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ABSTRACT

This paper addresses the performance of varioustistal

data fusion techniques for combining the compleargracore
information in speaker verification. The complenaseptveri-

fication scores are based on the static and dejtat@l fea-
tures. Both LPCC (Linear prediction-based cepst@éffi-

cients) and MFCC (mel-frequency cepstral coeffitsgrare
considered in the study. The experiments conductiag a
GMM-based speaker verification system, providesuafale
information on the relative effectiveness of diffet fusion
methods applied at the score level. It is also destmated that
a higher speaker discrimination capability can tieieved by
applying the fusion at the score level rather thathe feature
level.

1. INTRODUCTION

The fusion of the complementary information obtdirieom

the biometric data has been a research area ofdeoalsle
interest. The efforts in this area are mainly feeason fusing
the information obtained using various independeodali-

ties. For instance, a popular approach is to coenfane and
voice modalities to achieve a better recognitiomdfviduals.

The maotivation behind this approach is that theepehdent
information obtained using different modalitiestli®ught to
possess complementary evidences about the idattitputes
of a particular person [1]. Hence combining sucmpgle-

mentary information should be more beneficial thesmg a
single modality. Various statistical fusion teajues have
been developed for this task [2]. These range fumimg

different weighting schemes that assign weightth&infor-

mation streams according to their information cohtdo

support vector machines which use the principleltaining
the best possible boundary for classification, etiog to the
training data.

Speaker verification is the task of matching thirimation
obtained from a given test utterance against thdeinassoci-
ated with the claimed identity. The process inveleebinary
decision depending on whether or not the matcheserceeds
a preset threshold. It is therefore desired that rnetric
adopted for this purpose can effectively discrirtenaetween
each true claimant and impostors. The most commproach
to representing the registered speaker informasotirough
training the Gaussian Mixture Models (GMM) on thpesch
feature data [3]. In GMM-based speaker
likelihood scores are used as matching metrics.tMbshe
verification systems use cepstral features to smmie the
speaker information. Static and delta cepstra nbthifrom
speech represent two distinctive aspects of huroaaltract.
Static cepstra represent the coarse aspects of tracacon-

verification

figuration under the assumption of being stationampile

delta coefficients represent the time varying (dgita

information such as speaking style, and speakitgg[#d. This

information can be derived from cepstra based enlitiear

prediction analysis (LPCC), or based on the petzdpt
processing on filter bank analysis (MFCC). Thougtital

coefficients are derived from static coefficientsing a

polynomial fit method, they represent a completifferent

level of information about the speaker and hence ba

considered independent in terms of the informatioment.

Usually, static and delta cepstra are concatertateepresent
a single feature vector for the task of speakewgsition. This

is referred to as fusion at the feature level [6is, however,

reported in the literature that the fusion stragsgiork best at
the score level [2]. Hence in this study, the fasiof the

information obtained from static and delta cepstracon-

sidered at the score level.

Various score level fusion schemes are evaluatéuisrstudy.
Amongst these, the Support Vector Machine (SVM)ofs
particular interest. The use of Support Vector Maes in
speaker verification has been considered relativebently.
To date, however, SVM have only beenplemented at the
feature level for speaker verification [6]. In tlEpproach, the
feature space is projected into some different tsees so
that the discrimination between the true and imospeaker
utterances is maximised. It has also been showrnctimabin-
ing SVM and GMM would lead to improvement in diseri
nation capability. [6]. In the present work, SVMeaused at
the score level (to combine the likelihood scorésaimed
from the static and delta cepstra) with the airmaximise the
separation of the true and impostor speakers. &seaf the
paper is structured as follows. Section 2 givestheory of
various fusion schemes. Section 3 details the é@xpetal
setup. Section 4 discusses the results, whilsidebtpresents
the overall conclusions

2. FUSION TECHNIQUES
2.1. Weighted Average Fusion

In weighted average schemes, the fused score @ir eass
(e.g.j) is computed as a weighted combination of the excor
obtained fromV matching streams as follows.

N

ST @

where,f; is the fused scores fgft class, x, is the normalised

match score from th&" matcher andw, is the corresponding
weight in the interval of 0 to 1, with the conditio
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There are three sub-classes of this scheme, whiohaply
differ in the method used for the estimation ofgiivalues.

2.1.1. Brute Force Search (BFS)
This approach is based on using the following éqndb].

©)

ffzx:}*a+xf*(1—a) )

wherey s thej” fused scorex’ is thej” normalized score
of thep'™ matcher,p = 12and0<a<1.

2.1.2. Matcher Weighting using FAR and FRR (MW —
FAR/FRR)

In this technique the performance of the individoetchers
determines the weights so that smaller error ragssit in
larger weights. The performance of the system iasmed by
False Acceptance Rate (FAR) and False Rejectiore Rat
(FRR). These two types of errors would be compuied
different thresholds. Threshold that minimises #isolute
difference between FAR and FRR on the developmeiniss
then taken into consideration. The weights for bgpective
matchers are computed as follows [7].

1-(FAR,+ FRR)) , (4)

"= 2°(FAR + FRR + FAR +FRR)

where =1, 2, v =1, 2 andu is not equal tov with the
constraint w, +w, =1

The fused score using different matchers is gien a
[y =w, X, * x (5)

where, w, is the weight from the!" matcher,xf is the jth

normalised score of matcher p aifd is the fused score.

2.1.3. Matcher Weighting based on EER (MW - EER)

The matcher weights in this case depend on the |Efuer
Rates (EER) of the intended matchers for fusionR E&

matcherm is represented d" , m=1, 2 and the weighiy,,
associated with matcheris computed as [8].

1
Y =T ©)
E"Y =

Note thaQ < w,_ <1, with the constraint given in (2). It is

apparent that the weights are inversely proportidoathe
corresponding errors in the individual matcherse Tveights
for less accurate matchers are lower than thosenafe
accurate matchers. The fused score is calculatéidei same
way as in equation (1).
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2.2. Fisher Linear Discriminant (FLD)

In FLD, the linear boundary between the data fraim tlasses
is obtained by projecting the data onto the oneedsional
space [9].

For datax, the equation of the boundary can be given as
™

where, w is a transformation matrix obtained on the
development data and is a threshold determined on the
development data to give the minimum error of dfecsgion

in respective classes. The rule for class allonatibany data
vector is given by

h(x)=w"x+ b,

®

xe{ﬁl2 if wa+b{Z 0

2.2.1. Training the FLD

Given a range normalised data from class Ci having a

multivariate Gaussian distribution with the
statistic§m,, S,],i€ land 2, where S, and m, are a scatter

matrix and mean for the particular class i. Thetecanatrix is
given as [9]

SiZZ(xk _mi)(xk _mi)T )

keC;

(©)

where,T is a transpose operation.
The overall within class scatter matri%, and the between
class scatter matri§, are given by

2

Sy :ZS,’

i=1

(10)

Sy =(m2 —m )(mz —my )T (11)

The transformation matrix is obtained using the equation

w=S8," (m,—m,) (12)

2.3. Quadratic Discriminant Analysis

(QDA)

This technique is the same as FLD but is basedonirfig a
boundary between two classes using a quadratictiequa
given as [10]

h(x)=x"Ax+b'x+c¢ (13)

For training data 1 and 2 from two different classes, which are
distributed asN[m,, >,],ieland2, the transformation

parameters A and b can be obtained as

y :—%(2;1—2;1) (14)

b=2f my _z;1 m, (15)

The classification rule in QDA is of the same nature as in
FLD, only the equation is replaced appropriately.



2.4 Logistic Regression (LR)

The assumption in this technique is that the cdbfiee
between log likelihood functions from two classedatax is
linear inx [9].

Iog[%): o+p"x (16)

Parameters in the above equation can be calcweatbdthe
maximum likelihood approach with an iterative opsation
scheme on some development data. Details can bl fiou

[9l.

The allocation rule for the test data is given as
xelo if ag+p’xfz 0 (17)

2.5 Support Vector Machines (SVM)

SVM is a classification technique based on formingyper
plane that separates data from two classes wittexdnmm
possible margin. SVM is based on the principle wi&ural
Risk Minimization (SRM) [11]. SRM principle statabat
better generalization capabilities are achievedouph a
minimization of the bound on the generalizatioroerr The
SVM uses the following function to map a given wedb its
label space (i.e., -1 or +1)

() =sig ia,yfk(x,xi)+b) (18)

where k(x,xl-) is a kernel function that defines the nature of

the decision surface that separates the data, the input
vector of a test sety; is the input vector of the"itraining

example,/ is the number of training examplées,is a bias
estimated on the training set, is the class specific mapping

label andq, are the solutions of the following Lagrangian in

the quadratic programming problem.

[ 1 / i 19
Q(a)=§ai—Egga,a,y,y,-k(xnx,) (19)
with the constraints,

1
ay;, = 0
=1 (20)

More details of this equation are given in [11] e resulting

solution, mosta, are equal to zero, which refer to the training

data that are not on the margin. The training exesnwith

non-zero ¢, are called support vectors, which are the input

vectors that lie on the edge of the margin. Intchdg new
data outside of the margin will not change the hygane as
long as the new data are not in the margin or essified.
Therefore, the classifier must remember those veatdich
define the hyper plane.

The kernel functionk(x,x‘,) can have different forms. More

details can be found in [11]. In this work, lineand
polynomial kernel functions with a degree of 2 (dpaic) are
used. These are given by following equations,

Linear:k(x,x,) = x"x, , (21)
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Quadratic: k(x,x,) = (xrxt. + 1)2 ) (22)

2.6. Range-Normalisation Techniques

Range-normalisation is the task of bringing rawresdrom
different matchers to the same range. This is @ssgy step
in any fusion system as fusing the scores withauths
normalisation would de-emphasise the contributidnthe
matcher having a lower range of scores. Two differe
normalisation techniques have been evaluated m thper

8]
2.6.1 Min-Max Normalisation (MM)
This method uses the following equation

__n-minf) (23)
max(n) —min(n)

where,x is the normalised score,is the raw score, and max
and min functions specify the maximum and minimuna e
points of the score range respectively.

2.6.2. Z-score Normalisation (ZS)

This method transforms the scores having some @awuss
distribution to a standard Gaussian distributiofoaim. It is
given as

_ n—mean(n) (24)
s (n)

Where,n is any raw score, and mean and std are the &tatist
mean and standard deviation operations.

3. EXPERIMENTAL SETUP

3.1. Speech Data

The speech data used in this work is from the TIdéTabase.
Material from all the 630 speakers is used. Fohespeaker,
the utterances ‘sal’ and ‘sa2’ are used for thesld@ment
and testing respectively. The rest of the 8 utteearfor each
speaker are used for developing the speaker repiatien as a
Gaussian Mixture Model (GMM) with 32 components.

3.2. Feature Extraction

The extraction of cepstral parameters is basedirsh fre-
emphasising the input speech data using a firstrodiital
filter with a coefficient of 0.95 and then segmagtit into 20
ms frames at intervals of 10 ms using a Hamminglain 16
LPCC coefficients are then obtained via a lineagdpation
analysis. For obtaining MFCC, speech spectrum farhea
frame is weighted by a Mel scale filter bank. Thiscrete
cosine transformation of the log magnitude outmftshese
filters gives the MFCC for that speech frame. Factetype of
cepstra, a polynomial fit method is used to obthia delta
coefficients [4].

3.3. Testing

The scores generated with the development uttesaaresfirst
used to obtain the training parameters in variousiof
techniques. True and impostor scores from statit delta
streams are pooled and then normalised accordinthéo
chosen range-normalisation scheme. Parametersnebtan
the fusion schemes are then used in the test phasssform
the normalised test scores according to the fusitieme. The



verification performance is then obtained on tfensformed 5. CONCLUSIONS

scores in terms of equal error rates (EER) vidXB& curves It can be concluded from this study that the coratiom of

complementary information from the speech statid dalta
cepstra can improve the performance in the speaker

4. RESULTS AND DISCUSSIONS verification. Improvements are of greater extenthie case of
The experimental results are presented in thevidtig tables. LPCC features. In this case, the fusion of thermfgtion at
It can be seen that (in most cases) the ZS noratialis is the score level is more effective than that atfézture level.
exhibiting more effectiveness than the MM normaiésa In Amongst various fusion methods considered, SVM apgn
some cases though, the two approaches provide cahipa ~ Nas appeared to provide the best performance mstef
performance. reducing error rates in speaker verification. Hinghe ZS
_ ) normalisation method exhibits better performancantiviM
It can be observed that the way fusion techniquesk vior normalisation for the fusion task.

combining the static and delta features is nottidehin the
two considered cases of LPCC and MFCC. In the cése
LPCC features, improvements are seen in majoritythef
fusion cases by fusing the scores from static @il deatures 6. REFERENCES
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