
formulation, the other a Min-Max. The merits and demerits are summarized in tdble 5
The curious reader may skip ahead and consult it, however, for foteaation, familiarity

with the algorithms developed in sections 5.3.1 and 5.3.2 is necéssary.

5.2.1 Kullback Informatic, Optimistic Consensus Over\Vectors

As the first contribution we provide a novel cost function based viewagfepank. The
cost is directly motivated by a notion of rank/consensus quality and wileses\a stepping
stone in our path to a solution of the consensus ranking problem. Recaibitpatank (Brin
and Page, 1998) was originally defined directly as the fixed point of datapthere were
no cost functions involved.

Although one may directly change the functional form of the pageran&tegdthat
would be ad hoc. One also has to be careful so as not to disrupt thengees of conver-
gence. Rather than follow this route, we identify functions that pageraakmimizer
or a saddle point of. Once obtained, we add extra terms to that functiorptoreahe
requirements of consensus.

Pagerank, An Alternative View:

Recall that the recommendation gragthas outlinks that can be interpreted as a

local recommendation of the edge recipient by the donor vertex. Therkmmhmendation

of vertexw; is represented by afy normalized vectot; of dimension|V|. The weight of

3Both theMin-Min andMin-Max optimization formulations presented lead to corresponding solutions of the
unsupervised consensus ranking problem overEBet$hey differ in how the fixed point property is achieved
(by penalization in the first and by saddle point in the second) and wiaaagiees they provide.

‘Formulations  that only penalize the deviation from  pagerank-stationarity,.g. e
min, ming,er, KL (3, piti|lp) or max, maxe,er, (p,[t1---ti-- -ty ]p) are unsatisfying because
they cannot distinguish between multiple vectors that achieve pagetaidnaarity and does not offer
interpretation as a ranking quality measure.
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this donor vertex isv;. By pagerank convention

w; If vi recommends;
tij =
0 otherwise.

The symbolV; represents the set of out-neighbors of the verteX he normalized vectors
are stacked to form a matri& such that the*” row T'(i, -) is t;T, just as discussed in section
5.1.

The optimal consensus can be defined as the vectdosest in KL sense to the
recommendations of all the vertices weighted by their importance A. A regularizing
term enforces thap is close tos, a prior rank vector, usually taken to be uniform, ant

a parameter iff0, 1). This leads to the cost function

F(w,p) =Y wKL(t]p) + (1 - )KL (s[|p). (5.6)

The vectors and the parameter play the same role as the jump probabilities in the original
pagerank formulation. For any choice af € A, the global minimum is given by the

weighted average

p.(w) £ Argmin, F((w, p)) = o Z wit; + (1 — a)s. (5.7)

(2

Comparing equations (5.1) and (5.7) one can observe that pageramidtion follows if
the weightaw happen to be identical to the consensus ranks, i=e.=#f p,(w). The reader
will note that this is exactly the condition (5.3). We will refer to this conditiopagerank
stationary condition

Mean-ArgMin Coincidence: The coincidence of the minimum and the mean in
(5.7) is a consequence of a more general result involving Bregmargdivees, of which

KL divergence is a special case. The general result is presenthbé@em 17 (see Ap-
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pendix) and can be used to prove the useful expansion
F(w, p) = F(w, p,(w)) + KL (p,(w)||p). (5.8)
One may try to ensuneagerank stationaritypy adding it as a constraint, yielding:
Ming . F'(w,p) st. w=p, andw € A. (5.9)

Note, the expression fgs, (w) in equation (5.7) is for the unconstrained case and hence
the form need not apply for the constrained case (5.9). One may deartfe minima of

(5.9) directly by eliminating the constraint in (5.9) by substitution, to yield:
MinG(p) = Mina 3 _ pKL (ti]|p) + (1= )KL (s]|p). (5.10)

Let p* be the solution of the problem (5.9) or equivalently (5.10). An importanstpe

is whetherp* satisfiespagerank stationarity The behavior of the constraint in (5.9) at

p* is critical to this stationarity questich.The cost function is not convex and may have
multiple local minimum, however, as we shall show, the global minimum satsdigerank
stationarity The demonstration will be a little elaborate because the conventional tools are
not well suited to analyze properties of global optimum. We shall introduemalty based
algorithm in section 5.2.2 that on one hand solves (5.10) and provideshgineagerank

stationarity on the other.

SConsider evaluating the functiafi at p* which is equivalent to evaluating(-, ) at(w = p*, p = p*).
Let us restrictw = p* and relax the constraint gmpresent in 5.9. Now if we re-optimize over the free variable
p and had the constraint been activé at, p*), the minima would shift td p™, p,.(p*)) and violate pagerank
stationarity. In this hypothetical case pagerank stationarity will not holdth@mwther hand if the constraint is
inactive then pagerank and will coincide.

103



5.2.2 Min-Min Coordinate Descent Formulation

A deliberate and a persistent motif in this chapter is optimization through closed fo
coordinate-wise updates. The coupling of the variaplep; in (5.10) makes it difficult,
therefore we work with functiod’(-, -) (5.9), where the variables are uncoupled (except in
the constraint). Our interest lies only in the feasible(set= p) of the domain off'(-, ).
In order to focus on that region, we add a sequence of increasimdfyp&rms that is active
everywhere outside of the constraint set, and optimize this sequencemfsairained, and
hence, decoupled cost functions by alternating minimization updates. [Btiemébetween
the cost functions is shown in figure 5.1 and figure 5.2.

We must, however, choose the form of the penalty function carefully to niainta
closed formed nature of the updates and it will also be critical in showingpthgérank

stationarity is retained.

,’/ Pis Py /«’/p*vp*

w w

Figure 5.1: Left: The red linel A’ denotes the constraimt = p. The pagerank isp,, p,)
and an arbitrary solution to problem (5.9)(js*, p*). If the constraint in problem (5.9) is
relaxed the optima shifts froifp*, p*) to (p*, p.(p*)). Right: We add a penalty term that
is active everywhere outside the constraint 4et’ by adding sufficient penalty we may
increase the value &p*, p..(p*)) to be greater thafp*, p*) and hence move the minima
towards it. Significantly enough, for the Penalty based optimization it coaseagp., , p. ).

There are two important choices to be made: (i) the functional form of thaltye
term and (ii) the weight assigned to it. In the next few paragraphs weiaxglachoices.

One advantage of using KL divergence in expression (5.9) is the fadti# uncon-
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strained optimizer is available in closed form and that the form of the minimizer iarline
in t. Both these properties are important, the former is a convenience whbeskster
is essentiain the reduction of pagerank-stationarity to a linear eigen-problem. Heige it
important that the penalty term we use also preserves the closed formealngetrity of
the minimizer. We show that both can be achieved by using a (i) penalty teris theded
on the same divergence that is used in the unpenalized form, i.e. the Kigeiinee and
(ii) for a particular choice of the left right order of the arguments. Latersivow that this
holds true for a larger class known as Bregman divergence and morelbyititat Breg-
man divergences are tliee onlyclass for which the reduction to a linear eigen-problem is
possible.

For generality and convenience, we absorb the parametarsl s into modified
distributionst;, and define a associated cost function that is a valid surrogate for £5.9)
follows

ti 2 at; + (1 —a)s andF(w, p) & ZwiKL (t]lp) - (5.11)

Note that the optimality op, (w) and the correspondence with pagerank update are pre-
served forw € A. This transformation has another consequence, now each compdnent o

t; can be bounded below i — o) min; s;.

Penalty Method Formulation

The optimization problem with the penalized cost function is the following:

Flw,p) + ~—2KL(wlp), 0<p<1, weA. (5.12)

B

It takes the same value &S, p;KL (¢;||p) on the sejp = w. Outside of this set the cost
function is penalized bﬁ%ﬁKL (w||p), smaller the value of higher is the penalization.

Expression (5.12) can be minimized oyeandw using the updates

5This boundedness will turn useful later in ensuring progress towanistraint satisfaction, in particular
as a consequence of lemma 18 and 19, to be introduced shortly.
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Figure 5.2: Plots of the cost function on different sections of the prosiiacew x p.
AA(in red) defines the constraint seé = p, BB'(in blue) defines the sgp = p, (w).
The minimum cost function along these sections are scaled to a common X-axikere
natively CC’. Ploty (in green) indicate$ _, w;KL (¢;||p) for different p with w fixed at
the stationary value (in dotted green). It achieves a unconstrained glatiraa atP. The
function values are tracked for different valueamfor the two sections (i) the constrained
set AA to give curvex (in red) and (ii) BB’ the set of unconstrained optimg w) to give
the curves (in blue), upper bounded byand tight at pointP. Curves{ andx envelop the
optimal point of the cost function over the constrained set BB’ and AAe ©ptima of the
curvesy, £ andk are indicated by points colored, green, blue and red.

~ 1—
P*H_l(ﬁ, ’wt) = ArgminF(wt7 p) + /BﬁKL (thp)
p

=f (azwiti +(1- oz)S) + (1 — B)w" and (5.13)

1

. p B
w;&—i—l(/@’p*ﬂrl) — ArgmlnF(w,p*tH) + TKL (,pr*tJrl)

wi, WEA

~ pgﬂef%(m(iinpﬁl)%)_ (5.14)
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Figure 5.3: The penalty based updates: The estimate of the rank y&ctshown in
blue) in theT*" iteration is computed in thp update(5.13) as a weighted mean of the
vectorsw” (shown in red) and; (equation (5.11)) with weight§l — ) and fw; respec-
tively. In the subsequent step, given by equation (5.14)Js updated by KL( or more
generally Bregman) projecting’ on the updated hyperplane (shown in green) defined by
{w| (w;, KL (;]|pT) ) = d*'}, such that the symmetrized Bregman divergence betwéen

andw’*!is % times their Euclidean distance along the normal to the hyperplane.

The superscript indicates the iteration counter andn (5.14) imposes the normalization
condition. Both the updates are depicted geometrically in figure 5.3. Updai®) (S a
weighted mean of;, s, w. Update (5.14) is explored in more detail in Section 5.3.1, it is
an |-projection (see section 5.1) of the vectoon the hyperplane defined by the normal
directionKL (f¢||p) and such that the projectian on the hyperplane is at an I-divergence
of % times its Euclidean distance from the vector

Note that the cost function (5.12) is continuously differentiable, strictlyerrin
p and w separately, and the alternating minimizers (5.13, 5.14) are uniquely achieved
Thus it follows (Bertsekas, 1999) that iterations of alternate minimizersectgavo the)-

gradient point of the cost function (5.12) (although, not necessarilye@lobal optimum
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of (5.12)). It also follows that the global optimum of (5.12) satisfies thedioate-wise
optimum relations (5.13), (5.14) for any finite

Using standard results for penalty based methods one can show that liiiadyg
optimalw, p, is obtained for everg ands — 0 (i) the constraintv = p,, is achieved in the
limit and (ii) w, p, achieves the global optimum of (5.10). Since the constraint is achieved
in the limit, from (5.13) we obtain optimab = « ), w;t; + (1 — «)s in the limit, which
is in exact equivalence with pagerank. We will make our arguments marefavhen we
rephrase the method in the full generality of Bregman divergences in 8éc8dl. The
updates (5.13, 5.14) help in proving that pagerank is the optimizer of (but2joes not
necessarily guarantee that this will be reached, because optimality isareingeed by the
updates (5.13, 5.14), only convergence tbgradient point is.

Lacking convexity in (5.9), satisfying the necessary KKT conditions is #s that
one can realistically aim for. Do the updates converge to a point satisfyingabessary
KKT conditions of (5.9) ? For penalty methods where convergence isagteed only to
a potentially non-optimab-gradient point, the convergence to a KKT satisfying point is in
general not guaranteed in the limit. So what can one clairp gff(3, w™), w> (3, p,*)
asf — 0 in this case ? We shall show that for strongly convex Bregman diveegenc
defined on a bounded domain, one can guarantee convergenceg@dient point of an
arbitrarily tight lower bound of (5.10).

Now we explore, how the magnitude gfaffects the accuracy of our solution. We

present a couple of lemmas that sheds some light on the question.

Lemma 18. For two discrete distributionp and g such thatmin; p; > € andmin; ¢; > ¢
. ; plla) ;
the ratio of the forward and the backward KL dlverge%m is bounded above by.

proof: See appendix.
Lemma 19. Letmin;; t}j > e and letp* the minimum of(5.10)also satisfymin; p; > e.

Consider any pointp*, p) lying betweertp*, p*) and(p*, p..(p*)) and satisfyin “’ﬁ,()f*_)i)_uf"' <
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%_5 for a fixeds € (0, 1). For the penalized cost functiqh.12)evaluated at p*, p) to be

higher thanF (p*, p*) it is sufficient that>% > 1(2 + T2s)-

proof: See appendix.

Lemma 19 allows us to control the proximity of the optimum of the penalized opti-
mization problem (5.12) to the desired setnf= p. Ideally we would require that = 1
which would then satisfy thpagerank stationarity conditioaxactly, however, in this case
the required? becomes unbounded. We can however chgiose that the solution of (5.12)
is arbitrarily close.

For lemma 19 to be applicable we require> e. If we choosg(1 — «) min; s; > €
the p updates in equation (5.13) maintains the bownd> ¢ providedw € A, though
thew update (5.14) need not. However with a minor modification to update (5.14awe c
ensurew € A.. LetR¢ = {z|x € RN x; > € ¥, }. Consider the modification

R 1-8

F(w, p) + TKL (w|p), 0<pB<1, s,weANRL (5.15)

The updates corresponding to (5.13) remain unchanged but thogsmpanding to (5.14)
changes to

w; pie_/\i%(KL(tin)_)\), (5.16)

where the Lagrange multipliers have to be determined (numerically) such that the con-
straintw € AmR’j is satisfied. Now notice that all preconditions of lemma 19 are satisfied,

hence we can state the following theorem:

Proposition 4. It is sufficient to sefg—ﬁ > %(2 + 1%5) in order to ensure that the minimum
of F(w, p)+ 5 KL (wlp), 0<B<1, s,weANRYisobtained ap that satisfies
the desired pagerank stationarity conditiomef= p with an arbitrary but bounded degree
of proximity that is controlled by the relatio ‘Df,f"_)gf” > 1%5 Vw wherep, (w) is the
unconstrained solution of the optimization probléb).

Proof. Follows directly from lemma 19. O
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F(O)p)

Figure 5.4: Shows a schematic view of the cost function (5.6) (in black}lengenalized

cost function (5.12) (in red) for a fixed set top*. Though the figure refers to KL diver-
gence, the schematic applies equally to the general Bregman divergeseaswell. To

represent this generality, the curves have been drawn to be noexcoBvegman diver-

gences may be non-convex in the second argument but KL divergepegticular is not.

The pointp, represents the unconstrained minimum of (5.6) for a fixed value, tfere set

to p*. The fractions) and1 — ¢ are explained in the text.

5.3 Bregman Informatic Consensus over Vectors

In the rest of the chapter we generalize the ranking problem along two [Dves general-
ization is to consider Bregman divergences rather than KL divergeritieis adds little
or no complexity to the algorithm developed. On the other hand this allows &-prac
tioner to choose a Bregman divergence appropriate for the applicatibiBrégman di-
vergences used in this chapter will be defined over a bounded sdhketadfine manifold
{w| (1, w) = 1}, will be 1—strongly convex andom ¢* will be all of R". It can be easily
verified that KL divergences satisfy these conditions.

The second generalization addresses our final goal, that of carssemking. This

is achieved by considering local recommendations that are no longectexsto be single
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vectors but to convex sets of vectordif¥’| that expresses the uncertainty over the rankings.

Before developing these extensions, recalling relevant backgrowwhirex analy-
sis and Bregman divergences is absolutely essential. We also preseesn#s concerning
properties of Bregman divergences that are not only interesting in tlairight but critical
to the formulation.

In the interest of keeping the flow cohesive, the background as we#éwsnaterial
concerning Bregman divergences have been moved to Appendix 2.@o Want to remind
the reader that it is essential to what follows and some of the contributiathésafhapter
lay there.

We start with a simpleecipe to create Bregman divergences meeting the criteria
mentioned above. Ldty,}” ; be the extreme points of a polytope definedar (1, w) =
1}. Let ¢(x) = supg (z,0) — log(>_; exp(6;, v:)). The functiong(x) is strongly convex
and thus can be scaled to yield astrongly convex function. Furthermore its domain is the
convex hull of{y,}" ,. Note that KL divergence can also be obtained by using this recipe

and choosindy;}”_, to be the vertices of the unit simplex.

5.3.1 Bregman Informatic, Optimistic Consensus ovekectors

The Bregman divergence based formulation is obtained by a direct espdat of the
KL divergence in formulation (5.12) with a Bregman divergence. Rehltgjiﬁ(w,p) as
F('w,p) £ ZZ wiqu(%i

Min-Min formulation:

p) we obtain the Bregman divergence based coordinate-wise

rgi;lf’(w, p) + 1_ﬂﬂD¢ (w‘ ‘p) s.t.(w,1) =1. (5.17)

Consider the following conceptuahlgorithm:

"It is conceptual because it requires minimization of a non-convexifumc
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Initialize: Fix a series; — oo. Sett = 0, % = ¢t.
Repeat: Till w; = pt

Compute: w', p' = Argmin,, , F(w, p) + %Dd)(’pr) st (w,1) =1

Set: % = Ct+1

Return: p

Proposition 5. Running the conceptual algorithm above one obtains
e lim;_,o w! — pf and
o limy oo F(w?, pt) — inf, F(p,p) st (w,1)=1.
Proof. Follows from specializing Theorem in Zangwill (1969). O

The joint Argmin step in the algorithm above is intractable because of lack of joint
convexity. Thus, in the realizable algorithm we replace it by steps that\acKIKT ne-
cessity, by alternating minimization updates. As a consequence of theorgma(t (C.3)
described in Appendix 2.2 the update remains the same as that derived for the KL diver-
gence case

(5.18)
=p (awatZ + (1 — Oé)S) + (1 _ ﬁ)wt
Thew updates are obtained as
w!'! = Argmin,, F(w', p) + 1_ﬁBD¢ (wt‘ )p)
5 (5.19)
(Vo)™ (V¢<p’f“> — 1o Pa (B[P - A)
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where is the Lagrange multiplier enforcing the sumitgonstraint. Comparing equation
(5.19) with lemma (2) we can see that the 5.19 is the Bregman projectipronfa hyper-
ey

plane whose normal direction is the vectoy (¢;||p) — A. This has been shown for the KL

divergence in figure 5.3.

From continuous differentiability of (5.17) and the fact that the alternate miesiz
(5.18) and (5.19) are uniquely achieved it follows that (5.18 and 5.19erges to &-
gradient point of (5.17), which is weaker than what the Proposition Gires; What can

we claim about these updates ? To make a quantitative claim, consider thieriunc

J(p) = inf <w, Dy(t;

p)> + CD¢(’pr) < <'w,D¢(tZ~

p)> +eDy ('w‘ ‘p) (5.20)

that will be used as a surrogate.

Proposition 6. Letdom ¢(-) be bounded ang(-) be s strongly convex. Then iteration of

updates (5.18, 5.19) with, = lgfi — oo converges to d&-gradient point of surrogate

J(p) that is a lower bound of5.17)that can be made arbitrarily tight and

Dy (t;

s(ti||p)
C

0.< F(p.p) — J(p) = Do(o]|(Vo) ™ | Vo) - ) < |l dom |
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—_—
Proof. Let us introduce a shorthanti= Dy (t;||p), then

F(p,p) - J(p)
= Z piD¢ (t - 1’IL10f [Z ’LUZD¢ (t

+sup['w —d) —cDy 'pr}

p)+ CD¢('pr)]

= (p, d) + sup [(w, —d) — cd(w) + cd(p) — c{p —w, V(p))]
roor (VALY b o) - o (p.000) - )~ ()

- CD¢(pH(v¢>- <v¢<p) - d))

Cc

1 2

= eDy(Volp) ~ 2| vaip) < ||

c

Now update (5.19) can be recognized as tightening the bound (5.20)@nand update
(5.18) as minimizing over the tightened bound, thereby ensuring conveget-gradient

point of J(p). O

We now present results on the proximity of the solution to satisfying p for a

finite 5, much analogous to section 5.2.2, but first recall a few preparatotjoresa

Lemma 20. The following three point property

D¢(:cHy) — D¢(1:Hz) = D¢(zHy) + <Hav¢(yi) - V¢(zi§>

holds for Bregman divergences.
Proof. Direct substitution of the definition of Bregman divergence yields the result]

Lemma 21. A Bregman divergence defined by a twice differentiable convex fungtion

that has a modulus of strong convexitgnd whose gradieriW7 ¢(-) has a Lipschitz constant
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L can be bounded above and below as follows:

S

J@—yz—y §D¢($Hy) §§<-’L‘—y’w—y>

Proof. For some) < a < 1 andx = ax + (1 — )y we have, by intermediate value the-
orem thatD, (w) ‘y) = ¢(x) = o(y) — (. — y, VoY) = 3 (= — y, V>o(X)(x — y)) .
Lipschitz constant, upper bounds the matrix norm &?2¢(x) whereas the modulus of

strong convexitys lower-bounds the matrix norm, obtaining the proof. O

In general it will not be possible to specify for which the updates converge to
a solution that respect the equality constraint exactly. However, similardtio8es.2.2
we can under specific conditions give an apriori bound on the valuye fof which the

constraints are satisfied to any arbitrary but finite degree of proximity.

Proposition 7. In order to have the optimur of the problem(5.17) satisfy the relation

llp.—pll s it iCi -8 1, 6
o5l = 123 foranyd € (0,1), itis sufficient thatlT > L(5 + 1%5)-

Proof. In order that there are no local minima betweggrand a arbitrary poind we require

the following inequality to hold: (see figure 5.4 )

(e

5 p*) — Dy (p.(p)

2 0,5

B
p*) + <P*——Zﬂz, Vo(p;) — V¢(ﬁi5> :

The equality(a) is obtained from lemma (20). By dividing both sidesm(p*

p) we
obtain the equivalent condition

) (P pVols) — Voli)

D.(2
1-8 o(P ~)+ .
p o\P*

B Dyl

p)

We prove the result by upper bounding the quantity on the right hand $ithe o

previous inequality. Substituting the lower and upper bounds obtained in le@thavé
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Penalty Saddle Point
Convexity Not Convex Convex
p Update Closed form Closed form
w Update Closed form or Numerical optimization Closed form
Penalty Weight Requires unbounded growth Closed form
Numerical Stability* Maybe unstable Stable
Number of Iterations Undetermined Logarithmic

Table 5.1: A comparison of the penalty method and the saddle point baseddsetho
consensus ranking. (*) This is an empirical observation and not a clasadbon error
sensitivity analysis. The tendency of the penalty terms to grow without bouhe penalty
based method makes their updates numerically unstable.

can upper bound the first term bgl For the second term we invoke Cauchy -Schwarz

inequality to yield:

ﬁ - —
Qu—pmvam)—v¢@é><|mw_mum*_mu
Dy (p*||7) - lp* — Pl

§L<M>§L5
lp* — P 1-46

which completes the proof. O

5.3.2 Bregman Informatic Pessimistic Consensus and The Pagak Game

Here we revisit formulation (5.5) in the context of Bregman divergendsig properties

of Bregman divergence we can simplify

= Argmi i , D(t;,
w rgmin,, {tIirél’_%’li} (w, D(t;,r))

asw = T™*w whereT™ is a matrix with columng; given byt! = min, Argmin (w, D(t;,r)) .
{tiETi}
Now we will show that how one can solve (5.5) by dropping the fixed pantdion by a

reduction to a saddle point problems that does not have the fixed powsttaion.

Proof. With specialization to Bregman divergence and the notational simplification one
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obtains:

max w, Dy (t!
w:T*w,(l,w>:1< ¢( ¢

w)> (5.21)

2 g, (s [} D) - o)

& max (w,Dy(t;|r*)) + Dy (r°||r) — Do(u]|r)

< max (w,Dy(t|r)) = Dy (w) (r) (5.22)
4 max n}rin <w, Dy (t; T)> — Dy (w ‘T) (5.23)

Equality (a) substitutesw = T*w and adds and subtraoi9¢(w"r). Equality (b) fol-

lows from definitionr* = Tw*, see (5.2). Equalityc) follows from the property of
Bregman divergence (C.8) (see Appendix). Note thatiinthe fixed point condition on

w has been dropped. To sé€) note that, ignoring constants, (5.23) is equivalent to
MaXy MiNgcdom ¢+ (8, T*w — w) which is unbounded unless w = w becauselom ¢*

is unbounded by construction. We ensure boundedness by consirumtichoosing the
columns ofT™* such thatl"T* = 1T ensuring that is an eigenvalue. Note that the vector

s acts as Lagrange multipliers for the fixed point condition, except that itrislinearly
related tor asV¢(r) = s. The same set of arguments can also be made to hold for

>, w; = c and choosing the columns &fsuch thatt 7" = c17. O

For convenience we shall further assume and impose that toenponent of the
saddle point of (5.23) is located in the interiordafin ¢. Note that this is consistent with the
original pagerank algorithm becausetigeportation jumpslso imposes that the pagerank
is obtained in the interior of the simplex. Recall that, for convex functionsef tégendre
type, the norm of the gradient satisfies the following:

T [[V6(r)] = o0
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Therefore a convenient way to ensure thaemains in the interior is to add the constraint

that|[V¢(r)|| < % wheree is small positive number. With these changes we obtain:

max  min <w, Dy (¢
W [[[Ve(r)|<<

r)) = Do (w||r) (5.24)

Before proceeding further, we quote the following Mini-Max theorem thidit help us

ensure the existence of and the convergence to a saddle point in oliBres

Theorem 11. (Rockafellar, 1996) page 393. LEY-, -) be a proper closed concave-convex
function with domairt x D. If eitherC or D is bounded its saddle point exists equivalently

its minimax value equals its max-min value.

In relation to the saddle point formulation of pagerank, we consider thetblge

functionG(w), defined variationally as

[I>

G(w)

inf m(p,w)
plIVep)l<e

R
inf <'w, Dy (ti

(5.25)
p|IVe(p)<t ”)> - D¢>(pr).

lI>

The maximizer ofZ(w) will be indicated as:
w, = Argmax G(w).

Lemma 22. The functiorG(w) £ inf , | |1y <? <w, Dy (t;

p)> —D¢(w’ ’p) is con-
cave inw and strongly concave whef{-) is strongly convex.

Proof. For any fixed value op the cost function is concave i because the first term is
linear inw and a Bregman divergendg, (w’ ’p) is convex in its first argumenb. Since
the cost function is a point-wise infimum of a family of concave coStay) is concave
in w. Strong concavity follows from the fact that evenstrongly convex functiom(x) is

the sum of a convex function ard|x||?, therefore point-wise supremum of a familyof
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strongly convex functions is a summation of a convex function gifud|2. O
Given the local rank-score vectarsthis leads us to propose the following consen-

sus ranking problem, that is guaranteed to have a unique optimum

sup G(w) = sup inf m(p,w). (5.26)
w w p||Ve(p)lI<t

If equation (5.26) is to be optimized by using thep and theinf operators, several key

guestions need to be resolved, among them are
e whether the Min-Max formulation is equivalent to the Max-Min formulation.
¢ whether it maintains uniqueness, and finally
¢ do these formulations replicate the pagerank solution.

We resolve all of these affirmatively. In order to do so, we shall considether function

9(p) £ supm(p,w). (5.27)

w

Its minimizer will be indicated by

P, = Argmin, | gy <1 9(P)-

Unlike G(w), it is not straight forward to determine whethgr) is convex. Even if we
restrict ourselves to Bregman divergences that are jointly convex, itislaar whether
g(p) is convex or concave, becaus&-, -) evaluated at a fixe is a difference of convex

functions. However for the ca3®’ C {w| (w, 1) = 1} we can prove the following lemma.

Lemma 23. The functiorg(p) as defined in5.27)with a set’W C {w| (w,1) = 1} isa
convex function in the variabl€ ¢(p) and differentiable when the maximizer over the set

W in (5.27)is uniquely achieved.
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Proof. From equations (C.5) and (C.6) we obtain that for any W as defined, the func-

tion m(p, w) = <w,D¢(ti
g(p) is a point-wise supremum of a family of linear functions. Thus it is conve¥X in

p)> - D¢(w’ ‘p) is a linear function ofV¢. The function

For the proof of differentiability note that whenever the maximiagrof equation (5.27) is

unique it defines an unique gradient fdp). O
In view of the special structure of the functien( p, w) we define a convex-concave

function M (-, -) as follows

m(p,w) if we {w|{w,1)=1
M(Vo(p).w) & (p,w) if we{w|(w,1) }'
o0 otherwise

We are also able to verify the following claim:

Proposition 8. Subject to the constraintl, w) = 1, choice(1,¢;) = 1 V;, dom¢ C
{w] (1, w) = 1} for a convex function such that eithetlom ¢ or dom ¢* is bounded then

the following mini-max (saddle point) equations are satisfied:

p) ) - Dolul|o)

5.28
:Minp\uvqs(p)ug%Man <w,D¢(ti p)>—D¢(pr) (5.28)

—

< ¢%(o(t:))-

The optimumw™* satisfies the pagerank-stationarity conditidhw* = [t1 . --tM] w* =

w*.

Proof. Since(1, w) = 1 we can invoke proposition (17), in particular equation (C.5) in the

inner optimization ovep, as a result of which we obtain

—

in  — A P | L P
Max,, G(w) < wlé/([izgr)ﬁ¢veh(§£1£¢* o(w) + <w,¢( ,)> [w, =1]" [ty - by, w] v.
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It is evident from the expression above and lemmata 23 and 22that) is concave in
w and linear inV¢(p). If either dom ¢ or dom ¢* is bounded we can apply theorem 11 to
switch the order oMin andMax and yet maintain equality.

The conditiong1,w) = 1 and(1,t;) = 1 V; ensure the existence of a vector
that satisfied-- - ¢; - - - Jw = w. We further assume that there exists a vegia@uch that
w is the optimal vector obtained. The conditicb(ﬁi) C [+t ]dom¢* Vt; ensures
the existence of such a. With w fixed atw the corresponding optimal is any vector
in dom ¢*, certainlyV¢(p). Thusw, p) is a saddle point anay satisfies the pagerank-

stationarity condition. O

Example 3. Instantiating problen(5.28)for the KL divergence we observe that the result

(8) applies because lies in A which is a convex and compact set.

Regret Bounded Algorithms applied to The pagerank Game

Proposition 8 reduces the objective functi@ffw) and, under appropriate conditions, the
cost functiong(p) to the two party gamelin , | IVé(p)<t Max,, m(p, w). As a result of
this reduction, any convex game solving algorithm may be applied to solve)(5.26

We choose to apply online “no-regret” algorithms to the saddle point proiol¢ine
setting of fictitious plays. Our choice is motivated by the balance between thécsiynp
of the individual updates and the convergence rate achieved Reda# thd —strongly
convex by our choice, we show that for this case we can obtain a genes rate of

O(X87) wherer is the number of iterations.

T

Online Regret Minimization: We describe online regret minimization in the set-
ting of maximizing concave functions because this is what we shall useykogch regret
minimization algorithms can equally well be posed as minimizing convex functions.

At each time steg an online regret minimization algorithm has to commit to a
predictionw; € R C domI'(-), before the concave objective functibp(-) is revealed.

The subseRR is convex and may be the entire domain. The instantanesgustincurred
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at staget is defined asup,,.r I''(w) — I't(w;) whereas the regret over the entire epoch

[1, 7] is given by
R(7) = sup Z I(w) — Z [y (wy).
1 t=1

w =

If for any sequencaw; - - - w, predicted by an online algorithm and for ahy(-) drawn

from some suitable subclass @fof concave functions and the following holds
sup » Ty(w) — > Ty(wy) < C(r) VIy()€G
Yo=1 t=1

then the algorithm is said to have a convergence rat€(ef). The algorithm is called a
“no-regret” algorithm ifC'(7) is sub-linear inr. Several classes of concave functions admit
“no-regret” algorithms.

We now show how one may use such an algorithm for solving the saddle point
problem (5.26). The updates t0 will be obtained from a regret minimization algorithm
targeting the instantaneous loss losggs) = M (V¢ (p,), ).

The p update, equivalently th& ¢(p) update will be greedy, point-wise optimal
and for norms in the - ||,, family it will be obtained in closed form. In particular they(p)
update becomes théhe norm duality mappingnd is unique if the nornfj - || chosen is

strictly convex.

Theorem 12. () Consider a game defined Byiny ) Max,, M (V¢ (p),w) such that
(i) the functionM : (V¢ (p),w) — R is convex inV¢ (p) and concave inw; (ii) there
is a “no-regret” online maximization algorithm for the sequence of optimizagimblems

Max,, Gt (w) whereGy(w) £ M(Vé (p,) , ) with convergence rat€'(r) then

1 — 1
Min MaxM (Ve (p),w) < M (T;Vqﬁ(pt),T;wI)

IVe(p)li<t

<Max Min M(V¢(p),w)+ e
W |Ve(p)l<t T
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Proof. Defines; = Argmin .1 M(s,w;), ands = 2(3°7_; s1). Let sy = Vo (p),
andw* be obtained by a “no-regret” online maximization algorithm for the sequehce o

optimization problem3$/lax,, M (V¢ (p,), -) with convergence rat€'(r) then

Min MaxM (s, w) < MaXEM(E,w) % Max1 ZM(st, w) (5.29)
Isll<t w woT YT
b1 <
< - > M(s,wi) +C(7) (5.30)
t=1
c 1< . 1
< =) (M(s,w;) +C(7) st s < - (5.31)
T —1 €
d T
£ Min M (s, 1 Zw:> + 90 st psp < 2 (5.32)
s T =1 T €
< Max Min M (s, w) + ¢, (5.33)
T

W |sll<¢

Inequality (a) uses Jensen’s inequality applied to the convexityfoin the first argument.
Inequality(b) is obtained by using predictions; obtained by running a “no-regret” online
maximization algorithm with rate of convergenCér) on the sequence of online objectives
M(Vo¢ (ps),-), (c) follows from point wise optimization of,. Jensen inequality is applied

on the second argument to obtaif).
U

From (Shalev-Shwartz and Kakade, 2008) it follows that for stromyexity (con-

cavity) we may choose an algorithm with(7) = O(log 7).

Duality Mappings in Optimizing p

The pagerank game solution algorithm proposed requires that at eacthstéllowing

optimization problem be solved

Si — Argmlnnsngé ]\4(57 wl)
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wheres is related top by the Legendre convex duality mappiag= V¢ (p), . This map-
ping is crucial in turning a non-convex problemgrinto a convex problem. Ignoring terms

that do not depend amnwe obtain
8= ArgmianHS% (s,w; — Tw;) .

Now note that this is exactly the duality mapping imposed by the riprihtaken to be an

¢, norm. We thus also obtain that

min M (s, w;) = €||Tw; — w;||«

llsll<i
where|| - || is the dual norm of| - || this quantity can be looked upon as the deviation from
satisfying the fixed point condition. The vectgyris obtained in closed form and is unique

if the norm|| - || is strictly convex for examplé, such thab < p < oc.

5.3.3 Recovering the Eigenvector Representation

In this short section we show that the saddle-point formulation is equivaehe familiar
eigenvector based formulation of pagerank. We show further that ifrtteient of the dual,
V¢* is available in closed form, as is the case for KL divergence, consigeaéqorithmic
simplification can be obtained over the method proposed in Section 5.3.2. triollbars
we shall uses for V¢(p). First let us remove the constraint gg|| that we had imposed
for numeric stability of the algorithm introduced in Section 5.3.2. From equabi@8) we

obtain the following by plugging in the definition of Bregman divergence, laegkndre-
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Fenchel transform:

msin max (w < > T — Iw)
£ minma (w, o() + [1 - T*] ]> O(w)
= min ¢’ (¢(Zi) - TT]3]> : (5.34)

The optimalw in sub-equatioria) is obtained as

—

w, = Vo' (gf)(ti) - TT]S]) . (5.35)
Equation (5.34) is a convex minimization problem in the variable

(T = 196" (6(E) + [T~ T']s]) =0

Tw, = w, Using equation(5.40) (5.36)

Note further that because of our assumptions of strong convexity thre cost function
(5.34) las Lipschitz gradients and can therefore be minimized using adeeledient

descent achieving a convergence raté)()ﬁ) in function value.

5.4 Consensus Ranking over Sets

In this section we finally address the problem of local and global consehat we set out
to accomplish in the introduction of the chapter, in particular in equation (5h8 fdrmu-
lation (and consequently the algorithms) will be a direct generalization of wiased for
the pagerank case in sections 5.3.1 and 5.3.2. The primary differemoetfeopreviously
discussed pagerank scenario is that, instead of vetidhat represent the preference of
vertex: we have to deal with a convex sets of uncertaifitassociated with every vertéx

These sets represent the uncertainty over the set of weighted edgemtrate from the
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Figure 5.5: Left: A global consensus view of pagerank: The rakeseectorp is obtained
as the minimizer of the weighted average KL divergences between the collitnsof
the pagerank matrix and the rank-score vegioRight: A local-global consensus view of
Brew rank: The rank-score vectpris obtained as the minimizer of the weighted average
KL divergences between the convex sets in which the coluinéi, ) of the effective
pagerank matrix are allowed to lie and the rank-score veet@dditionally and crucially,
the weights on the KL divergence terms have to be such that the Thecar&s®ctorp is
the stationary distribution of the effective pagerank matrix.

vertex. Each particular weighted edge set corresponds to a igcto? (¢, ). The convex
set7; come about naturally in situations described in the introduction.
5.4.1 Bregman Informatic, Optimistic Consensus OvefSets

The consensus problem in this case is described by

T(i,l-\)/lei?(i,) MianwiDqg(T(i, )Hp) st w=p. (5.37)

Since Bregman divergence is convex in the first argument and parsragter of T, is
linear, the cost function has a global minimum for a fixed

Note that the constraints are coupled because the consensus, in addi&ngo
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p update: pt =3, Bw! T (6, ) + (1 — B)w! ™!
The cost function (5.38) is minimized with respecptwith the other parameter,

w andT (i, -) held fixed. Note that this equivalent to the condition of lemma 17
with weights on7’(i, -) andw set toﬂwf_l andl — S respectively.

[72)

T(i,-) update: T1(i,.) = ArgminpD(;)(pHpt) st. p € T,.(i,-). This is a
Bregman-projection computation of a distributiph on a linear setl},, (i, -).
The cost function totally decouples with respecfia, -)..

w update:
witt = Vg (Vo(p') - d)

d = (D (T (1) [0). -+~ Do (T i) ) -

With T'(i, -) and p fixed, thew update is the well studied problem of finding a
conjugate of a convex function (Rockafellar, 1996), in this cas@@(fw‘ ‘pt).

The solution is obtained as the inverse of the conjugateKEo¢w||pt) is given
in closed form by the sigmoid function.

Figure 5.6: Updates for Bregman Weighted (BreW) consensus Algorithm

close to the local recommendation sets, have to sasisfijonarity This is our primary
source of difficulty. An important question thenisthere a way to compute the consensus
in spite of the coupled nature of the stationarity constraints involwedolving for a fixed

w and then updating. The proposed algorithm works around this coupling by iteratively
solving for a fixedw and then updatingy. As can be easily anticipated the formulation is
the following:

1—

Min = Min, Min,, ZwiD(b(T(i, )Hp) + 5 BDd,(pr). (5.38)

T(i,-)€T (4,)

The alternating minimization updates are shown in figure 5.6. A property okfiregsion
(5.38) is that except for the requirement to apply Bregman Projection, riemang updates

are available in closed form (fig 5.6).
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Proposition 9. The minimum of expressi¢5.38)also minimize$" w; Dy, (T'(i, -) ‘ ‘p) sub-

ject to the stationary constrains’ w;7'(i,-) = w = p for somes = 5*

Proof. The proof is in two parts, first proves that a minima exists that satisfies tiezgrag
stationarity condition and second that the fixed point will be reached byyttiates.
Consider a scheme of coordinate descent updates where at itératien w. The
next update is given by = 8>, w;/T'(i,-) + (1 — 8)w. For3 = 5* we havep’ = w =
>, wiT(i,-), a stationary point. The cost function at this valugisv; D, (T (i, -) ‘ ‘p) +0.
Since each coordinate descent update uniquely achieves a minimum ofuiheellocost

function, the iterations converge. O

5.4.2 Bregman Informatic, Pessimistic Consensus Ovéets

We propose two algorithms for Bregman informatic, pessimistic consensusets (i)
double loop BLend and (ii) single loop Blend. Both are very similar to the algorjtho-
posed in Section 5.3.2 for solving the equivalent problem over vectbiesdifference from
the algorithm proposed for vectors is that in addition to pointwise minimizatias) ohe
also optimizes over the choice ®f*1(, -).

For double loop BLend, one choosES (i, ) = Argmin,,;, Dy (p;||p') st.p €
T.,(i,-) Vi jointly. Note that these variables are all decoupled except for coupling with

s. It can be shown that i is strongly convex with modulus of convexitl this joint

minimization problem is also jointly convex. Thus one can optinsizand7*(, -) in an

alternating minimization fashion till convergence and then updasad repeat. The proof

of Theorem 12 and consequently the convergence rate remainsatedffy this change.
Double loop algorithms have to wait till the inner loop has converged and tend to

be slow. As an alternative, one can have a single loop variant with a slighteveonstant

128



Initialize p, w°, t;, sett = 1.

Chooser the maximum number of iterations from convergence rate of the regret mini-
mization algorithm employed i update.

Fort=1.--7 Repeat:

Repeat till convergence with fixed

) - Do(u'||o)

T(i,-) update: t/*! = Argmin, D¢(pHpt+1) st. p € Ty, (i,-). The cost
function totally decouples with respecttdi, -).

w update: w't! Obtained from an online regret minimization algorithm for the se-

quence of optimization problensax., <w, Dd)(t,-‘ ‘pt+1)> — Dy (w’ ’pt“)

1 T t
Return — >/ w'.

Figure 5.7: Updates for double loop Bregman-Legendre saddle pdien@ consensus
ranking algorithm

of 220 as shown by the following set of inequalities

T

 p— 1 <
Min Max M((s, T), w) < Max~M((s,T), w) < Max— > M((s;, T}), w)

lsl<t @

<l (Z M((si, T;), w}) + C(ﬂ)
t=1

T

S 3 (M (s, T w) + O(r)) sitsl] < -
t=1

d 1 < 2C 1
< Min M <(S,T), - Zw;‘) L2000 g s < X
S T T

=1

< Max Min M(s, w) + 22

W |ls|<¢ T
— €

that are the same as (5.29) except(fdrwhich follows as a result of applying online regret
minimization (with the same rate as that of the regret minimization appliad)ton 7"

In the single loop variant the variablés;} are obtained by an online regret minimization
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—

algorithm applied to the cost function seque Qﬁt,¢(t)> — ¢(wy) — (s, Tw; — wy),

thereby eliminating the inner loop.

Initialize pY, w?, t;, sett = 1.
st =Vo(ph)VtandT = [t; ---].

Chooser the maximum number of iterations from convergence rate of the regret mini-
mization algorithm.

Fort=1.--7 Repeat:

)~ Da(u||o)

T(i,-) update: tf“ Obtained from an online regret minimization algorithm for
the sequence of optimization problemsing <wt, ¢G&)> — o(wy) —
(s, Tw;, — wy) .

w update: w’*! Obtained from an online regret minimization algorithm for the se-
guence of optimization problemsax,, <w, D¢(ti‘ ‘pt+1)> — D, (w’ ’pt“)

1 T t
Return — >/, w'.

Figure 5.8: Updates for single loop Bregman-Legendre saddle poiren@Lconsensus
ranking algorithm

5.4.3 Using an Eigensolver

Similar to Section 5.3.3 the consensus algorithm can be reduced to eigerbastor up-
dates. One may proceed exactly as (5.34) by eliminatirgclosed form yielding a convex
minimization problem irs andt;’.s

min, minmax <'w, ¢(t¢)> — p(w) — (s, [T — Iw)

a . : t _f _
—n"gntiergpli?(i’)mg><<w,¢(tz)+U T]S]> P(w)

s (601~ 1).
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The optimalw in sub-equatioria) is obtained as

—

w, = Vo* (¢(ti) - TT]3]> . (5.40)

The convex minimization problem can then be solved by alternating minimizationt¢,; The

updates are Bregman projections, whereastiseobtained via the eigenvector relation.

(T~ 196" (6(E) + [T~ T']s]) =0

Tw, = w, Using equation(5.40) (5.41)

5.5 Related Work and Discussion

The problem of rank aggregation has been studied both under a mgoeRreund et al.
(2003) as well as unsupervised scenario within a general and difficoibinatorial space
of permutations with and without a probabilistic generative model Dwork &2801),
Lebanon and Lafferty (2002), Klementiev et al. (2009) and more tBcan Qin et al.
(2010). In this chapter consensus pagerank was posed as the sofigioanstrained opti-
mization problem posed in terms of Bregman divergences for which a @ewsoordinate

ascent, as well as online game playing algorithm was provided.
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Chapter 6

Spam Resistant Ranking functions

Using Convexity and Monotonicity

The ranking scheme of a search engine needs to be resistant to sparticudaply so-
phisticated type of which is link-spam. Current countermeasures “da“spp& corrupted
webgraph by removing abusive pages identified by supervised learinge exhaustive
detection and neutralization is infeasible, there is a need for ranking fasdtat can, on
one hand, attenuate the effects of link-spam without supervision andeoatiler hand,
counter spam more aggressively when supervision is available. A familgrofinear, it-
eratively defined functions is proposed that propagate “rank” andttscores through the
webgraph. It includes Pagerank as a special case and relies dimaarity and convexity
to provide the spam resistance. The main contributions of this chapter #ne @yoof of
convergence and uniqgueness of the iterates, and (ii) empirical compavidoPagerank
and other established anti-spam rankings on a part of the real wébgitip13 million
edges. The well known linear algebraic proof of convergence oégag do not apply to
this non-linear family. Hence different techniques are adopted andextlaft is verified
experimentally that spam resistance of the propasedipervisedariant is comparable to

the supervisedstate-of-the-art anti-spam techniques of Trust rank Gyongyi ekab4),
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AntiTrustrank Krishnan and Raj (2006) and Demotedrank Wu et al.g§200n the other
hand when labels are available the proposed scheme can improve p&deraver the es-
tablished state of the art. Though non-linearity is critical to the enhancéorpemce, it
is not universally beneficial. It is experimentally shown and logical atdghat best results
are obtained by non-linear update for the propagation of “rank-5batdinear updates for
the propagation of “trust scores”.

Given a query, a search engine returns a list of web pages, rackeddang to a
combination of their content antdpological (link analytic, graph theoretic) quality. The
topological quality, an example of which is Pagerank Brin and Page (1BS9&)stomarily
measured by a real number Kleinberg (1999a) also called “rank” arésc It is not just
the order induced by these rank-scores but also the rank scoresthesnsay Pagerank)
that are combined with other signals to determine the final ordered list peesenthe
user. Because of the importance of the ordering as well as the values stadhes, we
evaluate both the quantities in our experiments. The ordering are compapzddision-
recall curves and Spearman foot-rule distance, whereas the seceresmapared by the
cumulated score assigned to spam pages, the lower the better.

Incorporation of topological quality has been critical to the successartbeen-
gines because content based information retrieval (IR) scores kaverélatively easy to
spam. Pagerank, a popular and effective link analysis score, thargkrito manipulate
than an IR score, is not immune to link-spam Henzinger (2003). Oftemadduas quality
pages point to and hence direct sufficient rank mass towards the spapagedhrough
what is known as a Sybil attack Douceur (2002). Our objective is to be mesistant to
such and other attacks. While it is unrealistic to assume the proposed scliée in-
herently immune to all possible attack modes to emerge in the future, it can adhptrto
provided examples of spam and non-spam are provided.

A key difference between the proposed and prevalent methods is thabiespd

method can function without a set of spam pages pre-identified. It caeveo benefit from
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identification if available. Its spam resistance is compared with Trustrank@yet al.
(2004), Demotedrank Wu et al. (2006) and AntiTrustrank KrishnarRaj@2006) these are
Pagerank like iterative algorithms that use supervisory labels. Guasaviteenvergence
and uniqueness are provided for the proposed iterative method. Wgholuta guarantee,
an iterative ranking scheme is of questionable merit because there is nipla@dnway to
argue that the ranks at soraebitrary iteration number or initialization will possess the
desired qualities. Without these properties, one is simply hiding the task kihgaander
the tasks of (i) choosing a good initial condition and (ii) the choice of the fiegdtion.

A few words about notation: matrices are denoted by upper case letrasy,
whereas vectors by lower case letters in bold, suah aslenotes a column vector of dk.
Transpose and inverse of a matrxis denoted byd and A~! respectively. Script fonts
are used for set9/ is used to represent vertices of a graph, &nits edges. The in and
out degree of a vertex; is denoted byl;, (i) andd,, (i) respectively. Functions mapping
R™ — RR™ are denoted by upper case lettefsig(-) denotes the principal eigenvector of

its argument, a matrix.

6.1 Pagerank and its Relatives

Link analysis based techniques rank order nodes of a giEgph &) based on their topo-
logical properties. For example in the Pagerank model Brin and Pag8)(1&gch page
(a vertex of the webgraph joined by hyperlinks as edges) distributekssiore equally
among its out-neighbors. The Pagerank of a page is the correspormingfftank-score
at equilibrium. Hence it is the inverse out-degree weighted Pagerank ofrisighbors.
Pageranks can also be interpreted as the stationary distribution of arramalé that picks
an outlink to follow from the current page uniformly at random or resetsramdom page
on the web in a way described next (with probabilittes o and« respectively).

Let A be the adjacency matrix of the gragh,,,; the diagonal matrix formed by the

out-degrees$ a row stochastic source matrix usually taken tesbhe %(1 X 1T), wherel
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is a column vector of ones ard is the size of the vertex set. The transition mafrief the
walk can be expressed in terms of the out-degree normalized adjacenoy P4, and
the random jump probability as T = (1 — a) x D,,}, x A+« x S. Some vertices of the
graph may have no outlinks in which case mg}t has to be specially defined. This is the
problem of “dangling links”, the reader is referred to Brin and Pag®8)@nd Acharyya
and Ghosh (2004) on how this can be dealt with. The Pagerank iteratiwerges to the
primary eigenvectorr of T' or, equivalently, the steady-state probabilities of the Markov
chain defined by it.

Trustrank is a supervised mechanism Gyongyi et al. (2004) to counkesgpiam.
Trust score is allowed to propagate out through the graph, much likedPdgeut from hu-
man verified “good”, non-spam source pages. Trustrank propadetieust from the spam
pages in the same direction as that of the links, this can however be aiblgrsbused
in the following way: since Trustrank believes‘iguilt by association”, any page can be
demoted by a spammer by pointing to it. This can be countered if “guilt” is prapdga
a direction opposite to that of the hyperlinks. In this case a page gets deiinthteghage
itself points to a spam page, not if it is pointed to by one. Hence in our expet$rdestrust
is taken to flow in a direction opposite to the links as is the case for similar agm@sac
Demotedrank Wu et al. (2006) and AntiTrustrank Krishnan and Rajgz00

The formulation that is most similar in spirit to ours is Baeza-Yates et al. (2006)
There the functional form of damping of the rank-score received page is generalized
to include those that are non exponential in the path length whereas ferapagit is
exponential. The stress in Baeza-Yates et al. (2006) is the nature obtlay dnd the
different generalizations that are obtained and not on guaranteesrgence, uniqueness
or spam tolerance. The last three properties ignored in Baeza-Yatle$2106) are of vital

importance.
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6.2 Concave-Convex Rank

To understand the spam susceptibility of Pagerank, let us expressgbeRia; of page
v; € V as the composition of two functions of the Pagerafikg ;7 of its in-neighbors
7(i) and their out degreeSlou (j) ez} @7 o< g(fi({rs}, {dout (1)) s:t. j € Z(0).

The functiong : Ry — IR, is identity for Pagerank algorithm and the function
fi: R424() 5 R, is a weighted sum, accumulating the ranks of the inlinking pages.
The functionf? serves the purpose of accumulating the ranks into net input rank flow, an
g maps the net rank flow into its rank score. The functighor differenti have the same
functional form, the superscriptindicates that they operate on domains of different sizes
depending on the neighbors af The choices off’ and g in the Pagerank formulation
entail a couple of spam susceptible properties:g(Being identity, ensures that there is
no diminishing rate of return Lack of diminishing rate of return means that a link from
a source increases the Pagerank of the recipient pages equallyeaties of whether the
recipient already has hundreds of links or just one. In other wordsetinen obtained by
virtue of receiving a link does not diminish. Secondly, (i) becafises a sum, an inlink
from a high quality page is worth as much as getting)@0 links from low quality pages
with PageranK /1000ths the value of the high quality one.

It is generally held to be true that the increment in the human perceived goflity
a page diminishes with each link received, and a page with several podiigialmost
certainly worse than a page that receives few links but from high qualdgg For example
a link fromwww.yahoo.com could be equaled by thousands of links from worthless pages
and it does not cost much to create such numerous dynamic pages orbtheagerank’s
teleportation property ensures all of them receives a certain low fragtitire web’s total
rank, all of which can be channelled into a spammed page to increase its rank

We list two properties ofy and f? that would provide some spam-resistance to the
ranking function. We make particulahoices based on simplicity of the over-all scheme

and requirements of convergence of the ranks to a unique value. Wetddam any
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theoretical sufficiency of the properties mentioned, but argue andimggally show that
the resulting ranks are more spam resistant than their peers. We list frextjge desired

of g first, it should be:

1. monotonically increasingi(z) > g(y), Vz > y.

Between pages that have different net ranks flowing in, the page wite fioar has

higher quality. This is captured by the monotonicity property.

2. have diminishing rate of returrg/(z) = %g(z) is monotonically decreasing. This
models the fact the increment in quality decays with the flow of rank. This also
implies that the functiorg() is concave.

Of the limitless possibilities wehooseto be conservative in letting this decay be
polynomial as opposed to exponential, i%.g(ac) = O(1/2") wherez,i > 0. This

leads us to functions of the forﬁ%l/%’ qg>1.

For the functionf? we desire that, between two pages with the same total rank flow, as

measured by < it allocate higher value for the cases where a few high ranked pages

dout (J) !

point to it as opposed to several low ranked ones. The functionalrezgents can be

formalized by the following set of equations:

— Zkel(i) Tk
n

1. Existence of minimavx € R" fi(z) > fi(x) =) = , Wherez;, =

Tk
dout (k) :

z andx are equi-dimensional vectors with each componemt efjual to the average
of the components af. Since)_ =, = >_ 7, the property above favors few good

inlinks over several mediocre ones.

. Monotonically increasingyfi(x) > f/(y)VYx,y > 0 andy is an extension of

formed by increasing its dimensionality by additional non-negative compsten.

If we assume the permutation independent fgfifc) = >°, f(z), it is sufficient for the

properties above to hold that eagh) is convex as shown below.
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Lemma 24. Given a convex functiofi(-), the functionf?(z) : R™ ~ R such thatf’(z) =

% f(x) satisfies the propertyz € R"  fi(z) > fi(z)
Proof. fi(x) =n x Y p1/nf(z) > nf(>, %) = f(z) by Jensen’s inequality. [

Convex functions have monotonically increasing derivatives. Out ofitthieess
possibilities of convex functions we take the less aggres$ivecethat its derivative exhibit
only polynomial increase i.e%fk(xk) = O(a%) s.t. x,p > 0. For the purpose of this
chapter we make the choice tha(x;,) = (%2),p > 1.

As an example and for reasons of simplicity of exposition we first choosehingtc
indicesp andgq in functionsf? andg such that we have

»
g(f'@) =p(fi@)r [ 3 (@) | =llall,
J
where||z||, = > |a:i|P}1/7’ is the L, norm of the vectore. ! Tsaparas independently
Tsaparas (2004) considerBDRM) andMAX() in his thesis and proved their convergence.
Here we show that the Concavo Convex ranks subsumes those results.

We state again that we are not championing the casd.fanorms for ranking,
but use it as an instrument of exposition, and as a strong baseline ferragnts and to
motivate the functional fornL,,, that we actually use, whepeandgq are different. Our
experiments indicate that tiNORM) family performs worse than the,,, ranks. Also note
that theNORM) family is equivalent to choosing the componentsf&(f) to bex? andg its
inversez!/?. Thus under the transformatiarf = r? the updater’ = T+’ is linear and

the theory of eigenvectors of linear operators suffice as a proofmfecgence.NORM)

As an aside we demonstrate that this simple form covers the logarithmidiit the limiting condition.
This is significant because the most commonly used function wherefrdimimishing return is desired is the
log function We show that ak — oo the chosery goes tdog on the positive orthant

/k

Proposition 10. V,, € Ry limg_se0 "’"117 = log(x)
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rank is a simple nonlinear transformation and normalization of the raftésthe ordinary
Pagerank iteration has converged

The important properties of uniqueness of the computed ranks and thergence
of the updates from any initialization will be proven shortly for gny< ¢. In fact our
experiments show that settinghigher thanp significantly benefits not only the speed of
convergence but also the spam resistance. We conjecture this hdygoanse the ranking
function as a whole becomes concave, whereas norms are convegdetiuig of the prop-
erty of diminishing returns. We emphasize again thgais introduced to aid the description
and to serve as a baseline for experiments, the method that we prop@stufaruse are
the L,,, family with ¢ > p, not theL,, family.

For d,.+(7) the out-degree of a pagé;, (i) the in-degree of a page, afdi) the
in-neighbors of a page, the update equation for the ranks is obtainedbbytsting#f(j)
for z;. Some modification is necessary to take care of loops and absorbing vestice
the graph. Absorbing nodes are eliminated by adding “weak links” fromeatices to all
other vertices. These links are called weak because they are desigmadsimit only a
small fraction of the rank. The algorithm, adjusted for the presence airlbibg nodes
and generalized to have non-matching exponents is presented in figur@wirdg to the
similarity of the function used td.,, norms we call it thel,, , algorithm. We omit the

parameter; whenever we assume that ¢. Let us consider the implications of our choice

lterate rit! =

P/q

t _
al—2 _ +7(1 O‘)Hrtul 2 U (rh)? (6.1)
dout(]) . . N
JEL(3)

,r.t+1

NOI’ma|Ize 'PH’I = W

#proofs remain valid if the weak links are taken out of the norm leading teweesocombinations
of the weights due to strong and weak links.

Figure 6.1:L,, , Rank Algorithm
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for the matching exponent case:

1. We obtain the Pagerank updatesjice ¢ = 1

2. An interesting special case is wher= ¢ = oo, where theL,, rank is the maximum
inflow from among the incoming edges. This is robust against spam lethes
rank of a page cannot now be manipulated by adding low quality spam link&an

computationally cheap.

3. If all the in neighbors’ ranks are incrementeddyythe L, rank of the page is incre-

mented by less thalig||p.
4. If all the in-neighbors’ ranks are scaled Bythe L,,, rank of the page is also scaled
by 8.
The update in equation 6.1 in figure 6.1 can be looked upon as a fuidttian— y «x €
AN-1 4 e R, whereN is the size of the vertex set of the gra@rand AN~ is a unit
regularN dimensional simplex. Important considerations are the existence and neggue
of the fixed points of-'+! = WU(W).
e Does the scheme have a fixed point ?
¢ Are the fixed points stable ?
e Is the fixed point unique ?
e Does any initialization converge to a fixed point ?
e What is the rate of convergence for the iteration ?

In the remaining part of this section we resolve these issues. The ansyesrfar the first
four but unresolved for the last. The results on fixed points that we wiltimebelow have
been derived from those stated for the case of homogeneous funcfidegree 1 in the
context of economics Robert.M.Solow and Paul.A.Samuelson (1953). Fapplication
we extend the scope to homogeneous, and super-homogeneous sinottegree less than

and equal to one. This is a very large family of functions for which we éan@pnvergence

140



and uniqueness guarantees. Since the domain and raffis tfie simplexA” and hence
a closed convex set arid is continuous, Brouwer’s Fixed Point Theorem Rudin (1976)
ensures the existence of a fixed point. For the current application in miisdgésirable
that the fixed point be unique. We investigate sufficient conditions foruenitpn-linear
eigenvectors of the functioll :  — y; =,y € AN ¢ R.". Avectorz € R" is said

to be greater than another vecipe R, i.e.x > yif Vyz; > y;and x £ y

Definition 1. FunctionF : « — y, x,y € R™ is positively homogeneous, sub homoge-
neous or super homogeneous of degkeié V.1 F(cx) = ¢*F(x), F(cx) < ¢“F(x),

F(cx) > ¢*F(x) respectively and increasingVfr > y F(x) > F(y)

Lemma 25. If an increasing functio/ : & — y z,y € R." is positively homoge-
neous of ordery = 1 then the eigenvalue associated with different eigenvectors is unique,
furthermore ifU is positively super homogeneous of degree of homogeneity 1 then

eigenvectors are unique.

Proof. We prove the proposition for homogeneous function, extending it to sugreoge-
neous functions is mostly matter of change of the syrgbtal the corresponding inequality.
We haveU(xz) > 0andVe >y U(x) > U(y) andVe > 0 U(ecx) = c*U(x). Letu
andwv be two eigenvectors with the corresponding eigenvaluasdx. Let M be a scalar
such thatv; 77 < v;, such a number always exists. Therefene = U(v) > U(1;) =
aU(u) = fauor, v > (2) sh-u. By applying the relation above times we obtain

NI e M Tru ifa<l
v> <> _

LI
M M) fa=1

x>

(6.2)

K

x>

, iImplying A > k. Selecting another constant such thatv; 3 < u; one can reverse the
roles ofu andwv implying A < x, this can be true fotx < 1 only if K = A. Note fora < 1
it also implies that the eigenvectois= v. Equality of the eigenvectors is not obvious for

«a = 1 this is established in lemma 26. O

141



Definition 2. An increasing functiorf'(z) — y, x,y € R™ is irreducible if there can
iy L 1 Y1 Fy
be no permuted partition of its input = andy = for F =
T2 Y2 F
such thate; = y; andxzg > y2 which hasF (z) < Fi(y).
Note that the above definition is a generalization of irreducibility of matrices to
functions. With the above definition in place we can now lay down the conditom f

unigue eigenvector in the following theorem.

Lemma 26. Given a positive increasing homogeneous functionz — y x,y € RV
that is irreducible, the corresponding normalized function  — y x,y € ANV~! has

a unique eigenvector.

Proof. Let uw andv be two different eigenvectors @f with eigenvalueX. Let M be a

positive scalar such that < Muwu;, we permute and partition the functiéhand its input

v u
so thatw = ' | andu = ' | andv; =@ Mu, andvs < Mus,. Now consider
V2 u2
v
a perturbatiorv = ! such thatia = Mwug, i.e. v = Mu. We havelU (v) = v,
(2

sinceU is irreducible we havé/;(9) >® U (v). LHS equalslU;(Mu) = AMwu,; and
RHS equald/; (v) = \v;. Equationga) and(b) contradict hencé = v. O

Theorem 13. If an increasing functio : & — y x,y € R, " is irreducible and posi-
tively homogeneous of order= 1 or is positively super homogeneous of degree of homo-

geneitya < 1 then eigenvector % is unique.

Proof. follows from lemmas 25, 26. O

Corollary 6. Given a graphG(V, £) the L,, ranks defined by equation 6.1 has a unique

fixed point.

Proof. Since the update equations are a linear composition of norms they are positice

geneous with degree 1 (or less than one for the non matching case pf and monotonic
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increasing. Since every vertex contributes positively to the rank ofyetbier vertex the

function is irreducible, hence by the above theorems the proof follows. Ol

Note that normalization is not necessary for convergence, but is hépfoumer-

ical stability. We show that normalization preserves the eigenvector gyoper

Lemma 27. Given a positive homogeneous functibn: « — y x,y € R.", the

functionﬁ is positive and homogeneous with degree 0 and maps to the range,

keeping normalized eigenvectors invariant.

Proof. U(cv) = ¢*U(v) hencel (cv) = ||ccaa15]((vv))||1 = cac‘(rg((v"))lh = U(v). Now letu be a
eigenvector ot/, i.e. U(u) = \u. Thenf](ﬁ) =U(u) = ﬁ = ﬁ O

Note however, it is not enough for the updates to have a unique fixed poaglso
requires that the fixed point be stable, i.e. if perturbed from the fixed palne the updates
will converge back to the fixed point. The stability issues are investigated ifolibe/ing
theorem, together with the question does any initialization followed by iteratineaping
reach the fixed point.

We draw intuition from the Perron-Frobenius theorem which explores dhees
questions for positive matrices which are nothing but linear functioneduieibility of a
matrix ensures that a change in any component of the vector propagalletoponents of
the vector when repeatedly multiplied by the matrix. One also requires foeogence that
the weighted graph of the matrix obtained by interpreting it as a adjacency meatfige of
isolated cycles. In the following part of the article we will see that irreducibibtiowed
by acyclicity (aperiodicity) is sufficient for convergence to a fixed paiitialized by any
positive vector. We also make the following note that if there exists a iteratiatbhau
after initialization such that the iterate vector is strictly greater than the initialization it
cannot have cycles. This inequality condition is called “primitivity” and is egjleint to
aperiodicity. We show that if the function is primitive, iterations with any semitpes

vector will converge to a fixed point.
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Definition 3. A functionU is defined to be primitive at if V>, 3t s.t. Ul(y) >

Ut(x). If the function is primitive everywhere in its domain it is globally primitive

Theorem 14. A positive increasing homogeneous function of degfek and a positive
increasing super homogeneous function of degteé, that is irreducible and globally
primitive has a unique fixed point to which iterations from any semi-positive indi#diz

converges.

Proof. Let M (x,y) = Max; % andm(x,y) = Min, % and letr(x,y) = % Note
thatfora > 0,3 > 07(az, By) = r(z,y). Moreover, sinc/lax; ;* Max; ‘Z—j > Maxy, -
and by similar argumend/in; %Minj Z—j < Ming ﬁ—: we have a inequality(x,y) +
r(y,z) > r(x, z).

Let us use the shorthang to denotel/!x, and consider any vectogsandx such
thaty < cx note that there is no loss of generality involved as sucban always be found.
Because of primitivity there existstasuch that the afteriterations the inequality is strict,
i.e. y' < cx'. HenceM (z',y') < M(z,y) andm(z',y') < m(z,y). Thus we have
r(z!,y') < r(x,y) for the specific value of.

Consider the sequence of numbefs(" 1t z"t), clearly it is a reducing sequence
lower bounded by 1 and hence has a limit. Because of triangle inequlitit converges

to a fixed point. From irreducibility and monotonicity we have uniqueness. O

The proposition above indicates that the iterations are stable. Irrespettany
perturbation to a corrupted semi-positive vector, a sequence of iteratmrd converge.

We explore the special case that the ingés taken toxo. The corresponding norm
is then equivalent to choosing the maximum of all the normalized ranks of theriices.
This is both computationally favorable and resistant to Sybil like attacks.kBrgaway
from the Concavo-Convex ranking framework, the above strategy enggheralized so
that one takes a generalized mean of some fixedktab the incoming degree divided

ranks. Although we have shown that the propertied pfanks are nice fop > 1, when

2The important thing to note is that the second inequality is strict.
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p is taken to infinity some the underlying assumptions break down such as tbertyro
of irreducibility. This can however be easily fixed but we omit the details dugpace

constraints.

6.3 Propagation of Trust

In this section we show how it is theoretically possible to incorporate spamamdpam
labels on vertices if they are available. We mention that even without the sselofabels
the L,,, ranks offer significant spam-resistance over Pagerank and neat taf ffrustrank,
equal split Demotedrank Wu et al. (2006) and AntiTrustrank KrishnaRaj (2006).

Consider we have a small hand-labelled set of trustworthy vertigeand spam
pagesy_, the remaining pages are denoted Wy We take the position that pages that
are linked directly by the sét, or through intermediate vertices should be rewarded by a
value of trust decreasing with distance fraim. Similarly vertices that link ta/_ directly
or indirectly are to be punished.

A point worth paying attention to is that trust and distrust are made to prtgaga
oppositedirections. A page is rewarded based on what other pages think of ithficeigh
endorsement by nodes that it cannot control) on the other hand it isheahised on the
links it has control over. It would be unfortunate for a page to be pesthliecause of an
untrustworthy page that points to it as an act of malice. This is the appro#otvéd in
Wu et al. (2006), Krishnan and Raj (2006).

The reward and punishments are allocated based on the ConcavoxCGanking
function, with an exponential decay factor depending on the numberpsf the vertex is
away from the labeled sets. Let be a vector that has 1s in place of the rank¥ pfand0
otherwise, i.esy (i) = 1(i € V4) and similarlys_ be a vector that has 1s in place of the
ranks of)V_ and0 otherwise. Considering a decay parameté¢ior simplicity we take it to
be the same for both directions) the reward of the set of vertices oneistapak away is

U (s, ), the reward of those that are one hop distance from these poimté/id/ (s )),
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generalizing td: hops which isy*U* (s, ). Here we abuse the notatiéff' (s ) to mean k

composition of the functiof/. The total reward is provided by the function

ry= Y U(sy) (6.3)
{0<k}

Lemma 28. Fory < A Eig (Ury —yU(ry)) = s4.

Proof. Apply the operatofl — U] on both sides of equation 6.3 to obtajl:— yU]r =
S Y —AUU*(s4) or

r—qU(r) =Y WU sy) =AU (s4)] = s (6.4)
k

The last line follows from the assumption that thi¢h term in the tail of the summation

converges to\*2 wherez is the nonlinear eigenvector 6f O

Similarly considering’" to be the function applied to the outlinks instead of the

inlinks, one obtaing_ = 37, ~eut*(s).
Lemma 29. For vy < A Eig (Ur_ —qUT(r_)) = s_.

The difference in the computed, andr_ will indicate the level of trustworthi-
ness.These can be combined in different ways. We ch%—’)ﬁgr to be the rank value
with which the pages are evaluated. We need to provide a computationad fecipom-

putingr, andr_. For these we use the equations
rith = WU(ri) +syand P =AU (rt ) + 5 (6.5)

The rank of a vertex is scaled by the trust and distrust ranks-as_—~f—r. For
the purpose of the chapter, trust and distrust will always be used tomdhtaranks as a
linear scaling as indicated. The ranks andr_ are the ranks the page receives from the

vertices inV; and)_, thus the form of scaling has an implicit assumption that the make
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up of the remaining rank of a page received from other vertices alse thavsame spam

Versus non-spam ratio.

6.4 Experiments

We conducted experimental evaluation of the proposed ranking scheangudaticly avail-
able, real-world and collaboratively labeled datasktinvolves a0.4 million vertex subset
of the webgraph containing 13 million edges. This was the largest corpbeated for the
web spam challenge-2007 web (2007) called “Large Dataset, track II”

Before we present results on the web-graph data set, we investigatieitte of
the proposed algorithms on a few toy graphs where unlike the former widesatify, study

and isolate the effects.

6.4.1 Results on Toy Graphs

These results are included solely to benefit our understanding of dwsttfiat the proposed
updates induce. More complete examination of spam-resistance of thespdopethod is

demonstrated on a portion of the real web-graph, right after thesksresuoy graphs.

Ly Ly Lo

0.183| 0.210| 0.211
0.183| 0.165| 0.160
0.138| 0.108
0.126| 0.122| 0.130
0.126 | 0.122| 0.130
0.126 | 0.122| 0.130
0.126 | 0.122| 0.130

~| o) o] B w| | k| =
o

o

H

[}

©

4
5\ :és
< .
6 75
o — (&
7
Figure 6.2: Example Graph - |, vertic¢4,2,3} are connected t¢4,5,6,7 by edges, not
shown for clarity. Demonstrates property 1f3ffor L, and Pagerank. Details in text.

Consider the graph depicted in figure 6.2, we have not drawn the edgedhe
vertices{1,2,3} to the vertices{4,5,6,7 to avoid clutter. Because the verticg$,5,6,7

have identical inlinks their ranks are identical. Vertex 2 receives 3 linkh emrth 1/2,

3We thank the organizers of the webspam challenge for making suchaltiféi obtain data available

147



whereas vertex 1 receives links worth 1 and 1/2 respectively. Sindettidlow received
by 1 and 2 are the same, they are ranked equally by the Pagerank algadritiomtler to
reduce spam susceptibility, we desired that pages that receive multiplei&ditydinks be
ranked lower than those that receive links from a few high quality payes if their total
Pagerank flow is the same. This property is exhibited bythand L, rankings as shown.

In figure 6.3 we investigate a link-farm spam scenario. In order to spaie 6, one has

Na L Lo Lo

1| 2.082e-1 | 2.074e- | 3.850e-1
01

2 | 1.645e-1| 1.470e- | 2.371e-1
01

3 | 6.092e-2 | 7.171e- | 8.333e-2
02

4 | 6.092e-2 | 7.171e- | 8.333e-2
02

5| 6.092e-2 | 7.171e- | 8.333e-2
02

2.132e-1 | 1.825e-07 6.030e-2

(1) (3) (6)
7.708e-2 | 8.260e- | 2.248e-2

02

8 | 7.708e-2 | 8.260e- | 2.248e-2
02

9 | 7.708e-2 | 8.260e- | 2.248e-2
02

Figure 6.3: Example Graph - IIl. The dark nodes are taken to be legitimadieegwhereas
node 6 is being spammed by nodés8,9} that are otherwise disconnected from the graph.
Vertex 1 connects out to all dark nodes, as does vertex 6 to all whitesnddieo shown in
this figure are the (spammed) Pagerank ApdRank scores, together with the ranks of the
node 6.

created vertice$7,8,9} to point towards it. Even without links from the tightly connected
larger legitimate web like network of black nodes, the Pagerank of 6 is thestighereby
showecasing its vulnerability. The significance of this example is that the apbgtructures
of the form {6, 7,8} are commonly used to spam the Pagerank. Th&ank algorithms
can be seen to be more resistant to this. It is not unspammable but wouldrtkke of

magnitude more pages to do so. Spam like pages are demoted dependingalnelodp.
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The best result in terms of quality is offered by, Rank, in which case the spammed page

gets ranked below all the legitimate pages.

6.4.2 Results on Real Web-Graph

In this section we describe our experiments dndamillion vertex subset of the webgraph
containing 13 million edges that was human labeled and made publicly availatiteefor
Spam-challenge-2007. This data set was the largest corpora collecttd fweb spam
challenge-2007 web (2007) called “Large Dataset, track II". Ab@%6&f the web pages
of this corpus are non-spam whereas the remaining are labelled as sfidabefs were
generated as a collaborative effort involving several human evatuator

We evaluatd.,,, rank on a number of metrics and compare it with other benchmarks,
namely, normalized in-degree, Pagerank, Trustrank, equally split Ddnaote (equiva-
lently to AntiTrustrank) and alsd,,. Note that in-degree is defenseless against linkspam
attacks but is included as a benchmark, because it has been obseceectlate well Na-
jork et al. (2007) with quality of a page (perhaps because spammerstdarget it any
more). Human perceived quality of the rankings induced on this data settche evalu-
ated because of its anonymized nature. The corpus consists of theragjacatrix of the
graph as well as a tf-idf representation of its contents. Both the identity gfabes as
well as that of the features are anonymized in order to prevent weh-clpallenge partici-
pants from using extraneous information from the web for the task. Nehkadentity of
the page nor the contents of the page can be retrieved. A side effettidf i8 that user
studies are not possible. Though (anonymized) tf-idf features waitahbie, we focussed
on spam resistance that can be extracted from the link structure alonall RRat we are
not competing with content feature based spam classifiers. While theyasyaatrain,
spammers are also free to change the content at will to counter it. Topdipgiperties of
the webgraph, on the other hand is relatively harder to manipulate.

Due to lack of an agreed upon gold standard ranks of the vertices atoalwf a
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ranking function is contentious and certain assumptions have to be madevndiailcon-
stitutes a good rank. There will always be disagreement on the adegundacpmpleteness

of any such characterization, but more the number of criteria accordingith\a vertex is
ranked higher above the rest, more confidence one would have iregéasdgoodness. We
mention what our assumptions are and what we consider to be a “goddanahhow we
measure the multi-criteria quality of a ranking. We consider both the ordinklas well

as the rank score values for evaluation, because both are important.ti8nogal prob-
ability mass or rank-score assigned by our ranking algorithm equals daléygmeasure
that we look at is how much of the total “probability mass” ddgsand L,, rank assign

to the spam pages. This mass is compared with the probability mass assigresgebgrik

(or equivalentlyL; rank), normalized in-degree and AntiTrustrank. The lower this mass
for a scheme, the better it is. This measure is more complete than counting therrafmb
spam pages occurring in a top-K ranked list for some fixed low value .ofA low total
probability mass indicates that on average non-spam pages are ragked fihere is one
situation where this measure can fail, that is if the ranking scheme allocated alirafs

its mass to some good site and near negligible to all the rest. To ensure that tbis is n
happening in practice, we include another ordinal measure: curvee olthber of spam
pages encountered as one traverses down the rank order, stamingtfy the total number

of pagesN. Ideally all spam pages should come last. The closer this curve is to the X axis
the better is the ranking function.

It is not enough for a ranking scheme to just assign low mass to spam. pHEyes
ranks induced on the non-spam pages has to be of high quality, and thiatglifferen-
tiates a ranking scheme from a classifier. Since we do not have a staad&rdrdering,
we computed rank distance measures between our parametric family ofaadisther
baseline algorithms, such as Pagerank, (Anti)Trustrank and in-degmethe non-spam
pages. The rank distance measures that is used is Spearman’s fa&iatiskics Diaconis

and Graham (1977). IR;() and Ry() are two rankings induced on a s&t i.e. R; and
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R take integer values ih, | X[, then the Spearman’s foot rule distance betwBemand Ry

is defined asspearman(Rq, R2) = Y, |Ri(z) — Ra(x)|. We use the normalized ver-

2 x |B1(z)—Ra(x)
| X2

speeds of convergence.

sion L Apart from the quality measures described above we also looked at

The organizers of the challenge had identified a 10% fraction of the vettickee
used for training and cross-validation, the remaining for testing. Our igigoiis not a
learning algorithm and does not have a training phase, and our resailtsrahe unsu-
pervised scenarioHowever we do compare it with Trustrank Gyongyi et al. (2004), and
AntiTrustrank equivalents Wu et al. (2006), Krishnan and Raj (20@@xh are algorithms
that take into account spam and non-spam labels on a training set oégektie thus report
a second group of experiments where the training vertices were usesttad aet for prop-
agating trust and distrust values to affect the ranking much like Trustfokthis labeled
case, we used the small label set identified by the organizers to seedffagation of
trust and distrust as in equations (6.5). Here the baseline is strongesr @mdi) TrustRank
algorithm. (Anti)Trustrank is that analogue of Pagerank that uses theflowst/distrust.

Before discussing the results obtained by the propagation of trust, wigl o
to draw the reader’s attention towards an important point regarding theratifity of
Trustrank that has also been alluded to in the introductory section. Tnksvaluates the
trust and untrustworthiness of a page from its distance from labelledd"gared “spam”
pages. A page to which a “good” page points, accrues trust, wherngageato which a
spam page points accrues distrust. The latter is problematic because it allmage to
maliciously point to any page and demote its rank. This can easily be fixed tifigtis
is propagated in reverse that is, a page accrues distrust if the evahaggedpoints to a
spam page. The trust model with this reversed direction of flow of disigsustlled the
Opp(osite) Trustrank model in the experiments. On the data set it fairs duaheworse
than the original Trustrank flow of distrust, but that is because on thgrapb of the web

captured by the data set, the spammers have not exploited this loophole. riditenpace

151



of Trustrank should hence be taken with due consideration, becausentisable on the
real internet.

For the propagation of trust model, we conducted separate experimetiie favo
directions of flow of distrust. The TrustRank formulation takes the directidmetsame
as that of the graph. We observed that this direction has a better discriraipatiperty
to separate spam and non-spam. However this direction of flow can beitedpwith
malicious intent and should not be used in practice.

Here we investigate the behavior bf, ranks and establish it as a strong baseline
bettered subsequently by tle, , ranks both in quality and speed of convergence. The
benefit of L, over Pagerank is moderate and is discussed only as an examplg, jtianks
that perform strikingly better, both in terms of spam resistance and speetwergence.
Hence we propose their use.

The probability mass assigned to the spam pages when rufpirgnk algorithm
on the webspam-challenge graph is shown in figure 6.4 along with the htaizamve
indicating the performance of ranking by-degreethat achieves a spam mass26f28%.
Note that indegree ranking on this data set is worse than Pagerank anery isuscepti-
ble to spam attacks. An important observation is the low spam discriminatipe gpycof
Pagerank. The spam mass of 0.2067 for Pagerank is of the same bntiegrdtude as the
amount of spam in the entire data set (0.20). With increasing valugghef spam mass
reduces by 40%. Plotted together with thg rank masses are two other curves, one for
L, trust rank which is the.,, generalization of Trustrank as explained in section 6.3, the
other for the same except that distrust is made to flow in the opposite diretfjdim.Rank
corresponds to propagation in the same direction as the edges whigréxsp Tr.Rank
has opposite direction of flow of distrust. Though same direction propagativust per-
forms better for most values, under this scheme a page is open to malicioks &ttec a
untrustworthy page as mentioned before, and is hence un-usable ticgrac

Pairwise normalized Spearman footrule distances betwedh, ttankings are shown
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Figure 6.4:Top: Probability mass assigned Hy, ranks and in-degree rank on the spam pages.
Bottom: Spearman footrule distance between different rankingdespam pages.

in figure 6.4 (to the right) together with comparison with the order induced bgfaak on
non-spam vertices. One can observe that ranks that are clpsaréalso close in Spear-
man’s foot rule distance, however one can see thatanks are close to the Pagerak (
rank order. This confirms that,, ranking largely agrees on the non-spam vertices, the
agreement is higher with Trustrank than with Pagerank.

Rates of convergence at different valuep @ire shown in figure 6.5, the rate settles
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Figure 6.5: Rates of convergence of absolute error between consedamages ofL,, algorithm
with uniform initialization. Compare this baseline withetimproved convergence rates by,
Figure 6.8

into a constant exponential decay after an initial unstable domain.Lf-oank the basic
fixed point iterations are too slow (unlike,, to be described next) and a constant linear
damping was added for speed up. Even with the linear damping, coneergequired
several hundreds of iterations (unlike Pagerank which convergeer & iterations). This
should be compared with the superlative convergence rates obtainec fbythipdates
shown in figure 6.8.

We propose the use dif,, algorithm. Recall thay > p leads to convergent and
unique ranks, experiments were conducted in this setting. It is obseraethé¢hvalue of;
has a very significant role to play on rank quality and the convergeteeThe number of
iterations required, drops monotonically from several hundreds otiesato few tens of
iterations as shown in figure 6.6 making the scheme a practical propositiereffBt ofq
on spam reduction is such that there is a best valueadfwhich the spam reduction is the
highest, it was empirically observed to lie closeptas shown in figure 6.6, bottom. The
value ofq thus plays a crucial role to obtain a fast algorithm with good unsupervjsaed s

fighting capabilities.
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We investigate in detail the behavior 6f, ; ranks at! = 1.2, that was found to
have a good trade off between speed and spam resistance, and)walyias ofp. The
particular value of the fraction was chosen from the preliminary experinséioisn in 6.6.
The probability mass assigned by, , ranks and Trust and Opp.Tru&t, , ranks on the
spam pages are shown in figure 6.7. Note that how the unlabg)lgdank atp = 4
matches the performance bf, , Opp.Trustranks gt = 1. Furthermore Opp.Trust model
performs equally well as the conventional Trust model. Egranks Opp.Trust models
performed worse.

The convergence behavior is shown in figure 6.8, all the valugpsbbw very rapid
exponential rate of convergence and arodfidterations is sufficient, Pagerank too takes
about50 iterations to converge. Pairwise normalized Spearman footrule distaneeseine
the L, , rankings are shown in figure 6.7 together with the spearman footrule distdnc
the ranks induced by in degrees, rega# 1 corresponds to Trustrank. From the graph one
can observe that the, , ranks are close to those induced by Trustrank on non-spam pages
and very close to each other. One can also observe that for valpes dfand higher, the
rank order is almost the same. The ranksfoe 2 is closer to Trustrank than those for
p = 4 and higher. On the other hand the ranks induced by the in-degreesaistant in
normalized Spearman footrule distance sense fronitherankings. In fact we were able
to verify that most of the pages ranked high by the in-degree were spgaspsee figure
6.10.

The best results were obtained for the family where the trustworthinessamnsbt-
worthiness were propagated linearly whereas the basic ranklysgedonlinearity. This
setup is named the Lif,, variant. On retrospect its performance is easy to explain. The
hand labels of (spam and non-spam) are of high quality and are notediggespam. Thus
there is no reason to use the nonlinear generalization to counter “labeli. Sphe best
spam resistance performances are shown below. The figure 6.9 St@amount of prob-

ability mass assigned by the Lib; , variant. The horizontal lines indicate the probability
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mass assigned by Trustrank and AntiTrustrank. One can see thdt,}ioenvincingly
outperforms the best performance seen so far. Note that the Y-axissedbed for better
resolution and the gap in the performances is higher than it looks. The BgL® shows the
precision recall curves for Pagerank and IZip; variant with reversed flow of distrust. The
plots for same direction of flow of trust have the same nature as these @mal lb@omitted
to save space. On the Y axis it plots the number of spam pages encounitrel@écreas-
ing Lin-L, , rank. Nearer the curve is to the X axis the better the algorithm and a diagonal
line indicates that spam and non-spam occur with equal frequencyn #m® plot corre-
sponding to Pagerank and its deviation from the diagonal it is possible tahaitéhough
Pagerank allocates about the same total probability mass to spam as the rasatage
of spam vertices, the spam pages occur towards lower ranked pldgesver Pagerank
performance is overwhelmingly outperformed by the Lip; variants. The same plot is
shown drawn to log-scale to the right for better resolution becausé héamily curves
are almost indistinguishable from the X axis. From the log-scale plot oneluserve that
for p = 4 and higher the curves almost overlgp= 2 has less spam initially but crosses
the other set of curves. Thus a strategy that chooses between thessestgadepending on
the rank may be effective. The cumulated spam curves are compared &ithrtiulated
curve induced by rankings based on in-degree, see figure 6.10c@nebserve that the
ranks based on in-degree have the worst characteristic among alhttiags considered,
faring significantly worse than Pagerank, which the Lip; family beats convincingly.
Figure 6.9 establishes the fact that it is better to use the J,iranks over Trustrank
when labels are available. The main difference between the,Lirank and Trustrank is
that the former uses non-linear updates for the propagation of the cank whereas the
latter uses a linear propagation. The flow of trust and distrust are leoweear for both.
Now an important question arises regarding the number of labeled exarepglgsed by
the two methods in order to give equivalent spam resistance performBmsas explored

next.
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We include a plot that compares the spam detection properties of the pdbijams-
ily and TrustRank at different percentage of labels available. For thmpadson two sim-
ple threshold based spam classifier were learnt using th&rust rank and the TrustRank
values as their corresponding single feature. The classification ates are shown for
different labelled set sizes and the optimal threshold, see figure 6.0in fhis one can
observe that Lifi,, can provide superlative spam resistance at a fraction of the number of

labels required by Trustrank.

6.5 Conclusion

We propose a large family of link-analytic ranking functions based coreidas of spam
resistance, convergence and initialization independence. It is rentatkab convergence
guarantees can be carried over to the nonlinear ranking functionzsefes of a parametric
subfamily that includes Pagerank and Norm() as a special case wadstudietail, both

theoretically and experimentally. Appropriate choice of the rafi@ gives excellent spam

resistance on the internet graph when used with and without labels.
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Figure 6.6: Top: Iterations required for convergence (absolute eretwwben consecutive iterates
less than 1e-6) of,, , algorithm with uniform initialization withp held constant and increasigg
Bottom: Probability mass assigned to spam for the same
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Algorithm 0.625% | 1.25% | 2.5% 5% 10%
L, TrustRank| 7.548 | 5.646 | 4.067 | 3.167 | 2.712
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Figure 6.11:Spam classifier error rates for a single feature classifigiffarent number of training
vertices.
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Chapter 7

Conclusion

In this dissertation we addressed different aspects of learning to ramitlinsupervised
and unsupervised settings. Monotonic transformations form a natarakivork to pose
ranking problems in because they preserve order. Modeling, manipuaithgxploiting
monotonic transformations played a key role in all of the aspects of the pnelidevered
in this dissertation. The first part of the dissertation was on building toolsattoat effi-
cient optimization of a loss function over this class of functions, without impasiydinite
dimensional parameterization on them. This was greatly facilitated by the intimateecon
tion between monotonicity, convexity and properties of minimizers of Bregmenginces
constrained to lie on the monotone cone.

The ability to efficiently optimize a loss function over the class of monotonic trans-
formations was extended to Bregman divergence based loss functiohate wradient
matches the monotonic transform. This guaranteed that the cost funcdaraihed convex
jointly in the space of functions and parameters ensuring global minimum. [taksctly
enabled learning the parameters of a canonical generalized linear mitid@nanknown
link function, leading to substantial generality at the cost of worsening theciimmglexity
of an iteration by only a logarithmic factor. The framework presented doesequire one

to pick one member from the infinite family of canaonical generalized modelse sive
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approach simultaneously optimizes over the choice of the family and the paramictiee
family.

A large family of link-analytic, fixed point based ranking functions weregased
based on considerations of spam resistance, convergence and initialindependence.
Here, again monotonicity and convexity played a key role. Itis naturalgalthat item A
outrank item B if the recommendations/inlinks of A majorizes the recommendationk#nlin
of B. This together with the notion that the order of recommendations/inlinkisratevant
to the rank-score, determines that the ranking function is Schur coviexised concavity
to model the phenomenon of diminishing returns as more and more recommesaagon
received. Pagerank was shown to be reltaively susceptible to sparaelssitstrict Schur
convexity and concavity. We showed that if we chose the ranking funtdidrave Schur
convexity, concavity and in addition be homogeneous of a certain degseenly is the
ranks determined by the fixed point unique but also that they can beecasing fixed
point updates using arbitrary initialization.

It was also shown that pagerank, a successful unsuperviseidgankthod, can be
looked upon as optimizing the consensus among several local recommaesdatis a set
of items. This optimization view point then naturally enabled the formulation to bedate
to the setting where there is fluctuation and uncertainty in the local recommersicgioce
in the pagerank setting a recommendation map directly to edges in a graphntioafiton

easily captures multiple and changing labels on the edges of the graph.
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Appendix A

Proofs from Chapter 3

Notation: Follows notation of Chapter 3.

To prove Theorem 1 we will need the following lemma

Lemma 30. Rockafellar (1996) Let the functiop(-) be continuously differentiable and
convex. Ifs||Vo(x) — Vo(y)|| < ||z — yl|| then

a(l —a)

_ 2
Yz —y|

plax + (1 —a)y) > ad(x) + (1 — a)p(y) —

Theorem 1

Proof. Let us introduce the abbreviations:
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To show joint convexity of the Fenchel Young gap, we have to show

d(x(a)) + ¥ (y(a)) — (z(a), y(a)) < ®(a) + ¥(a) — a (1, y;) — (1 — a) (@2,Y,)
VY x1, e € dom o, yq,ys € domap.

or equivalently, show:

B
¢(x(a)) + P(y(@)) < (a) + ¥(a) + ol —a) (21 - 22,Y1 — Ya)

Va1, x9 € dom o, y,,y, € dome). (A.1)

Assume with no loss in generality that-) and(-) are strongly convex with modulus of
strong convexity1 + s1), (1 — s2) with s1 > —1, s2 < 1, respectively.

From (1 + s1)strong convexity of) we have:

(Vo(z) = Vo(y), @ —y) > (1 +s1)|[z -y,
or, ||[Vé(x) — Vo(y)ll = (1 + s1)||z -y (A.2)

the second inequality follows from Cauchy Schwarz inequality. Similarly f(ors s2)

strong convexity of) = ¢* we have

(Vo) - <>,u v) > (1 s2)|[u - vl

or, (V)™ (u) ~ (V) ' (v),u ) = (1 - s2)|[u o]
or, (z —y, Vo(@) — Vo(y)) > (1 - s2)|[Vo(@) - Vo) > (AI)
(1= 2)[[V(=) - Vo(w)l| < |l - ] (A4)

In (A.3) we have used = V¢(x),v = Vo(y). From (A.4) and (A.2) we obtain

(14 s1)(1—s2) <1 (A5)
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Now, simplifying expression (A.1) using our strong convexity assumptioispmsitivity

of a(1 — «), we reduce (A.1) to

(14 sDllzs = @2|* + (1 = s2)|ly; — ol > —2B <0

O, [[(z1 — @2) = (y1 — y2)|I* + slllw1 — @2f|* = s2l|(y, — w2)|* < 0.

Letp = ¢; — &, andq = y; — y,. By choosing(1 + s)p = q we obtainsl >
s2+s1s2, or equivalently(1 —s2)(1+s1) > 1. From (A.5) we havél+s1)(1—s2) = 1.

From (A.4) and Lemma 30 we obtain

1

ma(l —a)llz —yH2

plax+ (1 —a)y) > ap(x) + (1 — a)d(y) —

but by assumption (see (2.1))

1+ sl

ol - )z -yl

Plax + (1 —a)y) < ad(x) + (1 — a)p(y) —

i 1+sl1
As we have already establishéd+ s1)(1 — s2) = 1, we have fork = 4%

ka(l = a)llz — yl|* = ag(z) + (1 — a)é(y) — ¢plaz + (1 - a)y). (A.6)

Taking derivative w.r.tv on both sides of (A.6) and setting o = 0 it follows that¢(z) =
k||x||? for somek > 0 (ignoring affine terns.) The cas@ = 1 follows using continuity.
O

A.1 Optimality of Means

Theorem 15. (Banerjee et al., 2005) Let be a distribution over: € dom ¢ andpu = IE [x] then

the expected divergence abauts

E_[Do(a|s)] = E_[Do(e|[n)] + Do(u]|5). (A7)

T~TT
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From non-negativity of Bregman divergence it follows that:

Corollary 7. (Banerjee et al., 2005)E [z] = Argmin [E [D¢ (wHy)} .

s yEdom ¢ T~

Combining identity (2.4) and Corollary (7) we obtain

Corollary 8. (Banerjee et al., 2005) Generalized meat(z) = (V) '¢( E [Vo(x)])

= Argmin E [DMyHm)] .
yedom ¢ T~
Corollary 9. If random variablex takes values ik’ = X; U X5 with X; N X5 = () then

s 5 [0 > i1 [0 )] v [ )

168



Appendix B

Proofs from Chapter 4

Notation: Follows notation of Chapter 4.

B.1 Large Deviation Bound for Exponential Family Densities

with Uniformly Concave Entropy

Let the random variablg taking values iy C R™ have the exponential family density
P(y) = el¥0)-97(0)

The functiong*(-) : ©® — R = [,,e®? is the log partition function and its
Legendre conjugate

¢(p) = sup (u,0) — ¢*(0)
0c6

is its negative entropy. It is assumed thét) is uniformly convex, i.e.

Theorem 16. If random variabley has exponential family densig?-?—¢"(9) with nega-

tive entropy¢(u) uniformly convex with respect to norfn || with modulusi(-) then for
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any bounded convex sBt
PlygB)<e ~Pves 5(ly—EY]]])

Proof. Consider any bounded, convex &etith the support function

o(s) =sup (s,y).

yeB
1 fyekB
Now the indicator functiorlz(y) = of the setB can be bounded as
0 otherwise

1 . 1B(y) S e(s,y>70'(s)'
Therefore

Ply¢ B)<E [6<s,y>—0(s)} ) [e<s,y>} o 0(5) _ o8 (0+5)—0"(8)—o(s)

[0 (0+5)—supy s (s,y)] —¢*(6)

Now we tighten the exponent with respectstas

¢*(0 + 5.) — sup (s., y>] — ¢*(0) = infsup [¢*(8 + 5) — (s,9)] — ¢*(6)
yeB 5 yeB

= supinf [¢*(6 + 5) — (s, y)] — ¢"(0)
yeB S

=sup (y,0) — o¢(y) — ¢*(0)
yeB

> sup (y,0) — [o(y') + (y — ¥, Vo) + 5(lly — ')

—¢"(0)

= —supd(|ly — (Vo) (9)]) = —sups(|ly — E[Y]]])
yeB yeB
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Appendix C

Proofs from Chapter 5

Notation: Follows notation of Chapter 5.

C.1 Proofs from Section 5.2.2

Proof of Lemma 18:

Proof. By Pinsker’s inequality we haviL (p||q) > 2|p — q||?.

L(pllq) = Zpllogi “)Z ——1
_E:m 2@%+%+§:

) Lip— gz <© Lip — g2
€ €

Inequality (a) follows fromx — 1 > log x and inequalityb follows from min; p; > € and

min; ¢; > €. Combining upper and lower bounds we obtai Z”Zg <2 O
Proof of Lemma 19:

Proof. Itis required that”(p*, p*) < F(p*, p) + 5°KL (p*| p) , using equation (5.8) we
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obtain

F(p*pp"))+KL (p.(p*)|p*) < F(p* *p*))+KL(p*(p*)llb)+1_ﬁﬁKL(p*\ﬁ)-

Re-arranging, we obtain that it is required that

1-p = . -
TKL (p*lp) = KL (p.(p")|p*) — KL (p.(p")llP)
- *
L (pllp*) + <p*i — i, log ;%> , or itis required that
- B >(a> KL (p[lp*) N |ps — Pll2 || log(p*) —log(p)|[2
* || 7 * ~112
B KL (p*|p) lp* — pli3
2 5
<® = .
T € + e(1-19)

The first term in inequalit;(b) follows from lemma 18, the second term follows from the
condmonw > 125 and the Lipschitz constant éf of the vector valued function
log(-) on the setA.. To obtain inequalitya) we have used Cauchy-Schwarz, and lemma

18. U

C.2 Bregman-Affine Center

Since we will do a plugin replacement of KL divergence by a Bregmanrgirees in
all of our cost functions, an optimization problem that will be of interest tisufat of
minimizing over the second argument of a weighted sum of Bregman divezdeom a set

of points i.e.

min Z wlD¢ x;
y€int(dome)

s.t. Zwi >0. (C.1)

Our interest lies in the case where the summation of the weights are positedividual
weights need not be positive. The minimizer of the problem will be termed thgnire-

Affine center of the vectors;. To specify the solution of this problem we need to introduce
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the notion of Legendre conjugates of convex functions.
Apart from playing a role in specifying the solution of the optimization problem
(C.1) Legendre conjugates will find use in this paper to switch the orderedadrdguments

in a Bregman divergence by drawing upon the identity

D(a:Hy = Dy(Vé(y Hw (C.2)

The RHS of (C.2) is of special consequence because minimizing it is éejpiiva fitting
{Vo(y)i, xi}i1<i<n Dy a Generalized Linear Model (GLM) with the canonical link func-
tion V¢(-). For the case of KL divergence the corresponding GLM is a logistic ssipe
model.

With the necessary background in place, we state the following theoreardieg

Bregman-Affine centers

Theorem 17. Given a Bregman divergend% H defined by a convex functiaf(-) of
Legendre typer; € dom ¢ andw; € R s.t. the affine comblnatlo%% € dom(¢), the

problem

inf wD x;
deom(bZ ! d) !

Sty wi >0 (C.3)

has a minimizing sequence with a unique limit pajitt= Zz#m, whereas the problem

sup wD x;
deom(ﬁZ ‘ (b ’

St wi <0 (C.4)

’L,Ul:IBL

has a maximizing sequence with a unique limit pei , and the set of limit point(s)

y* of the optimizing sequence of problem

inf|or, sup] ZU’ZD¢ x;
y&dom ¢

St wi=0 (C.5)

i
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satisfies

Vo(y*) = ArgSup [or, Arglnf] vedom (o) <Z W; L5,V > (C.6)

Equation(C.6)is a linear program with the optimum value

6 dom(¢*) < szm'L) .

The solution set satisfies

S wixs .
i ifocd
Gaugeqom(¢) (ZZ wia:i) € dom ¢
lim &= if the limit exists
c—0 ¢

and lies on the boundary dom(¢).

Proof. Lets = >, w;, & = Zzw;wl and¢ = Zg“ﬁ(m’) We have

Z w1D¢ xTr;

= 5(6— 6(®)) + 56(7) — so(y) — s(z —y)Vo(y)
= s(6— (2)) + D4 (2] |y).

)+ 56(x) — sp()

Z w; D¢ (iEl
i

The first term of RHS is a constant, aﬁljs(ic‘ ’y) >0 andD¢(§:’ ‘y) =0 < y=2=.

If z is on the boundary, consider any sequehioe_,., y, = . Using propertyP2 we
obtainlim; o, Dy (:73‘ )yt) = 0, hencey, is a minimizing sequence. This proves (C.3) and
(C.4). The special case of this theorem Jor w; = 1 was proven by Banerjee et al. (2005)
as well as the proposition that Bregman divergences are the only cutiofo for which
the property is true.

For the remaining, consider= 0. In this particular case equation (C.8) is no longer
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valid because it requiresto be well defined (whereas it is not because of division by zero).

However, we have the following relation:

y) =56 - < (Z ww) , V¢<y>> :

Expression (C.6) follows from the observation that the first term is cohatal thalV ¢ (y) €

Z wiD¢, (CCZ
i

dom(¢*) by definition. This domain transformation is critical in converting a non-linear
problem into the linear programming problem (C.6).

In what follows we elaborate on the minimization part of the problem (C.5)usera
it applies directly to our consensus ranking problem, the maximization can rimtielda

similarly.

(C.9)
The solution of (C.9) is the point or a face@m ¢*(-) exposed by the directioh’, w;x;.
To obtain a solution (C.7) we use a sequence of unconstrained optimizatiolems.
The constrainb € dom(¢x) is replaced by an appropriate barrier functiB(w)
that enforces the constraint. By definition the barrier function has togatisf

lim B(v) =00 and lim VB(v) = oc.
v—bd(dom(¢px)) v—bd(dom(¢px*))

Both these properties are satisfied by the functié(), becausep(-) and consequently
(Rockafellar, 1996)*(-) is a Legendre function. This allows us to use it as a barrier
function that is naturally suited to the problem. As a result, we obtain the modiftpeeace

of optimization problems defined for each value-pthat satisfies the conditidim ¢; | 0:
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max <Z Wi x4, v> — " (v) = ¢ (ZZ::Z:BZ> . (C.10)

A point in the solution set can be computed as the limit of the solutions of the iseej0é

Legendre dual evaluations (C.10), and is given by

Ct

Following which, we obtain

'3 lim (9) 60" (o) = lim (9) "6 (Vo (Z%1) )

=l
ct—0 ct—0

The transformed optimization problem is solved for a reducing sequeng¢soth that the

solutionv* lies in the closurel dom ¢*. Thus, from the relation

Zi”jﬂiedom}

lim ¢; = sup {c
t—0o0
we obtain from the definition of gauge thtlitn ct = Gaugegom(g) (D_; WiTi) - O

Theorem (17) plays a critical role in the rest of the paper, thereforieriglly sum-
marize its significance which spans both the theoretical and the computatidreapafts
(C.3) and (C.4) have several important consequences. The first iéhaonlinear non-
convex cost function has not only a unique solution but also that camto@wted in a
simple closed form. Furthermore the solution has the simple form of an affibination
of the vectorse; combined according to the normalized weig%.

Even more strikingly, Bregman divergences are the only divergencagiich such

'0One would recognize that the extreme RHS of equation (C.10) is the limitsgafathe dilation function
of ¢(-). The interplay between the support function and the barrier functioridhotibe surprising because the
Legendre dual of the support function is the indicator function, whichigwdhse is approximated by the barrier
function. Positive multiples of the barrier function serves as a differeletiand a convergent approximation to
the indicator functiord(-| dom ¢*). The optimaly is obtained by inverting the domain transfoRip(y*) =
v™ to obtain the relation (C.7).
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an affine combination is the solution. The special case where; = 1 has been shown by
Banerjee et al. (2005), in this case the affine combination reduced to a siompex com-
bination. Since the affine combination subsumes convex combination, it fotloesstly
that Bregman divergences are the only class for which the optimum is ofb&titiee affine
center. The results (C.3) and (C.4) extend the results obtained by Baregé (2005) to
the cases , w; > 0 and)_, w; < 0. We however lose some universality compared to the
convex case because the previous result (Banerjee et al., 2005¥drwdohy set of vectors

x; in the domain of the Bregman divergence whereas whem; is higher or lower than,

the result applies to the subset such that the affine combinationtof the weightsﬁ

lie in the domain of the Bregman divergence.

The extra requirements at) has important practical consequences because it might
be difficult to guarantee that the vectarssatisfy the condition required, especially if the
vectorsx; are an intermediate quantity in a series of computations. However, if the eelativ
interior of the domain of(-) spans its entire affine hull, no such extra conditions need to
be checked.

For the purpose of this paper, the role played by part (C.5) of thedk@jiq crucial.
Although the closed form solutions of the problems (C.3) and (C.4) becogendeate at
>, w; = 0, part (C.5) shows that the optimization problem may still be well defined. It
turns out that the solution in this case can not only be defined but unlike {&B) and
(C.4), it requires no extra conditions af.

As a consequence of (C.5), first we are able to reduce the non-linglalem to
an equivalent linear program by domain transformation. This is no daulinportant
simplification but unless carried through further it would have entailed steeyputational
expenses. For example, if any algorithm requires a solution of the optimizatidrem
(C.5) in a repeated intermediate step, that would have required numeridsaltygsseveral
inner linear programming problems. The striking feature of (C.5) is that thétheg linear

programming problem affords a closed form solution.
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