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This dissertation addresses the task of learning to rank, both in the supervised and un-

supervised settings, by exploiting the interplay of convex functions, monotonic mappings

and their fixed points. In the supervised setting of learning to rank, one wishes to learn

from examples of correctly ordered items whereas in the unsupervised setting, one tries to

maximize some quantitatively defined characteristic of a “good” ranking.

A ranking method selects one permutation from among the combinatorially many

permutations defined on the items to rank. Accomplishing this optimally in the super-

vised setting, with minimal loss in generality, if any, is challenging. In this dissertation

this problem is addressed by optimizing, globally and efficiently, a statistically consistent

loss functional over the class of compositions of a linear function by an arbitrary, strictly
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monotonic, separable mapping with large margins. This capability also enables learning the

parameters of a generalized linear model with an unknown link function. Themethod can

handle infinite dimensional feature spaces if the corresponding kernel function is known.

In the unsupervised setting, a popular ranking approach is is link analysisover

a graph of recommendations, as exemplified by pagerank. This dissertationshows that

pagerank may be viewed as an instance of an unsupervised consensusoptimization prob-

lem. The dissertation then solves a more general problem of unsupervisedconsensus over

noisy, directed recommendation graphs that have uncertainty over the setof “out” edges

that emanate from a vertex. The proposed consensus rank is essentiallythe pagerank over

theexpectededge-set, where the expectation is computed over the distribution that achieves

the most agreeable consensus. This consensus is measured geometricallyby a suitable

Bregman divergence between the consensus rank and the ranks induced by item specific

distributions

Real world deployed ranking methods need to be resistant to spam, a particularly

sophisticated type of which is link-spam. A popular class of countermeasures “de-spam”

the corrupted webgraph by removing abusive pages identified by supervised learning. Since

exhaustive detection and neutralization is infeasible, there is a need for ranking functions

that can, on one hand, attenuate the effects of link-spam without supervision and on the

other hand, counter spam more aggressively when supervision is available. A family of

non-linear, iteratively defined monotonic functions is proposed that propagates “rank” and

“trust” scores through the webgraph. It relies on non-linearity, monotonicity and Schur-

convexity to provide the resistance against spam.
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Chapter 1

Introduction

Many applications, such as information retrieval and recommender systems,require items

to be ordered according to user preference. Usually, the “score” that defines thetransitive

relationof order among the items is unavailable and only the sorted order of training items

can be observed. This inaccessibility motivates the learning to rank (LETOR) problem. In

the supervised setting the learner has access to representative examplesof correctly ordered

items from which it is expected to minimize the number of ordering “mistakes”.

In general, a LETOR problem consists of a set of queriesQ = {q1, qi . . . q|Q|} and

a set of itemsV that are to be ranked in the context of the queries. For every queryqi,

there is a subsetVi ⊂ V whose elements have been ordered, based on their relevance. This

ordering is customarily expressed via a rank score vectorr̃i ∈ Rdi=|Vi| whose components

r̃ij correspond to the score of thejth items. In some cases the actual values ofr̃ij are of

no significance except for establishing an order over the setVi. In this case the problem

becomes that of predicting a permutation. In this dissertation we distinguish the learning

to rank task from a related one of learning binary pairwise relations wheretransitivity is

not required.What differentiates learning to rank (LETOR) from other prediction problems,

e.g. classification and regression is this combinatorial structure of the output space.

Existing LETOR techniques fall in the following 3 categories:

1



1. point-wise,

2. pair-wise

3. list-wise methods.

In point-wise methods, the higher ranked items are assigned higher target scores.

These methods then ignore the structure and solve a regression problem. Pair-wise meth-

ods capture some structure by posing the task as a classification problem over all pairs.

However, this results in a quadratic growth in the training set, often amelioratedby down-

sampling. However, pairwise-methods also suffer from insufficient structure: their predic-

tions need not obey transitivity. Anorder-reconciliation stepis necessary for predicting

ordered outputs which is NP hard Cohen et al. (1999), necessitating approximations and

heuristics. List-wise methods wrestle with the full combinatorial structure and thus have

to deal with formidable optimization problems. Typically, they have to cut corners using

sampling (Weston and Blitzer, 2012) and or approximations (Ailon and Mohri,2008) to

make the algorithms scale.

Many cost functions have been designed to evaluate rankings, e.g. (normalized)

discounted cumulative gain ((N)DCG), (Järvelin and Kek̈aläinen, 2000), expected recipro-

cal rank (ERR) (Chapelle et al., 2009), mean average precision (MAP)(Baeza-Yates and

Ribeiro-Neto, 1999), etc. Implicitly or explicitly, these are functions over permutations.

They are reasonably easy to compute given a ranking, but hard to train on because they lead

to difficult combinatorial problems.

An ideal LETOR formulation should (i) capture the combinatorial structure likethe

list-wise methods, but with (ii) algorithms that are no more complicated than point-wise

methods. While this seems too much to ask for, this dissertation makes some progress in

that direction. The dissertation uses a flexible family of statistically consistent, efficiently

optimize-able cost functions capturing the desirable characteristics of ranking.

Both supervised and unsupervised techniques are addressed in this dissertation. Su-

pervised learning algorithms for ranking require representative examples of correctly or-
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dered items. Obtaining this information can be quite expensive. So it is importantto have

complementary techniques that do not need training examples. In the unsupervised set-

ting, algorithms do not receive information about how the set of training items should be

ranked. Typically they exploit some axiomatic characterization of order among items, for

example, an unsupervised paradigm that has been very successful inranking items based

on a graph of recommendations is link analysis. Pagerank (Brin and Page,1998) and HITS

(Kleinberg, 1999a) are two of the most well known algorithms in this category. They view

the graphG as a distributed recommendation system where each vertex recommends other

vertices through its out-edges (directed edges that leave the vertex). However these algo-

rithms are (i) susceptible to spam and (ii) do not incorporate fluctuations in theedge set

of the graph. This dissertation explores convexity and monotonicity based approaches to

incorporate these properties.

Main Contributions

A novel approach for learning to rank (LETOR) based on the notion of monotone retar-

geting is introduced inChapter 3. Monotone retargeting (MR) minimizes a divergence

between all monotonic increasing transformations of the relevance scoresand a parame-

terized prediction function. The novelty lies in the fact that the minimization is overthe

transformations as well as over the parameters. MR is applied with Bregman divergences, a

large class of “distance like” functions that were recently shown to be the unique class that

is statistically consistent with the normalized discounted gain (NDCG) criterion (Raviku-

mar et al., 2011). The algorithm uses alternating projection style updates, in which one set

of simultaneous projections can be computed independent of the Bregman divergence and

the other projection reduces to parameter estimation of a generalized linear model. This

results in an easily implementable and efficiently parallelizable algorithm for the LETOR

task that enjoys global optimum guarantees under mild conditions. We present empirical

results on benchmark datasets showing that this approach can substantiallyoutperform the
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state of the art NDCG consistent techniques.

Tools of convexity and large margins are brought to bear upon the task oflearning

permutations from examples. This leads to novel and efficient algorithms with guaranteed

prediction performance in the online setting and on global optimality and the rate of conver-

gence in the batch setting. As a result, an effective algorithm is obtained to learn transitive

relationship over items. It captures the inherent combinatorial characteristic of the output

space yet it has a computational burden not much more than a generalized linear model.

Statistical consistency of different LETOR algorithms with respect to ranking qual-

ity metrics is an active area of research. Ravikumar et al. (2011) identify and exhaustively

characterize the cost functions that are consistent with respect to NDCG, a popular rank

quality metric. This turns out to be the loglikelihood of canonical generalized linear mod-

els (McCulloch and Searle, 2001), a traditional technique of parametric regression popular

among statisticians and machine learners alike. Each member of this family is characterized

by a finite dimensional vector that needs to be estimated from data. A natural question to

ask is whether it is possible to search not only over the parameters but alsoover all members

of the family. Note that this entails a search over all monotonic functions, or equivalently

all convex functions.Chapter 4 of this dissertation introduces efficient techniques for this

purpose. The difference of this model from that pursued in Chapter 3 isthat the loss func-

tion and the monotonic transform are tied to each other, this coupling leads to guarantees of

joint convexity. The added generality of simultaneously optimizing over monotonic func-

tions and parameters comes only at an extra cost oflog d whered is the dimensionality of

the data.

An unsupervised method is proposed inChapter 5 to solve a consensus ranking

problem defined over noisy, directed recommendation graphs. In these noisy directed

graphs, the edge weights indicate endorsement of a vertex by another but there is uncer-

tainty over the set of “out” edges that emanate from a vertex. This uncertainty is modeled

by weights over the discrete set of such possible “out” edge-sets associated with every ver-
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tex. Pagerank induces a ranking over the vertices of a graph for a particular choice of an

“out” edge-set, whereas the proposed method combines the multiple rankingsthat could

be induced by the different choices. The proposed consensus rankis essentially the pager-

ank over theexpectededge-set, where the expectation is computed over the distribution

that achieves the most agreeable consensus. The consensus is measured geometrically by

a suitable Bregman divergence between the consensus rank and the ranks induced by the

pure distributions1 over the choices of the “out” edge-sets. The practice of ranking ver-

tices by the stationary distribution of a random walk over anoise-freegraph is extended

to noisygraphs. The method can be applied to (multi-)graphs with (i) different typesof

labeled edges whose label weights are unknown, (ii) per vertex edge sets known to lie in

a polyhedron of uncertainty, possibly defined by partial order constraints. Two families

of algorithms are provided to solve this optimization problem by exploiting new results

concerning Bregman divergences that were derived for this purpose.

Finally, Chapter 6 deals with spam resistance. The ranking scheme of a search

engine needs to be resistant to spam, a particularly sophisticated type of which is link-

spam. Current countermeasures “de-spam” the corrupted webgraph by removing abusive

pages identified by supervised learning. Since exhaustive detection andneutralization is

infeasible, there is a need for ranking functions that can, on one hand,attenuate the effects

of link-spam without supervision and on the other hand, counter spam more aggressively

when supervision is available. A family of non-linear functions is proposedthat propagate

“rank” and “trust” scores through the webgraph. It includes Pagerank as a special case and

relies on non-linearity, monotonicity and Schur-convexity to provide spam resistance. The

main contributions here are (i) the proof of convergence and uniqueness of the iterates, and

(ii) empirical comparison with Pagerank and other established anti-spam rankings.

1distributions over a discrete set concentrated fully on one item.
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Chapter 2

Background

In this chapter we give a brief summary of convexity and properties of Bregman divergences

that recur throughout the dissertation.

Notation: Vectors are denoted by bold lower case letters. Theith component of

the vectorx is indicated byxi. When suitable, we also indicate theentire vectorx by

decorating itsith component as follows:~xi. This form is used to convey succinctly how a

vector has been constructed from its components. The symbolT † indicates the transpose

of matrixT. Random variables are also indicated by capital letters.E

X∼p
[f(X)] represents

the expectation of a functionf(·) of a random variableX having a distributionp. Sets are

denoted by (matching) calligraphic letters, for instance random variableX takes values in

a setX . The unit simplex is denoted by∆, its dimensionality will be implicit. For the most

part we deal only with sets in the Euclidean vector spaceR

d. The notationR+
d will denote

the positive orthant ofRd, andRd
ǫ will denote the set{x|x ∈ Rd ∩ xi > ǫ ∀i}, whereas

the symbol∆ǫ will indicate the set{x|x ∈ ∆ ∩ xi > ǫ ∀i} and the symbolN, the set

{x|∑i xi ≤ 1 x ∈ R+}. Familiarity with convex analysis is assumed.
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2.1 Convex Analysis Review

This section is a brief review of convex analytic notions that are used in the dissertation. A

function isconvexif the following inequality holds for any pointsx,y in its domain:

φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y).

The function isstrictly convex if the previous inequality is strict. It hasmodulus of strong

convexitys if the following inequality holds:

φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y)− s

2
α(1− α)||x− y||2, (2.1)

which for differentiableφ(·) is equivalent to:

〈∇φ(x)−∇φ(y), x− y〉 ≥ s||x− y||2. (2.2)

For a twice differentiableφ(x), this means that eigenvalues of its Hessian are lower bounded

by s.

The epigraph of the functionφ is the set{(x, y) | y ≥ φ(x)}. The sub-levelset

of the functionφ for the levelγ is a set{x | φ(x) ≤ γ}. The function is defined to be

closed(equivalently lower semi–continuous) if its epigraph is closed, as a consequence the

sub level sets are closed as well. A convex functionφ is proper if domφ is non-empty and

∀x ∈ domφ s.t.φ(x) > −∞.

TheLegendre conjugateψ(·) of the functionφ(·) is defined as

(φ)∗ (λ) , ψ(λ) , sup
x

(〈λ,x〉 − φ(x)).

The superscript∗ when applied to functions will indicate the conjugation operation. If

φ is closed, proper, strictly convex function, as will always be the case in this paper,
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domφ domψ

∇φ(·)

∇ψ(·) = (∇φ)−1(·)

Figure 2.1: The gradient mapping between domains of Legendre conjugatefunctions

((φ(·))∗)∗ = φ(·) and(∇φ(·))−1 = ∇ψ(·) is a one to one map (See figure 2.1).

A closed, proper convex functionφ is of theLegendre type if its domain has a

non-empty interior and the following holds

• φ is strictly convex and differentiable onint domφ,

• ∀y ∈ bd(domφ), ∀x ∈ int(domφ). the limit limx→y ‖∇φ(x)‖ → ∞

In convex analysis, theindicator function is defined as as:

δ(x|X ) =







0 if x ∈ X

∞ otherwise

It is closed and convex if the setX is closed and convex. The Legendre dual of theindicator

function of a closed convex setX is a sublinear function called thesupport function of

the setX . The support function of any setX is independently defined as

δ*X (s) , sup
x∈X

〈x, s〉 .

If X is closed and convex then it follows that support function can be used to give a complete
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characterization of the set using the propertyX = {x | 〈x, s〉 ≤ δ*X(s)}. All sublinear

functions are support functions, as a result there is a one to one correspondence with closed

convex sets and sublinear functions.

A non-negative, positively homogeneous, proper function with degree1 may be

obtained from a convex setY containing the origin. Such a function is called aGaugeand

is defined as:

GaugeY(y) = inf{λ | y ∈ λY}.

Given a convex functionφ(x) one can define for allλ > 0 its perspective function

π(λ, x) = λφ(
x

λ
).

The functionπ(λ, x) when treated as a function ofx alone is called the dilation ofφ(·).
Both thedilation and theperspectivefunctions are convex functions. Note however, that

some domain qualification may apply that limits the range of values thatλ can take.

The Fenchel-Younginequality (2.3) is fundamental to convex analysis and plays

an important role in our analysis.

ψ(y) + φ(x)− 〈y,x〉 ≥ 0. (2.3)

2.2 Bregman Divergence

Definition 1. Bregman Divergence:Let φ : Θ 7→ R, Θ = domφ ⊆ R

d be a strictly

convex, closed function, differentiable onintΘ. For x ∈ dom(φ), y ∈ intΘ, the Bregman

divergenceDφ

(
·
∣
∣
∣

∣
∣
∣·
)
: dom(φ)× int(dom(φ)) 7→ R+ corresponding toφ, is defined as

Dφ

(
x
∣
∣
∣

∣
∣
∣y
)
, φ(x)− φ(y)− 〈x− y,∇φ(y)〉 .

It is easy to show thatDφ

(
x
∣
∣
∣

∣
∣
∣y
)
≥ 0 andDφ

(
x
∣
∣
∣

∣
∣
∣y
)
= 0 iff x = y. As the readers
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will notice, Bregman divergences are asymmetric in general and guaranteed to be strictly

convex only in the first argument. A convenient identity that helps in analyzing convexity

properties with respect to the second argument is:

Dψ

(
∇φ(y)

∣
∣
∣

∣
∣
∣∇φ(x)

)
= Dφ

(
x
∣
∣
∣

∣
∣
∣y
)
. (2.4)

We will require a few additional properties of the functionφ. These are:

P1: limθ→θb∈bd(Θ) ‖∇φ(θ)‖ = ∞

P2: If sequencext ∈ int(domφ) and lim
t→∞

xt = x then lim
t→∞

Dφ

(
x
∣
∣
∣

∣
∣
∣xt
)
= 0

P3: The left sublevel set

• Lr(y) , {x|Dφ

(
x
∣
∣
∣

∣
∣
∣y
)
< r} is bounded for ally ∈ intΘ

In this dissertation, we only consider functions of the formφ(·) : Rn ∋ x 7→∑

iwiφ(xi)

which are weighted sums ofidenticalscalar convex functions applied to each component.

We refer to this class asweighted, identically separable(WIS) or simply IS if the weights

are equal. This class has properties particularly suited to ranking. Mahalonobis distance

with diagonalW , weighted KL divergencewKL (x‖y) and weighted and shifted general-

ized I-divergencewGI (x‖y) are in this family (Table 3.1).

When the interior of the domain of the functionφ is empty special care is required

to define the Bregman divergence because the gradient as it is usually defined does not

exist. In anǫ neighborhood of a point in the relative interior of the function, the value ofthe

function is finite on the intersection of this neighborhood with the affine hull ofthe domain

but infinite at other points of the neighborhood, thus making the function non-differentiable

in the customary sense. It is however possible to define a linear function onthe affine hull

of the domain that approximates the convex function in itsrelative neighborhood, leading

to the notion ofrelative gradient.
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Consider the restrictionφr of an everywhere defined functionφ that is convex on

an affine subsetA of its domain, defined as follows:

φr(x) =







φ(x) if x ∈ A ⊂ domφ

∞ otherwise
.

The symbolA‖ denotes the subspace parallel to the affine setA. Using the property

〈∇φ(x),d〉 =
〈

ProjA‖ (∇φ(x)),d
〉

∀d ∈ A‖

one may define the relative gradient of the functionφr as

∇riφr(x) , ProjA‖ (∇φ(x))

and a relative inner product

〈x,y〉A‖
=
〈

ProjA‖ (x),ProjA‖ (y)
〉

. (2.5)

Definition 2. Bregman Divergence(with Empty Interior): Let φ : Θ 7→ R, Θ =

domφ ⊆ R

d be a strictly convex, closed function, relatively differentiable onri intΘ. For

x ∈ dom(φ), y ∈ ri intΘ, the Bregman divergenceDφ

(
·
∣
∣
∣

∣
∣
∣·
)
: dom(φ)×ri int(dom(φ)) 7→

R+ corresponding toφ, is defined asDφ

(
x
∣
∣
∣

∣
∣
∣y
)
, φ(x)−φ(y)−〈x− y,∇riφ(y)〉ri int domφ‖

.

Example 1. Consider the Bregman divergence obtained by the function

φ(p) =







∑

i (pi log pi − pi) for p ∈ ∆ ⊂ Rn

+∞ otherwise.
(2.6)

The function is closed, strictly convex and differentiable in itsrelative interior, with the

gradient of
∑

i (pi log pi − pi) given by ~log pi. The relative gradient∇riφ can be obtained
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by projecting the gradient ~log pi on the subspace parallel to the affine hull of∆ which is

the setA = {x| 〈1,x〉 = 0}. Thus

∇riφ(p) , Argminv∈A ‖~vi − ~log pi‖22 =








...

log pi − λ
...







=








...

log pi − 1
n

∑n
i log pi

...







.

Hereλ is the Lagrange multiplier enforcing the constraint. Note that the

lim
p→ri(bd(domφ))

‖∇riφ(p)‖ = ∞.

Also, given a vectory as the relative gradient one may invert∇ri to obtain

p = (∇riφ(y))
−1 =








...

eyi∑

i e
yi

...







= ∇ log

(
∑

i

eyi

)

= ∇y
[

max
p∈∆

〈y,p〉 − φ(p)

]

= ∇yφ∗(y). (2.7)

1 Using definition(2) we obtain the corresponding Bregman divergence betweenp, q ∈ ∆

1Particularly important is that the image of the simplex∆ with respect to the relative gradient is whole of
R

n and convex, whereas the image with respect to the gradient~log pi is not. The image of∆ with respect to
∇riφ(p) is also the domain of the Legendre dualφ∗.
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as

Dφ

(
p
∣
∣
∣

∣
∣
∣q
)
=

n∑

i

(pi log pi − pi)−
n∑

i

(qi log qi − qi)− 〈p− q,∇riφ(q)〉A

=

n∑

i

(pi log pi)−
n∑

i

(qi log qi) +

✟
✟
✟
✟
✟
✟✯

0∑

i

(qi − pi)−

〈

p− 1,

−−−−−−−−−−−−−−→
log qi −

1

n

n∑

i

log qi

〉

+

〈

q − 1,

−−−−−−−−−−−−−−→
log qi −

1

n

n∑

i

log qi

〉

=
n∑

i

pi log

(
pi
qi

)

+
✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿0〈

(
1

n

n∑

i

log qi)1, (p− q)
〉

+

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿
0

n∑

i

(qi log qi)−
n∑

i

(qi log qi)

= KL (p‖q) .

(2.8)

In the equality (a) we have used equation(2.5).

Note that definition (2) subsumes definition (1). To minimize clutter of notation

we will not decorate the inner product and the relative gradient specifically. Whether the

dot-product used is relative used will be evident from context (essentially from the nature

of the interior of the domain of the functionφ used to generate the Bregman divergence).

Example 2. Consider the following function with domainN

φ(p) =







∑

i(pi log pi) + (1−∑i pi) log(1−
∑

i pi) for p ∈ N ⊂ Rn−1

+∞ otherwise.
(2.9)

The term(1−∑i pi) log(1−
∑

i pi) is closed and strictly convex function ofpi because it
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is an affine precomposition of a closed and convex functionx log x. The gradient of(2.9) is

∇φ(p) =








...

log
(

pi
1−∑

i pi

)

...







∈ Rn−1.

One can verify that the Bregman divergence obtain from(2.9) has the same form as KL

divergence but defined as a mapping(N,N) 7→ R+ . Furthermore, unlike(2.6)the function

(2.9) is a Legendre function with a non-empty interiorintN. As a result there is an one to

one correspondence with the domain ofφ and its Legendre conjugateφ∗ via the mapping

∇φ and(∇)−1φ.

2.2.1 Bregman Projection

One can define a projection operation in terms of Bregman divergences. Given a closed

setS, the Bregman-projection ofq on S is Projφ (q,S) , ArgminpDφ

(
p
∣
∣
∣

∣
∣
∣q
)
p ∈ S.

A result (lemma 1) similar to Pythagoras theorem holds for the projectionProjφ (q,S)
of a pointp outside the convex setS on S. One can show that for the same pointp, its

projection on the supporting hyperplane ofS passing through the projectionProjφ (q,S)
coincides with it. This result allows us to reduce the case of projection on convex sets to

projections on suitable hyperplanes.

Lemma 1. (Censor and Lent, 1981) Consider the Bregman projectionProjφ (q,S) of q on

a convex setS and the supporting hyperplaneH = {x| 〈a,x〉 = b} of the convex setS
throughProjφ (q,S) . Then

Dφ

(
x
∣
∣
∣

∣
∣
∣q
)
= Dφ

(
x
∣
∣
∣

∣
∣
∣Projφ (q,S)

)
+Dφ

(
Projφ (q,S)

∣
∣
∣

∣
∣
∣q
)

∀x∈H.
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Lemma 2. (Censor and Lent, 1981) Given a hyperplaneH1 = {x| 〈a,x〉 = b1}, the

Bregman projectionProjφ (q,H1) satisfies the equation

∇φ(Projφ (q,H1)) = ∇φ(q) + λ(H1)a,

for someλ(H1) and the symmetrized Bregman divergence betweenq and its projection is

given by

Dφ

(
Projφ (q,H1)

∣
∣
∣

∣
∣
∣q
)
+Dφ

(
q
∣
∣
∣

∣
∣
∣Projφ (q,H1)

)
= λ(H)(b− 〈a, q〉).

For a parallel hyperplaneH2 = {x| 〈a,x〉 = b2} with b2 ≥ b1, we haveλ(H2) ≥ λ(H1).

Consider any pointy such thatH1 lies betweeny andH2, then

Dφ

(
Projφ (y,H2)

∣
∣
∣

∣
∣
∣y
)
= Dφ

(
Projφ (y,H2)

∣
∣
∣

∣
∣
∣y
)
+Dφ

(
Projφ (y,H2)

∣
∣
∣

∣
∣
∣Projφ (y,H1)

)
.

2.2.2 Exponential Families, Generalized Linear Models and Bregman Diver-

gences

Bregman proposed the family of Bregman divergences as a means of solving convex op-

timization problems. Perhaps surprisingly, these divergences are fundamentally related to

exponential family distributions. Their intimate connection plays an important rolein this

dissertation. A brief review follows:

A natural exponential familydensity2 of a random variableY has the form

P (Y = y | θ) = exp〈θ,y〉−ψ(θ) .

These densities are indexed by what is known as itsnatural parameterθ. It is well known

2with respect to a base measure. For notational simplicity the base measurewill be dropped.
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(Lehmann, 1983) that not only is the domain

Θ =

{

θ

∣
∣
∣
∣

∫

Y
exp〈θ,y〉 <∞

}

of the parameter a convex set, the normalizerψ(θ), a function defined onΘ, is also a

convex function (strictly so ifY is affinely independent). Also called the log partition

function,ψ(θ) is of great importance because all moments ofY can be recovered from it,

for example

E [Y ] = ∇θψ(θ).

In statistics and machine learning one is interested in an estimate of the parameter

θ that generated a sampley. Maximum likelihood obtains such an estimateθ∗ as the

maximizer of the sample log likelihood, or equivalently as the solution of the following

optimization problem

θ∗ = Argmaxθ logP (y | θ)

= Argmaxθ logP (y | θ)− logP (y | θ∗) = Argminθ ψ(θ)− ψ(θ∗)− 〈θ − θ∗,y〉

= Argminθ ψ(θ)− ψ(θ∗)− 〈θ − θ∗,∇θψ(θ∗)〉 [using optimality ofθ∗]

= ArgminθDψ(θ||θ∗) = ArgminθDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
[using (2.4)] (2.10)

Generalized linear models (GLM) assume an exponential family probability density for Y

conditioned on observed featuresx. The parameterθ is assumed to be a linear function of

x, as a result the corresponding conditional maximum likelihood optimization problem is

θ∗ = ArgminθDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (〈x,w〉)

)
.
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Bregman’s algorithm:

Initialize: λ0 ∈ R+d andz0 such that

∇φ(z0) =
[

A†|∇φ(y)
][

λ0†, 1
]†

Repeat: Till convergence

Update: Apply Sequentialor Parallel Update to obtainλt+1

Solve: ∇φ(zt+1) =
[

A†|∇φ(y)
][

λt+1†, 1
]†

Sequential Bregman Update:

Selecti: LetHi = {z| 〈ai, z〉 ≤ bi}

ComputeProjφ
(
zt,Hi

)
, cti (see Lemma 2)

∇φ(Projφ
(
zt,Hi

)
) = ∇φ(zt)+ctiai,

Update: λt+1 = λt + cti1i

Parallel Bregman Update:

For all i in parallel: Compute
Projφ

(
zt,Hi

)
, cti, (Lemma 2)

Update: λt+1
i = λt + cti1i

Synchronize: λt+1 = (∇φ)−1
(
∑

i ∇φ(λi
t+1))

Table 2.1: Bregman’s Algorithm

2.2.3 Bregman’s Algorithm

Bregman divergences were first proposed (Bregman, 1967) in the context of a generaliza-

tion of alternating orthogonal projection based algorithm for solving convex optimization

problems, in particular

min
x
Dφ

(
x
∣
∣
∣

∣
∣
∣y
)

s.t.Ax ≤ b. (2.11)

A significant advantage of Bregman’s algorithm is its scalability and suitability for paral-

lelization. The algorithm operates by repeatedly projecting a dual feasible point onto the

constraints using Bregman projections. We list the algorithm in Table 2.1. Readers may

make special note of the simplicity of the parallel variant which applies directly toMR.

This ease of parallelization was one the many reasons for basing the MR framework on

Bregman divergences.
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Chapter 3

Monotone Retargeting

This chapter introduces a novel approach for learning to rank (LETOR) based on the notion

of monotone retargeting. Monotone retargeting minimizes a divergence between all mono-

tonic increasing transformations of the relevance scores and a parameterized prediction

function. The minimization is over the transformations as well as over the parameters. MR

is applied with Bregman divergences, a large class of “distance like” functions that were

recently shown to be the unique class that is statistically consistent with the normalized

discounted gain (NDCG) criterion (Ravikumar et al., 2011). The algorithm uses alternat-

ing projection style updates, in which one set of simultaneous projections canbe computed

independent of the Bregman divergence and the other reduces to parameter estimation of a

generalized linear model. This results in an easily implemented, efficiently parallelizable

algorithm for the LETOR task that enjoys global optimum guarantees under mildcondi-

tions. We present empirical results on benchmark datasets showing that thisapproach can

substantially outperform the state of the art NDCG consistent techniques.

This chapter is organized as follows: In Section 3.1 we present a reduction of an

optimization problem over the infinite class of all monotonic increasing functionsto that

of alternating projection over a finite dimensional vector space. We introduce Bregman

divergences in Section 3.2 and discuss properties that make them particularly suited to the
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ranking task. We show (i) that one set of the alternating projections can becomputed in

a Bregman divergence independent fashion (in Section 3.2.1), and (ii) separable Bregman

divergences allow us to use sorting (in Section 3.2.2) that would have otherwise required

exhaustive combinatorial enumeration or solving a linear assignment problem repeatedly.

In Section 3.2.3 we show when that optimization problem is jointly convex by resolving the

question of joint convexity of the Fenchel-Young gap.

Notation: Vectors are denoted by bold lower case letters, matrices are capital-

ized. x† denotes the transpose of the vectorx, ||x|| denotes theL2 norm. Diag(x)

denotes a diagonal matrix with its diagonal set to the vectorx. Adj-Diff(x) denotes

a vector obtained by taking adjacent difference of consecutive components of [ x0 ] , thus

Cum-Sum(Adj-Diff(x)) = x. A vectorx is defined to be indescending orderif xi ≥ xj

wheni > j, the set of such vectors is denoted byR↓. Vectorx is isotonic withy if xi ≥ xj

impliesyi ≥ yj . The unit simplex is denoted by∆ and the positive orthant byR+
d. Every-

where the symbolψ(·) appears in this chapter it is used to denote the Legendre dual of the

functionφ(·).
Background: In the chapter we make heavy use of known identities and algorithms

associated with Bregman divergences and their relation to generalized linear models and

exponential family distributions. Chapter 2 summarizes the necessary background. Several

new properties of Bregman divergences particularly relevant to the LETOR problem are

described in Section 3.2

Structured output space models (Bakir et al., 2007) have dominated the taskof

learning to rank (LETOR). Point-wise regression based models (introduced in Chapter 1)

have been superseded by pairwise models (Freund et al., 2003), whichin turn are being

gradually displaced by list-wise approaches (Cao et al., 2007b; Lan et al., 2009). This trend

has on one hand greatly improved the quality of the predictions obtained but on the other

hand has come at the cost of additional complexity and computation. The costfunctions

of structured models are often defined directly on the combinatorial space of permutations,
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which significantly increase the difficulty of learning and optimization comparedto regres-

sion based approaches. We propose an approach to the LETOR task that retains the simplic-

ity of the regression based models, is simple to implement, is embarrassingly parallelizable,

and yet is a function of ordering alone. Furthermore, the resulting algorithm enjoys strong

guarantees of convergence, statistical consistency under uncertaintyand a global minimum

under mild conditions. Our experiments on benchmark datasets show that the proposed

approach outperforms state of the art models in terms of several common LETOR metrics.

We adapt regression to the LETOR task by using monotone retargeting (MR)and

Bregman divergences. MR is a novel technique that we introduce in this chapter and Breg-

man divergences (Bregman, 1967) are a family of “distance like” functions well studied

in optimization (Censor and Lent, 1981), statistics and machine learning (Banerjee et al.,

2005) (See Chapter 1 for details). Bregman divergences are also the unique class of strongly

statistically consistent surrogate cost functions for the NDCG criterion (Ravikumar et al.,

2011), a de facto standard of ranking quality. In addition to these statisticalcharacteristics,

Bregman divergences have several properties useful for optimization. and as we shall show,

specifically useful for ranking.

By combining Bregman divergences and MR we obtain provably convergent co-

ordinate descent algorithms with guarantees of global minimum under conditions easy to

satisfy. The LETOR task decomposes into subproblems that are equivalent to estimating

(unconstrained as well as constrained) generalized linear models. The Bregman divergence

machinery provides easy to implement, scalable algorithms for them, with a user chosen

level of granularity of parallelism. We hope the reader will appreciate the flexibility of

choosing an appropriate divergence to encode desirable properties on the rankings while

enjoying the strong guarantees.

We motivate MR by first discussing direct regression of rank scores and highlighting

its primary deficiency: its attempt to fit the scores exactly. An exact fit is unnecessary since

any score that induces the correct ordering is sufficient. MR addresses this problem by
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searching for a order preserving transformation of the target scoresthat may be easier for the

regressor to fit: hence the name “retargeting”. Searching over all monotonic transformations

is a unique characteristic of MR.

3.1 Monotone Retargeting

Consider a set of queriesQ = {q1, qi . . . q|Q|} and a set of itemsV that are to be ranked in

the context of the queries. For every queryqi there is a subsetVi ⊂ V whose elements have

been ordered, based on their relevance. This ordering is customarily expressed via a rank

score vector̃ri ∈ Rdi=|Vi| whose components̃rij correspond to items inVi. In this chaper

we assume that beyond establishing an order over the setVi, the actual values of̃rij are of

no significance. For a queryqi the indexj of r̃ij is local to the setVi hencer̃ij and r̃kj

need not correspond to the same object. We shall further assume, with no loss in generality,

that the subscriptj is assigned such that̃rij is in a descending order for anyVi. Note that

r̃i induces a partial order if the number of unique valueski in the vector is less thandi.

For every query-object pair{qi, vij} a feature vectorRn ∋ aij = F (qi, vij) is computed

apriori with some predefinedF . The subset of training data pertinent to any queryqi is the

pair{r̃i,Ai} and is called its qset. The column vectorr̃i consists of the rank-scoresr̃ij and

Ai is a matrix whosejth row isaij†.

Given a loss functionDi : Rs × Rs 7→ R+ we may define a regression model

min
w

∑

i

D(r̃i, f(Ai,w)) wheref : Rs×n × Rn 7→ R

s is some fixed parametric form with

the parameterw. This is a common approach and in the context of LETOR these are called

point-wise methods. As discussed, this is unnecessarily stringent for ranking. A better

alternative is:

min
w,Υi∈M

∑

i

Di

(
r̃i,Υi ◦ f(Ai,w)

)
,

whereΥi : R
s 7→ R

s transforms the component of its argument by a fixed monotonic,

strictly increasing functionΥi, andM is the class of all such functions. Nowf(Ai,w) no
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longer need to equal̃ri point-wise to incur zero loss. It is sufficient for some monotonic

increasing transform off(Ai,w) to do so.

Optimizing a suitable loss function over all possible monotonic, strictly increasing

functionΥi is the topic of Chapter 4. In this chapter we take simpler route of applying the

monotonic transform tõri and optimize over the range space generated. This avoids the

minimization over the function composition, but the need for minimizing over the range

space of all monotone functions remains. One possible way to eliminate the minimization

over the function space is to restrict our attention to some parametric family inM at the

expense of generality. Instead, with no loss in generality, the optimization over the infinite

space of functionsM can be converted into one over finite dimensional vector spacesR

|Vj |,

provided we have a finite characterization of the constraint setR↓i defined as below:

min
w,r∈R↓i

∑

i

Di(ri, f(Ai,w)) s.t.R↓i =
{

r| ∃M∈M
M(r̃i)=r

}

. (3.1)

The SetR↓i: It is the set of vectors isotonic tõri. The convex compositionr = αr1+(1−
α)r2 of two isotonic vectorsr1 andr2 preserves isotonicity, as does the scalingαr1 for

anyα ∈ R+. Hence the setR↓i is a convex cone. This makes the problem computationally

tractable because the set can be described entirely by its extreme rays, orby the extreme

rays of its polar. We claim the setR↓i can be expressed as the image of the set{R+}s−1×R
under a linear transformation by a particular upper triangular matrixU with positive entries:

R↓i = Ux s.t. x ∈ {R+}s−1 ×R

The matrixU is not unique and can be generated from any vectorv ∈ R+
s, but as we shall

see, any member from the allowed class ofU is sufficient for anexhaustiverepresentation

of R↓i. 1

1For regression functions capable of fitting an arbitrary additive offset,no generality is lost by constraining
the last component ofx to be non-negative.
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Lemma 3. The set of all vectors inRd that are sorted in a descending order is given by

Ux s.t. x ∈ {R+}s−1 × R whereU is a triangular matrix generated from a vector

v ∈ R+
d such that theith rowU(i, :) is {0}i−1 × v(i :)

Proof. Consider solvingUx = r̃i for any vector̃ri sorted in descending order. We have

x = (Diag)−1(v)×Adj-Diff(r̃i) which is in{R+}s−1 ×R

The Set∆i
o: In addition to the setR↓i we shall make frequent use of the set of

all discrete probability distributions that are in descending order, i.e.R↓i ∩ ∆i that we

represent by∆i
o. The choice of this set is motivated by two reasons, to keep the contribution

of different qsets comparable in the cost function, and the need to keep the rank-score

vector bounded away from the origin. Similar to the setR↓, we may represent this set

by generating an upper triangular matrixT from the vectorv∆ = {1, 12 , · · · 1i · · · 1d} and

consideringx ∈ ∆.

Lemma 4. The set∆o of all discrete probability distributions of dimensiond that are in

descending order is the imageTx s.t. x ∈ ∆ whereT is an upper triangular matrix

generated from the vectorv∆ = {1, 12 · · · 1d} such thatT (i, :) = {0}i−1 × v∆(i :)

Proof. The proof follows Lemma (3).Tx is in the simplex∆ because it is a convex com-

bination of vectors in∆.

Given any choice of the distance like functionDi(·, ·) and the curve fitting function

f(·, ·) we obtain an optimization problem that can be optimized alternately in the rank

scores and parameters off. It will certainly be convenient if the resulting optimization

problem is convex. We show that (i) by choosingDi(·, ·) to be a Bregman divergence

Dφ

(
·
∣
∣
∣

∣
∣
∣·
)

obtained from a convex functionφ(·) and (ii)f(·, ·) to be a matching curve fitting

function(∇φ)−1(Ai
†w), one obtains from (3.1) a bi-convex optimization2 problem over a

2A biconvex function is a function of two arguments such that with any one ofits arguments fixed the
function is convex in the other argument.
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Function:φ(x) Divergence:Dφ

(
x
∣
∣
∣

∣
∣
∣y
)

Link: (∇φ)−1(x)
1
2 ||x||2W 1

2 ||x− y||2W x
∑

iwixi log xi x ∈ ∆ wKL (x‖y) =∑iwixi log(
xi
yi
) exp(x)

∑

i exp(xi)∑

iwi(xi log xi − xi)

x ∈ R+
d

wGI (x‖y)
=
∑

iwi
(
(xi − 1) log(xi−1

yi−1 )− xi + yi
) exp(x)

Table 3.1: Examples of WIS Bregman divergences.

product of convex sets.

min
w,r∈R↓i

|Q|
∑

i=1

1

|Vi|
Dφ
(
ri

∣
∣
∣

∣
∣
∣(∇φ)−1

(

Ai
†w
))
. (3.2)

Readers familiar with GLMs will recognize that optimization with respect tow in

(3.2) is nothing but maximum log likelihood estimation of a GLM with the canonical link

function (∇φ)−1(·), as discussed briefly in Section 2.2.2 (see equation (2.10)). Table 3.1

shows some common Bregman divergences, the convex functions generating them and their

corresponding link functions. The optimization with respect tor ∈ R↓i can also be seen as

maximum log likelihood estimation of an exponential family, but under linear constraints

on the parameters, for which scalable techniques are available, (see (2.2.3), (Censor, 1981)).

The LETOR task has additional structure in the type of linear constraints imposed and these

can be exploited to give efficient solutions, as we shall see shortly. In theactual LETOR

task we augment (3.2) with a convex regularization term to take care of overfitting.

3.2 Ranking Related Properties

In this section we explore properties that make the Bregman divergence based cost function

(3.2) particularly suitable for learning ranking. We shall see that the minimization over

r can be made (almost) agnostic to the functionφ(·). The use of separable Bregman di-

vergences also allows one to obtain the best re-permutation ofr that minimizes the cost

function where all other terms stay constant. Finally, we show under what conditions the
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cost function is not only separately convex inr andw, which is always guaranteed, but also

jointly convex. Although these properties play a pivotal role in the monotone retargeting

formulation they are also significant in their own right.

3.2.1 Universality of Minimizers over Ordered Sets

A mean-variance like decomposition (described in appendix A.1, Theorem (15) ) holds for

all Bregman divergences. It plays a critical role in Theorem 1 which hassignificant impact

in facilitating the solution of the LETOR problem.

Proposition 1. For R↓ ⊂ Rd the entire set of vectors with descending ordered components,

the minimizery∗ = Argmin
y∈R↓

Dφ

(
x
∣
∣
∣

∣
∣
∣y
)

is independent ofφ(·) if φ(·) is WIS.

Proof. A more general case is proven in Proposition 2

Following our independent proof of Proposition 1, we have since come across an older

proof (Barlow and Brunk, 1972) developed prior to the popularity of Bregman divergences

and in the context of maximum likelihood estimators of exponential family models under

conic constraints. Whereas the older proof uses Moreau’s cone decomposition (Rockafellar,

1996), ours uses Theorem 15 (in appendix A) and yields a much shorterproof.

Corollary 1. If domψ(·) = R

d whereψ(·) is the Legendre conjugate of the WIS convex

functionφ(·) andz∗ = Argminz∈R↓ ||x− z||2 then

Argmin
y∈R↓∩domφ

Dφ

(
y
∣
∣
∣

∣
∣
∣(∇φ)−1(x)

)
= (∇φ)−1(z∗).

Note that Corollary 1 is directly applicable to formulation (3.2). It implies that

for an infinitely large class of convex functionsφ(·) for which the dual domain isRd, the

minimization overri ∈ R↓∩domφ can be obtained by transforming the equivalent squared

loss minimizer by(∇φ)−1(·). The squared loss minimization is not only simpler but its

source code implementation can now be shared across instantiations of (3.2)with different
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φ(·)s whenever Corollary 1 applies. It is clear from the precondition of the corollary that

the class of convex functions where the corollary applies is identical to those defined as

“essentially smooth” (Rockafellar, 1996). Three such functions are listed in Table 3.1.

3.2.2 Optimality of Sorting

For any sorted vectorx, finding the permutation ofy that minimizesDφ

(
x
∣
∣
∣

∣
∣
∣y
)

shows up

as a subproblem in our formulation that needs to be solved in an inner loop. Thus solving

it efficiently is critical and this is yet another instance where Bregman divergences are very

useful.

For an arbitrary divergence function the search for the optimal permutation is a

non-linear assignmentproblem that can be solved only by exhaustive enumeration. For an

arbitrary separable divergence the optimal permutation may be found by solving a linear

assignment problem, which is an integer linear program and expensive to solve (especially

in an inner loop, as required in our algorithm). On the other hand, ifφ(·) is IS, the solution

is remarkably simple, as shown in Lemma 5 where
[
x1
x2

]
denotes a partitoned vector with

vector componentsx1 andx2.

Lemma 5. If x1 ≥ x2 andy1 ≥ y2 andφ(·) is IS, thenDφ

([
x1
x2

]
∣
∣
∣

∣
∣
∣

[y1
y2

])
≤ Dφ

([
x1
x2

]
∣
∣
∣

∣
∣
∣

[y2
y1

])

andDφ

([y1
y2

]
∣
∣
∣

∣
∣
∣

[
x1
x2

])
≤ Dφ

([y2
y1

]
∣
∣
∣

∣
∣
∣

[
x1
x2

])
.

Proof. Dφ

([
x1
x2

]
∣
∣
∣

∣
∣
∣

[y1
y2

])
−Dφ

([
x1
x2

]
∣
∣
∣

∣
∣
∣

[y2
y1

])
= 〈(∇φ(y2)−∇φ(y1)), x1 − x2〉 . There exists

c ≥ 0 s.t. x1 − x2 = c(y1 − y2). Proof follows from monotonicity of∇φ, ensured by

convexity ofφ. We can exchange the order of the arguments using the property (2.4).

Using induction overd for y ∈ Rd the optimal permutation is obtained by sorting.

Not only is Lemma 5 extremely helpful in generating descent updates, it has fundamental

consequences related to the local and global optimum of our formulation (see Lemma 6).

26



3.2.3 Joint Convexity and Global Minimum

In this section we are concerned about the joint convexity of the formulation(3.2). Joint

convexity, if ensured, guarantees global minimum even for coordinate-wise minimization

because the objective function is smooth and the constraint set is a Cartesian product of

convex sets.

Using Legendre duality one recognizes that equation (3.2) quantifies the gap in the

Fenchel-Young inequality (2.3) (normalized by|Vi|).

Dφ
(
ri

∣
∣
∣

∣
∣
∣(∇φ)−1 (Aiw)

)
= ψ(Aiw) + φ(ri)− 〈ri,Aiw〉 . (3.3)

Although this establishes separate convexity inw andri, the conditions under which joint

convexity is obtained are not obvious. We resolve this important question in Theorem 1.

Theorem 1. The gap in the Fenchel-Young inequalityψ(y) + φ(x) − 〈x,y〉 for any con-

tinuously differentiable, strictly convexφ(·) with a differentiable conjugate(φ)∗ (·) = ψ(·)
is jointly convex if and only if, ignoring affine terms,φ(x) = c||x||2 for all c > 0.

Proof: sketched in appendix A.

It follows from Theorem 1 that cost function 3.3 is jointly convex if and onlyif

φ(x) = c||x||2, c > 0.

3.3 LETOR with Monotone Retargeting

Our cost function is an instantiation of (3.2) with a WIS Bregman divergence. In addition,

we include regularization and a query specific offset. Note that the cost function (3.2) is not

invariant to scale. Squared Euclidean, KL divergence and generalized I-divergence are ho-

mogeneous functions of degree 2, 1 and 1 respectively. Thus the costcan be reduced just by

scaling its arguments down, without actually learning the task. To remedy this, we restrict

theri’s from shrinking below a pre-defined size. This is accomplished by constrainingri’s
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to lie in an appropriate closed convex set separated from the origin, for example, an unit

simplex or a shifted positive orthant. This yields:

min
βi,w,ri∈R↓i∩Si

|Q|
∑

i=1

1

|Vi|
Dφ
(
ri

∣
∣
∣

∣
∣
∣(∇φ)−1 (Aiw + βi1)

)
+
C

2
||w||2, (3.4)

or equivalently

min
βi,w,ri∈R↓i∩Si

|Q|
∑

i=1

1

|Vi|
Dψ
(
Aiw + βi1

∣
∣
∣

∣
∣
∣∇φ (ri)

)
+
C

2
||w||2, (3.5)

whereSi are bounded sets excluding0, chosen to suit the divergence. The parameterC is

the regularization parameter. In non-transductive settings, the query specific offsetsβi will

not be available for the test queries. This causes no difficulty becauseβi does not affect the

relative ranks over the documents. We update theri’s and{w, {βi}} alternately.

If Si = domφ anddomψ = R

d, the optimization overri reduces to an order

constrained least squares problem (corollary 1). Examples of such matched pairs are (i)

wKL (·‖·) and∆i, and (ii) shiftedwGI (·‖·) and1 + R+
d. A well studied, scalable al-

gorithm for the ordered least squares problem is pool of adjacent violators (PAV) algorithm

(Best and Chakravarti, 1990). One may also use Lemma 3 to solve it as a non-negative least

squares problem for which several scalable algorithms exist (Kim et al., 2008).

To be able to use Bregman’s algorithm, it is essential thatR↓i be available as an

intersection of linear constraints. This is readily obtained for any prescribed total order, as:

R↓i = {ri,j+1 − ri,j ≤ 0}∀j∈Ji ,

∆o
i = R↓i ∩ {

∑

j

rij = 1} ∩ {ri,di > 0}. (3.6)

The advantages of the Bregman updates (2.2.3), are that they are easy toimplement

(more so whenProjφ (·, ·) is available in closed form e.g. squared Euclidean) and have

minimal memory requirements. Hence they scale readily and allow easy switch from a se-
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quential to a parallel update. The parallel Bregman updates applied to (3.2), (3.6) clearly

exposes massive amounts of fine grained parallelism at the level of individual inequalities

in R↓i or ∆o
i that can be exploited using Bregman’s algorithm with parallel updates de-

scribed in Section 2.2.3. They are well suited for implementation on a GPGPU (Nickolls

et al., 2008). We note that the optimization forri is independent for each query, thus can

be embarrassingly parallelized further. In our experiments on a representative set of largest

available LETOR datasets (reported in Section 3.4) each iteration took no morethan a cou-

ple of seconds, as a result we had little incentive for parallelization. However for industrial

scale applications, for example ranking web pages, parallelization will play an important

role.

For optimizing overw one may use several techniques available for parallelizing

a sum of convex functions, for example, parallelizing the gradient computation across the

terms or use more specialized technique such as alternating direction method ofmultipliers

(Boyd et al., 2011). Further,{w, {βi}} can be solved jointly simply by augmenting the

feature matrixAi with 1 for each query. We hope the readers will appreciate this flexibility

of being able to exploit parallelism at different levels of granularity of choice.

3.3.1 Partial Order

Recall that a partial order is induced if the number of unique rank scoreski in r̃i is less

thandi. In this case, our convention of indexingVi in a descending order is ambiguous.

To resolve this, we break ties arbitrarily. Consider a subset ofVi whose elements have the

same training rank-score. We distinguish between two modeling choices: (a)the items in

that subset are not really equivalent, but the training set used a resolution that could not

make fine distinctions between the items,3 we call this the “hidden order” case, and (b) the

items in the subset are indeed equivalent and the targets are constrained toreflect the same

block structure, we call this case “block equivalent” and model it appropriately.

3or that, we only care to reduce the error of predictingrij > rik whenr̃ij < r̃ik. Note the strict inequality.
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Partially Hidden Order

In this model we assume that the items are totally ordered, though the finer ordering between

similar items is not visible to the ranking algorithm. LetPi = {Pik}kik=1 be a partition of

the index set ofVi, such that all items inPik have the same training rank-score. We denote

their sizes bydik = |Pik|. Although the relevance scores specify an order between items

from two different setsPij andPil, the order within any setPik remains unknown. The high

cost of acquiring training data in a totally ordered form makes this scenario very common

in practice.

The setRi : Denote the set of rank-score vectors having the same partially ordered

structure as̃ri byRi. For partial order we may describeRi by linear inequalities as follows:

{rim > rin}ki−1
j=1 ∀i∈[1,|Q|], m ∈ Pij , n ∈ Pi,j+1,

with eachj generatingdijdi,j+1 inequalities. One may now replace the occurrence ofR↓i
by Ri in the formulation 3.4 to obtain the formulation for the partial hidden order case.

Thereby we obtain:

min
βi,w,ri∈Ri∩Si

|Q|
∑

i=1

1

|Vi|
Dφ
(
ri

∣
∣
∣

∣
∣
∣(∇φ)−1 (Aiw + βi1)

)
+
C

2
||w||2. (3.7)

The optimization problem may be solved using either an inner or an outer representation of

the constraint sets, both offer different advantages.

Outer representation: Recall that Bregman’s algorithm 2.2.3 is ideally suited for

the outer representation (3.6). Note that the number of inequalities used in therepresen-

tation of Ri can be very large. This proliferation of inequalities may be controlled by

introducing auxiliary variables{r̄i,l}ki−1
l=1 and inequalities:

{r̄i,j+1 > riPij > r̄i,j}∀i∈[1,|Q|]. (3.8)
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To this relatively parsimonious representation ofRi’s one may apply Bregman’s

algorithm to obtain the scoresri. However, since Bregman’s algorithms are essentially

coordinate-wise ascent methods, their convergence may be slow unless fine grained par-

allelism can be exploited, which are best performed in specialized hardware, for example

GPGU (Nickolls et al., 2008). For commodity hardware, an alternative to the exterior point

methods are proximal and interior point methods that use an inner representation of the

convex constraint set. In our experiments we used the inner representation and proximal

methods. Experimental details are in Section 3.4.

Inner representation: To construct the inner representation of the set of (hidden)

partially ordered vectors we introduce a block-diagonally restricted permutation matrixPi

that, when multiplied to a vector, permutes the components in eachPij independently.

Since the items inPij are not equivalent they are available for re-ordering as long as that

minimizes the cost (3.7). The inner representation of an arbitrary (hidden)partially ordered

vector inRn is therefore obtained asri = PiUxi with U andx as defined in lemma 3, and

for ordered vectors in∆i, it is given byPiTxi, whereTi andx are as defined in lemma 4.

The cost function (3.7) may now be reduced by alternately minimizing overxi,Pi

andw. In our experiments we have used the inner representation and moreover we have

constrained the score vectors to the simplex∆i to keep different qsets comparable and to

keep the retargeted scores bounded away from0 (see discussion preceding Lemma 4). The

updates are shown in Figure 3.1.

When there are additional constraints on the set of hidden partially ordered score

vectors, the vectorx may be updated by the method ofD proximal gradients, where the

proximal term is a Bregman divergence defined by a Legendre convex function whose do-

main is the required constraint set (Iusem, 1997), (Censor and Zenios,1992). We do not

go into the details of proximal methods as it lies beyond the scope of this chapter, what is

relevant is that this method automatically enforces the required constraints. Note that in the

formulation (3.7) the additional constraint is denoted bySi. In our setting, the setSi is ∆i,
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Input: Convex functionφ, feature matrices{Ai} with rows sorted by relevance, regu-
larization parameterC.

Repeat Until Convergence:

P
t+1
i = Argmin

π
Dφ
(
Txti

∣
∣
∣

∣
∣
∣(∇φ)−1 (πAiw

t + βti
))

∀i (3.9)

xt+1
i = Argmin

x∈∆
Dφ
(
Tx
∣
∣
∣

∣
∣
∣(∇φ)−1 (

P
t+1
i Aiw

t + βti
))

∀i (3.10)

wt+1, {βt+1
i } = Argmin

w,{βi}

|Q|
∑

i=1

Dφ
(
Txt+1

i

∣
∣
∣

∣
∣
∣(∇φ)−1 (

P
t+1
i Aiw + βti

))
+
C

2
||w||2

(3.11)

Return: w.

Figure 3.1: Algorithm for Partially Hidden Order

in this case the corresponding proximal gradient update ofx is the exponentiated gradient

algorithm (Kivinen and Warmuth, 1995).

Recall that block weighted IS Bregman divergences have the special property that

sorting minimizes the divergence over all permutations (Lemma 5). Thus update(3.9) can

be accomplished by sorting. ThePi updates are obtained by sorting each block indepen-

dently.

The updates (3.9), (3.10) and (3.11) each reduce the lower bounded cost (3.7), there-

fore the algorithm described in Figure 3.1 converges in function value. However, the vital

question whether the updates converge to the stationary point of the cost function (3.7) re-

mains. Make note of the fact that though (3.7) is differentiable inri it is not differentiable

in the trifactored representationri = PiTxi because of the discrete nature ofPi. The non

differentiability may raise doubts about convergence to the stationary pointof (3.7). Thus

in the next couple of paragraphs we clarify why indeed the specified updates converge to

such a stationary point.

Convergence to a Stationary Point: The tri-factored formri = PiUxi is a cause
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for concern, though it is reassuring that the range ofPiUxi is Ri which again is a convex

cone and that the tri-factored representation of any point in that cone is described uniquely.

This, however, is not sufficient to ensure that a minimum is achieved by (3.10) and (3.9)

because though the constraint set is convex, the cost function (3.4) is not convex in the

tri-factored parameterization. Worse still, the parameterization is discrete.4

If sorting (3.9) and constrained minimization (3.10) achieves the minimumr for a

fixedwt+1, {βt+1
i }, then convergence to the stationary point is guaranteed by the following

theorem:

Theorem 2. (Bertsekas, 1999) Let functionf(x1,x2) be continuously differentiable in its

domainΠXi. Suppose for eachi andx ∈ Xi the coordinate-wise minimumminξ∈Xi f(·, ξ, ·)
is uniquely attained. Then every limit point of the sequence of coordinate-wise minimizers

is a stationary point off.

Thus we explore the question whether (3.9) and (3.10) together achieve such a lo-

cal minimum, because together they can be considered an instance of a meta-update that

achieves minimality while the other parameters are kept fixed in a continuously differen-

tiable cost function. Note that we may consider the permutation to be applied to theleft

argument without any loss of generality, because the divergence is assumed to be WIS with

weights constant in each block. We shall do so as it simplifies the reasoning.Recall that the

sorting Lemma 5 works for both right and left arguments.

Lemma 6. Let z be an arbitrary vector in the domain of a Bregman divergenceDφ

(
·
∣
∣
∣

∣
∣
∣·
)

andy be partitioned as
[y1
y2

]
. Let

[
z1
z2

]
denote the conformal partition ofz. LetDφ

(
·
∣
∣
∣

∣
∣
∣·
)

be

a separable WIS Bregman divergence where the weights are constant within the partitions.

4While one may address the discreteness problem via a real-relaxation ofP to doubly stochastic matrices,
the local minima attained in such a case will be in the interior of the Birkhoff polytope and not at a vertex of the
polytope that is representable byPi and reachable by sorting based updates (3.9). Therefore such a relaxation
cannot answer whether (3.10) and sorting (3.9) achieves the local minimum of the cost function for a fixed
{w, βi} Surprisingly enough, sorting followed by a singlexi update achieves the local minimum of (3.4) on
the coneRi.
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Let
[y1
y2

]∗
= Argminy′i∈Π(yi),

y′1≥y′2
Dφ

([y′1
y′2

]
∣
∣
∣

∣
∣
∣

[
z1
z2

])

whereΠ(yi) is the set of all permutations of the vectoryi, theny∗i is isotonic withxi ∀i =
1, 2

Proof. The proof is by contradiction. Assumey∗i is a minimizer that is not isotonic with

zi, then according to lemma 5 one may permutey∗i to match the order ofzi to reduce the

divergence further, yielding a contradiction.

Thus in spite of the caveats mentioned above, one can identify the optimal ordering

of the components of the left argument that achieves the minimum for a fixedwt+1, {βt+1
i }

even before optimalxi has been determined. With this optimal order obtained, one may

then compute the optimalxi (see (3.11)) for a fixedwt+1, {βt+1
i } with relative ease using

any convex optimization solver (in our experiments we use LBFGS (Liu et al., 1989)).

Block Equivalent Partial Order

Without any loss of generality we representRi as the image of̃Ux = MiUix wherex ∈
R+

ki . Ui is an upper triangular matrix, similar in spirit toU in Lemma 3, but of sizeki×ki.
For the constraint∆i

o we use matrixT̃i = MiTi instead ofŨi and constrainx to ∆. The

run length decoding matrixMi
† =








110 · · · 0
0011 · · ·
· · · · · · ·








is structured to select components ofUix (or

Tix) and copy them at the right position.

For the partially hidden order case (Section 3.3.1) the algorithm (Figure 3.1)can

exploit the fact that multiplication byUi (or Ti) or its inverse is a linear time operation.

Therefore, a pertinent concern is whether something similar holds for the block equiva-

lent partial order scenario for solvingmin
x
Dφ

(
Ũix

∣
∣
∣

∣
∣
∣y
)

and the the solution of the equation

Ũix = ỹ. The rank deficiency of̃U seems troublesome. Indeed, the corresponding com-

puations for the block equivalent partial order case too can be obtainedefficiently thanks
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to favorable properties of Bregman divergences, to whit: we present the following semi-

closed form: It is easy to see that multiplication byŨi is O(di) because it consists of aki

dimensionalCum-Sum and redistribution to obtain a vector inRdi .

Lemma 7. Given an IS Bregman divergence,

Argmin
x∈R+

ki

Dφ

(
Ũix

∣
∣
∣

∣
∣
∣y
)
= {x∗|Uix = Projφ

(
µφ(r̃i),R↓ki

)
}

and

Argmin
x∈∆

Dφ

(
T̃ix
∣
∣
∣

∣
∣
∣y
)
= {x∗|Tix = Projφ

(
µφ(r̃i),∆oki

)
}

Proof. Let Rki ∋ q = Uix. The cost function reduces to

min
q∈S

ki∑

k=1

∑

j∈Pk
Dφ

(
qk

∣
∣
∣

∣
∣
∣yj
)

(a)
= min

q∈S

ki∑

k=1

∑

j∈Pk
Dψ

(
∇φ(yj)

∣
∣
∣

∣
∣
∣φ(qk)

)
(3.12)

(b)
= min

q∈S

ki∑

k=1

∑

j∈Pk
Dψ

(
φ(yj)

∣
∣
∣

∣
∣
∣ E
j∈Pk

[∇φ(yj)]
)
+

ki∑

k=1

Dψ

(
E

j∈Pk
[∇φ(yj)]

∣
∣
∣

∣
∣
∣φ(qk)

)

(3.13)

(c)
=

ki∑

k=1

∑

j∈Pk
Dψ

(
φ(yj)

∣
∣
∣

∣
∣
∣µφ(yPk)

)
+min
q∈S

Dφ

(
qk

∣
∣
∣

∣
∣
∣µφ(yPk)

)
(3.14)

Equality (a) follows from switching argument order identity (2.4),(b) from optimality

of mean (A.7) and(c) from Corollary (8). The first term in (3.12) is constant hence the

minimizer is obtained by minimizing the second term over the appropriate setS specified,

obtaining the projection.

This reduces the optimization problem into a Bregman projection problem of a sig-

nificantly reduced dimensionality. The updates are shown in Figure 3.2. Back-solving with

Ui isO(ki) and computingµφ(r̃i) isO(di) if ∇φ and∇−1φ can be computed in constant
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Input: Convex functionφ, feature matrices{Ai} with rows sorted by relevance, reg-
ularization parameterC.

Repeat Until Convergence:

xt+1
i = {x∗|Tix = Projφ

(
µφ(r̃i),∆oki

)
} (3.15)

wt+1, {βt+1
i } = Argmin

w

|Q|
∑

i=1

Dφ
(
T̃ix

ti+1
∣
∣
∣

∣
∣
∣(∇φ)−1

(

Ai
†w + βti1

))
(3.16)

Return: w.

Figure 3.2: Algorithm for Block Equivalent Partial Order

time. Ifφ belongs to the “essentially smooth” class, e.g. wKL, wGI, Corollary 1 can reduce

computation even further.

3.4 Experiments

We evaluated the ranking performance of the proposed monotone retargeting approach on

the benchmark LETOR 4.0 datasets (MQ2007, MQ2008) (Liu et al., 2007) as well as the

OHSUMED dataset (Hersh et al., 1994). Each of these datasets is pre-partitioned into five-

fold validation sets for easy comparison across algorithms. For OHSUMED,we used the

QueryLevelNormpartition. Each dataset contains a set of queries, where each documentis

assigned a relevance score from irrelevant (r = 0) to relevant (r = 2).

All algorithms were trained using a regularized linear regression function,with a

regularization parameter chosen from the setC ∈ {10−20, 10−10, 10−5, 100, 101}. The

best model was identified as the model with highest mean average precision (MAP) on the

validation set. All presented results are of average performance on the test set. As the

baseline, we implemented the NDCG consistent re-normalization approach in (Ravikumar

et al., 2011) (using the NDCGm normalization) for the squared loss and the I-divergence

(generalized KL-divergence). The baseline constitutes the latest state of the art in super-
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vised ranking methods. It incorporates NDCG consistency into the formulation and was

recently shown to outperform the then state of the art LETOR algorithms Listnet (Cao

et al., 2007a), RankCosine (Ravikumar et al., 2011) and other NDCG inconsistent metrics,

see (Ravikumar et al., 2011) for details.

ListNet was implemented (Cao et al., 2007a) as the KL divergence baseline since

their normalization has no effect on KL-divergence. MR was implemented using thepar-

tially hidden ordermonotone retargeting approach (Section 3.3.1). We compared the per-

formance of MR (Normalized MR) to the MR method with the normalization1
|Vi| removed

(Unnormalized MR).

The algorithms were implemented in Python and executed on a 2.4GHz quad-core

Intel Xeon processor without paying particular attention to writing optimized code. Am-

ple room for improvement remains. Square loss was the fastest with respect to average

execution times per iteration at 0.58 seconds whereas KL achieved 1.01 seconds per itera-

tion and I-div 1.14 seconds per iteration. We found that although MQ2007is more than 4

times larger than MQ2008, MQ2007 only required about twice the time executionon aver-

age, highlighting the scalability of MR. On average SQ, KL and I-div took 99, 90 and 65

iterations.

Table 3.4 compares the algorithms in terms of expected reciprocal return (ERR)

(Chapelle et al., 2009), mean average precision (MAP) and NDCG. The unnormalized KL

divergence cost function led to the best performance across datasets. The most signifi-

cant gains over the baseline were for the I-divergence cost function. Monotone retargeting

showed consistent performance gains over the baseline across metrics (NDCG, ERR, Pre-

cision), suggesting the effectiveness of MR for improving the overall ranking performance.

Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 show the performance characteristics

measured according to NDCG@N and Precision@N metrics of MR with I-divergence, KL-

divergence and Sq-loss and the corresponding state of the art baselines. Our experiments

4 The baselines are obtained by applying NDCG consistency correction of Ravikumar et al. (2011) to the
base models and were shown to outperform then state of the art algorithmssuch as ListNet,RankCosine etc.
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MQ 2007 NDCG

I-div SQ KL
Unnormalized MR 0.6961 0.7398 0.6978
Normalized MR 0.6954 0.6953 0.6981

Baseline4 0.5512 0.6927 0.6952

MQ 2007 MAP

I-div SQ KL
Unnormalized MR 0.5379 0.5361 0.5398
Normalized MR 0.5358 0.5282 0.5399

Baseline4 0.3611 0.5330 0.5380

MQ 2007 ERR

I-div SQ KL
Unnormalized MR 0.3698 0.3703 0.3737
Normalized MR 0.3702 0.3601 0.3731

Baseline4 0.1953 0.3639 0.3643

Table 3.2: Test NDCG, MAP and ERR on dataset MQ 2007. The best results are noted in
bold.

Figure 3.3: NDCG (left) and Precision (right) on MQ2007 obtained by MR withI-
divergence and I-divergence based baselines.
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Figure 3.4: NDCG (left) and Precision (right) MQ2007 obtained by MR with sq-loss and
sq-loss based baselines.

Figure 3.5: NDCG (left) and Precision (right) on MQ2007 obtained by MR withKL-
divergence and KL-divergence based baselines.
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MQ 2008 NDCG

I-div SQ KL
Unnormalized MR 0.7339 0.7398 0.7451
Normalized MR 0.7346 0.7396 0.7330

Baseline4 0.5892 0.7344 0.7399

MQ 2008 MAP

I-div SQ KL
Unnormalized MR 0.6439 0.6532 0.6571
Normalized MR 0.6449 0.6549 0.6461

Baseline4 0.4513 0.6428 0.6530

MQ 2008 ERR

I-div SQ KL
Unnormalized MR 0.4137 0.41559 0.4238
Normalized MR 0.4144 0.41392 0.4085

Baseline4 0.2724 0.40978 0.4132

Table 3.3: Test ERR, MAP and NDCG on MQ2008 dataset. The best resultsare noted in
bold.

Figure 3.6: NDCG (left) and Precision (right) on MQ2008 obtained by MR withI-
divergence and Idivergence based baselines.
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Figure 3.7: NDCG (left) and Precision (right) on MQ2008 obtained by MR withKL-
divergence and KL-divergence based baselines.

Figure 3.8: NDCG and Precision on MQ2008 obtained by MR with sq-loss andsq-loss
based baselines.
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Figure 3.9: NDCG (left) and Precision (right) on OHSUMED obtained by MR with I-
divergence and I-divergence based baselines.

Figure 3.10: NDCG (left) and Precision (right) on OHSUMED obtained by MRwith I-
divergence and I-divergence based baselines.
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OHSUMED ERR

I-div SQ KL
Unnormalized MR 0.5657 0.5410 0.5410
Normalized MR 0.5796 0.5093 0.5093

Baseline4 0.2255 0.5450 0.5467
OHSUMED MAP

I-div SQ KL
Unnormalized MR 0.4537 0.4417 0.4531
Normalized MR 0.4463 0.4394 0.4506

Baseline4 0.3421 0.4465 0.4524

OHSUMED NDCG

I-div SQ KL
Unnormalized MR 0.7000 0.6878 0.6997
Normalized MR 0.6935 0.6798 0.6916

Baseline4 0.5805 0.6892 0.6947

Table 3.4: Test ERR, MAP and NDCG on OHSUMED dataset. The best results are in bold.

show a significant improvement in performance on the range of datasets and cost functions.

Across datasets, the difference between the baseline and our results were most significant

with the I-divergence (generalized KL divergence) cost function.

There are two things worth taking special note of: (i) although the baseline algo-

rithms were proposed specifically for improving NDCG performance, MR improves the

ranking accuracy further, even in terms of NDCG. (ii) MR seems to be achieving peak per-

formance early, consistently. This property is particularly desirable and isencoded specif-

ically in the cost functions such as NDCG and ERR. In our initial formulation weused

WIS Bregman divergence so that the weights could be tuned to obtained the early peaking

behavior. However that proved unnecessary because even the unweighted model produced

satisfactory performance. The effect of query length normalization was, however, incon-

sistent. Some of our results were insensitive to it, whereas other results were adversely

affected. We conjecture that the restriction of the scores to the unit simplex already normal-

izes the qsets based on item sizes and thus additional normalization is unnecessary.
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3.4.1 Joint Convexity

Now we extend the property of joint convexity beyond squared Euclideandistance. This

can be done using a careful balance between regularizingri andw. We regularizeri via

the termCriDφ
(
ri

∣
∣
∣

∣
∣
∣(∇φ)−1 (qi)

)
to ensure joint convexity. Necessary and sufficient con-

ditions for are established for the coefficientCri.

Vector (∇φ)−1(qi) acts as the “center” of regularization forri. We user̃i =

(∇φ)−1(qi) in the batch setting andArgminxφ in the online setting. Incorporating this

regularization we obtain

Fi(ri,w) =
1

|Vi|
(

Dφ
(
ri

∣
∣
∣

∣
∣
∣(∇φ)−1 (Aiw)

)
+ CriDφ

(
ri

∣
∣
∣

∣
∣
∣(∇φ)−1 (qi)

)
+

Cwi
2

||w||2Ai +
C|Vi|
2|Q| ||w||2

)

(3.17)

Our first update of the cost function (3.4) isF ({ri},w) =
∑|Q|

i Fi(ri,w). Note thatβ

terms may be absorbed intoAi by augmenting the features by a vector of ones, so no

generality is lost in equation (3.17) and that we assumeφ to be strongly convex.

Lemma 8. Let φ be s strongly convex withL Lipschitz continuous gradients, then main-

tainingCwi +
1
L > 0,

s(Cri + 1)(Cwi +
1
L) ≥ 1 ensuresFi is jointly convex.

Proof. ∇2Fi(ri,w) = 1
|Vi|

[ (1+Cri)Hφ −A
−A† Ai

†(Hψ+Cwi)Ai+
C|Vi|
2|Q| I

]

, whereψ is the Legendre

conjugate ofφ andHφ, Hψ the corresponding diagonal5 Hessians. Substitutin g the relation

betweenCwi, Cri and bounding the smallest eigenvalue, the result follows.

Lemma 9. Letαi = 1
1+Cφi

, then

Argmin
ri∈R↓i∩Si

Fi(ri,w) = Argmin
ri∈R↓i∩Si

Dφ
(
ri

∣
∣
∣

∣
∣
∣(∇φ)−1 (αiAiw + (1− αi)qi)

)
.

5Recall thatφ(·) and consequentlyψ(·) are separable by assumption.
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Proof. Follows as a consequence ofE
x∼π

[

Dφ

(
x
∣
∣
∣

∣
∣
∣s
)]

= E

x∼π

[

Dφ

(
x
∣
∣
∣

∣
∣
∣µ
)]

+ Dφ

(
µ
∣
∣
∣

∣
∣
∣s
)

(Banerjee et al., 2005).

Thusri’s can be updated usingdeflectedprediction(∇φ)−1(αAw + (1 − α)qi).

Strong convexity ofφ is a mild assumption that is satisfied by all the com monly used

Bregman divergences, e.g. squared Euclidean, KL-divergence, I-divergence etc.

3.4.2 Marginal Strong Convexity

SinceF ({ri},w) is jointly convex we may work with the marginal function

Gi(w) = min
{ri}

F ({ri},w), G(w) =
∑

i

Gi(w) (3.18)

which is guaranteed to be convex (Rockafellar, 1996). This luxury is notavailabl e in

MR. A quasi-Newton method (Liu et al., 1989) applied toG(w) would require computing

∇G(w), this is easily obtained as

∇G(w) =

|Q|
∑

i

Gi(w) =

|Q|
∑

i

∇Fi({r∗i },w) (3.19)

wherer∗i = Argminri∈R↓ Fi(ri,w). Observe that thegradient computation trivially par-

allelizes because theris are all independent. It is indeed beneficial forG(w) to be con-

vex, but strong convexity ofGi(w) would further facilitate super-linear convergence of

quasi-Newton methods, and guarantee logarithmic regret in the online setting (Hazan et al.,

2007). Using assumptions of continuous second order differentiability andthe shorthand

F ∗
i = Fi(r

∗
i ,w) we obtain

∇2
Gi(w) = ∇2

w
F

∗
i − ∇

w,ri
F

∗
i
†
(∇2

ri
F

∗
i )

−1 ∇
w,ri

F
∗
i =

Ai
†

|Vi|
[
Hψ+Cwi−

1

1 + Cφi
(Hφ)

−1]
Ai+

C

|Q|I (3.20)

Lemma 10. Conditions of Lemma 8 ensure thatG(w) isC strongly convex and∇G(w) is
∑

i
σi
|Vi|(Cwi −

1
s(1+Cri)

) + C Lipschitz continuous, whereσi is the singular value ofAi.
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3.4.3 Lipschitz Continuity of Hessian

In order to enjoy local quadratic convergence, quasi-Newton methods require that the ob-

jective function (i) is twice differentiable, (ii) is strongly convex and (iii) hasLipschitz

continuous Hessians (Boyd and Vandenberghe, 2004). ForG(w) the first two criteria holds

directly, here we explore when is the third satisfied. Observe from equation (3.20) that we

only need to be concerned about t he sensitivity of the term
[
Hψ + Cwi − 1

1+Cφi
(Hφ)

−1]

to va riations inw. We make the notation more precise about dependency onw. Let

r∗i (w) = Argminri∈R↓ Fi(ri,w) and the paranthesis indicate where the Hessians are eval-

uated in:
[
Hψ(w) + Cwi − 1

1+Cφi
(Hφ(r

∗
i (w)))−1].

Lemma 11. Letψ(·) be the Legendre conjugate ofφ(·) that defines the cost functionG(w)

in equation(3.18). Then ifψ(·) has a Lipschitz continuous Hessian thenG(w) has a

Lipschitz continuous Hessian.

Proof.
[
Hψ(w)+Cwi− 1

1+Cφi
(Hφ(r

∗
i (w)))−1] =

[
Hψ(w)+Cwi− 1

1+Cφi
Hψ(∇φ(r∗i (w)))

]

using Legendre duality. Further, the vector∇φ(r∗i (w)) turns out to be the Euclidean pro-

jection of the vectorAiw on the setR↓i (see Proposition2). Now, since projection is a

non-expansive operator,Hψ(∇φ(r∗i (w))) is Lipschitz continuous in variations inw.

3.4.4 Margins on Target Vectors

We now augment the cost function by introducing a pair of fixed margin (3.21), (3.22) and

a pair of large margin variants (3.23), (3.24). We enforce an order in thetarget vectorri but

also enforce a gap between the target values of two adjacently ordered itemsri,j , ri,j+1.

Since our modification takes the form of addition of linear inequalities and terms,

the properties of strong convexity and Lipschitz continuity of the gradient continue to hold.

By controlling the margin we can model the notion that errors at the top of the listare more

severe than at the bottom. More separated the targets, higher the tendencyof the regression

function to maintain the separation and, consequently, the order.
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Thefixed margin formulations are posed in terms of positive pre-prescribed mar-

ginsti,j as follows:

min
ri,w

|Q|
∑

i=1

Fi(ri,w) s.t. {ri,j+1 − ri,j ≥ ti,j}∀j∈[0,di−1]
∀i∈[1,|Q|]

;

{ri,0 ≥ ti,0}∀i∈[1,|Q|] (3.21)

min
ri,w

|Q|
∑

i=1

Fi(ri,w) s.t. {ri,j+1 − ri,j ≥ ti,j}∀j∈[0,di−1]
∀i∈[1,|Q|]

;

{ri,di ≤ ti,di}∀i∈[1,|Q|]. (3.22)

The large margin formulations are posed in terms of a vector ofrewardsci asso-

ciated with the vector of gapsti > 0 as follows: for every queryqii ∈ Q, solve:

min
ri,w,ti

|Q|
∑

i=1

Fi(ri,w)− 〈ci, ti〉 s.t. {ri,j+1 − ri,j ≥ ti,j ≥ 0}∀j∈[0,di−1]
∀i∈[1,|Q|]

;

{ri,0 ≥ ti,0}∀i∈[1,|Q|], (3.23)

min
ri,w,ti

|Q|
∑

i=1

Fi(ri,w)− 〈ci, ti〉 s.t. {ri,j+1 − ri,j ≥ ti,j ≥ 0}∀j∈[0,di−1]
∀i∈[1,|Q|]

;

{ri,di ≤ ti,di}∀i∈[1,|Q|]. (3.24)

In all the formulations (3.21), (3.22), (3.23), (3.24) the components ofti denote the gap

between the adjacent targets. In (3.21) and (3.22) the gaps are pre-specified. It is natural to

specify a comparatively higher gap at the top. In (3.24) and (3.23) the gaps are not specified

explicitly, but a rewardci is awarded per unit gap.

The optimization overw is regularized maximum likelihood parameter estimation
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for GLMs (McCulloch and Searle, 2001). Since this procedure is standard, we will focus

onr andt.

3.4.5 Bregman Projection onR↓t

If we fix t andw in equations (3.21), (3.22), (3.23), (3.24) we obtain the following problem

onr:

min
r
Dφ

(
r
∣
∣
∣

∣
∣
∣(∇φ)−1(Aw)

)
s.t. Adj-Diff (r) ≤ t. (3.25)

Can (3.25) be reduced to a squared loss minimization problem ? Under assumptions of

strong convexity and/or Lipschitz continuity ofφ we can respond in the affirmative.

Proposition 2. Letφ(·) bes strongly convex, then

(∇φ)−1(z∗) = ArgminrDφ

(
r
∣
∣
∣

∣
∣
∣(∇φ)−1(Aw)

)
+ 〈v, r〉 s.t.Adj-Diff (r) ≤ t (3.26)

where z∗=Argminz ||z−Aw||+ 〈v, r〉 s.t. Adj-Diff(z) ≤ st. (3.27)

Proof. For the moment let us ignore the linear term〈v, r〉 . Let the set of points satisfying

the KKT conditions for (3.25) be

A =
{
r
λ

∣
∣
∣
∇φ(r)=Aw−Adj-Diff(λ),

Adj-Diff(r)≤t

}

and the set of points satisfying the KKT forminz ||z −Aw|| s.t. Adj-Diff(z) ≤ ct be

B =
{
z
λ

∣
∣
∣
z=Aw−Adj-Diff(λ)

Adj-Diff(z)≤ct

}

=
{
∇φ(r)
λ

∣
∣
∣
∇φ(r)=Aw−Adj-Diff(λ)

Adj-Diff(∇φ(r))≤ct

}

(the latter is obtained by simple change of variables). Fromrj+1 − rj ≥ tj and strong

convexity we have∇φ(rj+1) − ∇φ(rj) ≥ stj thusA ⊂ B. A,B are unique minimizers,

therefore the minima of the two problems coincide. The term〈v, r〉 maintains the relation

betweenA andB.
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Proposition 3. Letφ(·) be strictly convex and let gradient∇φ(·) be 1
L Lipschitz continuous,

then minimi zerz∗ of (3.26)is z∗ = Argminz ||z−Aw||+ 〈v, r〉 s.t. Adj-Diff(z) ≤ Lt.

Proof. DefineA andB as before. From∇φ(rj+1)−∇φ(rj) ≥ Ltj and Lipschitz continuity

we haverj+1 − rj ≥ tj thereforeB ⊂ A, butA andB are unique minimizers.

It is critical to solve quadratic program (QP) in equations (3.27) efficientlybecause

r minimization forms a part of the gradient computation (3.19) thus we cannot afford the

expense of a generic QP solver in an inner loop. Ift = 0 the equivalent QP can remarkably

be solved in linear time by the PAV (Grotzinger and Witzgall, 1984) algorithm. Its efficiency

heavily depends on the blockwise constant structure of the optimal (Acharyya et al., 2012).

No such structure is guaranteed for the QPs obtained by Proposition 2 and3. Nevertheless,

these too can be solved in linear time.

A key tool that we employ to obtain the solution efficiently is the pool adjacent

violators algorithm, it solves

min
z

||z −Aw|| s.t. Adj-Diff∗(z) ≤ 0 (3.28)

called the isotonic regression. PAV is essentially a block coordinate ascentof the dual of

(3.28). It runs infinite time

Our interest lies in solving (3.21), (3.22), (3.23) and (3.24) which look drastically

different from (3.28). We show that by a series of non-linear and linearchange of variables

one can reduce these problems to minor variations of the isotonic regressionproblem.

Decomposing the Max Margin Formulation

For a fixedw, a plausible way to optimize (3.24) and (3.23) is to fixti and optimizeri

and alternate, keepingw fixed. One may updatew onceti andri converge. This fails

to obtain the optimum because the constraints coupleri and ti. However, we show that

an affine transformation can not only correctly decompose the problem, but also separate
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out the problem into versions of isotonic regression problems: namely isotonic regression

with a lower-bound on the smallestr for (3.24) and isotonic regression with an upper-

bound on the largestr for (3.23). Thus they add another (scalar) constraint to the system

Adj-Diff(r) ≤ −t. For convenience we denote both byAdj-Diff∗(r) ≤ −t to give them

an unified treatment. Both the variants are solved in finite time by variations of the PAV

algorithm (denoted byPAV ∗) (Grotzinger and Witzgall, 1984) and the time scales linearly

in dimension.

Because of Propositions 2, 3, we only need to consider:

min
r,t

1

2
||r − y||2 − 〈c, t〉 s.t. Adj-Diff∗(r) ≤ −t, t > 0

for the maximum margin formulations. Substitutingt = −Adj-Diff∗(d), z = r − d

obtains

1

2
||z+d−y||2+〈c,Adj-Diff∗(d〉) s.t. Adj-Diff∗(z) ≤ 0, Adj-Diff∗(d) ≤ 0. (3.29)

The variablesz andd are completely decoupled, the constraints are the ordering constraints,

and if eitherz or d fixed, the other is a PAV problem. Ford, some algebraic manipulation

is necessary to expose the PAV form. Thus, one may alternate overz andd as follows:

zt+1 = PAV ∗(y − dt) (3.30)

dt+1 = PAV ∗(y − zt+1 −Adj-Diff∗†(c)) (3.31)

and obtain the large margin solution by recoveringr, t from convergedz andd.

Decomposing the Fixed Margin Formulation

Problems (3.21), (3.22) can be decomposed similarly using Propositions 2, 3and the exact

same affine transformationt = −Adj-Diff∗(d) andz = r − d. Hered is immediately
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determined by equationt = −Adj-Diff∗(d), so no iteration overz andd is necessary .

Solvingz = PAV ∗(y−d) is sufficient to recover the optimalr. Since this requires a single

instance of PAV, it is obvious that this converges in finite time, linear in the dimension.

3.4.6 Convergence Rates for Batch and Online settings

Convergence rate guarantees are readily available for i) batch gradient descent with (3.19)

evaluated in parallel. As a result of strong marginal convexity this converges linearly (Bert-

sekas, 1999). ii) Stochastic gradient descent by sampling an index from(3.19). Again

strong convexity ensures that this has linear rate of convergence (in anexpected sense)

(Rakhlin et al., 2012). iii) Quasi-Newton and Newton methods with parallel evaluation of

gradients: The former will only use the gradient computation (3.19), whereas the latter will

use the explicit Hessian (3.20) which has a simple diagonal structure, with identity on the

off diagonal blocks. These will have superlinear convergence (Bertsekas, 1999). In our

experiments we use LBFGS (Liu et al., 1989) as our Quasi-Newton method. (iv) Finally,

like in the MR paper (Acharyya et al., 2012) one can use block coordinatedescent, that due

to lemma 8 is guaranteed linear rate of convergence (Bertsekas, 1999). Here theri can be

trivially parallelized because they are independent, forw one again has the opportunity to

compute the gradient in parallel.

Online setting: Since the focus of the paper is on transitive rankings, we concen-

trate on online loss models that have more structure than just weighted sum of misordered

pairs. The only such model that we are aware of assigns a linear cost over the assignment

matrix of objects to that rank position (Helmbold and Warmuth, 2009), or their weighted

analogue, doubly stochastic matrix that does a “soft matching”. The most performant al-

gorithm in this class is PermELearn (Helmbold and Warmuth, 2009). This algorithm’s

objective is to perform close to the best possiblefixed assign ment matrix. Its cumulative

complexity overT rounds of the algorithm isO(Td6 log(Td). For any large problem this

is intractable becaused is the size of the universe of all items to rank.
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In comparison, our model can deal with varying set of items that need to be ordered

in each round. The adversary provides the feature matrixAt of dt items that it has ranked at

roundt, but that order is not revealed untill the learner responds with a “scoring vector”wt.

The learner is then charged a cost ofGt(wt) as defined in (3.18) using a twice differentiable

σ strongly convex functionφt with L Lipschitz continuous gradient. The order and the

functionφt is then revealed for the learner. The objective is to minimize the cumulative

loss
∑

tGt(wt). Here we will essentially plug in the known regret bound results obtained

for online gradient descent for strongly convex, Lipschitz gradient functions (Hazan et al.,

2007). For thetth gradient update we use thetth term of the gradient (3.19) with a learning

rate of 1
σt as

wt+1 = wt −
1

σt
∇Gt({r∗t },w)

wherer∗t = Argminrt∈R↓∩St Gi(rt,w).

Theorem 3. (Hazan et al., 2007) The online gradient algorithm applied in an online setting

to as strongly function that hasL Lipschitz continuous gradients has regretO(L
2

σ log T ).

Neither the algorithm nor the bound is new, what is novel though is that the rank-

ing problem of such combinatorial nature can be transformed into a form, without loss in

generality, that this algorithm can exploit.

3.5 Experiments

We evaluated the ranking performance of the proposed margin equipped monotone retar-

geting (MEMR) approach on the benchmark LETOR 4.0 datasets (MQ2008)(Liu et al.,

2007) as well as the OHSUMED dataset (Hersh et al., 1994). Each of these datasets is pre-

partitioned into five-fold validation sets for easy comparison across algorithms. We follow

the experimental setup described in (Acharyya et al., 2012). The regularization parameter

for the targets were set so that the marginal cost function was 0.001 strongly convex. The
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MQ 2008 NDCG

I-div SQ KL
MEMR 0.7418 0.7619 0.7553

MR 0.7339 0.7398 0.7451
(Ravikumar et al., 2011) 0.5892 0.7344 0.7399

Table 3.5: Test NDCG on datasets MQ 2008.

OHSUMED NDCG

I-div SQ KL
MEMR 0.6983 0.7250 0.6944

MR 0.7000 0.6878 0.6997
(Ravikumar et al., 2011) 0.5805 0.6892 0.6947

Table 3.6: NDCG on OHSUMED dataset.

best model was identified as the model with highest NDCG (Järvelin and Kek̈aläinen, 2000)

on the validation set.

The MR algorithm on which MEMR is based is our primary baseline. Recall that

the MR algorithm has been shown to handsomely outperform many of the current state

of the art techniques such as Listnet and RankCosine. For referencewe also tabulate the

results obtained by the state of the art NDCG consistent methods introduced by Ravikumar

et. al (Ravikumar et al., 2011). We did not re-implement the MR family of algorithms but

use the numbers reported in Acharyya et. al. including the baselines that they compared

against.

The results are reported in tables 3.5 and 3.6. MEMR does indeed outperform

MR, but this is not observed for all Bregman divergences. One prominent difference from

the MR family is that square loss with MEMR does significantly better than squareloss

with MR. Our working hypothesis for the much improved behavior of squareloss is that

the simplex normalization used in MR artificially constraints the system from exploring

regions of the parameter space with good test performance.
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3.6 Conclusion

In this chapter we introduced a family of new cost functions for ranking. The cost function

takes into account all possible monotonic transforms of the target scores,and we show how

such a cost function can be optimized efficiently. Because the sole objective of learning

to rank is to output good permutations on unseen data, it is desirable that the cost function

be a function of such permutations. Though several permutation dependent cost functions

have been proposed, they are extremely difficult to optimize over and one has to resort to

surrogates and/or cut other corners. We show that with monotone retargeting with Bregman

divergences such contortions are unnecessary. In addition, the proposed cost function and

algorithms have very favorable statistical, optimization theoretic, as well as empirically

observed properties. Other advantages include extensive parallelizability due to simple

simultaneous projection updates that optimize a cost function that is convex not only in

each of the arguments separately but also jointly under appropriate choice.
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Chapter 4

Learning Bregman Divergences for

Ranking

This chapter is concerned with prediction using generalized linear models withan unknown

link function and is particularly suited for learning to rank. We begin with a motivating

example, several of its assumptions will be relaxed later on.

Let a generalized linear relationyi = g(〈u,xi〉) hold with an unknown, continu-

ously differentiable, strictly monotonic functiong(·) and an unknown vectoru ∈ W ⊂ Rn,

on the data setD = {(xi, yi)mi=1}. We have to recoveru and predict on future examples.

The setW is a mechanism to control the complexity of the resulting predictor. It can be

given explicitly, for example as anℓ1 or anℓ2 ball, or it can be given implicitly by a regu-

larizing function that will be denoted byR(·). Although we motivate our cost function in

terms of a perfectu, no such vector need to exist, neither for the algorithms proposed nor

for the analysis.

Wheng(·) is the identity function, the canonical technique is to minimize||y −
Xw||2 with respect tow ∈ W. Iterative methods applied to this problem generate a se-

quencew → w∗ that satisfies∇w=w∗ ||y − Xw||2 ∈ −NW(w∗), whereNW(w∗) is a

normal direction of the constraint setW atw∗. Strict convexity of the cost inw ensures
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w∗ = u if u ∈ W.

Wheng(·) is a known function, but not identity, the iterative technique of generating

w → w∗ that satisfies∇w=w∗ ||y − g(Xw)||2 ∈ −NW(w∗) loses its effectiveness in

the general case. In this case||y − g(Xw)||2 need not be convex inw and may contain

exponentially many (in dimensionality ofx) local minima (Auer et al., 1995). Without

further assumptions it becomes impossible to restrict||w∗ − u||2 to an arbitrary low value,

making recovery intractable.

An effective alternative, that applies to a knowng(·), is to minimize amatching

Bregman divergence (Auer et al., 1995). Recall that given a strictly convex, continu-

ously differentiable functionφ(·) the corresponding Bregman divergence isDφ

(
x
∣
∣
∣

∣
∣
∣y
)
=

φ(x)−φ(y)−〈x− y,∇φ(y)〉 . If the relation(∇φ)−1(·) = g(·), holds then the divergence

Dφ

(
y
∣
∣
∣

∣
∣
∣g(Xw)

)
becomes convex inw, strictly so if X has rankn (Auer et al., 1995).

This ensures recovery, and the divergence in this case is said to “match”the transformg(·).
Its minimizer is the maximum likelihood estimate of a canonical generalized linear model

(GLM) (McCulloch and Searle, 2001) whose inverse link function isg(·) = (∇φ)−1(·) : a

familiar object for statisticians and machine learners.

It should now be clear that the ability to recoveru is affected by whether the loss

function matches the transformg(·) or not. An explicit form of the functiong(·) is often

assumed for convenience, which in turn fixes the choice of the matching divergence. How-

ever, unless one has explicit control over the data generating process, g(·) is rarely known.

Practioners typically assume a suitable or popular form ofg(·) and proceed. Furthermore,

the infinite cardinality of possibleg(·)’s rules out exhaustive hypothesis testing. Thus, there

is a convincing case forlearning the recovery-facilitating loss function wheng(·) is un-

known. This is the focus of this chapter. Given a strictly (or strongly) convex regularizer

R(w), a non-negative scalarc andy of dimensionalityn, a candidate cost functional that
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captures this notion is the following:

min
w,φ(·)∈C

1

n
Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
+ cR(w) (4.1)

≡ min
w,φ(·)∈C

θ∈Range(X)

1

n
Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
+ inf
Xw=θ

cR(w). (4.2)

The spaceC of all continuously differentiable strictly convex functions is convex. It is

also infinite dimensional. In the absence of other simplifying restrictions, that we loathe

to make, such as assuming a finite dimensional parameterization of a subset ofit, or fitting

g(·) with a spline and enforce monotonicity, this seems a challenging problem.

Close in intent and particularly notable is the paper by Kalai and Sastry (2009)

where they propose theisotron algorithm that achieves aO( 1
T ) bound on square loss

||y − g(Xw)||2 (note, not on||w∗ − u||2) in spite of the non-convexities introduced by

g(·). Reading the paper one readily appreciates how lack of convexity makes theanalysis

significantly more cumbersome. We believe that the approach proposed in thischapter is

simpler, and under mild assumptions, the convergence rates are exponentially faster. This

does not diminish the value of the paper (Kalai and Sastry, 2009), to the contrary it shows

that non-convexity can at times be partially (if but painfully) conquered, and as we shall

show for theisotron algorithm, by virtue of some hidden convexity.

Although developed independently, there are intriguing connections between the

two approaches. We devote Section 4.6 to explain them. In retrospect, we note that an

unintended consequence of our proposition has been that it sheds lighton the question:

how or why was it possible to conquer non-convexity in this particular case.

The Learning to rank problem provides another strong motivation for the cost

function (4.1). Let{(xi, yi)mi=1} be drawn from a setX ordered byy(x). We want to

learnu such that the order induced by the〈u,x〉 suffers low permutational loss. The only

loss function family, statistically consistent with the popular permutational loss: NDCG

(Järvelin and Kek̈aläinen, 2000), isDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (〈w,x〉)

)
(Ravikumar et al., 2011).
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Structural risk minimization (Vapnik, 1998) then justifies minimizing the regularizedem-

pirical lossDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (〈w,x〉)

)
overφ,w to reduce expected loss in the future.

For the ranking case it is possible to push the model even further. Note thatthe pre-

dictions need not recovery pointwise to obtain the correct ranking. Predicting any mono-

tonic transformation ofy would be sufficient. This observation points to the following,

natural modification of (4.1):

min
w,φ(·)∈C,z∈R↓(y)

1

n
Dφ
(
z
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
+ cR(w)

whereR↓(y) is the set of vectors isotonic toy.

Restricted Output Space:In prediction problems one often has some prior knowl-

edge about output space, for example one might know that the outcome corresponding to

anx is in some strict subset ofR. Indeed a common way to choose the link function of

a canonical GLM is to choose the link function such that its domain matches the output

space. For example to predict probabilities, the popular link function is log-odds whose do-

main is the interval [0,1]. This choice obtains the logistic regression model. Ourframework

can easily incorporate knowledge about the output space, in particular one may specify a

convex subset ofR (in other words an interval) to be the output space forx, however the

output space forX has to have a Cartesian product structure.

Notation: Vectors are denoted by bold lower case letters, matrices are capitalized.

||x|| denotes theℓ2 norm. The space of all strictly convex differentiable and separable

functions is denoted byC. When decorated with a superscript, e.g.,Cs it denotes a subset

consisting of all strongly convex functions, the superscript specifies the modulus. We use

subscripts similarly for the subset of functions with Lipschitz continuous gradients e.g.Cl.
We use the wildcard symbolC⋆ to stand for one ofC, Cl, Cs, Csl when the discussion applies

uniformly. The symbolR↓ ⊂ R

n will denote a set of all vectors that are sorted by the

component (it does not matter whether such vectors are sorted up or down, as long as that

choice remains fixed).
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Background: Convex duality, Bregman divergences and their relation to exponen-

tial family densities will play a major role in the chapter. Relevant results are summarized

in Chapter 2. Recall thatFenchel-Young Inequalityφ(y) + φ∗(θ) − 〈y,θ〉 ≥ 0 plays an

important role in convex analysis (Rockafellar, 1996), and as we shall see, in this work as

well.

The infimal convolution of φ1(·) andφ2(·) is denoted in this chapter byφ1 ⊕ φ2

and is defined as:[φ1 ⊕ φ2](y) = infxφ1(x) + φ2(y − x) (Rockafellar, 1996). The

following identities will be useful:

[αφ(λ)]∗ = αφ∗(
x

α
), [φ1 + φ2]

∗(·) = [φ∗
1 ⊕ φ∗

2](·). (4.3)

Recall that anexponential family density 1 of a random variableY has the form

P (Y = y | θ) = exp〈θ,y〉−ψ(θ) . These densities are indexed by itsnatural parameterθ. It

is well known (Lehmann, 1983) that not only is the domainΘ =
{

θ
∣
∣
∣

∫

Y exp〈θ,y〉 <∞
}

of

the parameter a convex set, the normalizerψ(θ), is also a convex function (strictly so ifY is

affinely independent) called the log partition function. All moments ofY can be recovered

from it, for example:

E [Y ] = ∇θψ(θ) = (∇φ)−1(θ). (4.4)

The log partition functionψ(·), its domainΘ, its Legendre dualφ(·) which is the negative

entropy of the random variable will all play an important role in the chapter.

Maximum likelihood obtains an estimate ofθ as the maximizer of the sample log

likelihood: θ∗ = Argmaxθ logP (y | θ). For exponential family this is related to Bregman

divergence as follows:

θ
∗ = Argmaxθ logP (y | θ)− logP (y | θ∗) = Argminθ ψ(θ)− ψ(θ∗)− 〈θ − θ∗,y〉

= Argminθ ψ(θ)− ψ(θ∗)− 〈θ − θ∗,∇θψ(θ∗)〉 = ArgminθDψ(θ||θ∗) = ArgminθDφ
(
y

∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
.

Generalized linear models (GLM) assume aspecificexponential family probability density

1with respect to a base measure. For notational simplicity the base measurewill be omitted.
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for Y conditioned onx. In particular, the natural parameterθ is assumed to be a linear

function of x ∈ X . Note that choosing a particular exponential family is equivalent to

choosing a particular convex functionφ(·). As can be seen from equation (4.4), the gradient

of φ(·) maps the expectation space into the natural parameter space and this mapping is

called thelink function. Estimatingθ using conditional maximum likelihood leads to

θ∗ = ArgminθDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (〈x,w〉)

)
= ArgminθDφ

(
y
∣
∣
∣

∣
∣
∣ E

y∼exp〈θ,y〉−φ∗(θ)
[y]
)
.

(4.5)

Thus the objective(4.1)can be also seen as finding the member from the exponential family

that fits the empirical conditional expectationsy, subject to regularization.

4.1 Formulation

The key objects of our study are the properties of (4.1) and algorithms to minimize it. From

equation (4.5), it should be clear that whenφ(·) is known, this is a well understood problem

with existing and well vetted algorithms (McCulloch and Searle, 2001), (Pietraet al., 1997).

The novelty is in optimizing over the infinite dimensional space ofφ(·). In light of this

optimization, however, even equation (4.5) takes on new complexities. As we optimize

iteratively overφ, we will not know the value ofφ(·) everywhere (after all we only have

finitely many evaluations of its gradient), in fact we will not have any direct representation

of φ(·) at all, making evaluation of (4.5) impossible. The optimization algorithm has to deal

with this.

A major source of complication and one of the reasons why formulation (4.1) can-

not be trivially handled over to a standard convex optimization package is that φ is a func-

tion, hence infinite-dimensional. There are no basis set for such functions, making (linear)

parameterization that is both complete and contained impossible.

The fact thatφ(·) couples the divergence as well a one of the arguments, is an-

other significant impediment. It prevents us from exploiting a strikingly nice property of
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Bregman divergences that the minimizer of some associated optimization problemsbecome

independent of the choice of the convex function used to define the divergence, a prototypi-

cal example is Proposition 1 of Banerjee et al. (2005). The following result obtained in our

prior work (Acharyya et al., 2012) comes closest to our current need:

Lemma 12. (Acharyya et al., 2012) If the Bregman divergenceDφ

(
·
∣
∣
∣

∣
∣
∣·
)

is separable, and

R↓ the set of vectorsy in Rn that are in sorted order, that is,vi < vj if i < j then the

minimizerArgminy∈R↓Dφ

(
x
∣
∣
∣

∣
∣
∣y
)

is independent ofφ for all x ∈ domφ(·).

Unfortunately these results are for the uncoupled case and cannot be used directly.

So in what follows, we have to overcome: (i) infinite dimensionality and (ii) coupling. We

will, however, make use of the following property although somewhat indirectly.

Corollary 2. LetA be a symmetric positive definite matrix that defines the squared Ma-

halonobis distance, the minimizerArgminy∈R↓ ||x− y||2A, is independent of the choice of

A if it diagonal.

Proof. Squared Mahalonobis distance||(x)−(y)||2A is a Bregman divergence and separable

whenA is diagonal.

4.1.1 Uniqueness of the Minimum

For a fixed, strictly convexφ, equation (4.5) has an unique optimum because (4.5) is strictly

convex. In formulation (4.1) bothw andφ(·) vary, so it is important to know whether

the joint optima is unique. We show thatDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
is jointly convex in the

functionφ(·) and vectorw. Thus with a strictly convex regularizerR(w) the optimum is

unique inw.

Theorem 4. If φ ∈ C then the functionalDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
is jointly convex inφ,w.

Proof. Let θ = 〈x,w〉 andθ̄ = αθ1 + (1 − α)θ2. It will then be sufficient to show that

Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
is convex ing(·) andθ.RecallDφ

(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
= φ(y)+ψ(θ)−
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〈y,θ〉 is the Fenchel-Young gap:φ(y) + φ∗(θ)− 〈y,θ〉 defined in Chapter 2 and denoted

here byF
(
φ
θ

)

.

Showing joint convexity is equivalent to showing

A
︷ ︸︸ ︷

αF
(
φ1

θ1

)

+ (1− α)F
(
φ2

θ2

)

≥

B
︷ ︸︸ ︷

F
( α

(

φ1

θ1

)

+
(

(1−α)φ2

θ2

)

)

.

A = [αφ1 + (1− α)φ2]
(

y
)

+ αψ(θ1) + (1− α)ψ(θ2)−
〈
y, θ̄

〉
.

B = [αφ1 + (1− α)φ2]
(

y
)

−
〈
y, θ̄

〉
+ [αφ1 + (1− α)φ2]

∗
(

θ̄
)

.

A−B = αφ∗1(θ1) + (1− α)φ∗2(θ2)− [αφ1 + (1− α)φ2]
∗(θ̄)

= αφ∗1(θ1) + (1− α)φ∗2(θ2)− [(αφ1)
∗ ⊕ ((1− α)φ2)

∗](θ̄)

= αφ∗1(θ1) + (1− α)φ∗2(θ2)−
[

min
z

(αφ1)
∗(z) + ((1− α)φ2)

∗(αθ1 + (1− α)θ2 − z)
]

≥ 0, obtained by settingz = αθ1

Corollary 3. If φ(·) is convex andR(w) is strictly(strongly) convex then the cost function

(4.1) infφDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
+ cR(w) is strictly(strongly) convex inw.

Using equation (2.4)Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
can be represented in terms of the

function φ∗ asDψ
(
Xw

∣
∣
∣

∣
∣
∣∇φ (y)

)
. Obviously, the cost function continues to enjoy the

uniqueness of the minimum, but what is interesting is whether it is also jointly convex in

this representation.

Theorem 5. If φ∗ ∈ C thenDψ
(
Xw

∣
∣
∣

∣
∣
∣∇φ (y)

)
is jointly convex overφ∗ andw.

Proof. Follows from a similar sequence of arguments as used in Theorem 4.
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Fenchel-Young Divergence:It should be evident from the proof of Theorem 4 that

using the Fenchel-Young gap formφ(y) + φ∗(Xw)− 〈y, Xw〉, instead of the divergence

formDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
gets rid of the coupling present in the divergence form. The

values computed by both the forms are of course equal when both are welldefined. We now

argue that the Fenchel-Young gap representation is to be preferred because it widens the

scope of the formulation from differentiable convex functions to closed convex functions.

At the (at most finitely many) points where a closed convex functionφ(·) is not

differentiable, the expression for the Bregman divergence becomes ambiguous. There are

not one, but many “gradient” like (lower bounding) functions defined atsuch points, called

subgradients. One among them needs to be chosen to evaluate the expressionφ(y)−φ(x)−
〈y − x, ∂(x)〉 . Some such choices aresup∂(x) 〈y − x, ∂(x)〉, inf∂(x) 〈y − x, ∂(x)〉 (Ki-

wiel, 1988).

For our purposes, however, this ambiguity is artificial. Note thaty lives in the do-

main ofφ(·) whereasθ = Xw lives in the domain of the dual,φ∗(·). The function(∇φ)−1

was enlisted to bringθ into the domain ofφ so that the divergence could be evaluated.

However, using the Fenchel-Young gap form one can evaluate the same divergence directly,

without the need for a mapping, which as we have shown may cease to be unique (or even

exist) at certain points in the domain.

The Fenchel-Young gap form has been calledgeneralized Bregman divergencein

literature (Gordon, 1999), however since the same term has also been used to describe

φ(y) − φ(x) − sup∂(x) 〈y − x, ∂(x)〉 we prefer the more explicit name Fenchel-Young

divergence.

4.1.2 Role of Curvature and Smoothness of the Divergence

Let us denote(∇φ(θ))−1 by s(θ) and a small positive number byǫ. A scenario that we

must avoid is the following:||y − s(θt)|| → 1
ǫ > 0 yetDφt(y||s(θt)) → 0. The limiting

φ(·) andw so obtained would be useless as devices of prediction or recovery. Bregman
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divergence being the “excess” of a convex function over its local linearapproximation, it is

possible to reduce the divergence between two distant points by making the convex function

approach linearity in between. Let us examine the nature of the degeneracy by considering

a sequence of functions

lim
t
φt(y) → ay + c.

In this case the limiting Fenchel-Young divergence is given by

lim
t
φt(y) + φ∗t (θ)− θy →







0 if θ = a

∞ otherwise
.

Thus our cost function may approach zero even if||y − s(θt)|| → 1
ǫ > 0. This can be

achieved by settinglimt φt(y) → θiy+ c, in the interval[yi, s(θi)) for all i. Note, however,

that this cannot done arbitrarily. Convex functions are restricted to havemonotone increas-

ing gradients, hence the degenerate situation is possible only whenθ andy are in the same

order. Thus as long as the components ofθ are distinct, this degeneracy is not a problem in

case of a ranking application, because we want the cost to be zero whenθ andy are in the

same order. However, it must be ensured thatθ does not converge to a vectorc1. For this

we would require a data dependent condition that min
v∈Range(X),t∈c1

||v − t|| > 1
ǫ .

Restricting theφ(·) optimization in (4.1) to a subset ofC with a minimum, non-zero

curvature clearly prevents such a degeneracy. This subset is denoted byCs and is the set of

s−strongly convex functions.

Enforcing curvature has the following additional benefits: (i) Strong convexity in

φ(·) (equivalently Lipschitz continuity in(∇φ)−1(·)) facilitates prediction. Without further

assumptions the function(∇φ)−1 can at best be known at finitely many points. Curvature

and Lipschitz continuity allow one to make principled extrapolation outside of those points.

(ii) Smoothness and curvature play an important role in yielding faster convergence rates of

the optimization algorithms as shown in Table 4.1. The functionφ(·) is irrelevant to the rank
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C⋆ R(w) Convergence Rate Algorithm
Convex Strictly Convex 1√

T
Gradient Descent (GD)

Convex Strongly Convex 1
T

Accelerated GD
Convex and smooth Strictly Convex 1

T2 Accelerated GD
Convex and smooth Strongly Convex and smooth exp(−λT ) Accelerated GD

Table 4.1: Convergence rates of gradient descent based algorithms

order and hence plays a lesser role in making rank predictions. However, strong convexity

controls the ‘learning capacity’ of the function and directly affects its generalization.

Usually, constrained optimization is more time consuming than unconstrained and

therefore one might anticipate that restricting the curvature ofφ(·) in optimization (4.1)

comes at a higher computational burden. However, not only is there no extra computational

burden, the presence of curvature gives rise to very fast convergence, summarized in Table

4.1.

Total and Uniform Convexity: As convenient as curvature restriction is, there

is no denying that it rules out many continuously differentiable strictly convex functions,

for examplelog(
∑

exp(xi)). This begs the question can the uniform curvature restriction

be relaxed. Indeed, the weakest restrictions under which this is possible, without making

assumption on the dataX is thatφ(·) belongs to the class

{

φ|δ
(
1

ǫ

)

= inf
||x−s(θ)||≥ 1

ǫ
>0
Dφ

(
y
∣
∣
∣

∣
∣
∣s(θ)

)
> 0

}

.

For reasons of convenience, we work with a slightly stronger, sufficient class called

uniformly strictly convex, these are functions that have a modulus ofuniformly strictly con-

vexitystrictly greater than 0 . The modulus ofuniformly strictly convexis defined as follows

δ(
1

ǫ
) = inf

||y−x||> 1
ǫ
, α∈[0,1]

αφ(x) + (1− α)φ(y)− φ(αx+ (1− α)y)

α(1− α)
.

Unlike modulus of strong convexity which is a number, the modulus ofuniformly strict

convexityof φ(·), is a function ofǫ. For any convex functionφ(·) this modulus is (i) non-
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decreasing, (ii)o(||ǫ||d) for somed ≥ 0 i.e. ase → 0 δ(e) → 0. It can further be shown

that δ(t)t is non decreasing. We recovers−strong convexity by choosingδ(||y − s||) =

s||y − s||2. For an application where we do not want to be restricted to strongly convex

functions alone, one can choose an appropriateδ(·) and restrict the formulation (4.1) to

suchuniformly strictly convexfunctions. The modulus quantifies the trade off between the

distance||y − s|| and how small can the Bregman divergence be and further, satisfies the

properties of non-decrease ando(||ǫ||d) for somed ≥ 0.

For convenience we shall further impose that the modulus forφ(·) satisfiesδ(||y −
s||) = sγ−1||y − s||γ for γ ≥ 2. For such a functionφ(·) we obtain the following inequal-

ities

δ(||y − s||) ≤ 〈∇φ(y)−∇φ(s),y − s〉 ≤ ||∇φ(y)−∇φ(s)||∗||y − s|| (4.6)

where|| · ||∗ is the dual norm of|| · ||. Usingδ(||y − s||) = sγ−1||y − s||γ we obtain that

||∇φ(y)−∇φ(s)||∗ ≥ s||s− y||γ−1 and therefore

||(∇φ)−1(w)− (∇φ)−1(v)|| ≤ 1

s
||w − v||

1
γ−1
∗ (4.7)

in other words(∇φ)−1(·) is (1s ,
1

γ−1) Holder continuous. This is important because the

gradient of the cost functionDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
with respect toθ and evaluated at some

particularφ(·) has the same smoothness coefficient as(∇φ)−1(·).
Holder continuity of the gradient will be beneficial because gradient based algo-

rithms that are optimal in the first order oracle model for convex functions with (Lν , ν)

Holder continuous gradients are known (Nesterov, 2013). They achieve a rate ofT− 1+3ν
2 .

Quite remarkably theaccelerated gradient method(see Section 4.2) that we recommend

for the case thatφ(·) is s−strongly convex, can be re-used for the Holder continuous gra-

dient case and still achieve the optimal rate (Devolder et al., 2011), provided an adjusted,

effective Lipschitz constant is used.

66



Although we can handleuniformly strictly convexfunctions, we emphasize that the

associated convergence rates are slower. Unless there are compelling reasons to consider a

class beyond strongly convex functions there are little justification for optingfor a slower

method.

4.2 Optimization

Convex Marginal Function:

In the forthcoming analysis a prominent role will be played by the convex marginal

functions infφ∈C⋆Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
, they will be collectively denoted bym⋆ (w).

Note thatm⋆ (w) is a function ofw alone. It follows from joint convexity (established in

Theorem 4) that the marginals are convex, but do they also inherit smoothness of gradients

? In the next Lemma we establish that if we minimize over convex functionsφ(·) for which

(∇)−1φ(·) is l Lipschitz continuous, this property continues to hold for the marginal.

Lemma 13. If φ(·) is 1
l strongly convex, then the convex marginal functionml(w) =

infφ∈Cl Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
has a gradient with Lipschitz constant at leastl.

Proof. Let φ̃ ∈ Argminφ∈Cl Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw1)

)
. ThenDφ̃

(

y||(∇φ̃)−1
(Xw)

)

is a

tight upper bound ofml(w) with the same gradient atXw1. Sinceφ̃ ∈ Cl, the upper bound

hasl Lipschitz gradient, therefore gradient ofml(w) has a Lipschitz constant at leastl.

An optimization technique that is very popular in machine learning when there are

two or more sets of variables that need to be optimized over, is block coordinate descent

(Tseng, 2001). However in our setting, naive block coordinate minimizationoverw and

φ does not readily apply. First of all, it is not clear how one may optimize over the space

of functionsC⋆ without parameterization. Secondly, even if one could optimize over the

infinite dimensional setC⋆, for a fixedw, the optimizingfunctionneed not be unique be-

causeDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
is only convex inφ(·) and not strictly so. This is problematic
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Gradient Descent (Nemirovski, 2001) Accelerated Gradient Descent (Nemirovski, 2001)

Input: ∇m⋆ (·), a, b
Initializew0, t = 0.
repeat
wt+1 = wt − a

b+
√
t
∇m⋆ (wt)

until Converged

Input: ∇m⋆ (·), Lipschitz constantl
Initializew0, a0 = 1, t = 0.
repeat
xt = wt − 1

l
∇m⋆ (wt)

at+1 =
(1+

√
4(at)2+1)

2

wt+1 = xi +
at−1
at+1 (x

t − xt−1)
until Converged

Table 4.2: Accelerated and (un-accelerated) Gradient Descent

because in absence of other assumptions, unique attainment of block-wiseminimum is re-

quired for convergence of block coordinate descent (Bertsekas, 1999). In our case even the

otherwise standard optimization over thew block requires special consideration because

we cannot evaluate the cost function. This is so because the functionφ(·) will neither be

known in closed form, nor everywhere.

On the other hand if we could compute the gradient of

m⋆ (w) = infφ∈C⋆Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
and minimizem⋆ (w) +R(w) with this infor-

mation, we would have achieved objective (4.1). This is the strategy we adopt. The novelty

primarily lies in constructing an efficient computational scheme to obtain the gradient. The

proposed gradient computation scheme will be referred to asGradMaPr . We shall soon

see that its time complexity is at mostlog factor worse than computing the gradient of the

GLM loglikelihood with aknowng(·). The gradient, once computed, will be used in an op-

timization algorithm that is optimal in the black-box first order oracle sense (Nemirovski,

2001) exploiting smoothness properties that the gradient may have. The only concern in the

latter part is that the optimization algorithm that uses the gradient must not require function

evaluation. Now we state the kind of rates that could be achieved with an optimalgradient

based method, assuming that we would be successful in computing the gradient ofm⋆ (w).

Gradient descent (Table 4.2 left) optimizesm(w) + R(w) s.t. φ ∈ C such that

sub-optimality

m(wt) +R(wt)− inf
u
[m(u) +R(u)] ≤ O(

1√
t
).
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Accelerated gradient descent (Table 4.2 right) optimizesm(w) +R(w) s.t.φ ∈ Cl
such that sub-optimality

m(wt) +R(wt)− inf
u
[m(u) +R(u)] ≤ O(

1

t2
).

Note that wherever the algorithms in Table 4.2 require the gradient, a call to the

functionGradMaPr will be made. Setting aside the details ofGradMaPr that we shall

describe shortly, the Table 4.2 shows the complete algorithms for optimizing our cost func-

tion (4.1).

4.2.1 GradMaPr : Gradients by Marginalization and Projection

If one can compute a (sub)gradient ofinfφ∈C⋆Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
, one can optimize the

functional (4.1). Computing the (sub)gradient is the goal of this section. For ease of refer-

ence we will call the proposed gradient computation methodGradMaPr . What one does

with a (sub)gradient once computed is a concern separated fromGradMaPr itself, and

any optimization algorithm that can work without function evaluation, or any variational

inequality solver will suffice. The key here is to tackle the infinite dimensionality of φ(·).
Accomplishing this efficiently, and without loss of generality is one of the key contributions

of the chapter.

A striking feature ofGradMaPr is that, in spite of the infinite dimensional struc-

ture, the time complexity of computing the gradient is at most alog factor worse than the

GLM case: the linear in the dimension ofw whereas forGradMaPr the complexity is

O(d log d). In terms of time complexity, the added generality obtained over a fixed GLM

by virtue of searching over all possible convex functions comes at minimal extra cost.

Recall that the setsC, Cl, Cs, Csl are all closed. This follows because the limit of a

sequence of convex (alternatively, convex with Lipschitz gradient, strongly convex, strongly

convex with Lipschitz gradients) functions is a convex (alternatively, convex with Lipschitz

gradient, strongly convex, strongly convex with Lipschitz gradients) function. Thus we can
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replaceinf by min in the expressioninf
φ∈C⋆

Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
. Using subdifferential

calculus (Rockafellar, 1996) we obtain

∂θmin
φ∈C⋆

Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
∈ ConvHull

φ∗∈Argmin
φ∈C⋆

Dφ

(
y

∣
∣
∣

∣
∣
∣(∇φ)−1(θ)

)
{(∇φ∗)−1(θ)− y}. (4.8)

To realize equation (4.8) word for word in an algorithm would entail computingthe set

{φ∗} = Argminφ∈C⋆Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
first and then the subgradient from it. However

it is the first step that is problematic because it involves an infinite dimensional optimization

over the space of functions. The remaining of this section is about how to circumvent this.

Circumventing the Computation of φ∗

In the forthcoming analysis, an important role will be played by the following range sets

S(θ) , {s|s = (∇φ)−1(θ), φ ∈ C}, Sl(θ) , {s|s = (∇φ)−1(θ), φ ∈ Cl},

Ss(θ) , {s|s = (∇φ)−1(θ), φ ∈ Cs}, Ssl (θ) , {s|s = (∇φ)−1(θ), φ ∈ Csl }.

They will be collectively denoted byS⋆ when smoothness and/or strong convexity is not

important to the discussion.

A vector s ∈ S ⋆ (θ) is in correspondence with eachφ ∈ C⋆ that satisfiess =

(∇φ)−1(θ). Each suchφ(·) incurs a costDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (θ)

)
. We define the function2

M⋆ (s,θ) using their minimum

M⋆ (s,θ) , min
φ∈C⋆|s=(∇φ)−1(θ)

Dφ

(
y
∣
∣
∣

∣
∣
∣s
)
= min

φ∗∈C⋆|s=∇φ∗(θ)
Dψ
(
θ
∣
∣
∣

∣
∣
∣∇φ (y)

)
using (2.4)

(4.9)

2This defines all the variantsM(s,θ),ML(s,θ),M
s(s,θ),Ms

L(s,θ) and the wildcardM⋆ (s,θ).
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Now, note that our original objective (4.1) is equivalent to minimizing

min
s∈S⋆(θ),θ,Xw=θ

M⋆ (s,θ) + inf
Xw=θ

cR(w). (4.10)

What the reformulation (4.10) achieves is that now we have a finite dimensional optimiza-

tion problem overS ⋆ . that is equivalent to the infinite dimensional optimization (4.1).

Although the functionφ(·) does not occur in the cost (4.10) any more we still have not

circumvented the computation ofφ∗ because it is needed to evaluate the functionM⋆(s,θ).

However, let us establish some useful properties ofM⋆ (s,θ).

Theorem 6. The functionM⋆ (s,θ) is convex ins ∈ S⋆

Proof. Consider two pointss1, s2. For a fixedθ, each correspond to functionsφ∗1 andφ∗2

that achieves the minimum as indicated in (4.9), incurring the costDψ
(
θ
∣
∣
∣

∣
∣
∣∇φ (y)

)
with the

respective functions. Now consider the pointαs1+(1−α)s2 = α∇φ∗1(θ)+(1−α)∇φ∗1(θ)
whereα ∈ [0, 1]. It is clear that it corresponds to the functionαφ∗1 + (1 − α)φ∗2. The cost

functionDψ
(
θ
∣
∣
∣

∣
∣
∣∇φ (y)

)
has already been proved to be jointly convex 5.

Optimizing M⋆ (s,θ): The (sub)gradient ofM⋆ (s,θ) can be computed by differ-

entiating (4.9) and is obtained as follows:

∂sM⋆ (s,θ) = ConvHull

φ∗∗∈Argminφ∗∈C⋆|s=∇φ∗(θ)Dψ
(
θ

∣
∣
∣

∣
∣
∣∇φ(y)

)
([∇2φ∗∗])

−1
(∇φ∗∗(θ)− y)

= ConvHull

φ∗∈Argmin
φ∈C⋆|s=(∇φ)−1(θ)

Dφ

(
y

∣
∣
∣

∣
∣
∣s
)
[∇2φ∗](θ=∇φ(s))(s− y). (4.11)

The Hessian[∇2φ∗] is a diagonal positive definite matrix sinceφ∗ is separable and convex.

The derivative ofM⋆ (s,θ) w.r.tw is obtained similarly as

∂wM⋆(s,θ) = X† [∇2φ∗∗]

φ∗∗∈Argminφ∗∈C⋆|s=∇φ∗(θ)Dψ
(
θ

∣
∣
∣

∣
∣
∣∇φ(y)

)
∂sM⋆(s,θ) = X†(s−y). (4.12)
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In (4.10) we have recast (4.1) as a regularized optimization featuringM⋆ (s,θ), to which,

it seems, we could apply (sub)gradient descent in the joint space(s,w) using (4.11) and

(4.12). Even if we could, this is strongly discouraged because the components of the gra-

dient is clearly linearly dependent. Observe, however, that we still do not have a computa-

tional scheme to identifyφ(·)∗∗ that is required to compute∂sM⋆ (s,θ) numerically.

Descending along MarginalizedM⋆ (s,θ):

An alternative approach that is worth exploring is to use an optimal descentmethod

with respect tow on the marginal functionminsM⋆ (s,θ) using its gradient, that is, we

short circuit gradient descent steps ons by minimizing it fully for a givenw and then take

a gradient step alongw, potentially saving several intermediate steps. Recall thatM⋆ (s,θ)

itself involves a conceptual optimization overφ ∈ C⋆, and now we have to minimize it

further overs to obtains∗(θ) = ArgminsM⋆ (s,θ).

If we could carry out the minimization overs, the subgradient of the marginal would

be:

∂w inf
s∈S⋆(θ)

M⋆ (s,θ) = X†∂θ inf
s∈S⋆(θ)

M⋆ (s,θ) = ConvHulls∗(θ)X
†(s∗(θ)−y). (4.13)

Perhaps surprisingly, as we shall show soon (Theorem 7), not only iss∗(θ) unique, it is

independent ofφ∗ but also can be computed very efficiently (inO(d log d) time whered is

the dimension) as

s∗(θ) = Argmins∈S⋆(θ) ||y − s||2. (4.14)

This computation is the core ofGradMaPr and is the key that makes solving (4.1), or

equivalently solving (4.10), not only a possibility, but also very efficient.For the sets

Ss,Sl,Ssl , the key steps ofGradMaPr remain the same, it consists of marginalization

and projection. The different instances ofS⋆ only changes what set the aforementioned

projection is computed on. To explainGradMaPr further requires an explanation of the

conic structure of the setsS⋆ (θ), which is what follows.
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4.2.2 RepresentingS⋆ (θ) by Linear Inequalities

Central to our efficient computation ofs∗(θ) via (4.14) are two algorithmic devices (i) Breg-

man’s algorithm for solving linearly constrained convex optimization problems (Bregman,

1967) and (ii) The pool adjacent violators (PAV) algorithm (Best and Chakravarti, 1990).

In fact the latter is a specialized invocation of the former. Both require the representation of

the constraints as a set of linear inequalities, whereas the representation of S⋆ (θ) described

so far does not have that form. In this section we give an alternative characterizations of the

setsS⋆ (θ) that will enable the use of PAV and Bregman’s algorithm.

LetA be the adjacent-difference matrix. Now consider the sets

G(θ) = {s|As ≤ 0} = G(θ),

Gl(θ) = {s|lAs ≤ Aθ} = G
1
l (θ),

Gs(θ) = {s|Aθ ≤ sAs ≤ 0} = G 1
s
(θ),

Gsl (θ) = {s|lAθ ≤ lsAs ≤ sAθ} = G

1
l
1
s

(θ). (4.15)

collectively calledG⋆ (θ) andG⋆ (θ) respectively.

Lemma 14.

S(θ) = πθG(θ),

Sl(θ) = πθGl(θ),

Ss(θ) = πθGs(θ),

Ssl (θ) = πθGsl (θ)

whereπθ is the inverse permutation operator that sortsθ = Xw in ascending order. When

the components ofθ are not all unique, the sorting operator is also non-unique. In this

case we formG⋆ (θ) as described by considering the unique values ofθ only and then add

equality constraint for every replicated value occurring inθ.
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Proof. We showS⋆(θ) ⊂ G⋆(θ) andG⋆(θ) ⊂ S⋆(θ). The first subset relation follows from

the facts that inverse gradient ofC, Cl, Cs, Csl are monotone, strongly monotone, monotone

and Lipschitz continuous, and strongly monotone, Lipschitz continuous respectively. We

show the second subset relation, by explicitly constructing an appropriateconvex function

starting from the setG⋆ (θ).
To seeG(θ) ⊂ S(θ) consider the integral of the monotonic curve(θ, s), it is clearly

convex. To obtainSs(θ) from Gs(θ) integrate the monotonic curve(θ, s− sθ). To obtain

Sl(θ) from Gl(θ) we use what may be calledinfimal de-convolution. Integrate(θ, s), to

form a convex function, compute its Legendre conjugate, (this will be strongly convex),

subtract the function1l || · ||2, (this will be a convex function), then take its Legendre trans-

form.

Corollary 4. s∗(θ) = πθ

(

Argminv∈G∗(θ) ||v − (πθ)
−1(y)||2

)

Proof. Follows from separability ofφ(·), theorem 7 and Lemma 14.

Now let us get back to the central claim thatArgmins∈S⋆(θ)M⋆ (s,θ) and hence

∂w infs∈S⋆(θ)M⋆ (s,θ) is unique and independent ofφ∗.

Theorem 7.Argmins∈S⋆(θ)M⋆(s,θ) is unique, independent of the minimizingφ∗s defined

in (4.9)and obtained as the Euclidean projection ofy onS⋆ (θ).

Proof. From (4.11), the KKT conditions ofmins∈S⋆(θ)M⋆ (s,θ) are:

s(θ)− y ∈ ([∇2φ∗])
−1N (S⋆ (θ)) ands(θ) ∈ S⋆ (θ).

The matrix([∇2φ∗])
−1 is positive definite and diagonal. Now observe that the

KKT conditions are exactly the definition of the projection ofy on S ⋆ (θ) according to

the squared Mahalonobis distance defined by the matrix([∇2φ∗])
−1
, which according to

Corollary 4.1 is independent of([∇2φ∗])
−1 if S ⋆ (θ) has the conic structure of sorted

vectors, as already shown in Lemma 14 and elaborated further in Section 4.2.4. Observe that

the matrix([∇2φ∗])
−1 was the only term that depended on a particularφ∗. This concludes

the proof.
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Corollary 5. The subgradient defined in(4.8) is

∂wm(w) = ∂w inf
φ∈C⋆

Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)

= X†∂θ inf
φ∈C⋆

Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)

= ConvHull

φ∗∈Argmin
φ∈C⋆

Dφ

(
y

∣
∣
∣

∣
∣
∣(∇φ)−1(θ)

)
X†{(∇φ∗)−1(θ)− y} = X†(s∗(θ)− y).

Proof. m(w) andinfs∈S⋆(θ)M⋆ (s,θ) are the same function.

4.2.3 Kernelization

Observe that, on taking the regularizerR(w) to be||w||2 in (4.10) we obtain

w∗ =
1

c
X†(s∗(θ)− y)

where the optimals∗(θ) has to be determined from the training set. An immediate conse-

quence of this is thatθ and consequently the formulation can be posed entirely in terms

of a kernelK(·, ·) and the parameterα = s∗(θ) to be determined. To see this note

θ = Xw = XX†α = Kα and therefore (4.1) is equivalent to

min
α

1

n
Dφ

(
y
∣
∣
∣

∣
∣
∣Kα

)
+ c||α||K .

We do not pursue this further as it lies beyond our scope, but the methodsto do it is straight-

forward and well known (Grunwald and Dawid, 2005).

4.2.4 Convergence ofGradMaPr in Linear Time

The gradient computation usingGradMaPr takes finite and no more thanOd log d time.

This comes about as a result of reducing the gradient computation to variants of isotonic

regression which we then solve in time upper bounded by linear function of the dimension.
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To achieve this we will use the fact that the pool adjacent violators (PAV) algorithm can

compute the squared Euclidean projection on the monotone cone in linear time. This by

itself is not sufficient, but for two other results we have shown (i) the Mahalonobis projec-

tion on the same cone defined by any diagonal matrix coincides with the squared Euclidean

projection, and (ii) even if the monotone-conic structure is not apparent, itcan, in our case,

be obtained following some affine transformations, detailed further in this section. After

the said transformations have been applied, the constraint set still may not be conic, for

example, when we have Lipschitz constraints on(∇φ(·))−1. In such cases, however, the

constraint set will be of the form of an monotone cone intersected with an affine manifold

(linear equality constraint) of special structure. For this special structure, we shall show that

PAV followed by a single update of Bregman’s projection obtains the solution regardless of

the diagonal matrix used to define the Mahalonobis projection.

That the PAV algorithm can compute isotonic regression in linear time is known.

However, it appears that algorithm employed to solve the Lipschitz continuity constrained

variant, and the consequential improved time complexity bound achieved, is new. It im-

proves upon the best known bound for solving isotonic regression under Lipschitz conti-

nuity constraints. Indeed the journal paper (Yeganova and Wilbur, 2009) is exclusively on

developing a finite time, quadratic time complexity algorithm for the problem, whereas here

it is solved in finite time but with linear complexity and is further invariant to changes in

the the diagonal matrix used to define the Mahalonobis projection.

Recall from Theorem 7 thats∗(θ) is the projection ofy on the setS ⋆ (θ), and

Lemma 14 provides a characterization ofS ⋆ (θ) in terms of linear inequalities. Clearly

Bregman’s algorithm applies. Rather than invoking Bregman’s algorithm generically, we

exploit the special structure present inS⋆(θ), in particular the fact that the equivalent linear

inequalities are in terms of the adjacent-difference operatorA. This form is particularly

suited to the pool adjacent violators algorithm (PAV).
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Pool Adjacent Violators

The pool adjacent violators algorithm solves the following problem

min
v

||v − y||2 s.t. Av ≦ 0 (4.16)

called the isotonic regression.A is the adjacent difference matrix and the symbol≦ in-

dicates that each row ofAv ≦ 0 may either be an equality constraint or an inequality

constraint.

PAV is essentially an instance of Bregman’s algorithm using block projections. It

runs infinite timeand a straight-forward implementation scales asO(d2) whered is the

dimensions. However Grotzinger and Witzgall (Grotzinger and Witzgall, 1984) observed

that if implemented carefully it remarkably has linear complexity. It can, however, be easily

adapted to handle both lower and upper bound constraints on the components ofv as well

as equality constraints on some of its adjacent components, all while maintaining the same

time complexity.

In the remaining of the section we adapt the PAV algorithm to the different con-

straint setsG(θ), Gl(θ), Gs(θ) andGsl (θ). The key is to ensure linear runtime of the algo-

rithm.

Restricted Output Space:As mentioned earlier in the introduction, one may have

additional information about the structure of the output space of each scalar valued pre-

diction yi. It arises for example when predicting probabilities, in that case we know that

(∇φ)−1(〈xi,w〉) ∈ [0, 1] ∀i. Since we are restricted to convex output spaces and hence in-

tervals, such structure can be easily incorporated by the addition of lowerand upper bound

inequalities to our characterization of the setsG(θ), Gl(θ), Gs(θ) andGsl (θ). For the pav al-

gorithm, this causes no loss in computational complexity. These additional lowerand upper

bound inequalities are dropped from our description of setsG(θ), Gl(θ), Gs(θ) andGsl (θ)
for notational simplicity. Note however that if the trainingy itself is constrained to be in

77



the Cartesian product of such intervals, no extra inequalities need be added as the training

prediction is by nature of the pav algorithm constrained to lie in the interval spanned byy.

CaseG(θ):
Here the constraint set used by the PAV algorithm, namelyA(v) ≤ 0 coincides

with G(θ) therefore PAV can be used directly with no change.

CaseGl(θ):
In this case the constraint set is given bylAs ≤ Aθ and thus it does not exactly

match the form used by the pav problem. However with the simple change of variable

variables̃s(θ) = (ls− θ) the pav formulation is recovered exactly as

s̃(θ) = πθ(y)
(

Argmins̃ ||s̃− (πθ)
−1(y)||2 s.t. As̃ ≤ 0

)

.

CasesGl(θ),Gsl (θ):
Here unlike the two previous cases the inequalities are constrained both from above

and below:

As ≥ 1

s
Aθ and As ≤ 1

l
Aθ.

Since we can recoverGl(θ) as a special case ofGsl (θ) we discuss the latter only.

To our knowledge the algorithm with the best runtime complexity for solving the

isotonic regression problem over the setGl(θ) is the Lipschitz PAV algorithm (Yeganova

and Wilbur, 2009) that has a finite time complexity ofO(d2) whered is the dimensionality.

Here we obtain an orderO(d) improvement by proposing an alternative algorithm that has

a finite time complexity bounded byO(d) in the dimension. To explain the algorithm let us

split the variables (and the corresponding inequalities) to obtainAs+ ≤ −1
sAθ, As− ≤

1
lAθ, and 0 = s+ + s−.

We write the constraints in a more suggestive form by concatenating the variables
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as follows:( s+s− ).




A 0

0 A








s+

s−



 ≤




A 0

0 A








−θ
s

θ
l



 (4.17)

(

I I
)




s+

s−



 = 0 (4.18)

This variable splitting induces an equivalent/conformal split ony asy−, y+ and in

the cost function as follows.

min
(
s+
s− )

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣




s+

s−



− (πθ)
−1




−y+
y−





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

(4.19)

Now we can apply Bregman’s algorithm to the cost function (4.19) subject tothe constraints

(4.17) and (4.18). Note that the variabless+ ands− are decoupled in the constraints (4.17),

as well as in the cost function, hence the Bregman updates can be computedin parallel

using PAV in linear time (see section (4.2.4)). In the next step we need to project the

solution obtained on the constraint (4.18) leading to the update (see section (2.2.3))




s+

s−





t+1

=




s+

s−





t

+ c




I

I



 . (4.20)

However, since this update does not violate the constraints (4.17) this terminates the itera-

tions of Bregman’s algorithm and we obtain the optimum.

K Invariance We have established before that the minimizing the second argument

of a Bregman divergence over the monotone cone is independent of the Bregman divergence

as long as it is separable. As a result Mahalonobis distance projections onthe monotone

cone is invariant as long as it is defined byK, a diagonal positive definite matrix. Does the

invariance also hold for thisGl(θ),Gsl (θ) case ?
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Note that equation (4.17) defines projections on monotone cones, so they are clearly

unaffected byK. What remains to be shown is that constraint (4.20) remains unaffected as

well. Observe that because of variable splitting intoy−, y+ , the matrixK gets replicated

along the diagonal in (4.19), therefore (4.20) continues to maintain the constraint (4.18).

Convergence Rates of Realizable Algorithms:Now that we can compute the gra-

dient ofm(w) we can realize the algorithms described in Table 4.2. If we optimize over

φ ∈ Cs (equivalently overs(θ) ∈ Sl(θ) with l = 1/s) Lemma 13 ensures that the gradient

will have a Lipschitz constantL, this coupled with accelerated gradient descent obtains a

convergence rate ofO( 1
T 2 ). Optimizing overC (equivalently overS) obtains convergence

rate ofO( 1√
T
). Both the rates are optimal for first order methods uniformly in the dimen-

sion.

4.3 Prediction

We consider two types of prediction problems:

1. predicting they corresponding to an unseen test pointx and

2. predicting the complete order over the set of new test items represented as rows of an

unseen test matrixXt.

Recall that the prediction is given by(∇)−1φ(〈x,w〉). Although we obtainw explicitly at

the end of the training phase, an explicit representation ofφ(·) is not obtained. In factφ(·)
cannot be obtained uniquely because the cost function is only convex inφ(·) and not strictly

convex. We only know the optimalφ(·) via its inverse gradients at the training points. For

a new test pointx we can, however, narrow the prediction down to an interval.

Let w∗ be the optimalw returned by the algorithm, letθt = 〈w∗,x〉, θl =

max〈X(i),w〉≤θt 〈X(i),w〉, θu = min〈X(i),w〉≥θt 〈X(i),w〉 and the correspondingy’s be

yl, yu. Then the predictiony corresponding tox is given as:
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y ∈







[yl, yu] when (4.1) optimized overC

[max(yl, yu − L(θu − θ)),min(yu, yl + s(θ − θl))] when (4.1) optimized overCs

[max(yl, yu − l(θu − θ),min(yu, yl + l(θ − θl))] when (4.1) optimized overCl.

Continuity: Note that the prediction function is a point-to-set mapping, note in

particular that this point-to-set-mapping is continuous at the training points, where conti-

nuity of a point-to-set-map is defined in the usual way (Rockafellar, 1996)as follows: A

point-to-set-mapy(x) is continuous if for all sequencesxt → x there exists ayt → y such

thatyt ∈ y(xt).

Recoveringφ(·): Although we cannot recover an uniqueφ(·) one instance it can

be recovered upto agreement with the training data. To obtain such an estimate, one needs

to select a continuous function from the point-to-set mappingx 7→ ȳ(x), where we usēy

to indicate a selection. Taking the Legendre dual of the integral of the curve x 7→ ȳ(x)

obtains a desiredφ(·).
Restricted Output Space: If we have incorporated the restriction on the outputs

space in the definition ofG ⋆ (θ) as indicated in Section 4.2.4, there is little that needs to

be done at prediction time. If testx is such that〈w∗,x〉 ∈ [mini 〈w∗,xi〉 ,maxi 〈w∗,xi〉]
nothing needs to be done as the prediction functiony(x) will automatically guarantee the

output space interval constraints. On the other hand if〈w∗,x〉 lies outside of the range

thresholding may be necessary.

4.4 Non-agnostic Case

As a pedagogic shortcut we have motivated the cost function (4.1) using the notion of a

vectoru that achievesy = g(Xw) = (∇φ)−1(Xw) exactly. The optimization algorithms

presented, however, do not require the existence of such au. They obtain the minimum
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regardless. If, however, there is prior knowledge to indicate that sucha perfectu exists,

much more efficient techniques may be applied to recover it.

First observe that theperfectu assumption implies the following{∃φ ∈ C⋆ s.t.Xu ∈
∇φ(y)} ≡ {Xu ∈ (πy)

−1
G⋆ (πy(y))}. When the regularization onw is specified using

a setW the vectoru can be obtained as the following convex feasibility problem

θ ∈ {(πy)−1
G⋆ (πy(y)} ∩ {XW}. (4.21)

Any such convex feasibility problem may be solved by both the sequential aswell as the

parallel Bregman’s algorithm (see section 2.2.3), the specific Bregman divergence used in

Bregman’s algorithm to obtain convex feasibility, does not matter. It is therefore advanta-

geous to choose the divergence for which the projections are the simplestto compute. The

Bregman projection on the set{(πy)−1
G⋆ (πy(y)} can be computed in linear time by the

PAV variants discussed in Section 4.2.4, as long as the Bregman divergence is separable.

In general, computationally convenient projections on two different sets may be

obtained by two different Bregman divergences. Using different Bregman divergences,

tailored to the different sets is well explored in the context of these problemscalled the split

feasibility problem (Censor and Elfving, 1994).

For our framework, two cases are particularly convenient: (i)W is anℓ2 ball and

(ii) W = {z| ||z||2
X†X ≤ L}. Choosing the Bregman divergence to be squared Euclidean,

we obtain the projection on{(πy)−1
G⋆(πy(y)} in linear time by the PAV algorithm and the

projection on the setW reduces to a regularized least squares in case of (i) and is obtained in

closed form for case (ii). Both the solutions can be obtained in time linear in the dimension.

In this case we obtain an overall linear convergence rate (Deutsch and Hundal, 2006), as is

the case if we apply ADMM to the same problem (Luo, 2012).

It is known that if the intersection of the sets specified in the CFP problem is non-

empty both the sequential and parallel Bregman’s algorithm converges to a feasible point

(Censor and Zenios, 1997). On the other hand if the intersection is empty, the parallel Breg-

82



man’s algorithm converges to a point that minimizes the sum of the Bregman divergences

from the specified sets. On the other hand the sequential Bregman algorithmconverges to a

limit cycle, where the projections on each of the sets themselves converge (and thus exhibits

cyclic behavior).

Note that the case where the intersection is empty conforms to the agnostic case, i.e.

there is nou that achieves a0 lossDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
. It is important to remember,

however, that though the parallel Bregman’s algorithm obtains a solution in this agnostic

case it does not optimize the cost function (4.1) and is dependent on theφ(·) used to obtain

the Bregman projections.

4.5 Sensitivity to Perturbation

So far we have largely motivated our cost function (4.1) assuming thaty equalsg(Xu) ex-

actly. An equivalent re-statement of this unrealistic assumption, is that we obtain aperfect

empirical estimate of the conditional expectation (from an unknown GLM). This was a ped-

agogic device, used only to motivate the cost function. The proposed algorithm minimizes

the cost function regardless of whether the noise-free assumption holdsor not.

In practice we only have access to samples drawn from the conditional distribution.

Thus a vital question is: how well does the proposed algorithm perform in amore realistic

setting. We denote our estimates byw∗ andw̃∗, they correspond toy andỹ respectively

and hence satisfy the following conditions:

w∗ = Argminφ∈C⋆,wDφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
+ cR(w) (4.22)

w̃∗ = Argminφ∈C⋆,wDφ
(
ỹ
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
+ cR(w). (4.23)

Now we quantify

• how far can the estimatẽw∗ be fromw∗ when theỹ used by the algorithm is||ỹ −
g(Xu)|| away fromg(Xu) , and
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• with what probability does the proposed algorithm recoverw∗ with accuracy||w̃∗ −
w∗|| ≤ ǫ.

The latter is computed without assuming aparticular form of the exponential family that

generated the samplẽyis, but with the assumption, thatỹi were drawn independently con-

ditioned onxi from some unknown exponential family satisfying some curvature assump-

tions on its (negative)-entropy, for example: the negative entropy iss-strongly convex, orδ

uniformly convex. Both are proven by quite elementary techniques.

4.5.1 Deterministic Case

Lemma 15. (Rockafellar, 1996) Letqi, qj be the squared Euclidean projections ofpi,pj

on any closed convex setC, i.e. qi = ProjC (pi) = Argminx∈C ||x − pi||2. Then||qi −
qj || ≤ ||pi − pj ||.

Lemma 16. Letx∗ = Argminy f(y) wheref(·) is a differentiable,s(K)-strongly convex

function under the|| · ||K norm then||x∗ − x||K ≤ ||∇f(x)||K−1 .

Proof. The gradient of as(K)-strongly convex function iss(K)-strongly monotone, there-

fore 〈∇f(x)−∇f(x∗),x− x∗〉 ≥ s(K)||x − x∗||2K . Invoking Holder’s inequality with

the dual norms|| · ||K and || · ||K−1 we obtain||∇f(x) − ∇f(x∗)||K−1 ||x − x∗||K >

s(K)||x− x∗||2K .

Lemma 17. LetRn ∋ y = g(Xu) with g ∈ {(∇φ)−1|φ ∈ C⋆}. If expression(4.22)

is minimized overφ in the classCsl then‖u − w∗‖A†A ≤ 2l

√

2R(u)
s and if expression

(4.22)is minimized withφ in the class of uniformly convex function with modulus of uniform

convexityδ(·) and withL−Lipschitz continuous gradient thenw∗‖A†A ≤ 2l
√

δ−1(2R(u))

Theorem 8. LetRn ∋ y = g(Xu) with g ∈ {(∇φ)−1|φ ∈ C⋆} and

w̃∗ = Argmin
φ∈C⋆,w

Dφ
(
ỹ
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
+ cR(w).
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Let the regularizerR(·) be continuously differentiable andsR(K)-strongly convex where

K is any positive diagonal matrix.

||w̃∗ −w∗||K ≤ ||ỹ − y||XK−1X†

csR(K)
. (4.24)

Proof. w∗ is the stationary point ofmins∈S⋆ 1
nM(s,w)+R(w) = 1

nm(w)+R(w). From

(4.12) we have∇wm(w) = X† ProjS⋆ (y). Wheny is corrupted intõy we obtain the

corrupted gradient∇wm̃(w) asX† ProjS⋆ (ỹ) . Let w̃∗ be the stationary point of̃m(w) +

R(w).

||ỹ − y||XK−1X† ≥ ||∇θm̃(w∗)−∇θm(w∗)||K−1

= ||∇θm̃(w∗)||K−1

≥ csR(K)||w̃∗ −w∗||K .

K Invariance: A distinguishing characteristic of the bound (4.24) is that one can

tighten them by selectingK. We emphasize that the algorithm itself is oblivious to the

choice ofK, it is the bound that holds for allK that are positive definite and diagonal,

allowing it to be tightened. The reason it is possible to do so is because of the property that

the projection onS⋆ is invariant to the choice ofK.

4.5.2 Probabilistic Case

So far in this section we have not made any probabilistic assumption on howỹi is generated.

Now we shall assume thatg(·) is the expectation function of a canonical GLM (McCulloch

and Searle, 2001), equivalently:

P (y|x) = e〈x,u〉y−φ
∗(〈x,u〉).
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If each component of̃y is a conditionally independent sample drawn from the distribution

above, what can one claim about the probabilityP (||w̃∗ − w∗||K ≤ t). We bound this

probability simply be recognizing that this can be bounded as

P (||w̃∗ −w∗||K ≤ t) ≥ P (||ỹ − y||XK−1X† ≤ csR(K)t) . (4.25)

We will first provide a bound assumingC⋆ = Cs i.e the set of alls-strongly convex functions,

and then relax the restriction to the larger class ofuniformly convex functionswith a known

modulus of convexity. Both of them are specializations of Cramer’s theorem.

Theorem 9. Lety have the probability densityP (y|x) = e〈θ,y〉−φ
∗(θ) and let the entropy

function bes(XK−1X†)-strongly convex. Then

P (‖w̃∗ −w∗‖K) ≥ 1− exp
(

−σ
2
ts(K)2

)

for s(K) the modulus of strong convexity of the regularizer we use

Proof. Plugging in the result that as−strongly convex function is uniformly convex with

modulusδ(||x||) = s||x||2 in Theorem 16 in Appendix B.1 obtains the result.

Theorem 10. Lety have the probability densityP (y|x) = e〈θ,y〉−φ
∗(θ) and let the entropy

function be uniformly convex with the modulus functionδ(·) with norm|| · ||K−1 . Then

P (‖w̃∗ −w∗‖K) ≥ 1− exp (−δ(ts(K)))

Proof. Follows directly from Theorem 16 in Appendix B.1.

4.6 Comparing with Isotron

Kalai and Sastri introducedisotron (Kalai and Sastry, 2009) updates for which they

showed performance guarantees for the loss||y − g(Xw)||2 for an unknown but Lipschitz
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continuous monotone functiong(·), in contrast our focus has been on keeping our estimate

w̃∗ close tou. The first surprising and impressive fact aboutisotron is that its non-

convex cost function admits such guarantees, especially when the updated parameters were

not shown to converge either to the local or to the global optimum of the cost function, or to

anything at all. Theisotron update was more stated than derived, adding to the mystery.

This naturally provokes the question, where do the updates come from, or stated differently,

can those updates be derived by following some standard optimization methodology.

Comparing the Isotron update and its improved variantglmtron , with the ones

proposed here lifts the mystery. One can see that theisotron update is upto differences

in learning rate, the same as the gradient descent update derived for theG(θ) case, whereas

theglmtron update is upto differences in learning rate, the same as the gradient descent

update derived for theG ⋆ (θ) case. Bothisotron andglmtron use, what in our

framework would be updates with learning rate fixed at unity.

Thusisotron andglmtron updates are actually unit step size gradient de-

scent updates on the cost function (4.1) rather than of||y − g(Xw)||2. As much as this

observation sheds new light onisotron andglmtron , it also exposes one of their

rectifiable limitations, that is, using step size fixed at unity. As shown in Section 4.2, (Table

4.2 right) considerable acceleration may be obtained by exploiting the smoothness proper-

ties of the gradients, especially so forglmtron , because its gradients inherit the Lipschitz

smoothness from the cost function (4.1).

To answer why should one even consider minimizing (4.1) when one is concerned

with the loss||y − g(Xw)||2, one only needs to realize that under the Lipschitz continuity

assumption they make ong(·) (equivalent to strong convexity assumptions onφ(·)), formu-

lation (4.1) is a convex upper bound of||y− g(Xw)||2 (assuming the same regularization).

Dφ
(
y
∣
∣
∣

∣
∣
∣(∇φ)−1 (Xw)

)
≥ s

2
||y − g(Xw)||2

Thus in addition to being interesting in its own right formulation (4.1) also turns out to
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be an effective surrogate function (Reid and Williamson, 2009) for the nonconvex loss

||y − g(Xw)||2.
Comparison of the Results:

In this section we compare the nature of the results obtained here with those ob-

tained in (Kalai and Sastry, 2009) and its improved variant (Kakade et al.,2011). First we

note that the current work was not motivated by the need to provide a surrogate function

view of theisotron andglmtron algorithms. Given the independent development

the connection came as a pleasant surprise. In spite of the similarities, there are some sig-

nificant differences in the results shown. We believe quite a few can be carried over to the

other.

1. For the non-realizable caseisotron andglmtron analysis applies to arbitrary

densities whose conditional expectation operator is Lipschitz continuous and mono-

tone. The corresponding analysis here considers a wider class of expectation oper-

ators (those that are Holder continuous) it is less general in that it only considers

exponential family densities satisfying those constraints.

To be comparable in generality withisotron andglmtron it needs to be shown

that exponential family densities satisfying those constraints form a dense cover of ar-

bitrary densities whose conditional expectation operator is Lipschitz continuous and

monotone. Given that maximum entropy under constraints also obtains the density

that is mini-max distant in the KL sense of all densities that satisfy the same con-

straints (Grunwald and Dawid, 2004), we are hopeful that the dense cover condition

holds.

2. isotron andglmtron algorithms and the associated analysis apply only to the

Lipschitz continuous case, whereas those developed here apply to a larger class of

Holder continuous transformg(·).

3. For the realizable case, i.e. when au exists such thaty = g(Xu), isotron anal-
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ysis obtains a convergence rate ofO( 1
T ) whereas for the same realizable case the

projection methods discussed in Section 4.4 obtain exponential (also called linear)

convergence, i.e.O(exp−cT ). Furthermore unlike theisotron analysis Lips-

chitz continuity is not required.

4. Since theisotron andglmtron analysis is for vectorsx that satisfy||x|| ≤ 1 it

hides the nature of dependence of the convergence rates on the size ofthe input. This

is particularly relevant to bounds obtained in Section 4.5 because they allow achoice

overK to mitigate to a large extent the effects of a badly conditioned input. Often

there is predictive signal in the size of the input and although normalization onone

hand will make theisotron andglmtron analysis applicable, it will also erase

predictive information if present.

5. The non-realizable case is also analyzed in theisotron andglmtron papers

(Kalai and Sastry, 2009), (Kakade et al., 2011). The practicability of the correspond-

ing isotron algorithm is, as admitted by its authors, significantly weakened be-

cause it requiresm sets ofT examples withm > O(T log(T )/l)2 (l is the Lipschitz

constant assumed ong(·)) to provideO( 1
T ) bound on the expected error. This is

significantly salvaged inglmtron but results are not comparable with ours.

4.7 Revisiting the Cost Function

We would like to highlight what (4.1) accomplishes in terms of maximum likelihood. It

might be tempting to interpret it as if we are choosing a particular member over allexpo-

nential family distributions that maximizes the likelihood of the observed data. Thisis not

what (4.1) optimizes. A careful study of the series of equalities show that though minimiz-

ing the Bregman divergence is indeed equivalent to maximum likelihood whenφ(·) is fixed,

that interpretation does not hold when one optimise’sφ(·) because the termlogP (y | θ∗)
is no longer constant.
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We provide the following (equivalent) interpretations that can serve as alternative

formulation statements

• (∇φ)−1(·) is the expectation function of the exponential family density with negative

entropyφ(·), thus the cost function clearly tries to match the empirical expectation

over the true expectation over the familyG(L) by minimizing the Bregman loss in-

duced on the expectation parameter space.

• Consider a measurable spaceY (with different measures defined on it) and the set

M(s) of all exponential family densities with expectations and a1
l strongly concave

entropy function.Y∗, the dual ofY is the space of all linear functions defined onY
and serves as the container of the parameter space ofM(s). Consider the setM(θ)

of all exponential family densities overY whose natural parameter space intersects

{θ = 〈x,w〉 |w ∈ W,x ∈ X}. Formulation (4.1) minimizes the KL divergence

KL (M(s)‖M(θ)) . KL divergence is not defined unless the measures are absolutely

continuous, this further restricts the optimization to that subset ofM(θ) that has the

same log partition function as the dual of the negative entropy function.

• Again consider the set of densitiesM(s). Each member will be associated with a

corresponding natural parameter spaceΘ. The formulation minimizes the ”distance”

between this natural parameter space and{θ = 〈x,w〉 |w ∈ W,x ∈ X} measured

according to the Bregman divergence induced on the natural parameter spaceΘ by

the log partition function that is dual to the negative entropy.
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Chapter 5

Consensus Ranking Using Bregman

Divergences

The key task addressed in this chapter is that of consensus-based unsupervised ranking of

vertices of a graph. It turns out that pagerank is a special case of our proposed method

where consensus is required only at an inter-vertex level, in a way that will be elaborated

further. We begin with a motivating example:

Alice, Bob and Carol are participating in a small academic conference where each

person is allowed to submit only one single-author paper and each author must review all

submissions. The rules of this hypothetical conference have been engineered for pedagog-

ical purposes. Alice is a well recognized expert, so it is desired that herreviews count for

more. However, rather than recognizing her “expertise” as a self declared quantity, a mea-

sure of her level of expertise is designed to emerge through a process of social consensus.

This process is modeled at two levels: “local” and “global”, or equivalently“intra-vertex””

and “inter-vertex” respectively. Defining this consensus algorithmically isthe subject of

this chapter.

We assume that reviewers evaluate the papers on the basis of multiple criteria.Each

reviewer is allowed to have a set of personal criteria according to which they assign a nor-
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malized score to a paper. It is possible that Alice, Bob and Carol have different notions

about what constitutes a good paper. Bob’s overall score for Carol’s paper is obtained as a

weighted average of Bob’s multi-criteria scores for Carol’s paper. Bob’s criteria may have

little or no overlap with other’s, however, the weights assigned to his criteria are decided

through a process of “local” consensus. Other reviewers have influence on the weights at-

tached to each of Bob’s criteria. One may ask why not weigh the personalcriteria uniformly.

Non-uniform weights are used to account for situations were Bob includes a criterion that

others might not deem very important, for example “how many of my own papers did the

reviewed paper refer to”.

The consensually agreed upon weights on Bob’s criteria only define the scores given

by Bob. To obtain the final score of a paper it is necessary to average out the scores given

by all the participants. It is in this “global” averaging process that the relative expertise

of the participants come in to play. Greater the expertise higher the weights, and like in

the local case, this too is decided through a process of algorithmically defined consensus.

This chapter deals with a principled scheme for obtaining such consensus driven scores and

rankings.

The task has multiple real-world applications. For instance it is not uncommon

for a participant of multiple online social networks (such as Linkedin, Facebook, G+ and

also different instant messenger networks such as Gtalk, Ymessenger,etc) to voluntarily

map their possibly different identities in the different networks into a common one, using

services like Openid. These common id’s can be used to conceptually tie the different

networks into a loose federation with common participants. This chapter suggests a way

of computing social standing of the participants in such a federation, whereeach edge is

labeled by the identity of the social network that the edge exists in.1

1To elaborate, Alice maybe connected to Bob through Linkedin and Facebook. Perhaps the first indicates
that they are colleagues and the second that they are also personal friends. Different people may use different
networks to organize their contacts into different roles. An engineer mayuse Linkedin for professional contacts
whereas a musician may use Myspace for the same. The task of defininga person’s social importance in this
combined network is isomorphic to the toy conference example given before, with the identity of the social
network acting as a proxy for different criteria.
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Some social networks, for example Google+ allow assigning different, private and

possibly overlapping roles to one’s contacts, organizing it into several circles of contacts.

The labels assigned to such circles are entirely unrestricted and thus are not comparable

across users. A user may have an implicit importance weight attached to eachcircle that he

or she may not be willing to divulge. These user assigned roles can also serve as different

criteria for ranking. This chapter provides a framework to rank such users even when the

weights are not available.

Consider the hyperlink graph consisting of the current blog posts of several blogs.

This graph is highly dynamic in nature and the cross references are almostalways tagged

by keywords of the authors’ choice. Pagerank based ranking on such a graph could benefit

from averaging out of the fluctuations. This chapter suggests how.

As a final application consider search engines that use link analysis to rank pages.

They also can benefit from taking into account the role that they think a particular link

plays in the graph, for example, navigational, commercial, endorsement of content, topical

description etc. Anchor text may be used to detect these roles. It might notbe very clear

what the weights on these roles should be. This chapter addresses how one may assign such

weights in a unsupervised but principled way.

The model is designed to address several kinds of uncertainty that may arise when

ranking in multigraphs. Although link analysis is a richly researched subject(Kleinberg,

1999b), (Brin and Page, 1998), the topic of how to achieve consensusunder uncertainty has

not received as much attention. The is an initial step in that direction.

Although one would like the ranking procedure to be as automated as possibleit

is often essential to have a mechanism to modify the results, for example to counter new

types of spam. One possible corrective intervention could be to define a desired partial

order among the vertices. Our approach also provides for this capability.In fact the local

recommendations obtained may be exclusively in the form of partial orders (rather than

rank-scores) that need to be aggregated and reconciled.
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Notation: Vectors are denoted by bold lower case letters. Theith component of the

vectorx is indicated byxi. When suitable, we also indicate theentirevectorx by decorat-

ing its ith component as follows:~xi. This form is used to convey succinctly how a vector

has been constructed from its components. Probability distributions used in thischapter

are discrete and also denoted by bold lower case letters, with the lettersp, q,ρ reserved

for them. The symbolT † indicates the transpose of matrixT. Random variables are also

indicated by capital letters.E
X∼p

[f(X)] represents the expectation of a functionf(·) of

a random variableX having a distributionp. Sets are denoted by (matching) calligraphic

letters, for instance random variableX takes values in a setX . The unit simplex is denoted

by ∆, its dimensionality will be implicit. For the most part we deal only with sets in the

Euclidean vector spaceRd. The notationR+
d will denote the positive orthant ofRd, and

R

d
ǫ will denote the set{x|x ∈ Rd ∩ xi > ǫ ∀i}, whereas the symbol∆ǫ will indicate the

set{x|x ∈ ∆ ∩ xi > ǫ ∀i} and the symbolN, the set{x|∑i xi ≤ 1 x ∈ R+}
Basic knowledge of convex analysis is assumed. Interior, boundary and closure are

denoted byint, bd andcl respectively, these are defined in terms of the native metric topol-

ogy. The only exception is for non-empty domains of functions that have empty interiors in

the native metric topology, in such cases we will consider the relative interior. The relative

interior is the topological space defined by intersection of open sets in the native metric

topology and the affine hull of the domain.ConvHull(·) andExtr(·) denote the convex

hull and the extreme points respectively.

In order to reduce the proliferation of symbols some are re-purposed. For example,

decoration with a∗ when applied to functions indicate the Legendre conjugation operation,

whereas when applied to variables denote some notion of optimality. With some abuse

of notation we will indicate the set of limit points of the minimizing sequencext of the

functionf(x) byArgInf f(x), that is, for all sequencesxt with limt→∞ xt = ArgInf f(x)

we havelimt→∞ f(x) = inf f(x). This just a notational convenience, there may not exist

anargumentwhich achieves the inf.
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Since we deal with Markov chains as well as optimization, there is an unfortunate

clash in terminology: “stationary point” is used to denote both a point where thecost func-

tion (or its Lagrangian) has a zero-gradient as well as a distribution that stays invariant

under a Markovian transition. To alleviate the potential confusion we will usethe term

“0-gradient” point in the optimization setting.

5.0.1 Contributions

In the chapter we try to answer “what is the analogue of pagerank in the scenario where

there is uncertainty over the edge weights of the (multi) graph?” That this is animportant

problem is motivated in the introduction with several applications. The originalpagerank

formulation is ill-equipped to provide an answer because it does not optimize any function.

To mitigate this, the chapter

• Obtains pagerank as a solution of an optimization problem whose cost function pe-

nalizes deviation of “local ranks” from the “consensus” rank.

• It establishes that pagerank may be obtained by minimizing such deviance from con-

sensus iff the cost function has the particular Bregman divergence form.

• The chapter provides algorithms that can be extended to the noisy multi-graphcase

and

• These iterative algorithms have simple and parallelizable updates that do not require

any onerous synchronization or locking.

5.1 Preliminaries

In this preparatory section we review pagerank. For readers who arefamiliar with the

background, this only serves to introduce notation. Subsequently, we give a mathematical

formulation of our general problem, albeit at a high level, the specifics of which are solved
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in the rest of the chapter. The problem include points of view that are both geometric as

well as information theoretic. We focus on the geometric view.

Pagerank: Some algorithms, such as pagerank (Brin and Page, 1998) and HITS

(Kleinberg, 1999b), rank vertices of a directed graphG by mapping the vertices inV toR.

They viewG as a distributed recommendation system where each vertex recommends other

vertices through its out-edges (directed edges that leave the vertex). Inpagerank thelocal

recommendationsby a vertexvi is represented as a|V| dimensional vectorti, whosejth

component denotes the strength of recommendation of vertexvj by vertexvi. The objective

then is to obtain a global rank-score.

A global rank-score may be obtained from the local scores by combining them. A

simple strategy is to use a convex combination, provided that the weights of combination are

known. Uniform weighting, although a possibility, is unjustified because it is not consistent

with the notion that vertices are inherently of unequal rank2. Thus, it is natural to seek

weights of combination that are some monotonic increasing function of the global rank-

score that it defines. The simplest relation between the weights and the global rank is the

identity function. This yields pagerank, provided the local recommendation vectors are

non-negative andL1 normalized.

Pagerank can also be viewed as the stationary distribution of a Markov chain that

traverses the underlying graph by following outlinks uniformly at random with occasional

jumps to a random vertex. These two modes of traversal are chosen independently at each

step, with probabilitiesα and1 − α. The second mode of traversal called “teleportation”

serves as a mechanism to ensure that the chain is aperiodic and ergodic even when the

underlying graph is not connected or acyclic.

Let A be the adjacency matrix of the graph andDout be the diagonal matrix of its

out-degrees,S a row stochastic “teleportation matrix”, usually taken to be1
N (1×1

†), where

1 is a column vector of ones. The transition matrix of the pagerank equivalentMarkov chain

2otherwise we would not be interested in ranking them.
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is

T = α×D−1
out ×A+ (1− α)× S.

From the property of aperiodic ergodic Markov chains it follows that the pagerank is

uniquely determined for any0 ≤ α < 1 and that the pagerank iteration

rt+1
i = α

∑

j∈Ni
rjtj i + (1− α)

1

N
(5.1)

converges to the primary eigenvectorρ of T †, the stationary probabilities of the Markov

chain.

Outline of Divergence Based Consensus Ranking Problem:

Keeping in view the pagerank approach, let us introduce the proposed divergence

based formulation used to solve the general consensus ranking problem.We skip over a

lot of detail as this is intended to familiarize the reader with the high-level features of the

underlying mathematical model. The finer details are filled in due course.

Consider a subsetS ⊂ Rn and a distance like divergence functionD(·, ·) : (S,S) 7→
R+ that only satisfies the requirementD(x,y) = 0 ⇐⇒ x = y. Following the pager-

ank interpretation that vectorsti represent the “local” recommendations by theith vertex,

a constructive definition of a consensus rank-score vector is a vectorr that is closest to all

such local recommendationsti. If however, the recommenders were to provide only the

sets of uncertaintyT i in which their rank score vectorti lies, the consensus may be defined

as:

r∗(w) = Argminr min
{ti∈T i}

∑

i

wiD(ti, r)

= Argminr min
{ti∈T i}

〈w, D(ti, r)〉 . (5.2)

The weight vectorw is a parameter that needs to be chosen. Here, we take inspiration from
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pagerank’s justification of the fixed point definition and choosew that satisfies

r∗(w) = Argminr min
{ti∈T i}

〈w, D(ti, r)〉 = w, (5.3)

Brouwers fixed point theorem guarantees that there is at least one such fixed point, however,

there is likely to be many, all of which are equivalent in terms of (5.3). In the event of

multiple solutions one can take an optimistic view or a pessimistic view, where one chooses

the fixed point that achieves the minimum distance

min 〈w, D(t∗i ,w)〉

s.t. w = Argminr min
{ti∈T i}

〈w, D(ti, r)〉

t∗i = min
r

Argmin{ti∈T i} 〈w, D(ti, r)〉

(5.4)

or one that chooses the fixed point that achieves the maximum distance

max 〈w, D(t∗i ,w)〉

s.t. w = Argminr min
{ti∈T i}

〈w, D(ti, r)〉

t∗i = min
r

Argmin{ti∈T i} 〈w, D(ti, r)〉 .

(5.5)

Specializations of (5.4) and (5.5) are the central problem that we solve in this chapter. It

should be readily apparent that for arbitrary divergence functionD, equation (5.3) is a

difficult, non-linear, implicitly defined and a cumbersome fixed point problem.One key

difficulty is that the functionr∗(w), defined in(5.2), whose fixed point we seek, is not

known in closed form, but specified (variationally) as an optimization problem. The obvious

questions that crop up are:

• whether there exists a solution

• whether the solution is unique
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• are there algorithms that provably converge to these fixed points from arbitrary ini-

tialization

• how fast do these algorithms converge.

We cannot address these questions for all divergence functionsD. We study specializations

that can be solved tractably with provable convergence guarantees. Weclaim that if we

restrictr to the setS ⊂ {x|∑i xi = c}, wherec is an arbitrary constant, the family

of Bregman divergences are the only choice forD such that for every choice ofti ∈ S

ther-minimization sub-problem (5.3) reduces to a linear eigen-problem. The guaranteed

existence of eigenvalues will play an important role in the algorithm proposed.

For the special case of (Legendre) Bregman divergences defined by “essentially

smooth” convex functions, it is quite surprising that we can solve (5.5) by dropping the

fixed point constraint. The constraint is automatically satisfied at the optimum. Wecannot

emphasize it enough that this simplifies the cumbersome, variationally specified fixed point

problem into a much simpler optimization problem.

Before considering the problem in full generality of Bregman divergences, we in-

troduce the details by considering a specific member: KL divergence. Thealgorithms work

almost word for word for any Bregman divergence defined onS without incurring much

additional complexity, allowing a practitioner to tailor the choice to an application.

We generalize to Bregman divergences in section 5.3 and finally generalizeto the

consensus ranking problem over setsTi in section 5.4.1. In section 5.3 we present some

new results concerning Bregman divergences that are vital to the derivation of the updates

that are used in the ranking algorithm. The scope of these new results are wide enough to

be of independent interest.
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5.2 Pagerank as Consensus OverVectors

As indicated in Section 5.1 we will pursue two different optimization theoretic routes to

consensus ranks, one that will correspond to equation (5.4) and the other to equation (5.5).

Both these formulations are designed to handle sets of uncertaintyTi, providing a way to

obtain consensus rank score vectorρ from the setsTi. Rather than discussing consensus

over sets right away, we build up gradually by considering consensus over vectorsti. In

other words, initially we treatTi = {ti} to be singletons to show that pagerank is naturally

recovered. This will clarify that the two routes are alternative generalizations of pagerank.

A key idea is to demonstrate that we are able to shed the fixed point baggage entirely, and

pose pagerank as an optimization problem. This will simplify the approaches (5.4) and

(5.5) significantly.

Quite remarkably, if we optimize the functions with the fixed point set constraint

removed, under conditions, the fixed point condition is automatically recovered at the op-

timum. This lets us convert a difficult variationally specified fixed point problem into an

optimization or a saddle point problem.

To solve (5.4) specialized to KL divergence and singletonTis we provide acon-

ceptualalgorithm that converges to the global minimum. Further we show that pagerank

is the limit point of this conceptual algorithm. This establishes that pagerank is indeed the

global minimum of unconstrained (5.4). However the cost function is not convex and may

have more than one minimum and the conceptual algorithm requires the global minimum

be obtained. In contrast, we provide a simplerealizablealternating minimization algorithm

parameterized by a penalty parameterβ that in the limit converges to the local minimum

of the cost function, and for finiteβ obtains the local minimum of an arbitrarily tight lower

bound. As an alternative to the Min-Min, alternating minimization formulation we reduce

(5.5) to a Max-Min saddle point problem by replacing the complicated fixed point constraint

by a simple nested unconstrained minimization over another auxiliary variable.

Thus pagerank is posed as the outcome of two separate optimization problems that
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differ in the degrees of convenience and generality offered. One of them uses a Min-Min

formulation, the other a Min-Max. The merits and demerits are summarized in table 5.1.

The curious reader may skip ahead and consult it, however, for full appreciation, familiarity

with the algorithms developed in sections 5.3.1 and 5.3.2 is necessary.3

5.2.1 Kullback Informatic, Optimistic Consensus OverVectors

As the first contribution we provide a novel cost function based view of pagerank. The

cost is directly motivated by a notion of rank/consensus quality and will serve as a stepping

stone in our path to a solution of the consensus ranking problem. Recall thatpagerank (Brin

and Page, 1998) was originally defined directly as the fixed point of an update, there were

no cost functions involved.

Although one may directly change the functional form of the pagerank updates, that

would be ad hoc. One also has to be careful so as not to disrupt the guarantees of conver-

gence. Rather than follow this route, we identify functions that pagerank isa minimizer

or a saddle point of. Once obtained, we add extra terms to that function to capture the

requirements of consensus.4

Pagerank, An Alternative View:

Recall that the recommendation graphG has outlinks that can be interpreted as a

local recommendation of the edge recipient by the donor vertex. The localrecommendation

of vertexvi is represented by anℓ1 normalized vectorti of dimension|V|. The weight of

3Both theMin-Min andMin-Maxoptimization formulations presented lead to corresponding solutions of the
unsupervised consensus ranking problem over setsTi. They differ in how the fixed point property is achieved
(by penalization in the first and by saddle point in the second) and what guarantees they provide.

4Formulations that only penalize the deviation from pagerank-stationarity, e.g.
minρminti∈T i KL

(∑

i ρiti‖ρ
)

or maxρmaxti∈T i

〈
ρ, [t1 · · · ti · · · t|V|]ρ

〉
are unsatisfying because

they cannot distinguish between multiple vectors that achieve pagerank-stationarity and does not offer
interpretation as a ranking quality measure.
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this donor vertex iswi. By pagerank convention

tij =







1
|Ni| if vi recommendsvj

0 otherwise.

The symbolNi represents the set of out-neighbors of the vertexvi. The normalized vectors

are stacked to form a matrixT such that theith rowT (i, ·) is ti†, just as discussed in section

5.1.

The optimal consensus can be defined as the vectorρ closest in KL sense to the

recommendations of all the vertices weighted by their importancew ∈ ∆. A regularizing

term enforces thatρ is close tos, a prior rank vector, usually taken to be uniform, andα is

a parameter in(0, 1). This leads to the cost function

F (w,ρ) = α
∑

wiKL (ti‖ρ) + (1− α)KL (s‖ρ) . (5.6)

The vectors and the parameterα play the same role as the jump probabilities in the original

pagerank formulation. For any choice ofw ∈ ∆, the global minimum is given by the

weighted average

ρ∗(w) , Argminρ F ((w,ρ)) = α
∑

i

witi + (1− α)s. (5.7)

Comparing equations (5.1) and (5.7) one can observe that pagerank formulation follows if

the weightsw happen to be identical to the consensus ranks, i.e. ifw = ρ∗(w). The reader

will note that this is exactly the condition (5.3). We will refer to this condition aspagerank

stationary condition.

Mean-ArgMin Coincidence: The coincidence of the minimum and the mean in

(5.7) is a consequence of a more general result involving Bregman divergences, of which

KL divergence is a special case. The general result is presented astheorem 17 (see Ap-
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pendix) and can be used to prove the useful expansion

F (w,ρ) = F (w,ρ∗(w)) + KL (ρ∗(w)‖ρ) . (5.8)

One may try to ensurepagerank stationarityby adding it as a constraint, yielding:

Minρ,w F (w,ρ) s.t. w = ρ, and w ∈ ∆. (5.9)

Note, the expression forρ∗(w) in equation (5.7) is for the unconstrained case and hence

the form need not apply for the constrained case (5.9). One may searchfor the minima of

(5.9) directly by eliminating the constraint in (5.9) by substitution, to yield:

Min
ρ
G(ρ) = Min

ρ
α
∑

ρiKL (ti‖ρ) + (1− α)KL (s‖ρ) . (5.10)

Let ρ∗ be the solution of the problem (5.9) or equivalently (5.10). An important question

is whetherρ∗ satisfiespagerank stationarity. The behavior of the constraint in (5.9) at

ρ∗ is critical to this stationarity question.5 The cost function is not convex and may have

multiple local minimum, however, as we shall show, the global minimum satisfiespagerank

stationarity. The demonstration will be a little elaborate because the conventional tools are

not well suited to analyze properties of global optimum. We shall introduce a penalty based

algorithm in section 5.2.2 that on one hand solves (5.10) and provides a proof of pagerank

stationarity on the other.

5Consider evaluating the functionG atρ∗ which is equivalent to evaluatingF (·, ·) at (w = ρ∗,ρ = ρ∗).
Let us restrictw = ρ∗ and relax the constraint onρ present in 5.9. Now if we re-optimize over the free variable
ρ and had the constraint been active at(ρ∗,ρ∗), the minima would shift to(ρ∗,ρ∗(ρ

∗)) and violate pagerank
stationarity. In this hypothetical case pagerank stationarity will not hold. Onthe other hand if the constraint is
inactive then pagerank andρ∗ will coincide.
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5.2.2 Min-Min Coordinate Descent Formulation

A deliberate and a persistent motif in this chapter is optimization through closed form

coordinate-wise updates. The coupling of the variablesρi, ρj in (5.10) makes it difficult,

therefore we work with functionF (·, ·) (5.9), where the variables are uncoupled (except in

the constraint). Our interest lies only in the feasible set(w = ρ) of the domain ofF (·, ·).
In order to focus on that region, we add a sequence of increasing penalty terms that is active

everywhere outside of the constraint set, and optimize this sequence of unconstrained, and

hence, decoupled cost functions by alternating minimization updates. The relation between

the cost functions is shown in figure 5.1 and figure 5.2.

We must, however, choose the form of the penalty function carefully to maintain

closed formed nature of the updates and it will also be critical in showing thatpagerank

stationarity is retained.
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Figure 5.1: Left: The red lineAA′ denotes the constraintw = ρ. The pagerank is(ρ∗,ρ∗)
and an arbitrary solution to problem (5.9) is(ρ∗,ρ∗). If the constraint in problem (5.9) is
relaxed the optima shifts from(ρ∗,ρ∗) to (ρ∗,ρ∗(ρ

∗)). Right: We add a penalty term that
is active everywhere outside the constraint setAA′ by adding sufficient penalty we may
increase the value at(ρ∗,ρ∗(ρ

∗)) to be greater than(ρ∗,ρ∗) and hence move the minima
towards it. Significantly enough, for the Penalty based optimization it converges to(ρ∗,ρ∗).

There are two important choices to be made: (i) the functional form of the penalty

term and (ii) the weight assigned to it. In the next few paragraphs we explain our choices.

One advantage of using KL divergence in expression (5.9) is the fact that the uncon-
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strained optimizer is available in closed form and that the form of the minimizer is linear

in t. Both these properties are important, the former is a convenience whereasthe latter

is essentialin the reduction of pagerank-stationarity to a linear eigen-problem. Hence itis

important that the penalty term we use also preserves the closed form and the linearity of

the minimizer. We show that both can be achieved by using a (i) penalty term thatis based

on the same divergence that is used in the unpenalized form, i.e. the KL divergence and

(ii) for a particular choice of the left right order of the arguments. Later we show that this

holds true for a larger class known as Bregman divergence and more critically that Breg-

man divergences are thethe onlyclass for which the reduction to a linear eigen-problem is

possible.

For generality and convenience, we absorb the parametersα ands into modified

distributionst̂i, and define a associated cost function that is a valid surrogate for (5.9), as

follows

t̂i , αti + (1− α)s andF̂ (w,ρ) ,
∑

wiKL
(
t̂i‖ρ

)
. (5.11)

Note that the optimality ofρ∗(w) and the correspondence with pagerank update are pre-

served forw ∈ ∆. This transformation has another consequence, now each component of

t̂i can be bounded below by(1− α)mini si. 6

Penalty Method Formulation

The optimization problem with the penalized cost function is the following:

F̂ (w,ρ) +
1− β

β
KL (w‖ρ) , 0 ≤ β ≤ 1, w ∈ ∆. (5.12)

It takes the same value as
∑

i ρiKL
(
t̂i‖ρ

)
on the setρ = w. Outside of this set the cost

function is penalized by1−ββ KL (w‖ρ) , smaller the value ofβ higher is the penalization.

Expression (5.12) can be minimized overρ andw using the updates

6This boundedness will turn useful later in ensuring progress towards constraint satisfaction, in particular
as a consequence of lemma 18 and 19, to be introduced shortly.
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Figure 5.2: Plots of the cost function on different sections of the product spacew × ρ.
AA’(in red) defines the constraint setw = ρ, BB’(in blue) defines the setρ = ρ∗(w).
The minimum cost function along these sections are scaled to a common X-axis cc’, alter-
natively CC’. Plotχ (in green) indicates

∑

iwiKL (ti‖ρ) for differentρ with w fixed at
the stationary value (in dotted green). It achieves a unconstrained global optima atP . The
function values are tracked for different values ofw for the two sections (i) the constrained
set AA’ to give curveκ (in red) and (ii) BB’ the set of unconstrained optimaρ∗(w) to give
the curveξ (in blue), upper bounded byκ and tight at pointP . Curvesξ andκ envelop the
optimal point of the cost function over the constrained set BB’ and AA’. The optima of the
curvesχ, ξ andκ are indicated by points colored, green, blue and red.

ρ∗
t+1(β,wt) = Argmin

ρ
F̂ (wt,ρ) +

1− β

β
KL
(
wt‖ρ

)

= β

(

α
∑

i

witi + (1− α)s

)

+ (1− β)wt and (5.13)

wt+1
i (β,ρ∗

t+1) = Argmin
wi,w∈∆

F̂ (w,ρ∗
t+1) +

1− β

β
KL
(
w‖ρ∗t+1

)

∝ ρt+1
i e−

αβ
1−β (KL(t̂i‖ρ∗t+1)−λ). (5.14)

106



t

t

t

t

1

2

3

t 5

4
�

1��

�

�

w

�

w

�+1

f

w

j

P

i

w

i

K

L

(

t

i

;

�

)

=

d

�

g

Figure 5.3: The penalty based updates: The estimate of the rank vectorρT (shown in
blue) in theT th iteration is computed in theρ update(5.13) as a weighted mean of the
vectorswT (shown in red) and̂ti (equation (5.11)) with weights(1 − β) andβwi respec-
tively. In the subsequent step, given by equation (5.14),w is updated by KL( or more
generally Bregman) projectingρT on the updated hyperplane (shown in green) defined by
{w|

〈
~wi,KL

(
t̂i‖ρT

)〉
= dT }, such that the symmetrized Bregman divergence betweenρT

andwT+1 is β
1−β times their Euclidean distance along the normal to the hyperplane.

The superscriptt indicates the iteration counter andλ in (5.14) imposes the normalization

condition. Both the updates are depicted geometrically in figure 5.3. Update (5.13) is a

weighted mean ofti, s,w. Update (5.14) is explored in more detail in Section 5.3.1, it is

an I-projection (see section 5.1) of the vectorρ on the hyperplane defined by the normal

direction
−−−−−−→
KL
(
t̂i‖ρ

)
and such that the projectionw on the hyperplane is at an I-divergence

of β
1−β times its Euclidean distance from the vectorρ.

Note that the cost function (5.12) is continuously differentiable, strictly convex in

ρ andw separately, and the alternating minimizers (5.13, 5.14) are uniquely achieved.

Thus it follows (Bertsekas, 1999) that iterations of alternate minimizers converge to the0-

gradient point of the cost function (5.12) (although, not necessarily tothe global optimum
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of (5.12)). It also follows that the global optimum of (5.12) satisfies the coordinate-wise

optimum relations (5.13), (5.14) for any finiteβ.

Using standard results for penalty based methods one can show that if the globally

optimalw,ρ∗ is obtained for everyβ andβ → 0 (i) the constraintw = ρ∗ is achieved in the

limit and (ii) w,ρ∗ achieves the global optimum of (5.10). Since the constraint is achieved

in the limit, from (5.13) we obtain optimalw = α
∑

iwiti + (1− α)s in the limit, which

is in exact equivalence with pagerank. We will make our arguments more formal when we

rephrase the method in the full generality of Bregman divergences in Section 5.3.1. The

updates (5.13, 5.14) help in proving that pagerank is the optimizer of (5.12)but does not

necessarily guarantee that this will be reached, because optimality is not guaranteed by the

updates (5.13, 5.14), only convergence to a0-gradient point is.

Lacking convexity in (5.9), satisfying the necessary KKT conditions is the best that

one can realistically aim for. Do the updates converge to a point satisfying the necessary

KKT conditions of (5.9) ? For penalty methods where convergence is guaranteed only to

a potentially non-optimal0-gradient point, the convergence to a KKT satisfying point is in

general not guaranteed in the limit. So what can one claim offρ∗
∞(β,w∞),w∞(β,ρ∗

∞)

asβ → 0 in this case ? We shall show that for strongly convex Bregman divergences

defined on a bounded domain, one can guarantee convergence to a0-gradient point of an

arbitrarily tight lower bound of (5.10).

Now we explore, how the magnitude ofβ affects the accuracy of our solution. We

present a couple of lemmas that sheds some light on the question.

Lemma 18. For two discrete distributionsp andq such thatmini pi ≥ ǫ andmini qi ≥ ǫ

the ratio of the forward and the backward KL divergenceKL(p‖q)
KL(q‖p) is bounded above by2ǫ .

proof: See appendix.

Lemma 19. Letminij t̂ij > ǫ and letρ∗ the minimum of(5.10)also satisfymini ρ
∗
i > ǫ.

Consider any point(ρ∗, ρ̃) lying between(ρ∗,ρ∗) and(ρ∗,ρ∗(ρ
∗)) and satisfying‖ρ∗(ρ

∗)−ρ̃‖
‖ρ∗−ρ̃‖ ≤
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δ
1−δ for a fixedδ ∈ (0, 1). For the penalized cost function(5.12)evaluated at(ρ∗, ρ̃) to be

higher thanF (ρ∗,ρ∗) it is sufficient that1−ββ ≥ 1
ǫ (2 +

δ
(1−δ)).

proof: See appendix.

Lemma 19 allows us to control the proximity of the optimum of the penalized opti-

mization problem (5.12) to the desired set ofw = ρ. Ideally we would require thatδ = 1

which would then satisfy thepagerank stationarity conditionexactly, however, in this case

the requiredβ becomes unbounded. We can however chooseβ so that the solution of (5.12)

is arbitrarily close.

For lemma 19 to be applicable we requireρi ≥ ǫ. If we choose(1−α)mini si ≥ ǫ

theρ updates in equation (5.13) maintains the boundρi ≥ ǫ providedw ∈ ∆ǫ, though

thew update (5.14) need not. However with a minor modification to update (5.14) we can

ensurew ∈ ∆ǫ. LetRd
ǫ = {x|x ∈ Rd ∩ xi > ǫ ∀i}. Consider the modification

F̂ (w,ρ) +
1− β

β
KL (w‖ρ) , 0 ≤ β ≤ 1, s,w ∈ ∆ ∩Rd

ǫ . (5.15)

The updates corresponding to (5.13) remain unchanged but those corresponding to (5.14)

changes to

wi ∝ ρie
−λi αβ1−β (KL(ti‖ρ)−λ), (5.16)

where the Lagrange multipliersλi have to be determined (numerically) such that the con-

straintw ∈ ∆∩Rd
ǫ is satisfied. Now notice that all preconditions of lemma 19 are satisfied,

hence we can state the following theorem:

Proposition 4. It is sufficient to set1−ββ ≥ 1
ǫ (2+

δ
1−δ ) in order to ensure that the minimum

of F̂ (w,ρ)+ 1−β
β KL (w‖ρ) , 0 ≤ β ≤ 1, s,w ∈ ∆∩Rd

ǫ is obtained at̃ρ that satisfies

the desired pagerank stationarity condition ofw = ρ with an arbitrary but bounded degree

of proximity that is controlled by the relation‖ρ∗(w)−ρ̃‖
‖ρ∗−ρ̃‖ ≥ δ

1−δ ∀w whereρ∗(w) is the

unconstrained solution of the optimization problem(5.6).

Proof. Follows directly from lemma 19.
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Figure 5.4: Shows a schematic view of the cost function (5.6) (in black) andthe penalized
cost function (5.12) (in red) for a fixedw set toρ∗. Though the figure refers to KL diver-
gence, the schematic applies equally to the general Bregman divergence case as well. To
represent this generality, the curves have been drawn to be non-convex. Bregman diver-
gences may be non-convex in the second argument but KL divergencein particular is not.
The pointρ∗ represents the unconstrained minimum of (5.6) for a fixed value ofw, here set
to ρ∗. The fractionsδ and1− δ are explained in the text.

5.3 Bregman Informatic Consensus over Vectors

In the rest of the chapter we generalize the ranking problem along two lines. One general-

ization is to consider Bregman divergences rather than KL divergences. This adds little

or no complexity to the algorithm developed. On the other hand this allows a practi-

tioner to choose a Bregman divergence appropriate for the application. All Bregman di-

vergences used in this chapter will be defined over a bounded subset of the affine manifold

{w| 〈1,w〉 = 1}, will be 1−strongly convex anddomφ∗ will be all ofRn. It can be easily

verified that KL divergences satisfy these conditions.

The second generalization addresses our final goal, that of consensus ranking. This

is achieved by considering local recommendations that are no longer restricted to be single
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vectors but to convex sets of vectors inR|V| that expresses the uncertainty over the rankings.

Before developing these extensions, recalling relevant background inconvex analy-

sis and Bregman divergences is absolutely essential. We also present new results concerning

properties of Bregman divergences that are not only interesting in their own right but critical

to the formulation.

In the interest of keeping the flow cohesive, the background as well asnew material

concerning Bregman divergences have been moved to Appendix 2.2. Wedo want to remind

the reader that it is essential to what follows and some of the contributions ofthis chapter

lay there.

We start with a simplerecipe to create Bregman divergences meeting the criteria

mentioned above. Let{yi}ni=1 be the extreme points of a polytope defined on{w| 〈1,w〉 =
1}. Let φ(x) = supθ 〈x,θ〉 − log(

∑n
i exp(θi, yi)). The functionφ(x) is strongly convex

and thus can be scaled to yield a1−strongly convex function. Furthermore its domain is the

convex hull of{yi}ni=1. Note that KL divergence can also be obtained by using this recipe

and choosing{yi}ni=1 to be the vertices of the unit simplex.

5.3.1 Bregman Informatic, Optimistic Consensus overVectors

The Bregman divergence based formulation is obtained by a direct replacement of the

KL divergence in formulation (5.12) with a Bregman divergence. Redefining F̃ (w,ρ) as

F̃ (w,ρ) ,
∑

iwiDφ

(
t̂i

∣
∣
∣

∣
∣
∣ρ
)

we obtain the Bregman divergence based coordinate-wise

Min-Min formulation:

min
w,ρ

F̃ (w,ρ) +
1− β

β
Dφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

s.t. 〈w,1〉 = 1. (5.17)

Consider the following conceptual7 algorithm:

7It is conceptual because it requires minimization of a non-convex function
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Initialize: Fix a seriesct → ∞. Sett = 0, 1−β
β = ct.

Repeat: Till wt = ρ
t

Compute: wt,ρt = Argminw,ρ F̃ (w,ρ) +
1−β
β Dφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

s.t. 〈w,1〉 = 1

Set: 1−β
β = ct+1

Return: ρ

Proposition 5. Running the conceptual algorithm above one obtains

• limt→∞wt → ρt and

• limt→∞ F̃ (wt,ρt) → infρ F̃ (ρ,ρ) s.t. 〈w,1〉 = 1.

Proof. Follows from specializing Theorem in Zangwill (1969).

The jointArgmin step in the algorithm above is intractable because of lack of joint

convexity. Thus, in the realizable algorithm we replace it by steps that achieve KKT ne-

cessity, by alternating minimization updates. As a consequence of theorem (17) part (C.3)

described in Appendix 2.2 theρ update remains the same as that derived for the KL diver-

gence case

ρ∗
t+1(β,wt) = Argminρ F̃ (w

t,ρ) +
1− β

β
Dφ

(
wt
∣
∣
∣

∣
∣
∣ρ
)

= β

(

α
∑

i

wt
iti + (1− α)s

)

+ (1− β)wt.

(5.18)

Thew updates are obtained as

wt+1 = Argminw F̃ (w
t,ρ) +

1− β

β
Dφ

(
wt
∣
∣
∣

∣
∣
∣ρ
)

(∇φ)−1

(

∇φ(ρt+1)− β

1− β
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
t+1
)
− λ

) (5.19)
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whereλ is the Lagrange multiplier enforcing the sum to1 constraint. Comparing equation

(5.19) with lemma (2) we can see that the 5.19 is the Bregman projection ofρ on a hyper-

plane whose normal direction is the vector
−−−−−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
− λ. This has been shown for the KL

divergence in figure 5.3.

From continuous differentiability of (5.17) and the fact that the alternate minimizers

(5.18) and (5.19) are uniquely achieved it follows that (5.18 and 5.19) converges to a0-

gradient point of (5.17), which is weaker than what the Proposition 5 requires. What can

we claim about these updates ? To make a quantitative claim, consider the function

J(ρ) = inf
w

〈

w, Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)〉

+ cDφ

(
w
∣
∣
∣

∣
∣
∣ρ
)
≤
〈

w, Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)〉

+ cDφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

(5.20)

that will be used as a surrogate.

Proposition 6. Let domφ(·) be bounded andφ(·) bes strongly convex. Then iteration of

updates (5.18, 5.19) withct = 1−βt
βt

→ ∞ converges to a0-gradient point of surrogate

J(ρ) that is a lower bound of(5.17)that can be made arbitrarily tight and

0 ≤ F̃ (ρ,ρ)− J(ρ) = Dφ

(
ρ
∣
∣
∣

∣
∣
∣(∇φ)−1




∇φ(ρ)−

−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)

c






)
≤ 1

sc
‖ domφ‖2.
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Proof. Let us introduce a shorthandd =
−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
, then

F̃ (ρ,ρ)− J(ρ)

=
∑

ρiDφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
− inf

w

[
∑

i

wiDφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
+ cDφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

]

= 〈ρ,d〉+ sup
w

[

〈w,−d〉 − cDφ

(
w
∣
∣
∣

∣
∣
∣ρ
)]

= 〈ρ,d〉+ sup
w

[〈w,−d〉 − cφ(w) + cφ(ρ)− c 〈ρ−w,∇φ(ρ)〉]

= 〈ρ,d〉+ cφ∗
(
c∇φ(ρ)− d

c

)

+ cφ(ρ)− c

〈

ρ,∇φ(ρ)− d

c

〉

− 〈ρ,d〉

= cDφ

(
ρ
∣
∣
∣

∣
∣
∣(∇φ)−1

(

∇φ(ρ)− d

c

)
)

= cDψ

(
∇φ(ρ)− d

c

∣
∣
∣

∣
∣
∣∇φ(ρ)

)
≤ c

1

s

∣
∣
∣
∣

∣
∣
∣
∣

d

c

∣
∣
∣
∣

∣
∣
∣
∣

2

.

Now update (5.19) can be recognized as tightening the bound (5.20) onJ(ρ) and update

(5.18) as minimizing over the tightened bound, thereby ensuring convergence to0-gradient

point ofJ(ρ).

We now present results on the proximity of the solution to satisfyingw = ρ for a

finite β, much analogous to section 5.2.2, but first recall a few preparatory relations.

Lemma 20. The following three point property

Dφ

(
x
∣
∣
∣

∣
∣
∣y
)
−Dφ

(
x
∣
∣
∣

∣
∣
∣z
)
= Dφ

(
z
∣
∣
∣

∣
∣
∣y
)
+
〈−−−−→
xi − zi,

−−−−−−−−−−−−→∇φ(yi)−∇φ(zi)
〉

holds for Bregman divergences.

Proof. Direct substitution of the definition of Bregman divergence yields the result.

Lemma 21. A Bregman divergence defined by a twice differentiable convex functionφ(·)
that has a modulus of strong convexitys and whose gradient∇φ(·) has a Lipschitz constant
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L can be bounded above and below as follows:

s

2
〈x− y,x− y〉 ≤ Dφ

(
x
∣
∣
∣

∣
∣
∣y
)
≤ L

2
〈x− y,x− y〉

Proof. For some0 < α < 1 andχ = αx+ (1− α)y we have, by intermediate value the-

orem thatDφ

(
x
∣
∣
∣

∣
∣
∣y
)
= φ(x)− φ(y)− 〈x− y,∇φ(y)〉 = 1

2

〈
x− y,∇2φ(χ)(x− y)

〉
.

Lipschitz constantL upper bounds the matrix norm of∇2φ(χ) whereas the modulus of

strong convexitys lower-bounds the matrix norm, obtaining the proof.

In general it will not be possible to specifyβ for which the updates converge to

a solution that respect the equality constraint exactly. However, similar to Section 5.2.2

we can under specific conditions give an apriori bound on the value ofβ for which the

constraints are satisfied to any arbitrary but finite degree of proximity.

Proposition 7. In order to have the optimum̃ρ of the problem(5.17)satisfy the relation
‖ρ∗−ρ̃‖
‖ρ∗−ρ̃‖ ≥ δ

1−δ for anyδ ∈ (0, 1), it is sufficient that1−ββ ≥ L(1s +
δ

1−δ ).

Proof. In order that there are no local minima betweenρ∗ and a arbitrary point̃ρwe require

the following inequality to hold: (see figure 5.4 )

1− β

β
Dφ

(
ρ∗
∣
∣
∣

∣
∣
∣ρ̃
)
≥ Dφ

(
ρ∗(ρ

∗)
∣
∣
∣

∣
∣
∣ρ

∗)−Dφ

(
ρ∗(ρ

∗)
∣
∣
∣

∣
∣
∣ρ̃
)

(a)
= Dφ

(
ρ̃
∣
∣
∣

∣
∣
∣ρ

∗)+
〈−−−−→
ρ∗ − ρ̃i,

−−−−−−−−−−−−→∇φ(ρ∗i )−∇φ(ρ̃i)
〉

.

The equality(a) is obtained from lemma (20). By dividing both sides byDφ

(
ρ∗
∣
∣
∣

∣
∣
∣ρ̃
)

we

obtain the equivalent condition

1− β

β
≥
Dφ

(
ρ̃
∣
∣
∣

∣
∣
∣ρ∗
)

Dφ

(
ρ∗
∣
∣
∣

∣
∣
∣ρ̃
) +

〈−−−−→
ρ∗ − ρ̃i,

−−−−−−−−−−−−→∇φ(ρ∗i )−∇φ(ρ̃i)
〉

Dφ

(
ρ∗
∣
∣
∣

∣
∣
∣ρ̃
) .

We prove the result by upper bounding the quantity on the right hand side of the

previous inequality. Substituting the lower and upper bounds obtained in lemma (21) we
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Penalty Saddle Point
Convexity Not Convex Convex
ρ Update Closed form Closed form
w Update Closed form or Numerical optimizationClosed form
Penalty Weight Requires unbounded growth Closed form
Numerical Stability* Maybe unstable Stable
Number of Iterations Undetermined Logarithmic

Table 5.1: A comparison of the penalty method and the saddle point based methods of
consensus ranking. (*) This is an empirical observation and not a claim based on error
sensitivity analysis. The tendency of the penalty terms to grow without boundin the penalty
based method makes their updates numerically unstable.

can upper bound the first term byLs . For the second term we invoke Cauchy -Schwarz

inequality to yield:

〈−−−−→
ρ∗ − ρ̃i,

−−−−−−−−−−−−→∇φ(ρ∗i )−∇φ(ρ̃i)
〉

Dφ

(
ρ∗
∣
∣
∣

∣
∣
∣ρ̃
) ≤ ‖ρ∗ − ρ̃‖ ‖ρ∗ − ρ̃‖L

‖ρ∗ − ρ̃‖2

≤ L

( ‖ρ∗ − ρ̃‖
‖ρ∗ − ρ̃‖

)

≤ L
δ

1− δ

which completes the proof.

5.3.2 Bregman Informatic Pessimistic Consensus and The Pagerank Game

Here we revisit formulation (5.5) in the context of Bregman divergences.Using properties

of Bregman divergence we can simplify

w = Argminr min
{ti∈T i}

〈w, D(ti, r)〉

asw = T ∗w whereT ∗ is a matrix with columnst∗i given byt∗i = minr Argmin
{ti∈T i}

〈w, D(ti, r)〉 .

Now we will show that how one can solve (5.5) by dropping the fixed point condition by a

reduction to a saddle point problems that does not have the fixed point constraint.

Proof. With specialization to Bregman divergence and the notational simplification one
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obtains:

max
w=T ∗w,〈1,w〉=1

〈

w, Dφ

(
t∗i
∣
∣
∣

∣
∣
∣w
)〉

(5.21)

a
= max
w=T ∗w

〈

w, Dφ

(
t∗i
∣
∣
∣

∣
∣
∣T ∗w

)〉

+Dφ

(
T ∗w

∣
∣
∣

∣
∣
∣r
)
−Dφ

(
w
∣
∣
∣

∣
∣
∣r
)

b
= max
w=T ∗w

〈

w, Dφ

(
t∗i
∣
∣
∣

∣
∣
∣r

∗)
〉

+Dφ

(
r∗
∣
∣
∣

∣
∣
∣r
)
−Dφ

(
w
∣
∣
∣

∣
∣
∣r
)

c
= max
w=T ∗w

〈

w, Dφ

(
t∗i
∣
∣
∣

∣
∣
∣r
)〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣r
)

(5.22)

d
= max

w
min
r

〈

w, Dφ

(
t∗i
∣
∣
∣

∣
∣
∣r
)〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣r
)

(5.23)

Equality (a) substitutesw = T ∗w and adds and subtractscDφ

(
w
∣
∣
∣

∣
∣
∣r
)
. Equality (b) fol-

lows from definitionr∗ = Tw∗, see (5.2). Equality(c) follows from the property of

Bregman divergence (C.8) (see Appendix). Note that in(d) the fixed point condition on

w has been dropped. To see(d) note that, ignoring constants, (5.23) is equivalent to

maxwmins∈domφ∗ 〈s, T ∗w −w〉 which is unbounded unlessT ∗w = w becausedomφ∗

is unbounded by construction. We ensure boundedness by construction, by choosing the

columns ofT ∗ such that1†T ∗ = 1
† ensuring that1 is an eigenvalue. Note that the vector

s acts as Lagrange multipliers for the fixed point condition, except that it is non-linearly

related tor as∇φ(r) = s. The same set of arguments can also be made to hold for
∑

iwi = c and choosing the columns ofT such that1†T = c1†.

For convenience we shall further assume and impose that ther component of the

saddle point of (5.23) is located in the interior ofdomφ.Note that this is consistent with the

original pagerank algorithm because itsteleportation jumpsalso imposes that the pagerank

is obtained in the interior of the simplex. Recall that, for convex functions of the Legendre

type, the norm of the gradient satisfies the following:

lim
r→bdφ

‖∇φ(r)‖ → ∞
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Therefore a convenient way to ensure thatr remains in the interior is to add the constraint

that‖∇φ(r)‖ ≤ 1
ǫ whereǫ is small positive number. With these changes we obtain:

max
w

min
r | ‖∇φ(r)‖≤ 1

ǫ

〈

w, Dφ

(
t∗i
∣
∣
∣

∣
∣
∣r
)〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣r
)

(5.24)

Before proceeding further, we quote the following Mini-Max theorem thatwill help us

ensure the existence of and the convergence to a saddle point in our result 8.

Theorem 11. (Rockafellar, 1996) page 393. LetF (·, ·) be a proper closed concave-convex

function with domainC ×D. If eitherC or D is bounded its saddle point exists equivalently

its minimax value equals its max-min value.

In relation to the saddle point formulation of pagerank, we consider the objective

functionG(w), defined variationally as

G(w) , inf
ρ | ‖∇φ(ρ)‖≤ 1

ǫ

m(ρ,w)

, inf
ρ | ‖∇φ(ρ)‖≤ 1

ǫ

〈

w,
−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣ρ
)
.

(5.25)

The maximizer ofG(w) will be indicated as:

w⋆ = ArgmaxG(w).

Lemma 22. The functionG(w) , infρ | ‖∇φ(ρ)‖≤ 1
ǫ

〈

w,
−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

is con-

cave inw and strongly concave whenφ(·) is strongly convex.

Proof. For any fixed value ofρ the cost function is concave inw because the first term is

linear inw and a Bregman divergenceDφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

is convex in its first argumentw. Since

the cost function is a point-wise infimum of a family of concave costs,G(w) is concave

in w. Strong concavity follows from the fact that everys-strongly convex functionφ(x) is

the sum of a convex function ands2‖x‖2, therefore point-wise supremum of a family ofs−
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strongly convex functions is a summation of a convex function ands
2‖x‖2.

Given the local rank-score vectorsti this leads us to propose the following consen-

sus ranking problem, that is guaranteed to have a unique optimum

sup
w
G(w) = sup

w
inf

ρ | ‖∇φ(ρ)‖≤ 1
ǫ

m(ρ,w). (5.26)

If equation (5.26) is to be optimized by using thesup and theinf operators, several key

questions need to be resolved, among them are

• whether the Min-Max formulation is equivalent to the Max-Min formulation.

• whether it maintains uniqueness, and finally

• do these formulations replicate the pagerank solution.

We resolve all of these affirmatively. In order to do so, we shall consider another function

g(ρ) , sup
w
m(ρ,w). (5.27)

Its minimizer will be indicated by

ρ⋆ = Argminρ | ‖∇φ(ρ)‖≤ 1
ǫ
g(ρ).

Unlike G(w), it is not straight forward to determine whetherg(·) is convex. Even if we

restrict ourselves to Bregman divergences that are jointly convex, it is not clear whether

g(ρ) is convex or concave, becausem(·, ·) evaluated at a fixedw is a difference of convex

functions. However for the caseW ⊂ {w| 〈w,1〉 = 1} we can prove the following lemma.

Lemma 23. The functiong(ρ) as defined in(5.27)with a setW ⊂ {w| 〈w,1〉 = 1} is a

convex function in the variable∇φ(ρ) and differentiable when the maximizer over the set

W in (5.27)is uniquely achieved.
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Proof. From equations (C.5) and (C.6) we obtain that for anyw ∈ W as defined, the func-

tion m(ρ,w) =

〈

w,
−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
〉

− Dφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

is a linear function of∇φ. The function

g(ρ) is a point-wise supremum of a family of linear functions. Thus it is convex in∇φ.
For the proof of differentiability note that whenever the maximizerw∗ of equation (5.27) is

unique it defines an unique gradient forg(ρ).

In view of the special structure of the functionm(ρ,w) we define a convex-concave

functionM(·, ·) as follows

M(∇φ(ρ),w) ,







m(ρ,w) if w ∈ {w| 〈w,1〉 = 1}

∞ otherwise
.

We are also able to verify the following claim:

Proposition 8. Subject to the constraint〈1,w〉 = 1, choice〈1, ti〉 = 1 ∀i, domφ ⊂
{w| 〈1,w〉 = 1} for a convex functionφ such that eitherdomφ or domφ∗ is bounded then

the following mini-max (saddle point) equations are satisfied:

MaxwG(w) = MaxwMinρ | ‖∇φ(ρ)‖≤ 1
ǫ

〈

w,
−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

= Minρ | ‖∇φ(ρ)‖≤ 1
ǫ
Maxw

〈

w,
−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣ρ
)

≤ φ∗( ~φ(ti)).

(5.28)

The optimumw∗ satisfies the pagerank-stationarity conditionTw∗ =
[
t1 · · · t|V|

]
w∗ =

w∗.

Proof. Since〈1,w〉 = 1 we can invoke proposition (17), in particular equation (C.5) in the

inner optimization overρ, as a result of which we obtain

MaxwG(w) ≤ Max
w∈domφ

Min
v∈domφ∗

− φ(w) +
〈

w, ~φ(ti)
〉

− [w,−1]†
[
t1 · · · t|V|,w

]
v.
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It is evident from the expression above and lemmata 23 and 22 thatm(·, ·) is concave in

w and linear in∇φ(ρ). If eitherdomφ or domφ∗ is bounded we can apply theorem 11 to

switch the order ofMin andMax and yet maintain equality.

The conditions〈1,w〉 = 1 and〈1, ti〉 = 1 ∀i ensure the existence of a vectorw̌

that satisfies[· · · ti · · · ]w̌ = w̌. We further assume that there exists a vectorρ̌ such that

w̌ is the optimal vector obtained. The condition~φ(ti) ⊂ [· · · ti · · · ] domφ∗ ∀ti ensures

the existence of such ǎρ. With w fixed atw̌ the corresponding optimalv is any vector

in domφ∗, certainly∇φ(ρ̌). Thusw̌, ρ̌) is a saddle point anďw satisfies the pagerank-

stationarity condition.

Example 3. Instantiating problem(5.28)for the KL divergence we observe that the result

(8) applies becausew lies in∆ which is a convex and compact set.

Regret Bounded Algorithms applied to The pagerank Game

Proposition 8 reduces the objective functionG(w) and, under appropriate conditions, the

cost functiong(ρ) to the two party gameMinρ | ‖∇φ(ρ)‖≤ 1
ǫ
Maxwm(ρ,w). As a result of

this reduction, any convex game solving algorithm may be applied to solve (5.26).

We choose to apply online “no-regret” algorithms to the saddle point problemin the

setting of fictitious plays. Our choice is motivated by the balance between the simplicity

of the individual updates and the convergence rate achieved Recall that φ is 1−strongly

convex by our choice, we show that for this case we can obtain a convergence rate of

O( log ττ ), whereτ is the number of iterations.

Online Regret Minimization: We describe online regret minimization in the set-

ting of maximizing concave functions because this is what we shall use, however such regret

minimization algorithms can equally well be posed as minimizing convex functions.

At each time stept an online regret minimization algorithm has to commit to a

predictionwt ∈ R ⊂ domΓt(·), before the concave objective functionΓt(·) is revealed.

The subsetR is convex and may be the entire domain. The instantaneousregret incurred
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at staget is defined assupw∈R Γt(w) − Γt(wt) whereas the regret over the entire epoch

[1, τ ] is given by

R(τ) = sup
w

τ∑

t=1

Γt(w)−
τ∑

t=1

Γt(wt).

If for any sequencew1 · · ·wτ predicted by an online algorithm and for anyΓt(·) drawn

from some suitable subclass ofG of concave functions and the following holds

sup
w

τ∑

t=1

Γt(w)−
τ∑

t=1

Γt(wt) ≤ C(τ) ∀Γt(·) ∈ G

then the algorithm is said to have a convergence rate ofC(τ). The algorithm is called a

“no-regret” algorithm ifC(τ) is sub-linear inτ. Several classes of concave functions admit

“no-regret” algorithms.

We now show how one may use such an algorithm for solving the saddle point

problem (5.26). The updates tow will be obtained from a regret minimization algorithm

targeting the instantaneous loss lossesΓt(·) =M(∇φ (ρt), ·).
Theρ update, equivalently the∇φ(ρ) update will be greedy, point-wise optimal

and for norms in the‖ ·‖p family it will be obtained in closed form. In particular the∇φ(ρ)
update becomes thethe norm duality mappingand is unique if the norm‖ · ‖ chosen is

strictly convex.

Theorem 12. () Consider a game defined byMin∇φ(ρ)MaxwM(∇φ (ρ) ,w) such that

(i) the functionM : (∇φ (ρ) ,w) 7→ R is convex in∇φ (ρ) and concave inw; (ii) there

is a “no-regret” online maximization algorithm for the sequence of optimizationproblems

MaxwGt(w) whereGt(w) ,M(∇φ (ρt) , ·) with convergence rateC(τ) then

Min
‖∇φ(ρ)‖≤ 1

ǫ

Max
w

M(∇φ (ρ) ,w) ≤M

(

1

τ

τ∑

t=1

∇φ (ρt) ,
1

τ

τ∑

t=1

w∗
t

)

≤ Max
w

Min
‖∇φ(ρ)‖≤ 1

ǫ

M(∇φ (ρ) ,w) +
C(τ)

τ
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Proof. Definest = Argmin‖s‖≤ 1
ǫ
M(s,wt), and s̄ , 1

τ (
∑τ

t=1 st). Let st = ∇φ (ρ)t
andwt∗ be obtained by a “no-regret” online maximization algorithm for the sequence of

optimization problemsMaxwM(∇φ (ρt) , ·) with convergence rateC(τ) then

Min
‖s‖≤ 1

ǫ

Max
w

M(s,w) ≤ Max
w

1

τ
M(s̄,w)

a
≤ Max

w

1

τ

τ∑

t=1

M(st,w) (5.29)

b
≤ 1

τ

(
τ∑

t=1

M(st,w
∗
t ) + C(τ)

)

(5.30)

c
≤ 1

τ

τ∑

t=1

(M(s,w∗
t ) + C(τ)) s.t.‖s‖ ≤ 1

ǫ
(5.31)

d
≤ Min

s
M

(

s,
1

τ

τ∑

t=1

w∗
t

)

+
C(τ)

τ
s.t.‖s‖ ≤ 1

ǫ
(5.32)

≤ Max
w

Min
‖s‖≤ 1

ǫ

M(s,w) +
C(τ)

τ
. (5.33)

Inequality(a) uses Jensen’s inequality applied to the convexity ofM in the first argument.

Inequality(b) is obtained by using predictionsw∗
t obtained by running a “no-regret” online

maximization algorithm with rate of convergenceC(τ) on the sequence of online objectives

M(∇φ (ρt) , ·), (c) follows from point wise optimization ofst. Jensen inequality is applied

on the second argument to obtain(d).

From (Shalev-Shwartz and Kakade, 2008) it follows that for strong convexity (con-

cavity) we may choose an algorithm withC(τ) = O(log τ).

Duality Mappings in Optimizing ρ

The pagerank game solution algorithm proposed requires that at each step the following

optimization problem be solved

si = Argmin‖s‖≤ 1
ǫ
M(s,wi)
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wheres is related toρ by the Legendre convex duality mappingsi = ∇φ (ρ)i . This map-

ping is crucial in turning a non-convex problem inρ into a convex problem. Ignoring terms

that do not depend ons we obtain

si = Argmin‖s‖≤ 1
ǫ
〈s,wi − Twi〉 .

Now note that this is exactly the duality mapping imposed by the norm‖ · ‖ taken to be an

ℓp norm. We thus also obtain that

min
‖s‖≤ 1

ǫ

M(s,wi) = ǫ‖Twi −wi‖∗

where‖ · ‖ is the dual norm of‖ · ‖ this quantity can be looked upon as the deviation from

satisfying the fixed point condition. The vectorsi is obtained in closed form and is unique

if the norm‖ · ‖ is strictly convex for exampleℓp such that0 < p <∞.

5.3.3 Recovering the Eigenvector Representation

In this short section we show that the saddle-point formulation is equivalent to the familiar

eigenvector based formulation of pagerank. We show further that if the gradient of the dual,

∇φ∗ is available in closed form, as is the case for KL divergence, considerable algorithmic

simplification can be obtained over the method proposed in Section 5.3.2. In what follows

we shall uses for ∇φ(ρ). First let us remove the constraint on||s|| that we had imposed

for numeric stability of the algorithm introduced in Section 5.3.2. From equation (5.28) we

obtain the following by plugging in the definition of Bregman divergence, andLegendre-
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Fenchel transform:

min
s

max
w

〈

w, ~φ(ti)
〉

− φ(w)− 〈s, [T − I]w〉
a
= min

s
max
w

〈

w, ~φ(ti) + [I − T †]s]
〉

− φ(w)

= min
s
φ∗
(

~φ(ti) + [I − T †]s]
)

. (5.34)

The optimalw in sub-equation(a) is obtained as

w∗ = ∇φ∗
(

~φ(ti) + [I − T †]s]
)

. (5.35)

Equation (5.34) is a convex minimization problem in the variables.

[T − I]∇φ∗
(

~φ(ti) + [I − T †]s]
)

= 0

Tw∗ = w∗ Using equation(5.40). (5.36)

Note further that because of our assumptions of strong convexity onφ the cost function

(5.34) las Lipschitz gradients and can therefore be minimized using accelerated gradient

descent achieving a convergence rate ofO( 1τ ) in function value.

5.4 Consensus Ranking over Sets

In this section we finally address the problem of local and global consensus that we set out

to accomplish in the introduction of the chapter, in particular in equation (5.4). The formu-

lation (and consequently the algorithms) will be a direct generalization of what we used for

the pagerank case in sections 5.3.1 and 5.3.2. The primary difference from the previously

discussed pagerank scenario is that, instead of vectorsti that represent the preference of

vertexi we have to deal with a convex sets of uncertaintyTi associated with every vertexi.

These sets represent the uncertainty over the set of weighted edges that emanate from the
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α

Figure 5.5: Left: A global consensus view of pagerank: The rank-score vectorρ is obtained
as the minimizer of the weighted average KL divergences between the columnsT (i, ) of
the pagerank matrix and the rank-score vectorρ. Right: A local-global consensus view of
Brew rank: The rank-score vectorρ is obtained as the minimizer of the weighted average
KL divergences between the convex sets in which the columnsTαi(i, ) of the effective
pagerank matrix are allowed to lie and the rank-score vectorρ. Additionally and crucially,
the weights on the KL divergence terms have to be such that the The rank-score vectorρ is
the stationary distribution of the effective pagerank matrix.

vertex. Each particular weighted edge set corresponds to a vectorti ∈ T (i, ). The convex

setTi come about naturally in situations described in the introduction.

5.4.1 Bregman Informatic, Optimistic Consensus OverSets

The consensus problem in this case is described by

Min
T (i,·)∈T (i,·)

Minρ
∑

wiDφ

(
T (i, ·)

∣
∣
∣

∣
∣
∣ρ
)

st w = ρ. (5.37)

Since Bregman divergence is convex in the first argument and parameterization ofTα is

linear, the cost function has a global minimum for a fixedw.

Note that the constraints are coupled because the consensus, in addition tobeing
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ρ update: ρt =
∑

i βw
t−1
i T t−1(i, ·) + (1− β)wt−1

The cost function (5.38) is minimized with respect toρwith the other parameters
w andT (i, ·) held fixed. Note that this equivalent to the condition of lemma 17
with weights onT (i, ·) andw set toβwt−1

i and1− β respectively.

T (i, ·) update: T t+1(i, ·) = ArgminpDφ

(
p
∣
∣
∣

∣
∣
∣ρt
)

s.t. p ∈ Tαi(i, ·). This is a

Bregman-projection computation of a distributionρt on a linear setTαi(i, ·).
The cost function totally decouples with respect toT (i, ·)..

w update:

wt+1
i = ∇φ−1

(
∇φ(ρt)− d

)

d = [Dφ

(
Tα1(1, ·)

∣
∣
∣

∣
∣
∣ρ
)
, · · ·Dφ

(
Tαi(i, ·)

∣
∣
∣

∣
∣
∣ρ
)
· · · ]

†

With T (i, ·) andρ fixed, thew update is the well studied problem of finding a

conjugate of a convex function (Rockafellar, 1996), in this case ofDφ

(
w
∣
∣
∣

∣
∣
∣ρt
)
.

The solution is obtained as the inverse of the conjugate. ForKL
(
w‖ρt

)
is given

in closed form by the sigmoid function.

Figure 5.6: Updates for Bregman Weighted (BreW) consensus Algorithm

close to the local recommendation sets, have to satisfystationarity. This is our primary

source of difficulty. An important question then is,is there a way to compute the consensus

in spite of the coupled nature of the stationarity constraints involvedby solving for a fixed

w and then updatingw. The proposed algorithm works around this coupling by iteratively

solving for a fixedw and then updatingw. As can be easily anticipated the formulation is

the following:

Min
T (i,·)∈T (i,·)

MinρMinw
∑

wiDφ

(
T (i, ·)

∣
∣
∣

∣
∣
∣ρ
)
+

1− β

β
Dφ

(
w
∣
∣
∣

∣
∣
∣ρ
)
. (5.38)

The alternating minimization updates are shown in figure 5.6. A property of the expression

(5.38) is that except for the requirement to apply Bregman Projection, the remaining updates

are available in closed form (fig 5.6).
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Proposition 9. The minimum of expression(5.38)also minimizes
∑
wiDφ

(
T (i, ·)

∣
∣
∣

∣
∣
∣ρ
)

sub-

ject to the stationary constraints
∑
wiT (i, ·) = w = ρ for someβ = β∗

Proof. The proof is in two parts, first proves that a minima exists that satisfies the pagerank

stationarity condition and second that the fixed point will be reached by the updates.

Consider a scheme of coordinate descent updates where at iterationt ρt = w. The

next update is given byρ = β
∑

iwiT (i, ·) + (1 − β)w. Forβ = β∗ we haveρt = w =
∑

iwiT (i, ·), a stationary point. The cost function at this value is
∑
wiDφ

(
T (i, ·)

∣
∣
∣

∣
∣
∣ρ
)
+0.

Since each coordinate descent update uniquely achieves a minimum of the bounded cost

function, the iterations converge.

5.4.2 Bregman Informatic, Pessimistic Consensus OverSets

We propose two algorithms for Bregman informatic, pessimistic consensus over sets, (i)

double loop BLend and (ii) single loop Blend. Both are very similar to the algorithm pro-

posed in Section 5.3.2 for solving the equivalent problem over vectors. The difference from

the algorithm proposed for vectors is that in addition to pointwise minimization ofsi one

also optimizes over the choice ofT t+1(i, ·).
For double loop BLend, one choosesT t+1(i, ·) = Argminpii Dφ

(
pi

∣
∣
∣

∣
∣
∣ρt
)

s.t. p ∈
Tαi(i, ·) ∀i jointly. Note that these variables are all decoupled except for coupling with

s. It can be shown that ifφ is strongly convex with modulus of convexity1 this joint

minimization problem is also jointly convex. Thus one can optimizesi andT t+1(i, ·) in an

alternating minimization fashion till convergence and then updatew and repeat. The proof

of Theorem 12 and consequently the convergence rate remains unaffected by this change.

Double loop algorithms have to wait till the inner loop has converged and tend to

be slow. As an alternative, one can have a single loop variant with a slightly worse constant
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Initialize ρ0,w0, ti, sett = 1.

Chooseτ the maximum number of iterations from convergence rate of the regret mini-
mization algorithm employed inw update.

For t = 1 · · · τ Repeat:

Repeat till convergence witht fixed

ρ update: ρt+1 = Argminρ|‖∇φ(ρ)‖≤ 1
ǫ

〈

wt,
−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
〉

−Dφ

(
wt
∣
∣
∣

∣
∣
∣ρ
)

T (i, ·) update: tt+1
i = ArgminpDφ

(
p
∣
∣
∣

∣
∣
∣ρt+1

)
s.t. p ∈ Tαi(i, ·). The cost

function totally decouples with respect toT (i, ·).
w update: wt+1 Obtained from an online regret minimization algorithm for the se-

quence of optimization problemsmaxw

〈

w, Dφ

(
ti

∣
∣
∣

∣
∣
∣ρt+1

)〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣ρt+1

)

Return 1
τ

∑τ
t=1w

t.

Figure 5.7: Updates for double loop Bregman-Legendre saddle point (BLend) consensus
ranking algorithm

of 2C(τ)
τ as shown by the following set of inequalities

Min
‖s‖≤ 1

ǫ

Max
w

M((s, T ),w) ≤ Max
w

1

τ
M((s, T ),w)

a
≤ Max

w

1

τ

τ∑

t=1

M((si, Ti),w)

b
≤ 1

τ

(
τ∑

t=1

M((si, Ti),w
∗
i ) + C(τ)

)

c
≤ 1

τ

τ∑

t=1

(M((s, Ti),w
∗
i ) + C(τ)) s.t.‖s‖ ≤ 1

ǫ

d
≤ Min

s
M

(

(s, T ),
1

τ

τ∑

i=1

w∗
i

)

+
2C(τ)

τ
s.t.‖s‖ ≤ 1

ǫ

≤ Max
w

Min
‖s‖≤ 1

ǫ

M(s,w) +
2C(τ)

τ
.

that are the same as (5.29) except for(d) which follows as a result of applying online regret

minimization (with the same rate as that of the regret minimization applied tow) on T.

In the single loop variant the variables{ti} are obtained by an online regret minimization
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algorithm applied to the cost function sequence
〈

wt, ~φ(t)
〉

− φ(wt) − 〈s, Twt −wt〉 ,
thereby eliminating the inner loop.

Initialize ρ0,w0, ti, sett = 1.

st = ∇φ(ρt) ∀t andT = [t1 · · · ].

Chooseτ the maximum number of iterations from convergence rate of the regret mini-
mization algorithm.

For t = 1 · · · τ Repeat:

ρ update: ρt+1 = Argminρ|‖∇φ(ρ)‖≤ 1
ǫ

〈

wt,
−−−−−−→
Dφ

(
ti

∣
∣
∣

∣
∣
∣ρ
)
〉

−Dφ

(
wt
∣
∣
∣

∣
∣
∣ρ
)

T (i, ·) update: tt+1
i Obtained from an online regret minimization algorithm for

the sequence of optimization problemsmin{ti}
〈

wt, ~φ(t)
〉

− φ(wt) −
〈
st+1, Twt −wt

〉
.

w update: wt+1 Obtained from an online regret minimization algorithm for the se-

quence of optimization problemsmaxw

〈

w, Dφ

(
ti

∣
∣
∣

∣
∣
∣ρt+1

)〉

−Dφ

(
w
∣
∣
∣

∣
∣
∣ρt+1

)

Return 1
τ

∑τ
t=1w

t.

Figure 5.8: Updates for single loop Bregman-Legendre saddle point (BLend) consensus
ranking algorithm

5.4.3 Using an Eigensolver

Similar to Section 5.3.3 the consensus algorithm can be reduced to eigenvectorbased up-

dates. One may proceed exactly as (5.34) by eliminatingw in closed form yielding a convex

minimization problem ins andti’.s

min
s

min
ti∈Tαi (i,)

max
w

〈

w, ~φ(ti)
〉

− φ(w)− 〈s, [T − I]w〉

a
= min

s
min

ti∈Tαi (i,)
max
w

〈

w, ~φ(ti) + [I − T †]s]
〉

− φ(w)

= min
s

min
ti∈Tαi (i,)

φ∗
(

~φ(ti) + [I − T †]s]
)

. (5.39)
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The optimalw in sub-equation(a) is obtained as

w∗ = ∇φ∗
(

~φ(ti) + [I − T †]s]
)

. (5.40)

The convex minimization problem can then be solved by alternating minimization. Theti

updates are Bregman projections, whereas thes is obtained via the eigenvector relation.

[T − I]∇φ∗
(

~φ(ti) + [I − T †]s]
)

= 0

Tw∗ = w∗ Using equation(5.40). (5.41)

5.5 Related Work and Discussion

The problem of rank aggregation has been studied both under a supervised Freund et al.

(2003) as well as unsupervised scenario within a general and difficultcombinatorial space

of permutations with and without a probabilistic generative model Dwork et al.(2001),

Lebanon and Lafferty (2002), Klementiev et al. (2009) and more recently in Qin et al.

(2010). In this chapter consensus pagerank was posed as the solutionof a constrained opti-

mization problem posed in terms of Bregman divergences for which a convergent coordinate

ascent, as well as online game playing algorithm was provided.
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Chapter 6

Spam Resistant Ranking functions

Using Convexity and Monotonicity

The ranking scheme of a search engine needs to be resistant to spam, a particularly so-

phisticated type of which is link-spam. Current countermeasures “de-spam” the corrupted

webgraph by removing abusive pages identified by supervised learning. Since exhaustive

detection and neutralization is infeasible, there is a need for ranking functions that can, on

one hand, attenuate the effects of link-spam without supervision and on the other hand,

counter spam more aggressively when supervision is available. A family ofnon-linear, it-

eratively defined functions is proposed that propagate “rank” and “trust” scores through the

webgraph. It includes Pagerank as a special case and relies on non-linearity and convexity

to provide the spam resistance. The main contributions of this chapter are (i)the proof of

convergence and uniqueness of the iterates, and (ii) empirical comparison with Pagerank

and other established anti-spam rankings on a part of the real webgraph with 13 million

edges. The well known linear algebraic proof of convergence of Pagerank do not apply to

this non-linear family. Hence different techniques are adopted and adapted. It is verified

experimentally that spam resistance of the proposedunsupervisedvariant is comparable to

the supervisedstate-of-the-art anti-spam techniques of Trust rank Gyongyi et al. (2004),
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AntiTrustrank Krishnan and Raj (2006) and Demotedrank Wu et al. (2006). On the other

hand when labels are available the proposed scheme can improve performance over the es-

tablished state of the art. Though non-linearity is critical to the enhanced performance, it

is not universally beneficial. It is experimentally shown and logical argued that best results

are obtained by non-linear update for the propagation of “rank-score” but linear updates for

the propagation of “trust scores”.

Given a query, a search engine returns a list of web pages, ranked according to a

combination of their content andtopological(link analytic, graph theoretic) quality. The

topological quality, an example of which is Pagerank Brin and Page (1998), is customarily

measured by a real number Kleinberg (1999a) also called “rank” or “score”. It is not just

the order induced by these rank-scores but also the rank scores themselves (say Pagerank)

that are combined with other signals to determine the final ordered list presented to the

user. Because of the importance of the ordering as well as the values of the scores, we

evaluate both the quantities in our experiments. The ordering are compared by precision-

recall curves and Spearman foot-rule distance, whereas the scores are compared by the

cumulated score assigned to spam pages, the lower the better.

Incorporation of topological quality has been critical to the success of search en-

gines because content based information retrieval (IR) scores have been relatively easy to

spam. Pagerank, a popular and effective link analysis score, though harder to manipulate

than an IR score, is not immune to link-spam Henzinger (2003). Often several low quality

pages point to and hence direct sufficient rank mass towards the spammedpage through

what is known as a Sybil attack Douceur (2002). Our objective is to be more resistant to

such and other attacks. While it is unrealistic to assume the proposed scheme will be in-

herently immune to all possible attack modes to emerge in the future, it can adapt tothem

provided examples of spam and non-spam are provided.

A key difference between the proposed and prevalent methods is that the proposed

method can function without a set of spam pages pre-identified. It can however benefit from
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identification if available. Its spam resistance is compared with Trustrank Gyongyi et al.

(2004), Demotedrank Wu et al. (2006) and AntiTrustrank Krishnan andRaj (2006) these are

Pagerank like iterative algorithms that use supervisory labels. Guarantees of convergence

and uniqueness are provided for the proposed iterative method. Withoutsuch a guarantee,

an iterative ranking scheme is of questionable merit because there is no principled way to

argue that the ranks at somearbitrary iteration number or initialization will possess the

desired qualities. Without these properties, one is simply hiding the task of ranking under

the tasks of (i) choosing a good initial condition and (ii) the choice of the finaliteration.

A few words about notation: matrices are denoted by upper case letters such asA,

whereas vectors by lower case letters in bold, such asr. 1 denotes a column vector of all1s.

Transpose and inverse of a matrixA is denoted byA† andA−1 respectively. Script fonts

are used for sets,V is used to represent vertices of a graph, andE its edges. The in and

out degree of a vertexvi is denoted bydin(i) anddout(i) respectively. Functions mapping

R

n 7→ R

n are denoted by upper case letters.Eig(·) denotes the principal eigenvector of

its argument, a matrix.

6.1 Pagerank and its Relatives

Link analysis based techniques rank order nodes of a graphG(V , E) based on their topo-

logical properties. For example in the Pagerank model Brin and Page (1998), each page

(a vertex of the webgraph joined by hyperlinks as edges) distributes its rank-score equally

among its out-neighbors. The Pagerank of a page is the corresponding flow of rank-score

at equilibrium. Hence it is the inverse out-degree weighted Pagerank of its in-neighbors.

Pageranks can also be interpreted as the stationary distribution of a random-walk that picks

an outlink to follow from the current page uniformly at random or resets to arandom page

on the web in a way described next (with probabilities1− α andα respectively).

LetA be the adjacency matrix of the graph,Dout the diagonal matrix formed by the

out-degrees,S a row stochastic source matrix usually taken to beS = 1
N (1× 1

†), where1
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is a column vector of ones andN is the size of the vertex set. The transition matrixT of the

walk can be expressed in terms of the out-degree normalized adjacency matrix D−1
outA, and

the random jump probabilityα as :T = (1−α)×D−1
out×A+α× S. Some vertices of the

graph may have no outlinks in which case theD−1
out has to be specially defined. This is the

problem of “dangling links”, the reader is referred to Brin and Page (1998) and Acharyya

and Ghosh (2004) on how this can be dealt with. The Pagerank iteration converges to the

primary eigenvectorπ of T † or, equivalently, the steady-state probabilities of the Markov

chain defined by it.

Trustrank is a supervised mechanism Gyongyi et al. (2004) to counter link-spam.

Trust score is allowed to propagate out through the graph, much like Pagerank but from hu-

man verified “good”, non-spam source pages. Trustrank propagates distrust from the spam

pages in the same direction as that of the links, this can however be adversarially abused

in the following way: since Trustrank believes in“guilt by association”, any page can be

demoted by a spammer by pointing to it. This can be countered if “guilt” is propagated in

a direction opposite to that of the hyperlinks. In this case a page gets demotedif the page

itself points to a spam page, not if it is pointed to by one. Hence in our experiments distrust

is taken to flow in a direction opposite to the links as is the case for similar approaches in

Demotedrank Wu et al. (2006) and AntiTrustrank Krishnan and Raj (2006).

The formulation that is most similar in spirit to ours is Baeza-Yates et al. (2006).

There the functional form of damping of the rank-score received by apage is generalized

to include those that are non exponential in the path length whereas for Pagerank it is

exponential. The stress in Baeza-Yates et al. (2006) is the nature of the decay and the

different generalizations that are obtained and not on guarantees convergence, uniqueness

or spam tolerance. The last three properties ignored in Baeza-Yates etal. (2006) are of vital

importance.
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6.2 Concave-Convex Rank

To understand the spam susceptibility of Pagerank, let us express the Pagerankri of page

vi ∈ V as the composition of two functions of the Pageranks{rj}j∈I(i) of its in-neighbors

I(i) and their out degrees{dout(j)j∈I(i)} as:ri ∝ g(f i({rj}, {dout(j)})) s.t. j ∈ I(i).
The functiong : R+ 7→ R+ is identity for Pagerank algorithm and the function

f i : R+
2din(i) 7→ R+ is a weighted sum, accumulating the ranks of the inlinking pages.

The functionf i serves the purpose of accumulating the ranks into net input rank flow, and

g maps the net rank flow into its rank score. The functionsf i for differenti have the same

functional form, the superscripti indicates that they operate on domains of different sizes

depending on the neighbors ofi. The choices off i and g in the Pagerank formulation

entail a couple of spam susceptible properties: (i)g being identity, ensures that there is

no diminishing rate of return. Lack of diminishing rate of return means that a link from

a source increases the Pagerank of the recipient pages equally, irrespective of whether the

recipient already has hundreds of links or just one. In other words thereturn obtained by

virtue of receiving a link does not diminish. Secondly, (ii) becausef i is a sum, an inlink

from a high quality page is worth as much as getting a1000 links from low quality pages

with Pagerank1/1000ths the value of the high quality one.

It is generally held to be true that the increment in the human perceived qualityof

a page diminishes with each link received, and a page with several poor inlinks is almost

certainly worse than a page that receives few links but from high quality pages. For example

a link fromwww.yahoo.com could be equaled by thousands of links from worthless pages

and it does not cost much to create such numerous dynamic pages on the web. Pagerank’s

teleportation property ensures all of them receives a certain low fractionof the web’s total

rank, all of which can be channelled into a spammed page to increase its rank.

We list two properties ofg andf i that would provide some spam-resistance to the

ranking function. We make particularchoices, based on simplicity of the over-all scheme

and requirements of convergence of the ranks to a unique value. We do not claim any
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theoretical sufficiency of the properties mentioned, but argue and experimentally show that

the resulting ranks are more spam resistant than their peers. We list the properties desired

of g first, it should be:

1. monotonically increasing:g(x) > g(y), ∀x > y.

Between pages that have different net ranks flowing in, the page with more flow has

higher quality. This is captured by the monotonicity property.

2. have diminishing rate of return:g′(x) = ∂
∂xg(x) is monotonically decreasing. This

models the fact the increment in quality decays with the flow of rank. This also

implies that the functiong() is concave.

Of the limitless possibilities wechooseto be conservative in letting this decay be

polynomial as opposed to exponential, i.e.∂∂xg(x) = O(1/xi) wherex, i > 0. This

leads us to functions of the formx
1/q

1/q q > 1.

For the functionf i we desire that, between two pages with the same total rank flow, as

measured by
∑ rj

dout(j)
, it allocate higher value for the cases where a few high ranked pages

point to it as opposed to several low ranked ones. The functional requirements can be

formalized by the following set of equations:

1. Existence of minima:∀x ∈ R

n f i(x) ≥ f i(x) xk =
∑

k∈I(i) xk
n , wherexk =

rk
dout(k)

.

x andx are equi-dimensional vectors with each component ofx equal to the average

of the components ofx. Since
∑
xk =

∑
xk, the property above favors few good

inlinks over several mediocre ones.

2. Monotonically increasing:f i(x) ≥ f j(y) ∀x,y ≥ 0 andy is an extension ofx

formed by increasing its dimensionality by additional non-negative components tox.

If we assume the permutation independent formf i(x) =
∑

k f(xk), it is sufficient for the

properties above to hold that eachf(·) is convex as shown below.
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Lemma 24. Given a convex functionf(·), the functionf i(x) : Rn 7→ R such thatf i(x) =
∑n

k f(xk) satisfies the property∀x ∈ Rn f i(x) ≥ f i(x)

Proof. f i(x) = n×∑n
k 1/nf(xk) ≥ nf(

∑

k
xk
n ) = f(x) by Jensen’s inequality.

Convex functions have monotonically increasing derivatives. Out of thelimitless

possibilities of convex functions we take the less aggressivechoicethat its derivative exhibit

only polynomial increase i.e.∂∂xfk(xk) = O(xpk) s.t. xk, p > 0. For the purpose of this

chapter we make the choice thatfk(xk) = (xkp )
p, p > 1.

As an example and for reasons of simplicity of exposition we first choose matching

indicesp andq in functionsf i andg such that we have

g(f i(x)) = p(f i(x))
1
p




∑

j

(xj)
p





1
p

= ||x||p

where ||x||p = [
∑ |xi|p]1/p is theLp norm of the vectorx. 1 Tsaparas independently

Tsaparas (2004) consideredNORM() andMAX() in his thesis and proved their convergence.

Here we show that the Concavo Convex ranks subsumes those results.

We state again that we are not championing the case forLp norms for ranking,

but use it as an instrument of exposition, and as a strong baseline for experiments and to

motivate the functional formLpq that we actually use, wherep andq are different. Our

experiments indicate that theNORM() family performs worse than theLpq ranks. Also note

that theNORM() family is equivalent to choosing the components off i() to bexp andg its

inversex1/p. Thus under the transformationr′ = rp the updater′ = T †r′ is linear and

the theory of eigenvectors of linear operators suffice as a proof of convergence.NORM()

1As an aside we demonstrate that this simple form covers the logarithmic function in the limiting condition.
This is significant because the most commonly used function where rate of diminishing return is desired is the
log function We show that ask → ∞ the choseng goes tolog on the positive orthant

Proposition 10. ∀x ∈ R+ limk→∞
x1/k

1/k
= log(x)
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rank is a simple nonlinear transformation and normalization of the ranksafter the ordinary

Pagerank iteration has converged.

The important properties of uniqueness of the computed ranks and the convergence

of the updates from any initialization will be proven shortly for anyp ≤ q. In fact our

experiments show that settingq higher thanp significantly benefits not only the speed of

convergence but also the spam resistance. We conjecture this happensbecause the ranking

function as a whole becomes concave, whereas norms are convex, thusdevoid of the prop-

erty of diminishing returns. We emphasize again thatLp is introduced to aid the description

and to serve as a baseline for experiments, the method that we propose foractual use are

theLpq family with q > p, not theLp family.

For dout(i) the out-degree of a page,din(i) the in-degree of a page, andI(i) the

in-neighbors of a page, the update equation for the ranks is obtained by substituting rj
dout(j)

for xj . Some modification is necessary to take care of loops and absorbing vertices of

the graph. Absorbing nodes are eliminated by adding “weak links” from allvertices to all

other vertices. These links are called weak because they are designed totransmit only a

small fraction of the rank. The algorithm, adjusted for the presence of absorbing nodes

and generalized to have non-matching exponents is presented in figure 6.1. Owing to the

similarity of the function used toLp norms we call it theLp,q algorithm. We omit the

parameterq whenever we assume thatp = q. Let us consider the implications of our choice

Iterate rt+1
i =

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

α

[

rtj
dout(j)

]

j∈I(i)
+

(1− α)

N
||rt||1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

p/q

p

, Ui(r
t)a (6.1)

Normalize rt+1 = rt+1

||rt+1||1
aproofs remain valid if the weak links are taken out of the norm leading to a convex combinations

of the weights due to strong and weak links.

Figure 6.1:Lp,q Rank Algorithm
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for the matching exponent case:

1. We obtain the Pagerank updates forp = q = 1

2. An interesting special case is whenp = q = ∞, where theLp rank is the maximum

inflow from among the incoming edges. This is robust against spam because the

rank of a page cannot now be manipulated by adding low quality spam links and is

computationally cheap.

3. If all the in neighbors’ ranks are incremented byqj theLp rank of the page is incre-

mented by less than||q||p.

4. If all the in-neighbors’ ranks are scaled byβ theLpq rank of the page is also scaled

by β
q
p .

The update in equation 6.1 in figure 6.1 can be looked upon as a functionU : x 7→ y x ∈
∆N−1 y ∈ R+

N whereN is the size of the vertex set of the graphG and∆N−1 is a unit

regularN dimensional simplex. Important considerations are the existence and uniqueness

of the fixed points ofrt+1 = 1
||U(rt)||1U(rt).

• Does the scheme have a fixed point ?

• Are the fixed points stable ?

• Is the fixed point unique ?

• Does any initialization converge to a fixed point ?

• What is the rate of convergence for the iteration ?

In the remaining part of this section we resolve these issues. The answer isyes for the first

four but unresolved for the last. The results on fixed points that we will mention below have

been derived from those stated for the case of homogeneous functionsof degree 1 in the

context of economics Robert.M.Solow and Paul.A.Samuelson (1953). For our application

we extend the scope to homogeneous, and super-homogeneous functions of degree less than

and equal to one. This is a very large family of functions for which we can give convergence
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and uniqueness guarantees. Since the domain and range ofU is the simplex∆N and hence

a closed convex set andU is continuous, Brouwer’s Fixed Point Theorem Rudin (1976)

ensures the existence of a fixed point. For the current application in mind, itis desirable

that the fixed point be unique. We investigate sufficient conditions for unique non-linear

eigenvectors of the functionU : x 7→ y; x,y ∈ ∆N ⊂ R+
N . A vectorx ∈ Rn is said

to be greater than another vectory ∈ Rn, i.e.x ≥ y if ∀ixi ≥ yi and x 6= y

Definition 1. FunctionF : x 7→ y, x, y ∈ Rn is positively homogeneous, sub homoge-

neous or super homogeneous of degreeα if ∀c>1 F (cx) = cαF (x), F (cx) ≤ cαF (x),

F (cx) ≥ cαF (x) respectively and increasing if∀x ≥ y F (x) ≥ F (y)

Lemma 25. If an increasing functionU : x 7→ y x,y ∈ R+
N is positively homoge-

neous of orderα = 1 then the eigenvalue associated with different eigenvectors is unique,

furthermore ifU is positively super homogeneous of degree of homogeneityα < 1 then

eigenvectors are unique.

Proof. We prove the proposition for homogeneous function, extending it to superhomoge-

neous functions is mostly matter of change of the symbol⊜ to the corresponding inequality.

We haveU(x) ≥ 0 and ∀x ≥ y U(x) ≥ U(y) and∀c > 0 U(cx) ⊜ cαU(x). Letu

andv be two eigenvectors with the corresponding eigenvaluesλ andκ. LetM be a scalar

such that∀i uiM < vi, such a number always exists. Thereforeκv = U(v) ≥ U( uM ) ⊜

1
MαU(u) = λ

Mαu or, v ≥
(
λ
κ

)
1
Mαu. By applying the relation aboven times we obtain

v ≥
(
λ

κ

)∑n−1
i=0 αi 1

Mαn
u =







(
λ
κ

) 1
1−α u if α < 1

(
λ
κ

)n u
M if α = 1

(6.2)

, implying λ ≥ κ. Selecting another constantN such that∀i viN < ui one can reverse the

roles ofu andv implying λ ≤ κ, this can be true forα ≤ 1 only if κ = λ. Note forα < 1

it also implies that the eigenvectorsu = v. Equality of the eigenvectors is not obvious for

α = 1 this is established in lemma 26.
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Definition 2. An increasing functionF (x) 7→ y, x, y ∈ R

n is irreducible if there can

be no permuted partition of its inputx =




x1

x2



 andy =




y1

y2



 for F =




F1

F2





such thatx1 = y1 andx2 ≥ y2 which hasF1(x) ≤ F1(y).

Note that the above definition is a generalization of irreducibility of matrices to

functions. With the above definition in place we can now lay down the condition for a

unique eigenvector in the following theorem.

Lemma 26. Given a positive increasing homogeneous functionU : x 7→ y x,y ∈ R+
N

that is irreducible, the corresponding normalized functionÛ : x 7→ y x,y ∈ ∆N−1 has

a unique eigenvector.

Proof. Let u andv be two different eigenvectors ofU with eigenvalueλ. Let M be a

positive scalar such thatvi ≤ Mui, we permute and partition the functionU and its input

so thatv =




v1

v2



 andu =




u1

u2



 andv1 =(a) Mu1 andv2 < Mu2.Now consider

a perturbatioñv =




v1

ṽ2



 such thatṽ2 = Mu2, i.e. ṽ = Mu. We haveU(v) = λv,

sinceU is irreducible we haveU1(ṽ) >
(b) U1(v). LHS equalsU1(Mu) = λMu1 and

RHS equalsU1(v) = λv1. Equations(a) and(b) contradict hencêu = v̂.

Theorem 13. If an increasing functionU : x 7→ y x,y ∈ R+
N is irreducible and posi-

tively homogeneous of orderα = 1 or is positively super homogeneous of degree of homo-

geneityα < 1 then eigenvector ofU||U || is unique.

Proof. follows from lemmas 25, 26.

Corollary 6. Given a graphG(V , E) theLpq ranks defined by equation 6.1 has a unique

fixed point.

Proof. Since the update equations are a linear composition of norms they are positivehomo-

geneous with degree 1 (or less than one for the non matching case ofq > p) and monotonic
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increasing. Since every vertex contributes positively to the rank of every other vertex the

function is irreducible, hence by the above theorems the proof follows.

Note that normalization is not necessary for convergence, but is helpful for numer-

ical stability. We show that normalization preserves the eigenvector property.

Lemma 27. Given a positive homogeneous functionU : x 7→ y x,y ∈ R+
N , the

function U
||U ||1 is positive and homogeneous with degree 0 and maps to the range∆N−1,

keeping normalized eigenvectors invariant.

Proof. U(cv) = cαU(v) henceÛ(cv) = cαU(v)
||cαU(v)||1 = cαU(v)

cα||U(v)||1 = Û(v). Now letu be a

eigenvector ofU , i.e.U(u) = λu. ThenÛ( u
||u||) = Û(u) = λu

λ||u|| =
u

||u|| .

Note however, it is not enough for the updates to have a unique fixed point,one also

requires that the fixed point be stable, i.e. if perturbed from the fixed point value the updates

will converge back to the fixed point. The stability issues are investigated in thefollowing

theorem, together with the question does any initialization followed by iterative re-mapping

reach the fixed point.

We draw intuition from the Perron-Frobenius theorem which explores the same

questions for positive matrices which are nothing but linear functions. Irreducibility of a

matrix ensures that a change in any component of the vector propagates toall components of

the vector when repeatedly multiplied by the matrix. One also requires for convergence that

the weighted graph of the matrix obtained by interpreting it as a adjacency matrixbe free of

isolated cycles. In the following part of the article we will see that irreducibilityfollowed

by acyclicity (aperiodicity) is sufficient for convergence to a fixed pointinitialized by any

positive vector. We also make the following note that if there exists a iteration number

after initialization such that the iterate vector is strictly greater than the initialization it

cannot have cycles. This inequality condition is called “primitivity” and is equivalent to

aperiodicity. We show that if the function is primitive, iterations with any semi-positive

vector will converge to a fixed point.
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Definition 3. A functionU is defined to be primitive atx if ∀y≥x ∃t s.t. U t(y) >

U t(x). If the function is primitive everywhere in its domain it is globally primitive2

Theorem 14. A positive increasing homogeneous function of degree≤ 1, and a positive

increasing super homogeneous function of degree< 1, that is irreducible and globally

primitive has a unique fixed point to which iterations from any semi-positive initialization

converges.

Proof. Let M(x,y) = Maxi
xi
yi

andm(x,y) = Mini
xi
yi

and letr(x,y) = m(x,y)
M(x,y) . Note

that forα > 0, β > 0 r(αx, βy) = r(x,y).Moreover, sinceMaxi
xi
yi
Maxj

yj
zj

≥ Maxk
xk
zk

and by similar argumentMini
xi
yi
Minj

yj
zj

≤ Mink
xk
zk

we have a inequalityr(x,y) +

r(y, z) ≥ r(x, z).

Let us use the shorthandxt to denoteU tx, and consider any vectorsy andx such

thaty ≤ cx note that there is no loss of generality involved as such ac can always be found.

Because of primitivity there exists at such that the aftert iterations the inequality is strict,

i.e. yt < cxt. HenceM(xt,yt) < M(x,y) andm(xt,yt) < m(x,y). Thus we have

r(xt,yt) < r(x,y) for the specific value oft.

Consider the sequence of numbersr(x(n+1)t,xnt), clearly it is a reducing sequence

lower bounded by 1 and hence has a limit. Because of triangle inequalityxn+1t converges

to a fixed point. From irreducibility and monotonicity we have uniqueness.

The proposition above indicates that the iterations are stable. Irrespective of any

perturbation to a corrupted semi-positive vector, a sequence of iterationswould converge.

We explore the special case that the indexp is taken to∞. The corresponding norm

is then equivalent to choosing the maximum of all the normalized ranks of the in vertices.

This is both computationally favorable and resistant to Sybil like attacks. Breaking away

from the Concavo-Convex ranking framework, the above strategy maybe generalized so

that one takes a generalized mean of some fixed topk of the incoming degree divided

ranks. Although we have shown that the properties ofLp ranks are nice forp ≥ 1, when

2The important thing to note is that the second inequality is strict.

144



p is taken to infinity some the underlying assumptions break down such as the property

of irreducibility. This can however be easily fixed but we omit the details out of space

constraints.

6.3 Propagation of Trust

In this section we show how it is theoretically possible to incorporate spam andnon-spam

labels on vertices if they are available. We mention that even without the use ofsuch labels

theLpq ranks offer significant spam-resistance over Pagerank and near to that of Trustrank,

equal split Demotedrank Wu et al. (2006) and AntiTrustrank Krishnan and Raj (2006).

Consider we have a small hand-labelled set of trustworthy verticesV+ and spam

pagesV−, the remaining pages are denoted byV0. We take the position that pages that

are linked directly by the setV+ or through intermediate vertices should be rewarded by a

value of trust decreasing with distance fromV+. Similarly vertices that link toV− directly

or indirectly are to be punished.

A point worth paying attention to is that trust and distrust are made to propagate in

oppositedirections. A page is rewarded based on what other pages think of it (i.e.through

endorsement by nodes that it cannot control) on the other hand it is punished based on the

links it has control over. It would be unfortunate for a page to be penalized because of an

untrustworthy page that points to it as an act of malice. This is the approach followed in

Wu et al. (2006), Krishnan and Raj (2006).

The reward and punishments are allocated based on the Concavo-Convex ranking

function, with an exponential decay factor depending on the number of hops the vertex is

away from the labeled sets. Lets+ be a vector that has 1s in place of the ranks ofV+ and0

otherwise, i.e.s+(i) = 1(i ∈ V+) and similarlys− be a vector that has 1s in place of the

ranks ofV− and0 otherwise. Considering a decay parameterγ (for simplicity we take it to

be the same for both directions) the reward of the set of vertices one hop distance away is

γU(s+), the reward of those that are one hop distance from these points isγ2U(U(s+)),
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generalizing tok hops which isγkUk(s+). Here we abuse the notationUk(s+) to mean k

composition of the functionU . The total reward is provided by the function

r+ =
∑

{0≤k}
γkUk(s+) (6.3)

Lemma 28. For γ < λ Eig (Ur+ − γU(r+)) = s+.

Proof. Apply the operator[I − γU ] on both sides of equation 6.3 to obtain:[I − γU ]r =
∑

k γ
k[I − γU ]Uk(s+) or

r − γU(r) =
∑

k

[γkUk(s+)− γk+1Uk+1(s+)] = s+ (6.4)

The last line follows from the assumption that thek-th term in the tail of the summation

converges toλkx wherex is the nonlinear eigenvector ofU

Similarly consideringU † to be the function applied to the outlinks instead of the

inlinks, one obtainsr− =
∑

{0≤k} γ
kU †k(s−).

Lemma 29. For γ < λ Eig
(
Ur− − γU †(r−)

)
= s−.

The difference in the computedr+ andr− will indicate the level of trustworthi-

ness.These can be combined in different ways. We chooser+
r++r−

r to be the rank value

with which the pages are evaluated. We need to provide a computational recipe for com-

putingr+ andr−. For these we use the equations

rt+1
+ = γÛ(rt+) + s+and r

t+1
− = γÛ †(rt−) + s− (6.5)

The rank of a vertex is scaled by the trust and distrust ranks asr = r+
r++r−

r. For

the purpose of the chapter, trust and distrust will always be used to obtain the ranks as a

linear scaling as indicated. The ranksr+ andr− are the ranks the page receives from the

vertices inV+ andV−, thus the form of scaling has an implicit assumption that the make
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up of the remaining rank of a page received from other vertices also have the same spam

versus non-spam ratio.

6.4 Experiments

We conducted experimental evaluation of the proposed ranking scheme ona publicly avail-

able, real-world and collaboratively labeled dataset3. It involves a0.4 million vertex subset

of the webgraph containing 13 million edges. This was the largest corpora collected for the

web spam challenge-2007 web (2007) called “Large Dataset, track II”.

Before we present results on the web-graph data set, we investigate the effects of

the proposed algorithms on a few toy graphs where unlike the former we canidentify, study

and isolate the effects.

6.4.1 Results on Toy Graphs

These results are included solely to benefit our understanding of the effects that the proposed

updates induce. More complete examination of spam-resistance of the proposed method is

demonstrated on a portion of the real web-graph, right after these results on toy graphs.
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No. L1 L2 L∞

1 0.183 0.210 0.211
2 0.183 0.165 0.160
3 0.129 0.138 0.108
4 0.126 0.122 0.130
5 0.126 0.122 0.130
6 0.126 0.122 0.130
7 0.126 0.122 0.130

Figure 6.2: Example Graph - I, vertices{1,2,3} are connected to{4,5,6,7} by edges, not
shown for clarity. Demonstrates property 1 off i for Lp and Pagerank. Details in text.

Consider the graph depicted in figure 6.2, we have not drawn the edges from the

vertices{1,2,3} to the vertices{4,5,6,7} to avoid clutter. Because the vertices{4,5,6,7}
have identical inlinks their ranks are identical. Vertex 2 receives 3 links each worth 1/2,

3We thank the organizers of the webspam challenge for making such a difficult to obtain data available
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whereas vertex 1 receives links worth 1 and 1/2 respectively. Since thetotal flow received

by 1 and 2 are the same, they are ranked equally by the Pagerank algorithm.In order to

reduce spam susceptibility, we desired that pages that receive multiple low quality links be

ranked lower than those that receive links from a few high quality pages,even if their total

Pagerank flow is the same. This property is exhibited by theL2 andL∞ rankings as shown.

In figure 6.3 we investigate a link-farm spam scenario. In order to spam node 6, one has

No L1 L2 L∞

1 2.082e-1 2.074e-
01

3.850e-1

2 1.645e-1 1.470e-
01

2.371e-1

3 6.092e-2 7.171e-
02

8.333e-2

4 6.092e-2 7.171e-
02

8.333e-2

5 6.092e-2 7.171e-
02

8.333e-2

6
2.132e-1
(1)

1.825e-01
(3)

6.030e-2
(6)

7 7.708e-2 8.260e-
02

2.248e-2

8 7.708e-2 8.260e-
02

2.248e-2

9 7.708e-2 8.260e-
02

2.248e-2

Figure 6.3: Example Graph - II. The dark nodes are taken to be legitimate vertices, whereas
node 6 is being spammed by nodes{7,8,9} that are otherwise disconnected from the graph.
Vertex 1 connects out to all dark nodes, as does vertex 6 to all white nodes. Also shown in
this figure are the (spammed) Pagerank andLP Rank scores, together with the ranks of the
node 6.

created vertices{7,8,9} to point towards it. Even without links from the tightly connected

larger legitimate web like network of black nodes, the Pagerank of 6 is the highest, thereby

showcasing its vulnerability. The significance of this example is that the subgraph structures

of the form{6, 7, 8} are commonly used to spam the Pagerank. TheLp Rank algorithms

can be seen to be more resistant to this. It is not unspammable but would take orders of

magnitude more pages to do so. Spam like pages are demoted depending on thevalue ofp.
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The best result in terms of quality is offered byL∞ Rank, in which case the spammed page

gets ranked below all the legitimate pages.

6.4.2 Results on Real Web-Graph

In this section we describe our experiments on a0.4 million vertex subset of the webgraph

containing 13 million edges that was human labeled and made publicly available forthe

Spam-challenge-2007. This data set was the largest corpora collected for the web spam

challenge-2007 web (2007) called “Large Dataset, track II”. About 80% of the web pages

of this corpus are non-spam whereas the remaining are labelled as spam. All labels were

generated as a collaborative effort involving several human evaluators.

We evaluateLpq rank on a number of metrics and compare it with other benchmarks,

namely, normalized in-degree, Pagerank, Trustrank, equally split Demotedrank (equiva-

lently to AntiTrustrank) and alsoLp. Note that in-degree is defenseless against linkspam

attacks but is included as a benchmark, because it has been observed tocorrelate well Na-

jork et al. (2007) with quality of a page (perhaps because spammers do not target it any

more). Human perceived quality of the rankings induced on this data set cannot be evalu-

ated because of its anonymized nature. The corpus consists of the adjacency matrix of the

graph as well as a tf-idf representation of its contents. Both the identity of thepages as

well as that of the features are anonymized in order to prevent web-spam challenge partici-

pants from using extraneous information from the web for the task. Neitherthe identity of

the page nor the contents of the page can be retrieved. A side effect of which is that user

studies are not possible. Though (anonymized) tf-idf features were available, we focussed

on spam resistance that can be extracted from the link structure alone. Recall that we are

not competing with content feature based spam classifiers. While they are easy to train,

spammers are also free to change the content at will to counter it. Topological properties of

the webgraph, on the other hand is relatively harder to manipulate.

Due to lack of an agreed upon gold standard ranks of the vertices, evaluation of a
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ranking function is contentious and certain assumptions have to be made about what con-

stitutes a good rank. There will always be disagreement on the adequacyand completeness

of any such characterization, but more the number of criteria according to which a vertex is

ranked higher above the rest, more confidence one would have regarding its goodness. We

mention what our assumptions are and what we consider to be a “good” rank and how we

measure the multi-criteria quality of a ranking. We consider both the ordinal rank as well

as the rank score values for evaluation, because both are important. Sincethe total prob-

ability mass or rank-score assigned by our ranking algorithm equals 1, a quality measure

that we look at is how much of the total “probability mass” doesLp andLpq rank assign

to the spam pages. This mass is compared with the probability mass assigned by Pagerank

(or equivalentlyL1 rank), normalized in-degree and AntiTrustrank. The lower this mass

for a scheme, the better it is. This measure is more complete than counting the number of

spam pages occurring in a top-K ranked list for some fixed low value ofk . A low total

probability mass indicates that on average non-spam pages are ranked higher. There is one

situation where this measure can fail, that is if the ranking scheme allocates almost all of

its mass to some good site and near negligible to all the rest. To ensure that this is not

happening in practice, we include another ordinal measure: curves of the number of spam

pages encountered as one traverses down the rank order, starting from1 to the total number

of pagesN . Ideally all spam pages should come last. The closer this curve is to the X axis

the better is the ranking function.

It is not enough for a ranking scheme to just assign low mass to spam pages. The

ranks induced on the non-spam pages has to be of high quality, and this is what differen-

tiates a ranking scheme from a classifier. Since we do not have a standardrank ordering,

we computed rank distance measures between our parametric family of ranksand other

baseline algorithms, such as Pagerank, (Anti)Trustrank and in-degree, on the non-spam

pages. The rank distance measures that is used is Spearman’s foot rulestatistics Diaconis

and Graham (1977). IfR1() andR2() are two rankings induced on a setX , i.e. R1 and
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R2 take integer values in1, |X |, then the Spearman’s foot rule distance betweenR1 andR2

is defined asspearman(R1,R2) =
∑

X |R1(x) − R2(x)|. We use the normalized ver-

sion
∑

X |R1(x)−R2(x)|
|X |2 . Apart from the quality measures described above we also looked at

speeds of convergence.

The organizers of the challenge had identified a 10% fraction of the vertices to be

used for training and cross-validation, the remaining for testing. Our algorithm is not a

learning algorithm and does not have a training phase, and our results are for theunsu-

pervised scenario. However we do compare it with Trustrank Gyongyi et al. (2004), and

AntiTrustrank equivalents Wu et al. (2006), Krishnan and Raj (2006)which are algorithms

that take into account spam and non-spam labels on a training set of vertices. We thus report

a second group of experiments where the training vertices were used as aseed set for prop-

agating trust and distrust values to affect the ranking much like Trustrank. For this labeled

case, we used the small label set identified by the organizers to seed the propagation of

trust and distrust as in equations (6.5). Here the baseline is stronger andis (Anti)TrustRank

algorithm. (Anti)Trustrank is that analogue of Pagerank that uses the flowof trust/distrust.

Before discussing the results obtained by the propagation of trust, we would like

to draw the reader’s attention towards an important point regarding the vulnerability of

Trustrank that has also been alluded to in the introductory section. Trustrank evaluates the

trust and untrustworthiness of a page from its distance from labelled “good” and “spam”

pages. A page to which a “good” page points, accrues trust, whereas apage to which a

spam page points accrues distrust. The latter is problematic because it allowsa page to

maliciously point to any page and demote its rank. This can easily be fixed, if distrust

is propagated in reverse that is, a page accrues distrust if the evaluatedpage points to a

spam page. The trust model with this reversed direction of flow of distrustis called the

Opp(osite) Trustrank model in the experiments. On the data set it fairs somewhat worse

than the original Trustrank flow of distrust, but that is because on the subgraph of the web

captured by the data set, the spammers have not exploited this loophole. The performance
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of Trustrank should hence be taken with due consideration, because it isunusable on the

real internet.

For the propagation of trust model, we conducted separate experiments for the two

directions of flow of distrust. The TrustRank formulation takes the direction tobe same

as that of the graph. We observed that this direction has a better discriminative property

to separate spam and non-spam. However this direction of flow can be exploited with

malicious intent and should not be used in practice.

Here we investigate the behavior ofLp ranks and establish it as a strong baseline

bettered subsequently by theLp,q ranks both in quality and speed of convergence. The

benefit ofLp over Pagerank is moderate and is discussed only as an example, it isLp,q ranks

that perform strikingly better, both in terms of spam resistance and speed of convergence.

Hence we propose their use.

The probability mass assigned to the spam pages when runningLp rank algorithm

on the webspam-challenge graph is shown in figure 6.4 along with the horizontal curve

indicating the performance of ranking byin-degreethat achieves a spam mass of25.28%.

Note that indegree ranking on this data set is worse than Pagerank and it isvery suscepti-

ble to spam attacks. An important observation is the low spam discriminative property of

Pagerank. The spam mass of 0.2067 for Pagerank is of the same order of magnitude as the

amount of spam in the entire data set (0.20). With increasing values ofp the spam mass

reduces by 40%. Plotted together with theLp rank masses are two other curves, one for

Lp trust rank which is theLp generalization of Trustrank as explained in section 6.3, the

other for the same except that distrust is made to flow in the opposite direction.Lp Tr.Rank

corresponds to propagation in the same direction as the edges whereasLp Opp Tr.Rank

has opposite direction of flow of distrust. Though same direction propagation of trust per-

forms better for most values, under this scheme a page is open to malicious attacks from a

untrustworthy page as mentioned before, and is hence un-usable in practice.

Pairwise normalized Spearman footrule distances between theLp rankings are shown
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Figure 6.4:Top: Probability mass assigned byLp ranks and in-degree rank on the spam pages.
Bottom: Spearman footrule distance between different rankings on the spam pages.

in figure 6.4 (to the right) together with comparison with the order induced by Pagerank on

non-spam vertices. One can observe that ranks that are close inp are also close in Spear-

man’s foot rule distance, however one can see thatLp ranks are close to the Pagerank (L1)

rank order. This confirms thatLpq ranking largely agrees on the non-spam vertices, the

agreement is higher with Trustrank than with Pagerank.

Rates of convergence at different values ofp are shown in figure 6.5, the rate settles
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Figure 6.5: Rates of convergence of absolute error between consecutiveiterates ofLp algorithm
with uniform initialization. Compare this baseline with the improved convergence rates forLpq

Figure 6.8

into a constant exponential decay after an initial unstable domain. ForLp rank the basic

fixed point iterations are too slow (unlikeLpq to be described next) and a constant linear

damping was added for speed up. Even with the linear damping, convergence required

several hundreds of iterations (unlike Pagerank which converged under 50 iterations). This

should be compared with the superlative convergence rates obtained for the Lpq updates

shown in figure 6.8.

We propose the use ofLpq algorithm. Recall thatq > p leads to convergent and

unique ranks, experiments were conducted in this setting. It is observed that the value ofq

has a very significant role to play on rank quality and the convergence rate. The number of

iterations required, drops monotonically from several hundreds of iterations to few tens of

iterations as shown in figure 6.6 making the scheme a practical proposition. The effect ofq

on spam reduction is such that there is a best value ofq at which the spam reduction is the

highest, it was empirically observed to lie close top as shown in figure 6.6, bottom. The

value ofq thus plays a crucial role to obtain a fast algorithm with good unsupervised spam

fighting capabilities.
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We investigate in detail the behavior ofLp,q ranks atqp = 1.2, that was found to

have a good trade off between speed and spam resistance, and varying values ofp. The

particular value of the fraction was chosen from the preliminary experimentsshown in 6.6.

The probability mass assigned byLp,q ranks and Trust and Opp.TrustLp,q ranks on the

spam pages are shown in figure 6.7. Note that how the unlabelledLp,q rank atp = 4

matches the performance ofLp,q Opp.Trustranks atp = 1. Furthermore Opp.Trust model

performs equally well as the conventional Trust model. ForLp ranks Opp.Trust models

performed worse.

The convergence behavior is shown in figure 6.8, all the values ofp show very rapid

exponential rate of convergence and around40 iterations is sufficient, Pagerank too takes

about50 iterations to converge. Pairwise normalized Spearman footrule distances between

theLp,q rankings are shown in figure 6.7 together with the spearman footrule distance of

the ranks induced by in degrees, recallp = 1 corresponds to Trustrank. From the graph one

can observe that theLp,q ranks are close to those induced by Trustrank on non-spam pages

and very close to each other. One can also observe that for values ofp = 4 and higher, the

rank order is almost the same. The ranks forp = 2 is closer to Trustrank than those for

p = 4 and higher. On the other hand the ranks induced by the in-degrees are are distant in

normalized Spearman footrule distance sense from theLp,q rankings. In fact we were able

to verify that most of the pages ranked high by the in-degree were spam pages, see figure

6.10.

The best results were obtained for the family where the trustworthiness anduntrust-

worthiness were propagated linearly whereas the basic rank usedLp,q nonlinearity. This

setup is named the Lin-Lpq variant. On retrospect its performance is easy to explain. The

hand labels of (spam and non-spam) are of high quality and are not targeted by spam. Thus

there is no reason to use the nonlinear generalization to counter “label” spam. The best

spam resistance performances are shown below. The figure 6.9 showsthe amount of prob-

ability mass assigned by the Lin-Lp,q variant. The horizontal lines indicate the probability
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mass assigned by Trustrank and AntiTrustrank. One can see that Lin-Lpq convincingly

outperforms the best performance seen so far. Note that the Y-axis is log-scaled for better

resolution and the gap in the performances is higher than it looks. The figure 6.10 shows the

precision recall curves for Pagerank and Lin-Lp,q variant with reversed flow of distrust. The

plots for same direction of flow of trust have the same nature as these and had to be omitted

to save space. On the Y axis it plots the number of spam pages encounteredwith decreas-

ing Lin-Lp,q rank. Nearer the curve is to the X axis the better the algorithm and a diagonal

line indicates that spam and non-spam occur with equal frequency. From the plot corre-

sponding to Pagerank and its deviation from the diagonal it is possible to notethat though

Pagerank allocates about the same total probability mass to spam as the total percentage

of spam vertices, the spam pages occur towards lower ranked pages.However Pagerank

performance is overwhelmingly outperformed by the Lin-Lp,q variants. The same plot is

shown drawn to log-scale to the right for better resolution because theLpq family curves

are almost indistinguishable from the X axis. From the log-scale plot one canobserve that

for p = 4 and higher the curves almost overlap,p = 2 has less spam initially but crosses

the other set of curves. Thus a strategy that chooses between these twocases depending on

the rank may be effective. The cumulated spam curves are compared with the cumulated

curve induced by rankings based on in-degree, see figure 6.10. Onecan observe that the

ranks based on in-degree have the worst characteristic among all the rankings considered,

faring significantly worse than Pagerank, which the Lin-Lp,q family beats convincingly.

Figure 6.9 establishes the fact that it is better to use the LinLpq ranks over Trustrank

when labels are available. The main difference between the LinLpq rank and Trustrank is

that the former uses non-linear updates for the propagation of the rank score whereas the

latter uses a linear propagation. The flow of trust and distrust are however linear for both.

Now an important question arises regarding the number of labeled examples required by

the two methods in order to give equivalent spam resistance performance. This is explored

next.
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We include a plot that compares the spam detection properties of the proposed fam-

ily and TrustRank at different percentage of labels available. For the comparison two sim-

ple threshold based spam classifier were learnt using theLpq Trust rank and the TrustRank

values as their corresponding single feature. The classification error rates are shown for

different labelled set sizes and the optimal threshold, see figure 6.11. From this one can

observe that LinLpq can provide superlative spam resistance at a fraction of the number of

labels required by Trustrank.

6.5 Conclusion

We propose a large family of link-analytic ranking functions based considerations of spam

resistance, convergence and initialization independence. It is remarkable that convergence

guarantees can be carried over to the nonlinear ranking functions. Properties of a parametric

subfamily that includes Pagerank and Norm() as a special case was studied in detail, both

theoretically and experimentally. Appropriate choice of the ratiop/q gives excellent spam

resistance on the internet graph when used with and without labels.
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Chapter 7

Conclusion

In this dissertation we addressed different aspects of learning to rank inboth supervised

and unsupervised settings. Monotonic transformations form a natural framework to pose

ranking problems in because they preserve order. Modeling, manipulatingand exploiting

monotonic transformations played a key role in all of the aspects of the problems covered

in this dissertation. The first part of the dissertation was on building tools thatallow effi-

cient optimization of a loss function over this class of functions, without imposingany finite

dimensional parameterization on them. This was greatly facilitated by the intimate connec-

tion between monotonicity, convexity and properties of minimizers of Bregman divergences

constrained to lie on the monotone cone.

The ability to efficiently optimize a loss function over the class of monotonic trans-

formations was extended to Bregman divergence based loss functionals whose gradient

matches the monotonic transform. This guaranteed that the cost functional remained convex

jointly in the space of functions and parameters ensuring global minimum. It alsodirectly

enabled learning the parameters of a canonical generalized linear model with an unknown

link function, leading to substantial generality at the cost of worsening the timecomplexity

of an iteration by only a logarithmic factor. The framework presented does not require one

to pick one member from the infinite family of canaonical generalized models, since the
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approach simultaneously optimizes over the choice of the family and the parameters of the

family.

A large family of link-analytic, fixed point based ranking functions were proposed

based on considerations of spam resistance, convergence and initialization independence.

Here, again monotonicity and convexity played a key role. It is natural to desire that item A

outrank item B if the recommendations/inlinks of A majorizes the recommendations/inlinks

of B. This together with the notion that the order of recommendations/inlinks areirrelevant

to the rank-score, determines that the ranking function is Schur convex.We used concavity

to model the phenomenon of diminishing returns as more and more recommendations are

received. Pagerank was shown to be reltaively susceptible to spam as itlacks strict Schur

convexity and concavity. We showed that if we chose the ranking functionto have Schur

convexity, concavity and in addition be homogeneous of a certain degree,not only is the

ranks determined by the fixed point unique but also that they can be reached using fixed

point updates using arbitrary initialization.

It was also shown that pagerank, a successful unsupervised ranking method, can be

looked upon as optimizing the consensus among several local recommendations over a set

of items. This optimization view point then naturally enabled the formulation to be extended

to the setting where there is fluctuation and uncertainty in the local recommendations. Since

in the pagerank setting a recommendation map directly to edges in a graph, the formulation

easily captures multiple and changing labels on the edges of the graph.
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Appendix A

Proofs from Chapter 3

Notation: Follows notation of Chapter 3.

To prove Theorem 1 we will need the following lemma

Lemma 30. Rockafellar (1996) Let the functionφ(·) be continuously differentiable and

convex. Ifs||∇φ(x)−∇φ(y)|| ≤ ||x− y|| then

φ(αx+ (1− α)y) ≥ αφ(x) + (1− α)φ(y)− α(1− α)

2s
||x− y||2

Theorem 1

Proof. Let us introduce the abbreviations:

x(α) = αx1 + (1− α)x2

y(α) = αy1 + (1− α)y2,

φi = φ(xi), ψi = ψ(xi),

Φ(α) = αφ1 + (1− α)φ2

Ψ(α) = αψ1 + (1− α)ψ2.
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To show joint convexity of the Fenchel Young gap, we have to show

φ(x(α)) + ψ(y(α))− 〈x(α),y(α)〉 ≤ Φ(α) + Ψ(α)− α 〈x1,y1〉 − (1− α) 〈x2,y2〉

∀ x1,x2 ∈ domφ, y1,y2 ∈ domψ.

or equivalently, show:

φ(x(α)) + ψ(y(α)) ≤ Φ(α) + Ψ(α) +

B
︷ ︸︸ ︷

α(1− α) 〈x1 − x2,y1 − y2〉

∀ x1,x2 ∈ domφ, y1,y2 ∈ domψ. (A.1)

Assume with no loss in generality thatφ(·) andψ(·) are strongly convex with modulus of

strong convexity(1 + s1), (1− s2) with s1 ≥ −1, s2 < 1, respectively.

From(1 + s1)strong convexity ofφ we have:

〈∇φ(x)−∇φ(y),x− y〉 ≥ (1 + s1)||x− y||2,

or, ||∇φ(x)−∇φ(y)|| ≥ (1 + s1)||x− y|| (A.2)

the second inequality follows from Cauchy Schwarz inequality. Similarly from(1 − s2)

strong convexity ofψ = φ∗ we have

〈∇ψ(u)−∇ψ(v),u− v〉 ≥ (1− s2)||u− v||2,

or,
〈

(∇φ)−1(u)− (∇φ)−1(v),u− v
〉

≥ (1− s2)||u− v||2

or, 〈x− y,∇φ(x)−∇φ(y)〉 ≥ (1− s2)||∇φ(x)−∇φ(y)||2 (A.3)

(1− s2)||∇φ(x)−∇φ(y)|| ≤ ||x− y|| (A.4)

In (A.3) we have usedu = ∇φ(x),v = ∇φ(y). From (A.4) and (A.2) we obtain

(1 + s1)(1− s2) ≤ 1. (A.5)
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Now, simplifying expression (A.1) using our strong convexity assumptions and positivity

of α(1− α), we reduce (A.1) to

(1 + s1)||x1 − x2||2 + (1− s2)||y1 − y2||2 − 2B ≤ 0

Or, ||(x1 − x2)− (y1 − y2)||2 + s1||x1 − x2||2 − s2||(y1 − y2)||2 ≤ 0.

Let p = x1 − x2 andq = y1 − y2. By choosing(1 + s)p = q we obtains1 >

s2+s1s2, or equivalently(1−s2)(1+s1) ≥ 1. From (A.5) we have(1+s1)(1−s2) = 1.

From (A.4) and Lemma 30 we obtain

φ(αx+ (1− α)y) ≥ αφ(x) + (1− α)φ(y)− 1

2(1− s2)
α(1− α)||x− y||2

but by assumption (see (2.1))

φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y)− 1 + s1

2
α(1− α)||x− y||2.

As we have already established(1 + s1)(1− s2) = 1, we have fork = 1+s1
2

kα(1− α)||x− y||2 = αφ(x) + (1− α)φ(y)− φ(αx+ (1− α)y). (A.6)

Taking derivative w.r.tα on both sides of (A.6) and settingy, α = 0 it follows thatφ(x) =

k||x||2 for somek > 0 (ignoring affine terns.) The cases2 = 1 follows using continuity.

A.1 Optimality of Means

Theorem 15. (Banerjee et al., 2005) Letπ be a distribution overx ∈ domφ andµ = E

x∼π
[x] then

the expected divergence abouts is

E

x∼π

[

Dφ

(
x
∣
∣
∣

∣
∣
∣s
)]

= E

x∼π

[

Dφ

(
x
∣
∣
∣

∣
∣
∣µ
)]

+Dφ

(
µ
∣
∣
∣

∣
∣
∣s
)
. (A.7)
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From non-negativity of Bregman divergence it follows that:

Corollary 7. (Banerjee et al., 2005)E
x∼π

[x] = Argmin
y∈domφ

E

x∼π

[

Dφ

(
x
∣
∣
∣

∣
∣
∣y
)]

.

Combining identity (2.4) and Corollary (7) we obtain

Corollary 8. (Banerjee et al., 2005) Generalized meanµφ(x) = (∇)
−1
φ( E

x∼π
[∇φ(x)])

= Argmin
y∈domφ

E

x∼π

[

Dφ

(
y
∣
∣
∣

∣
∣
∣x
)]

.

Corollary 9. If random variablex takes values inX = X1 ∪ X2 with X1 ∩ X2 = ∅ then

Argmin
µ∈X

E

x|X

[

Dφ

(
x
∣
∣
∣

∣
∣
∣µ
)]

≥ Argmin
µ1∈X1

E

x|X1

[

Dφ

(
x
∣
∣
∣

∣
∣
∣µ1

)]

+Argmin
µ2∈X2

E

x|X2

[

Dφ

(
x
∣
∣
∣

∣
∣
∣µ2

)]

.
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Appendix B

Proofs from Chapter 4

Notation: Follows notation of Chapter 4.

B.1 Large Deviation Bound for Exponential Family Densities

with Uniformly Concave Entropy

Let the random variabley taking values inY ⊂ Rn have the exponential family density

P (y) = e〈y,θ〉−φ
∗(θ).

The functionφ∗(·) : Θ 7→ R =
∫

Y e
〈y,θ〉 is the log partition function and its

Legendre conjugate

φ(µ) = sup
θ∈Θ

〈µ,θ〉 − φ∗(θ)

is its negative entropy. It is assumed thatφ(·) is uniformly convex, i.e.

Theorem 16. If random variabley has exponential family densitye〈y,θ〉−φ
∗(θ) with nega-

tive entropyφ(µ) uniformly convex with respect to norm|| · || with modulusδ(·) then for
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any bounded convex setB

P (y /∈ B) ≤ e
− supy∈B δ(||y−E[Y ]||)

.

Proof. Consider any bounded, convex setB with the support function

σ(s) = sup
y∈B

〈s,y〉 .

Now the indicator function1B(y) =







1 if y ∈ B

0 otherwise
of the setB can be bounded as

1− 1B(y) ≤ e〈s,y〉−σ(s).

Therefore

P (y /∈ B) ≤ E
[

e〈s,y〉−σ(s)
]

= E
[

e〈s,y〉
]

e−σ(s) = eφ
∗(θ+s)−φ∗(θ)−σ(s)

= e[φ
∗(θ+s)−supy∈B〈s,y〉]−φ∗(θ)

Now we tighten the exponent with respect tos as

[

φ∗(θ + s∗)− sup
y∈B

〈s∗,y〉
]

− φ∗(θ) = inf
s
sup
y∈B

[φ∗(θ + s)− 〈s,y〉]− φ∗(θ)

= sup
y∈B

inf
s
[φ∗(θ + s)− 〈s,y〉]− φ∗(θ)

= sup
y∈B

〈y,θ〉 − φ(y)− φ∗(θ)

≥ sup
y∈B

〈y,θ〉 − [φ(y′) +
〈
y − y′,∇φ(y′) + δ(||y − y′||)

〉
]

− φ∗(θ)

= − sup
y∈B

δ(||y − (∇φ)−1(θ)||) = − sup
y∈B

δ(||y −E [Y ] ||)
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Appendix C

Proofs from Chapter 5

Notation: Follows notation of Chapter 5.

C.1 Proofs from Section 5.2.2

Proof of Lemma 18:

Proof. By Pinsker’s inequality we haveKL (p‖q) ≥ 2‖p− q‖21.

KL (p‖q) =
∑

i

pi log(
pi
qi
) ≤(a)

∑

i

pi(
pi
qi

− 1)

=
∑

i

p2i − 2piqi + q2i
qi

+
∑

i

(pi − qi)

≤(b) 1

ǫ
‖p− q‖22 ≤(c) 1

ǫ
‖p− q‖21.

Inequality(a) follows fromx − 1 > log x and inequalityb follows frommini pi ≥ ǫ and

mini qi ≥ ǫ. Combining upper and lower bounds we obtainKL(p‖q)
KL(q‖p) <

2
ǫ .

Proof of Lemma 19:

Proof. It is required that̂F (ρ∗,ρ∗) ≤ F̂ (ρ∗, ρ̃)+ 1−β
β KL (ρ∗‖ρ̃) , using equation (5.8) we
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obtain

✘✘✘✘✘✘✘✘✿

F̂ (ρ∗,ρ∗(ρ
∗))+KL (ρ∗(ρ

∗)‖ρ∗) ≤
✘✘✘✘✘✘✘✘✿

F̂ (ρ∗,ρ∗(ρ
∗))+KL (ρ∗(ρ

∗)‖ρ̃)+1− β

β
KL (ρ∗‖ρ̃) .

Re-arranging, we obtain that it is required that

1− β

β
KL (ρ∗‖ρ̃) ≥ KL (ρ∗(ρ

∗)‖ρ∗)−KL (ρ∗(ρ
∗)‖ρ̃)

= KL (ρ̃‖ρ∗) +
〈

−−−−−→
ρ∗i − ρ̃i,

−−−→
log

ρ∗i
ρ̃i

〉

, or it is required that

1− β

β
≥(a) KL (ρ̃‖ρ∗)

KL (ρ∗‖ρ̃) +
‖ρ∗ − ρ̃‖2 ‖ log(ρ∗)− log(ρ̃)‖2

‖ρ∗ − ρ̃‖22
≤(b) 2

ǫ
+

δ

ǫ(1− δ)
.

The first term in inequality(b) follows from lemma 18, the second term follows from the

condition ‖ρ∗(ρ∗)−ρ̃‖
‖ρ∗−ρ̃‖ ≥ δ

1−δ and the Lipschitz constant of1ǫ of the vector valued function

log(·) on the set∆ǫ. To obtain inequality(a) we have used Cauchy-Schwarz, and lemma

18.

C.2 Bregman-Affine Center

Since we will do a plugin replacement of KL divergence by a Bregman divergences in

all of our cost functions, an optimization problem that will be of interest to usis that of

minimizing over the second argument of a weighted sum of Bregman divergence from a set

of points i.e.

min
y∈int(domφ)

∑

i

wiDφ

(
xi

∣
∣
∣

∣
∣
∣y
)

s.t.
∑

i

wi ≥ 0. (C.1)

Our interest lies in the case where the summation of the weights are positive. The individual

weights need not be positive. The minimizer of the problem will be termed the Bregman-

Affine center of the vectorsxi. To specify the solution of this problem we need to introduce
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the notion of Legendre conjugates of convex functions.

Apart from playing a role in specifying the solution of the optimization problem

(C.1) Legendre conjugates will find use in this paper to switch the order of the arguments

in a Bregman divergence by drawing upon the identity

Dφ

(
x
∣
∣
∣

∣
∣
∣y
)
= Dψ

(
∇φ(y)

∣
∣
∣

∣
∣
∣∇φ(x)

)
. (C.2)

The RHS of (C.2) is of special consequence because minimizing it is equivalent to fitting

{∇φ(y)i,xi}1≤i≤n by a Generalized Linear Model (GLM) with the canonical link func-

tion ∇φ(·). For the case of KL divergence the corresponding GLM is a logistic regression

model.

With the necessary background in place, we state the following theorem regarding

Bregman-Affine centers

Theorem 17. Given a Bregman divergenceDφ

(
·
∣
∣
∣

∣
∣
∣·
)

defined by a convex functionφ(·) of

Legendre type,xi ∈ domφ andwi ∈ R s.t. the affine combination
∑

i wixi∑

i wi
∈ dom(φ), the

problem

inf
y∈domφ

∑

i

wiDφ

(
xi

∣
∣
∣

∣
∣
∣y
)

s.t.
∑

i

wi > 0 (C.3)

has a minimizing sequence with a unique limit pointy∗ =
∑

i wixi∑

i wi
, whereas the problem

sup
y∈domφ

∑

i

wiDφ

(
xi

∣
∣
∣

∣
∣
∣y
)

s.t.
∑

i

wi < 0 (C.4)

has a maximizing sequence with a unique limit point
∑

i wixi∑

i wi
, and the set of limit point(s)

y∗ of the optimizing sequence of problem

inf[or, sup]
y∈domφ

∑

i

wiDφ

(
xi

∣
∣
∣

∣
∣
∣y
)

s.t.
∑

i

wi = 0 (C.5)
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satisfies

∇φ(y∗) = ArgSup [or,ArgInf]v∈dom(φ∗)

〈
∑

i

wixi,v

〉

(C.6)

Equation(C.6) is a linear program with the optimum value

− δ*dom(φ∗)

(

[−]
∑

i

wixi

)

.

The solution set satisfies

y∗ ∋







∑

i wixi

Gaugedom(φ)(
∑

i wixi)
if 0 ∈ domφ

lim
c→0

∑

i wixi
c if the limit exists

(C.7)

and lies on the boundary ofdom(φ).

Proof. Let s =
∑

iwi, x̄ =
∑

i wixi∑

i wi
andφ̄ =

∑

i wiφ(xi)∑

i wi
. We have

∑

i

wiDφ

(
xi

∣
∣
∣

∣
∣
∣y
)
=
∑

i

wiDφ

(
xi

∣
∣
∣

∣
∣
∣y
)
+ sφ(x̄)− sφ(x̄)

= s(φ̄− φ(x̄)) + sφ(x̄)− sφ(y)− s(x̄− y)∇φ(y)

= s(φ̄− φ(x̄)) + sDφ

(
x̄
∣
∣
∣

∣
∣
∣y
)
.

(C.8)

The first term of RHS is a constant, andDφ

(
x̄
∣
∣
∣

∣
∣
∣y
)
≥ 0 andDφ

(
x̄
∣
∣
∣

∣
∣
∣y
)
= 0 ⇐⇒ y = x̄.

If x̄ is on the boundary, consider any sequencelimt→∞ yt = x̄. Using propertyP2 we

obtainlimt→∞Dφ

(
x̄
∣
∣
∣

∣
∣
∣yt
)
= 0, henceyt is a minimizing sequence. This proves (C.3) and

(C.4). The special case of this theorem for
∑

iwi = 1 was proven by Banerjee et al. (2005)

as well as the proposition that Bregman divergences are the only cost function for which

the property is true.

For the remaining, considers = 0. In this particular case equation (C.8) is no longer
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valid because it requires̄x to be well defined (whereas it is not because of division by zero).

However, we have the following relation:

∑

i

wiDφ

(
xi

∣
∣
∣

∣
∣
∣y
)
= sφ̄−

〈(
∑

i

wixi

)

,∇φ(y)
〉

.

Expression (C.6) follows from the observation that the first term is constant and that∇φ(y) ∈
dom(φ∗) by definition. This domain transformation is critical in converting a non-linear

problem into the linear programming problem (C.6).

In what follows we elaborate on the minimization part of the problem (C.5) because

it applies directly to our consensus ranking problem, the maximization can be handled

similarly.

inf
v∈dom(φ∗)

−
〈
∑

i

wixi,v

〉

= − sup
v∈dom(φ∗)

〈
∑

i

wixi,v

〉

, − δ*dom(φ∗)

(
∑

i

wixi

)

.

(C.9)

The solution of (C.9) is the point or a face ofdomφ∗(·) exposed by the direction
∑

iwixi.

To obtain a solution (C.7) we use a sequence of unconstrained optimization problems.

The constraintv ∈ dom(φ∗) is replaced by an appropriate barrier functionB(v)

that enforces the constraint. By definition the barrier function has to satisfy

lim
v→bd(dom(φ∗))

B(v) = ∞ and lim
v→bd(dom(φ∗))

∇B(v) = ∞.

Both these properties are satisfied by the functionφ∗(·), becauseφ(·) and consequently

(Rockafellar, 1996)φ∗(·) is a Legendre function. This allows us to use it as a barrier

function that is naturally suited to the problem. As a result, we obtain the modified sequence

of optimization problems defined for each value ofct that satisfies the conditionlim ct ↓ 0:
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1

max
v

〈
∑

i

wixi,v

〉

− ctφ
∗(v) , ctφ

(∑

iwixi
ct

)

. (C.10)

A point in the solution set can be computed as the limit of the solutions of the sequence of

Legendre dual evaluations (C.10), and is given by

v∗(ct) = ∇−1φ∗
(∑

iwixi
ct

)

= ∇φ
(∑

iwixi
ct

)

.

Following which, we obtain

y∗ ∋ lim
ct→0

(∇)−1φ(v∗(ct)) = lim
ct→0

(∇)−1φ

(

∇φ
(∑

iwixi
ct

))

.

The transformed optimization problem is solved for a reducing sequence ofct such that the

solutionv∗ lies in the closurecl domφ∗. Thus, from the relation

lim
t→∞

ct = sup

{

c

∣
∣
∣
∣

∑

iwixi
c

∈ domφ

}

we obtain from the definition of gauge thatlim
t→∞

ct = Gaugedom(φ) (
∑

iwixi) .

Theorem (17) plays a critical role in the rest of the paper, therefore webriefly sum-

marize its significance which spans both the theoretical and the computational. The parts

(C.3) and (C.4) have several important consequences. The first is that the nonlinear non-

convex cost function has not only a unique solution but also that can be computed in a

simple closed form. Furthermore the solution has the simple form of an affine combination

of the vectorsxi combined according to the normalized weightsw∑

i wi
.

Even more strikingly, Bregman divergences are the only divergences for which such

1One would recognize that the extreme RHS of equation (C.10) is the limiting case of the dilation function
of φ(·). The interplay between the support function and the barrier function should not be surprising because the
Legendre dual of the support function is the indicator function, which in this case is approximated by the barrier
function. Positive multiples of the barrier function serves as a differentiable and a convergent approximation to
the indicator functionδ(·| domφ∗). The optimaly is obtained by inverting the domain transform∇φ(y∗) =
v∗ to obtain the relation (C.7).
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an affine combination is the solution. The special case where
∑

iwi = 1 has been shown by

Banerjee et al. (2005), in this case the affine combination reduced to a simpleconvex com-

bination. Since the affine combination subsumes convex combination, it followsdirectly

that Bregman divergences are the only class for which the optimum is obtained at the affine

center. The results (C.3) and (C.4) extend the results obtained by Banerjee et al. (2005) to

the cases
∑

iwi > 0 and
∑

iwi < 0. We however lose some universality compared to the

convex case because the previous result (Banerjee et al., 2005) holdsfor any set of vectors

xi in the domain of the Bregman divergence whereas when
∑

iwi is higher or lower than1,

the result applies to the subset such that the affine combination ofxi by the weights w∑

i wi

lie in the domain of the Bregman divergence.

The extra requirements onxi has important practical consequences because it might

be difficult to guarantee that the vectorsxi satisfy the condition required, especially if the

vectorsxi are an intermediate quantity in a series of computations. However, if the relative

interior of the domain ofφ(·) spans its entire affine hull, no such extra conditions need to

be checked.

For the purpose of this paper, the role played by part (C.5) of theorem (17) is crucial.

Although the closed form solutions of the problems (C.3) and (C.4) become degenerate at
∑

iwi = 0, part (C.5) shows that the optimization problem may still be well defined. It

turns out that the solution in this case can not only be defined but unlike parts (C.3) and

(C.4), it requires no extra conditions onxi.

As a consequence of (C.5), first we are able to reduce the non-linear problem to

an equivalent linear program by domain transformation. This is no doubt an important

simplification but unless carried through further it would have entailed steepcomputational

expenses. For example, if any algorithm requires a solution of the optimizationproblem

(C.5) in a repeated intermediate step, that would have required numerically solving several

inner linear programming problems. The striking feature of (C.5) is that the resulting linear

programming problem affords a closed form solution.
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