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ABSTRACT 

This paper formulates a multidimensional choice model system that is capable of handling multiple 

nominal variables, multiple count dependent variables, and multiple continuous dependent variables. 

The system takes the form of a treatment-outcome selection system with multiple treatments and 

multiple outcome variables. The Maximum Approximate Composite Marginal Likelihood 

(MACML) approach is proposed in estimation, and a simulation experiment is undertaken to 

evaluate the ability of the MACML method to recover the model parameters in such integrated 

systems. These experiments show that our estimation approach recovers the underlying parameters 

very well and is efficient from an econometric perspective. The parametric model system proposed 

in the paper is applied to an analysis of household-level decisions on residential location, motorized 

vehicle ownership, the number of daily motorized tours, the number of daily non-motorized tours, 

and the average distance for the motorized tours. The empirical analysis uses the NHTS 2009 data 

from the San Francisco Bay area. Model estimation results show that the choice dimensions 

considered in this paper are inter-related, both through direct observed structural relationships and 

through correlations across unobserved factors (error terms) affecting multiple choice dimensions. 

The significant presence of self-selection effects (endogeneity) suggests that modeling the various 

choice processes in an independent sequence of models is not reflective of the true relationships that 

exist across these choice dimensions, as also reinforced through the computation of treatment effects 

in the paper.  

 

Keywords: multivariate dependency; self-selection; treatment effects; maximum approximate 

composite marginal likelihood; land-use and built environment; travel behavior 
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1. INTRODUCTION 

The focus on reducing traffic congestion, mobile-source emissions, greenhouse gas emissions, and 

fossil fuel dependence has led to the consideration of several travel demand management strategies 

at metropolitan planning organizations in the United States and other countries around the globe. 

While many of these strategies are based on economic incentives (and disincentives) to change auto-

oriented travel behavior (originating from the concept of internalizing the full costs of auto travel), 

or on improved communication and technology-related policies to improve system performance in 

near real time, there also has been considerable interest in the land use-transportation planning 

connection, motivated by the possibility that land-use and urban form design policies can be used to 

control, manage, and shape individual traveler behavior and aggregate travel demand. Indeed, the 

literature on the subject is now vast and growing rapidly, with a substantial amount of quantitative 

and qualitative research having been undertaken in the past decade (see, for example, Bhat and Guo, 

2007, Bhat et al., 2009, Transportation Research Board, 2009, Ewing and Cervero, 2012, Pinjari et 

al., 2011, Zhang et al., 2012, Handy and Krizek, 2012, and Bhat et al., 2013).  

An issue that has received particular attention within the broad land use-transportation 

literature is whether any effect of the built environment on travel demand is causal or merely 

associative (or some combination of the two; see Bhat and Guo, 2007 and Mokhtarian and Cao, 

2008). Commonly labeled as the residential self-selection problem, the underlying issue is that the 

data available to assess the potential effects of land-use on travel patterns is typically of a cross-

sectional nature. In such observational data, the residential location of households and the travel 

patterns of household members are jointly observed at a given point in time. Thus, the data reflects 

household residential location preferences co-mingled with the travel preferences of the households. 

On the other hand, from a policy perspective, the emphasis is on analyzing whether (and how much) 

a neo-urbanist design (compact built environment design, high bicycle lane and roadway street 

density, good land-use mix, and good transit and non-motorized mode accessibility/facilities) would 

help in reducing motorized vehicle miles of travel (VMT). To do so, the conceptual experiment that 

reveals the “true” effect of the built environment (BE) features of the residential location on travel 

patterns is the one that randomly locates households in residential locations. The problem then, 

econometrically speaking, is that the analyst has to extract out the “true” BE effect from a potentially 

non-randomly assigned (to residential locations) observed cross-sectional sample (in many 

metropolitan areas in the U.S., one could make a strong case for a non-random assignment of 
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households to residential locations because of the relative undersupply of neo-urbanist development; 

see Levine, 2006). If the non-random assignment can be completely captured by observed non-travel 

characteristics of households and the BE (such as, say, poor households locating in areas with low 

housing cost), then a conventional travel model accommodating the observed non-travel 

characteristics of households and the BE characteristics would suffice to extract the “true” BE effect 

on travel (alternatively, one can use propensity-score techniques to match households based on 

observed non-travel characteristics and living in different neighborhoods, and compare the travel 

characteristics of these matched households to discern BE effects; see Cao and Fan, 2012). However, 

it is quite possible (if not likely) that there are some antecedent characteristics of households that are 

unobserved to the analyst and that impact both residential location choice and travel behavior. For 

instance, a household whose members have an overall auto inclination and a predisposition to enjoy 

private travel may locate itself in a conventional neighborhood (low population density, low bicycle 

lane and roadway street density, primarily single use residential land use, and auto-dependent urban 

design) and undertake substantial auto travel, while a household whose members dislike driving and 

prefer non-motorized and transit forms of travel may seek out neo-urbanist neighborhoods so they 

can pursue their activities using non-motorized and transit modes of travel. Ignoring such self-

selection effects in residence choices can lead to a “spurious” causal effect of neighborhood 

attributes on travel, and potentially lead to misinformed BE design policies. 

 Many different approaches have been proposed in the literature to account for residential 

self-selection effects, a detailed review of which is beyond the scope of this paper (the reader is 

referred to Bhat and Guo, 2007, Bhat and Eluru, 2009, Mokhtarian and Cao, 2008, and Cao et al., 

2009a). But, very broadly, one direction is to use longitudinal data to examine households that have 

moved residences, with the idea that the analyst can ostensibly control for the overall travel desires 

and attitudes of the members of a household, and attribute changes in travel behavior before and 

after a relocation to the different built environments in the two neighborhoods. However, even here, 

the analyst has to assume that the relocating household was in equilibrium in its pre-move 

neighborhood in terms of BE attributes, and moved because of factors unrelated to the preference for 

BE attributes (such as to upgrade the physical housing stock in response to higher incomes or a 

change in lifecycle). Another broad direction is to more explicitly capture what is traditionally 

“unobserved” in typical travel survey data sets, and include these as “observed” explanatory 

variables. Examples of these variables would be attitudes and perceptions related to travel, lifestyle, 
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and BE attributes (such as importance of walking to daily activities, preference for open space and 

quietness, and level of interest in social interactions). Several studies in the literature have 

considered this approach, even as the field has seen an increasing movement in the past decade 

toward the use of a broader social-psychological framework and lense through which to observe and 

analyze travel-related behaviors (see, for example, van Acker et al., 2011, 2012, Spears et al., 2012, 

and Bamberg, 2013). This approach is a simple way of tackling the self-selection problem, but data 

on attitudes and perceptions are still not collected in large-scale MPO surveys. Besides, it is always 

possible that not all of the relevant attitudes/perceptions will be captured even in the most carefully 

designed survey to elicit such “soft” factors. A third broad direction is to accept the limitations of 

traditional cross-sectional surveys and attempt to control for self-selection effects through 

econometric instrumental variable techniques, and/or parametric distribution assumptions regarding 

the unobserved factors. Many earlier efforts in the transportation literature have used such an 

approach, which can also be used in combination with other approaches (see Chatman, 2009, Pinjari 

et al., 2011 and de Abreu e Silva et al., 2012). The current effort is along this third direction with 

important empirical extensions of earlier works as well as methodological innovations, as discussed 

in the next section.  

 

1.1. The Current Paper in the Context of Earlier Studies 

As discussed by Bhat and Guo (2007), there are several challenges in analyzing the effects of BE 

measures on travel behavior, even beyond the issue of residential self-selection, including the multi-

dimensional nature of the BE and travel behavior. In terms of travel behavior, the different 

dimensions include motorized and non-motorized vehicle ownership by type, number of tours and 

stops, time-of-day, route choice, and travel mode choice. The net impact on overall VMT patterns 

will depend on the aggregation across the effects on individual travel dimensions. However, most 

earlier studies on the effect of BE measures on travel, while considering residential self-selection, 

focus directly (and solely) on the effect on vehicle miles of travel (see Zhang et al., 2012, Salon et 

al., 2012, and Cao and Fan, 2012, which are but a few recent examples). There have also been 

studies that consider residential self-selection and focus on BE effects on specific travel dimensions, 

such as auto ownership, vehicle type, trip frequencies, bicycle ownership, activity durations, and 

mode choice, though these have been relatively few and have focused on each dimension 

individually (see Bhat and Eluru, 2009 and Handy and Krizek, 2012 for detailed reviews). On the 
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other hand, BE measures may have opposite effects on different dimensions characterizing the VMT 

components. For instance, a neo-urbanist design at the residence end may decrease trip lengths, but 

also increase the number of auto trips. As a result, a BE variable may appear to have no effect on 

VMT, though that may be because of opposite effects on different components constituting VMT. 

This is of relevance for policy, because the emissions per mile can be higher if a neo-urbanist design 

increases the number of auto trips, which may more than compensate for the emissions decrease 

because of a VMT decrease (see Sperry et al., 2012). Thus, there is a need to understand the 

differential effects of BE on different travel dimensions, rather than simply examine an aggregate 

effect on VMT or on an individual dimension of VMT. Further, the travel dimensions need to be 

modeled jointly because, as elucidated by Van Acker et al. (2012) and Paleti et al. (2013), self-

selection need not be only through residential choice. For example, an auto-disinclined household 

may own fewer motorized vehicles, make fewer auto tours, as well as drive shorter distances using 

the car as the mode of transportation.  As a consequence, any effect of the number of motorized 

vehicles on auto travel and VMT will be moderated by the auto-disinclined nature of the household. 

If some of the attributes associated with the auto-disinclined nature of the household are unobserved, 

there is self-selection in auto travel and VMT based not only on residential choice but also based on 

the number of motorized vehicles owned. This self-selection needs to be considered to obtain 

accurate estimates of BE effects and auto-ownership on travel-related attributes. That is, residential 

location may structurally affect motorized vehicle ownership and travel choices, and motorized 

vehicle ownership may structurally affect travel choices, but underlying propensities for vehicle 

ownership and travel choices may themselves affect residential location in the first place and 

underlying propensities for travel may affect motorized vehicle ownership. The only way to 

accurately reflect these impacts and capture the “bundling” of choices is to model the choice 

dimensions together in a joint equations modeling framework that accounts for correlated 

unobserved lifestyle (and other) effects as well as possible structural effects.1  

                                                 
1 In joint limited-dependent variable systems in which one or more dependent variables are not observed on a continuous 
scale, such as the joint system considered in the current paper that has discrete dependent and count variables (which we 
will more generally refer to as limited-dependent variables), the structural effects of one limited-dependent variable on 
another can only be in a single direction. That is, it is not possible to have correlated unobserved effects underlying the 
propensities determining two limited-dependent variables, as well as have the observed limited-dependent variables 
themselves structurally affect each other in a bi-directional fashion. This creates a logical inconsistency problem (see 
Maddala, 1983, page 119 for a good discussion). Intuitively, the propensities are the precursors to the actual observed 
variables, and, when both the decisions are co-determined, it is impossible to have both observed variables structurally 
affect one another. In the current paper, we estimate models with each possible structural direction impact, and choose 
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To be sure, there have been a few recent examples of a multi-dimensional modeling system 

in the land use-transportation literature. These systems use a two-stage instrumental variables 

approach (such as Vance and Hedel, 2007), or a structural equations approach (Van Acker et al., 

2012 and de Abreu e Silva et al., 2012), or a simulated maximum likelihood or a simulated Bayesian 

inference approach  (Eluru et al., 2010, Pinjari et al., 2011, and Brownstone and Golob, 2009). In the 

first (instrumental variable) approach, it can be a challenge to find good instruments; the approach 

also constitutes a limited information approach that can be fraught with econometric efficiency and 

collinearity problems (Puhani, 2000). The second (structural equations) approach and the third 

(simulation-based) approach, while plausible, do become cumbersome in the presence of a mixture 

of dependent variables (such as continuous, nominal, and count variables), and/or as the number of 

dimensions increases, as noted by earlier studies that use these approaches. In the current paper, we 

use the Maximum Approximate Composite Marginal Likelihood (MACML) approach proposed by 

Bhat (2011) that, in a relatively simple and practical manner, provides a way out to estimate multi-

dimensional choice model systems. In this regard, the paper proposes the use of Bhat’s MACML 

approach to estimate multi-dimensional systems with multiple nominal variables and multiple count 

dependent variables in the multi-dimensional system. In addition to providing a practical estimation 

approach, the approach is robust and yields consistent estimates under a range of possible full joint 

distributions that characterize the high-order dependency of endogenous variables in the multi-

dimensional system. To our knowledge this is the first such sample selection formulation and 

application in the econometrics literature. In particular, the sample selection model takes the form of 

a treatment-outcome model with multiple treatments and multiple outcomes.  

The parametric system proposed in this paper models residential choice as a discrete choice 

among a multinomial set of four land-use density categories as defined by housing unit density 

(housing units per square mile) within census blocks. This helps make the definition of choice 

alternatives clear and manageable, and also alleviates the problem of strong multi-collinearity of 

density with other BE characteristics that impact travel behavior. The use of density as the BE 

measure of interest is quite common, and has been used in many earlier residential self-selection 

                                                                                                                                                             
the one that provides a better data fit (which also turns out to be the one that is conceptually intuitive). However, it is 
critical to note that, regardless of which directionality of structural effects comes out to be better (or even if both 
directions are not statistically significant), the system is a joint bundled system because of the correlation in unobserved 
factors impacting the underlying propensities.  
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studies,  including the recent studies of Kim and Brownstone (2012), Paleti et al. (2013), and Cao 

and Fan (2012). The other endogenous variables in the system include the number of motorized 

vehicles in the household (a count variable), the number of motorized auto vehicle tours across all 

individuals in the household during the 24-hour period of the travel survey (another count variable), 

the number of non-motorized tours across all individuals in the household (a third count variable), 

and finally the continuous variable of average tour distance per auto tour.2 This last variable is 

obtained from the reported odometer readings before and after the day of the survey for each vehicle 

in the household. The natural logarithm of the average tour distance is used as the continuous 

dependent variable, after recoding the very small share of  households with an average trip distance 

of less than 0.1 miles to 0.1 (so that the logarithmic dependent variable takes a real value for these 

households).  

The key to our accommodation of count variables in the multi-dimensional system is the 

recasting of a univariate count model as a restricted version of a univariate generalized ordered-

response probit (GORP) model, as discussed in Castro, Paleti, and Bhat or CPB (2012). In addition 

to providing substantial flexibility to accommodate high or low probability masses for specific count 

outcomes, the latent variable-based count specification provides a convenient mechanism to tie the 

count outcomes with one another, and with the multinomial probit residential location choice model 

and the continuous average trip distance per auto trip model.  

 

2. MODEL STRUCTURE 

In this section, we first discuss the formulation for each type of variable, and then formulate the 

structure and estimation procedure for the multi-dimensional system.  

 

                                                 
2 We focus on tours rather than trips to be consistent with an activity-based modeling framework that is increasingly 
being embraced by planning organizations. Besides, the focus on number of tours and tour distance brings in the decision 
component associated with episode chaining. Note also that it would be easy enough to extend the current framework to 
include the number of out-of-home episodes in the day as another count variable, or even the number of out-of-home 
episodes by purpose as multiple count outcomes, but we leave these for future exploration. 
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2.1. Nominal Dependent Variables 

Let there be G nominal (unordered-response) variables for a household, and let g be the index for the 

nominal variables (g = 1, 2, 3, …, G). In the empirical context of the current paper, G=1 (the 

nominal variable is residential location). Also, let Ig (Ig≥ 2) be the number of alternatives 

corresponding to the gth nominal variable and let ig be the corresponding index (ig = 1, 2, 3, …, Ig). 

Note that Ig may vary across households, but the index for households is suppressed at this time for 

presentation convenience. We use a typical utility maximizing framework for the nominal variables, 

and write the utility for alternative ig for the gth nominal variable as:  

,
ggg gigiggiU ε+′= xβ  (1) 

where 
ggix is a (Kg×1)-column vector of exogenous attributes as well as possibly the observed values 

of other endogenous nominal variables (introduced as dummy variables), other endogenous count 

variables, and other endogenous continuous variables. gβ  is a (Kg×1)-column vector of 

corresponding coefficients, and 
ggiε is a normal error term. Let the variance-covariance matrix of the 

vertically stacked vector of errors ]) ..., , ,[( 21 ′=
ggIgg εεεgε  be .gΛ The model above may be written 

in a more compact form by defining the following vectors and matrices: ),...,,( 21 ′=
ggIggg UUUU  

1( ×gI  vector), ),...,,,( ′=
ggIg3g2g1g xxxxx gg KI ×(  matrix), and gg βxV =g  1( ×gI  vector). Then, 

),,(~ gΛgIg g
MVN VU where ),( gΛgIg

MVN V  is the multivariate normal distribution with mean 

vector gV  and covariance .gΛ Consider now that the household chooses alternative gm for the gth 

nominal variable. Under the utility maximization paradigm, 
gg gmgi UU − must be less than zero for all 

gg mi ≠ , since the household chose alternative gm . Let )(*
gggmgimgi miUUu

gggg
≠−= ,  and stack the 

latent utility differentials into a vector ( ) ⎥⎦
⎤

⎢⎣
⎡ ≠

′
= ggmgImgmg miuuu

gggg
;,...,, **

2
*

1
*
gu .  

In the context of the formulation above, several important identification issues need to be 

addressed (in addition to the usual identification consideration that one of the alternatives has to be 

used as the base for each nominal variable when introducing alternative-specific constants and 

variables that do not vary across the Ig alternatives). First, only the covariance matrix of the error 

differences is estimable. Taking the difference with respect to the first alternative, only the elements 
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of the covariance matrix gΛ  of ),,...,,( 32 ggIggg ςςςς =  where 1ggigi εες −=   ( 1≠i ) , are estimable. 

However, the condition that 1−<
gI0u*

g  takes the difference against the alternative gm  that is chosen 

for the nominal variable g. Thus, during estimation, the covariance matrix gΛ  (of the error 

differences taken with respect to alternative gm  is desired). Since gm  will vary across households, 

gΛ will also vary across households. But all the gΛ  
matrices must originate in the same covariance 

matrix gΛ  for the original error term vector gε . To achieve this consistency, gΛ  is constructed from 

gΛ by adding an additional row on top and an additional column to the left. All elements of this 

additional row and column are filled with values of zeros. Second, an additional scale normalization 

needs to be imposed on gΛ . For this, we normalize the first element of gΛ  to the value of one. 

Third, in MNP models, identification is tenuous when only household-specific covariates are used 

(see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are needed in 

the form of at least one household characteristic being excluded from each alternative’s utility in 

addition to being excluded from a base alternative (but appearing in some other utilities). Such 

exclusion restrictions may be identified based on the estimation of a simpler independent MNP 

model.  

The discussion above focuses on a single nominal variable g. When there are G nominal 

variables, define ∑
=

=
G

g
gIG

1

 and ∑
=

−=
G

g
gIG

1

)1(~ . Further, let 

( ) ,,...,, 11312
′−−−= ggIgggg UUUUUU

g

*
gu  [ ] [ ] [ ]

′
⎟
⎠
⎞

⎜
⎝
⎛ ′′′

= *
G

*
2

*
1

* uuuu ,...,, , and 

[ ] [ ] [ ]
′
⎟
⎠
⎞

⎜
⎝
⎛ ′′′

= *
G

*
2

*
1

* uuuu ,...,,  (so *u is the vector of utility differences taken with respect to the first 

alternative for each nominal variable, while *u  is the vector of utility differences taken with respect 

to the chosen alternative for each nominal variable).  Now, construct a matrix of dimension GG ~~ ×  

that represents the covariance matrix of *u : 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′

′

=

G2G1G

2G212

1G121

Λ  ...Λ Λ  
......
......
......

Λ ... Λ Λ  
Λ ...ΛΛ 

Σ *u   (2) 

In the general case, this allows the estimation of ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−G

g

gg II

1
1

2
)1(*

 terms across all the G nominal 

variables (originating from ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
1

2
)1(* gg II

 terms embedded in each gΛ matrix; g=1,2,…G) and 

the ∑ ∑
−

= +=

−×−
1

1 1
)1()1(

G

g

G

gl
lg II  covariance terms in the off-diagonal matrices of the *u

Σ  matrix 

characterizing the dependence between the latent utility differentials (with respect to the first 

alternative) across the nominal variables (originating from )1()1( −×− lg II  estimable covariance 

terms within each off-diagonal matrix in *u
Σ ). For later use, define the stacked −×1G vectors 

( )′′′′= GUUUU , ... ,, 21  , ( )′′′′= GVVVV 2 , ... ,,1  , and .),...,, ′= G21 εε(εε  

  

2.2. Count Dependent Variables 

Let there be L count variables for a household, and let l be the index for the count variables 

) ..., ,2 ,1( Ll = . In the empirical context of the current paper, L=3 (the count variables are the number 

of motorized vehicles, the number of tours made by motorized vehicles, and the number of tours 

made by non-motorized forms of transportation). Let the count index be lj )..., ,2 ,1,0( ∞=lj  and let 

ln be the actual observed count value for the household. Then, a generalized version of the negative 

binomial model may be written in the form of a generalized ordered-response probit (GORP) 

formulation as: 

ll nllnlllll ynjy ,
*

1,
*  if , ψψξ <<== − ,  ......},2 ,1,0{∈lj  ,    (3)  

 
( )

l

ll

l nl

n

r

r
l

l

l

l
nl c

r
rc

,
0

1
, !

)(
)(

1 ϕθ
θ

ψ
θ

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +Γ
Γ
−

Φ= ∑
=

− , 
ll

l
lc

θλ
λ
+

= , and ll zμ′=elλ .  
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In the above equation, *
ly  is a latent continuous stochastic propensity variable associated with count 

variable  l  that maps into the observed count ln  through the lψ vector (which is a vertically stacked 

column vector of thresholds .),... ,,,( 2,1,0,1, ′− llll ψψψψ   This variable, which is equated to lξ  in the 

GORP formulation above, is a standard normal random error term. lμ  is a column vector 

corresponding to another vector lz (including a constant) of exogenous observable covariates as 

well as possibly the observed values of other endogenous variables. 1−Φ  in the threshold function of 

Equation (3) is the inverse function of the univariate cumulative standard normal. lθ  is a parameter 

that provides flexibility to the count formulation, and is related to the dispersion parameter in a 

traditional negative binomial model ( )0 ll ∀>θ . )( lθΓ  is the traditional gamma function; 

∫
∞

−−=Γ
0

1)( dtet t
l

lθθ . The threshold terms in the  lψ vector satisfy the ordering condition (i.e., 

)....2,1,0,1, lllll ∀∞<<<<− ψψψψ  as long as  .....2,1,0,1, ∞<<<<− llll ϕϕϕϕ 3 The presence of the 

lϕ  terms in the thresholds provides substantial flexibility to accommodate high or low probability 

masses for specific count outcomes without the need for cumbersome traditional treatments using 

zero-inflated or related mechanisms in multi-dimensional model systems. For identification, we set 

,, 1,1, −∞=−∞= −− ll ψϕ  and 00, =lϕ for all count variables l. In addition, we identify a count value 

*
le  ......}),2 ,1,0{( * ∈le above which ......}),2 ,1,0{(, ∈eelϕ is held fixed at *, lel

ϕ ; that is, *,,
lelel ϕϕ =  if 

,*
ll ee >  where the value of *

le  can be based on empirical testing. For later use, let 

),,( *,2,1, ′=
ellll ϕϕϕ …ϕ  ( 1* ×le  vector),  and ),,( 21 ′′′′= Lϕϕϕϕ … . Also, stack the L latent variables *

ly  

into an )1( ×L vector 
*y , and let ( )*,~

yLMVN Σfy* , where L0f =  and *y
Σ  is the covariance 

(correlation) matrix of ) ..., , ,( 21 Lξξξ=ξ . Also, stack the lower thresholds ( )Ll
lnl  ..., ,2 ,11, =−ψ  into 

an )1( ×L  vector lowψ  and the upper thresholds ( )Ll
lnl  ..., ,2 ,1, =ψ  into another vector upψ .4 

                                                 
3 The nature of the functional form for the non-φ component of the thresholds satisfy the ordering conditions by 
construction. 
4 The specification of the GORP model in Equation (3) provides a flexible mechanism to model count data. It subsumes 
the traditional count models as specific and restrictive cases. In particular, if all elements of the φl vector are zero, the 
model in Equation (3) for count variable l collapses to a univariate traditional negative binomial model with dispersion 
parameter θl . If, in addition, θl → ∞, the result is the Poisson count model. 



11 

 

2.3. Continuous Dependent Variables 

Finally, let there be H continuous variables ) ..., , ,( 21 Hyyy with an associated index h 

) ..., ,2 ,1( Hh = . In the empirical context of the current paper, H=1 (the continuous variable is the 

natural logarithm of average tour distance). Let hhhy η+′= sγh  in the usual linear regression fashion, 

where the vector hs  includes exogenous household variables as well as possibly other endogenous 

variables. Stacking the H continuous variables into a )1( ×H -vector y, one may write 

),,( yhMVN Σdy =  where ( )'H
'
H2

'
21

'
1 s,.....γsγ,sγd = , and yΣ  is the covariance matrix of 

( )Hηηη ,....., 21=η .  

 

2.4. The Joint Model System and Likelihood Formation 

The jointness across the different types of dependent variables may be specified by writing the 

covariance matrix of ( )yy,uy * ,*=   as:  

Var
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′

′==

   

   

   

**

****

****

)(

yyyyu

yyyyu

yuyuu

ΣΣΣ
ΣΣΣ
ΣΣΣ

Ωy ,   (4) 

where *y*Σ
u  

is a LG ×~  matrix capturing covariance effects between the *u  vector and the *y  

vector, 
y*Σ

u
is a HG ×~  matrix capturing covariance effects between the *u vector and the  y  vector, 

and 
y*y

Σ
 
is an HL×  matrix capturing covariance effects between the *y  vector and the  y  vector. 

All elements of the matrix above are identifiable. However, the matrix represents the covariance of 

latent utility differentials taken with respect to the first alternative for each of the nominal variables. 

For estimation, the corresponding matrix with respect to the latent utility differentials with respect to 

the chosen alternative for each nominal variable, say Ω~ , is needed. For this purpose, first construct 

the general covariance matrix Ω  for the original [ ] 1×++ HLG   vector  
′
⎟
⎠
⎞

⎜
⎝
⎛ ′′′= yy,UUY ,* , while 

also ensuring all parameters are identifiable (note that Ω  is equivalently the covariance matrix of 

,)η,ξ,ε(τ ′′′′=  which we will use in the simulation section). To do so, define a matrix D of size 
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[ ] [ ]HLGHLG ++×++ ~ . The first 1I  rows and )1( 1 −I  columns correspond to the first nominal 

variable. Insert an identity matrix of size )1( 1 −I  after supplementing with a first row of zeros in the 

first through )1( 1 −I th columns of the matrix. The rest of the elements in the first 1I  rows and the 

first )1( 1 −I  columns take a value of zero. Next, rows )1( 1 +I through )( 21 II + and columns )( 1I  

through )2( 21 −+ II  correspond to the second nominal variable. Again position an identity matrix 

of size )1( 2 −I  after supplementing with a first row of zeros into this position. Continue this for all 

G nominal variables. Put zero values in all cells without any value up to this point. Finally, insert an 

identity matrix of size L+H into the last L+H rows and L+H columns of the matrix D. Thus, for the 

case with two nominal variables, one nominal variable with 3 alternatives and the second with four 

alternatives, one count variable, and one continuous variable, the matrix D takes the form shown 

below: 

7*91000000
0100000
0010000
0001000
0000100
0000000
0000010
0000001
0000000

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

Then, the general covariance matrix of UY may be developed as .DΩDΩ ′=  All parameters in this 

matrix are identifiable by virtue of the way this matrix is constructed based on utility differences 

and, at the same time, it provides a consistent means to obtain the covariance matrix Ω~  that is 

needed for estimation (and is with respect to each individual’s chosen alternative for each nominal 

variable). Specifically, to develop the distribution for the vector  
′
⎟
⎠
⎞

⎜
⎝
⎛ ′′

= yy,uy * ,~ * , define a matrix 

M of size [ ] [ ]HLGHLG ++×++~ . The first )1( 1 −I  rows and 1I  columns correspond to the first 

nominal variable. Insert an identity matrix of size )1( 1 −I  after supplementing with a column of ‘-1’ 

values in the column corresponding to the chosen alternative. The rest of the columns for the first 
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)1( 1 −I  rows and the rest of the rows for the first 1I  columns take a value of zero. Next, rows )( 1I  

through )2( 21 −+ II and columns )1( 1 +I through )( 21 II + correspond to the second nominal 

variable. Again position an identity matrix of size )1( 2 −I  after supplementing with a column of ‘-1’ 

values in the column corresponding to the chosen alternative. Continue this procedure for all G 

nominal variables. Finally, insert an identity matrix of size L +H into the last L +H rows and L +H 

columns of the matrix M. With the matrix M as defined, the covariance matrix  Ω~  is given by 

.MMΩΩ ′=~  

Next, define ( )′= *'*' y,uu~ and ( ) .,~ ′′′= f)(MVg  Also, partition Ω~  so that 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′

′=

   

   

   

**

****

****

~
~

~~~
~

yyyyu

yyyyu

yuyuu

ΣΣΣ
ΣΣΣ
ΣΣΣ

Ω  (5) 

Let 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′
=

***

***

yy
ΣΣ
ΣΣ

Σ
u

yuu
u ~

~~
~

~

 
and ⎥

⎦

⎤
⎢
⎣

⎡
′

==
  ~

~~
~

~~
~)~Var(

yyu

yuu

ΣΣ
ΣΣ

Ωy , where HLG
yy

yu
yu ×+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= )~(

~
~

*

*

~
Σ
Σ

Σ   matrix.  

Also, supplement the threshold vectors defined earlier as follows: ( ) ⎥⎦
⎤

⎢⎣
⎡ ′′∞−= lowlow ψψ ,~ ~G , and 

( ) ⎥⎦
⎤

⎢⎣
⎡ ′′= upG ψ0ψup ,~ ~ , where  G~∞−  is a )1~( ×G -column vector of negative infinities, and G~0  is another 

)1~( ×G -column vector of zeros. The conditional distribution of u~  given  y, is multivariate normal 

with mean ( )dygg −+= −1
~

~~~~
yyu ΣΣ and variance yuyyuuu ~

1
~~~

~~~~~ ΣΣΣΣΣ ′−= − . 

Next, let θ  be the collection of parameters to be estimated: 

, )](; ..,,;,...,;...  ; ..., ,[ 1;11 ΩVechL HL1G γ.γμ,μββθ ϕϕ=  where Vech(Ω ) represents the vector of upper 

triangle elements of Ω . Then the likelihood function for the household may be written as: 

[ ] ,~~~ Pr)|()( uplowyHL ψuψdyθ ≤≤×−= Σφ  (6) 

,~)
~~,~~|~()|( ~~

~

uduLG
D

yH

u

ΣΣ gudy +∫×−= φφ  

where the integration domain }~~~:~{~ uplowu
D ψuψu ≤≤=  is simply the multivariate region of the 

elements of the u~  vector determined by the range )0,(−∞  for the nominal variables and by the 
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observed outcomes of the ordinal variables, and (.)~ LG +
φ  is the multivariate normal density function 

of dimension .~ LG +  The likelihood function for a sample of Q households is obtained as the product 

of the household-level likelihood functions. 
 The above likelihood function involves the evaluation of a LG +

~ -dimensional rectangular 

integral for each household, which can be computationally expensive if there are several nominal 

variables, or if each nominal variable takes a large number of values, or if there are several count 

variables, or combinations of these. So, the Maximum Approximate Composite Marginal Likelihood 

(MACML) approach of Bhat (2011), in which the likelihood function only involves the computation 

of univariate and bivariate cumulative distributive functions, is used in this paper. 

 

2.5. The MACML Estimation Approach 

The MACML approach combines a composite marginal likelihood (CML) estimation approach with 

an approximation method to evaluate the multivariate standard normal cumulative distribution 

(MVNCD) function. The MACML approach, similar to the parent CML approach (see Varin et al., 

2011 for a recent review of CML approaches), maximizes a surrogate likelihood function that 

compounds much easier-to-compute, lower-dimensional, marginal likelihoods (see Varin et al., 2011 

for a recent extensive review of CML methods; Lindsay et al., 2011, Bhat, 2011, and Yi et al., 2011 

are also useful references). The CML approach, which belongs to the more general class of 

composite likelihood function approaches (see Lindsay, 1988), may be explained in a simple manner 

as follows. In the multi-dimensional model, instead of developing the likelihood function for the 

entire set of dimensions at once, as in Equation (6), one may compound (multiply) pairwise 

probabilities of each pair of non-continuous dimensions for the household. The CML estimator (in 

this instance, the pairwise CML estimator) is then the one that maximizes the compounded 

probability of all pairwise events. The properties of the CML estimator may be derived using the 

theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011). Specifically, under usual 

regularity assumptions (Molenberghs and Verbeke, 2005, page 191, Xu and Reid, 2011), the CML 

estimator is consistent and asymptotically normal distributed (this is because of the unbiasedness of 

the CML score function, which is a linear combination of proper score functions associated with the 

marginal event probabilities forming the composite likelihood; for a formal proof, see Yi et al., 2011 

and Xu and Reid, 2011). Further, the CML approach is robust against mis-specification of the full 
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joint distribution of the endogenous variables in the multi-dimensional system, while the traditional 

maximum likelihood approach is not (Xu and Reid, 2011). In particular, the consistency of the 

estimates in the CML approach is predicated only on the correct specification of the lower 

dimensional marginal densities appearing in the CML function, without any need for explicit 

distributional assumptions for the full dimensional density of the multi-dimensional system. This is a 

particularly attractive feature of the CML inference approach when modeling high dimensional 

econometric systems, because mis-specifications of the full dimensional joint density function are 

much more likely than mis-specifications of lower dimensional densities.  

In the MACML approach, the MVNCD function appearing in the CML function is evaluated 

using an analytic approximation method rather than simulation techniques. This combination of the 

CML with the specific analytic approximation for the MVNCD function is effective because it 

involves only univariate and bivariate cumulative normal distribution function evaluations. The 

MVNCD approximation method is based on linearization with binary variables (see Bhat, 2011). As 

has been demonstrated by Bhat and Sidharthan (2012), the MACML method has the virtue of 

computational robustness in that the approximate CML surface is smoother and easier to maximize 

than traditional simulated maximum likelihood surfaces.  

In the context of the proposed model, consider the following (pairwise) composite marginal 

likelihood function formed by taking the products (across the G nominal variables and L count 

variables) of the joint pairwise probability of the chosen alternatives for a household. 

.),Pr(
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1 1
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  (7) 

where 
gid is an index for the individual’s choice for the gth nominal variable. The net result is that 

the pairwise likelihood function now only needs the evaluation of  ~ and ,~,~
' glllgg GGG ′ dimensional 

cumulative normal distribution functions (rather than the LG +
~ -dimensional cumulative distribution 

function in the maximum likelihood function), where  ~and2,~,2~
' gglllgggg IGGIIG ==−+= ′′ . This 

leads to substantial computational efficiency. However, in cases where there are several alternatives 

for one or more nominal variables, the dimension glgg GG ~ and ~
′  can still be quite high. This is where 

the use of an analytic approximation of the multivariate normal cumulative distribution (MVNCD) 
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function, as shown in Bhat (2011), is convenient. Also note that the probabilities in the CML 

function in Equation (7) can be computed by selecting out the appropriate sub-matrices of the  mean 

vector g~~  and the covariance matrix u~
~~Σ  of the vector u~  , and the appropriate sub-vectors of the 

threshold vectors lowψ~  and .~
upψ  The covariance matrix of the parameters θ   may be estimated by 

the inverse of Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005).  

[ ] == −1)()( θθ GVMACML )]([)]()[( 1 θθθ HJH − , (8)  

)(θH  and )(θJ  can  be estimated in a straightforward manner at the MACML estimate MACMLθ̂  

as follows (introducing q as the index for households): 

.
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2.6. Positive Definiteness 

The matrix  Ω~  for each household has to be positive definite. The simplest way to guarantee this is 

to ensure that the matrix Ω  is positive definite. To do so, the Cholesky matrix of Ω  may be used as 

the matrix of parameters to be estimated. However, note that the top diagonal element of each gΛ in 

Ω  is normalized to one for identification, and this restriction should be recognized when using the 

Cholesky factor of Ω . Further, the diagonal elements of 
   *y

Σ in Ω  are also normalized to one. 

These restrictions can be maintained by appropriately parameterizing the diagonal elements of the 

Cholesky decomposition matrix. Thus, consider the lower triangular Cholesky matrix L  of the same 

size as Ω . Whenever a diagonal element (say the kkth element) of Ω  is to be normalized to one, the 

corresponding diagonal element of L  is written as ∑
−

=

−
1

1

21
a

j
kjd ,, where the kjd  elements are the 

Cholesky factors that are to be estimated. With this parameterization, Ω  obtained as LL ′  is positive 

definite and adheres to the scaling conditions.  
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3. SIMULATION STUDY 

The simulation exercise undertaken in this section examines the ability of the MACML estimator to 

recover parameters from finite samples in the joint model by generating simulated data sets with 

known underlying model parameters. We consider a single nominal variable with three alternatives, 

a single count variable, and a single continuous variable.  

 

3.1. Experimental Design 

Assume a single independent variable for each of the three alternatives in the MNP model for the 

nominal choice. The values of this variable for each alternative are drawn from a standard univariate 

normal distribution to construct a synthetic sample of 2000 realizations of the exogenous variable 

(Q=2000). The coefficient on this variable (labeled as β ) is set to the value of -1. For the count 

variable, we consider an exogenous variable in the lz vector (embedded in the threshold function), 

generated again from a standard univariate distribution. The corresponding coefficient (labeled as  

)1μ  is set to 0.5. In addition, dummy variables corresponding to the choice of the second alternative 

and third alternative in the nominal variable are included as structural effects in the count 

specification through the lz vector , with coefficients of  25.02 =μ  and 5.03 =μ . The dispersion 

parameter lθ  (or simply θ  in this section) is fixed at 2, and the ),,( *,2,1, ′= ellll ϕϕϕ …ϕ  vector 

(labeled ϕ  here) is set so that ).6.0 ,3.0(),( 21 == ϕϕϕ For the continuous variable, a single standard 

normally distributed variable is generated with a coefficient of 2=γ , with no additional structural 

effects. 

 The covariance matrix that generates the jointness among the dependent variables is 

specified as follows (see Section 3.4): 

⎥
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⎥
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⎥
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⎥
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⎣
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25.100.000.000.0
25.080.000.000.0
00.000.000.100.0
00.060.060.000.1

25.125.000.000.0
00.080.000.060.0
00.000.000.160.0
00.000.000.000.1

625.1200.0000.0000.0
200.0000.1360.0600.0
000.0360.0360.1600.0
000.0600.0600.0000.1
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ΩΩLL

Ωy
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In the above Ω  matrix, the first element is normalized (and fixed) to the value of 1, as is the third 

diagonal element (this third diagonal element corresponds to *y
Σ ).  The sub-matrix of the first two 

columns and first two rows of Ω  correspond to the matrix 
   *u

Σ in Equation (4), which itself is the 

covariance matrix of the utility differentials of the second and third alternatives (with respect to the 

first alternative) in the nominal variable. In the simulation exercise, for convenience, we fix the 

covariance of the utility differentials in the nominal variable with the continuous variable to the 

value of zero. Then, there are five Cholesky matrix elements to be estimated in ΩL  

( 6.01 =Ωl , ).25.1,25.0,6.0,0.1 5432 ==== ΩΩΩΩ llll 5 Collectively, these elements, vertically 

stacked into a column vector, will be referred to as .Ωl  

The set-up above is used to develop the covariance matrix Ω  for the error vector 

.,τ ),,,( 321 ′= ηξεεε  The mean vector ( )′= 321 ,, VVVV for the utilities ( )′= 321 ,, UUUU  in the 

nominal variable are also computed. Then, for each of the 2000 observations, a specific realization 

of the τ  vector is drawn from the multivariate normal distribution with mean 50  and covariance 

structure Ω . The realization corresponding to ),( 321 ′= εεε ,ε is added to the mean vector V  to 

obtain the realization of the vector U for each observation. The alternative with the highest utility 

value is then picked, and identified as the chosen alternative for each observation. Next, the 

generated value for ξ=*y  is translated into an observed count based on the computed threshold 

values (which include the dummy variables corresponding to the nominal variable). The value for 

the continuous variable y  is directly obtained from the realization for the error term η  after adding 

with the expected value computed for this dependent variable.  

                                                 
5 In the covariance matrix Ω , there are six parameters to be estimated, corresponding to two parameters in the covariance 
of the utility differentials of the MNP model (0.6 and 1.36), two parameters corresponding to the covariance between the 
two utility differentials in the MNP model with the count error term (0.6 and 0.36), one parameter corresponding to the 
covariance between the count error term and the continuous model error term (0.2), and the one parameter corresponding 
to the variance of the continuous model error term (1.625). Thus, there should also be six parameters to estimate in the 
Cholseky decomposition too, and there are. It just so happens that one of those parameters to be estimated takes a value 
of 0 (this is in the third row and second column of 

ΩL  ). However, estimating this model leads to problems of assessing 
fit in our usual ways of computing percentage bias, the finite sample standard error as a percentage of the true value, etc. 
because of the division by zero (see Sections 3.2 and 3.3). So, in the simulation, we fix this parameter to zero, and 
estimate the other five parameters in the Cholesky matrix. This is just for convenience, and does not affect the parameter 
recovery analysis undertaken in the paper in any way.  
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The above data generation process is undertaken 50 times with different realizations of the τ  

vector to generate 50 different data sets, each with 2000 observations. The MACML estimator is 

applied to each data set to estimate data specific values of ).,,,,,,,,( 21321 Ωlγϕϕθμμμβ  A single 

random permutation is generated for each individual (the random permutation varies across 

individuals, but is the same across iterations for a given individual) to decompose the multivariate 

normal cumulative distribution (MVNCD) function into a product sequence of marginal and 

conditional probabilities (see Section 2.1 of Bhat, 2011). The estimator is applied to each dataset 10 

times with different permutations to obtain the approximation error. 

 

3.2. Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the proposed 

model and the corresponding standard errors is evaluated as follows: 

(1) Estimate the MACML parameters for each data set and for each of 10 independent sets of 

permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) estimator.  

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED values 

across the data sets to obtain a mean estimate. Compute the absolute percentage (finite 

sample) bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
×=APB  

(3) Compute the standard deviation of the MED values across the 50 data sets, and label this as 

the finite sample standard error or FSSE (essentially, this is the empirical standard error). 

(4) For each data set, compute the mean s.e. for each model parameter across the 10 draws. Call 

this MSED, and then take the mean of the MSED values across the 50 data sets and label this 

as the asymptotic standard error or ASE (essentially this is the standard error of the 

distribution of the estimator as the sample size gets large). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed using 

the MACML inference approach for the finite sample size used, compute a relative 

efficiency (RE) value as: 

100
FSEE
ASE

×=RE  
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(6) Compute the standard deviation of the parameter values around the MED parameter value 

for each data set, and take the mean of this standard deviation value across the data sets; 

label this as the approximation error (APERR). 

 

3.3. Simulation Results 

The results of the simulation experiments are presented in Table 1. The results indicate that the 

parameters in the formulation are recovered remarkably well by the estimation method. The absolute 

percentage bias (APB) is no more than 3% for any parameter (see the column entitled “APB” under 

“Parameter Estimates”). The overall APB across all the parameters is a mere 0.8% (the bottom row 

of Table 1 under the column “APB”). Among all the non-covariance matrix parameters, the 

dispersion parameter of the underlying negative binomial distribution (θ) and the second parameter 

in the threshold parameterization ( )2μ  are recovered least accurately with an APB value of 2.4% 

and 2.9% respectively. But these are still very good APB values. The reason for the relatively high 

APB value for the θ parameter is because this parameter appears very non-linearly in the model 

system of Equation (3), and through the 
lnl ,ψ  threshold parameters. Among the Cholesky elements, 

the highest APB is observed for the 3Ωl element. This is the key parameter that introduces the 

endogeneity of the MNP model into the count model.  Overall, the MACML method recovers the 

parameter extremely well, demonstrating the effectiveness of the MACML estimation approach.  

 The finite sample standard errors (FSSE) are small and are on an average about 10% of the 

true value of the parameters, indicating good empirical efficiency of the MACML estimator for the 

model. As a percentage of the true value, the FSSE is the least for the γ  parameter (1%), which is 

the coefficient of the explanatory variable in the continuous dependent value variable. This is not 

surprising, since a continuous dependent variable provides much richer information than limited-

dependent variables, and facilitates the estimation of the exogenous variable effects with less noise. 

The β parameter of the MNP model also has a low FSSE at 5% of its true value. This is the only 

parameter apart from the two covariance matrix elements that governs the MNP outcome (in the 

simulation exercise), and thus the full information in the MNP outcome goes to bear on estimating 

this parameter. The six structural parameters associated with the count outcome have a higher FSSE 

relative to their respective true values (an average FSSE of 14% of the true values). This may be 

attributable to the relatively higher number of parameters to be estimated in the count model, which 
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naturally results in a little more noise in estimating each of the parameters. The Cholesky elements 

have FSSE values that are of the order of only 8% of the corresponding true values, indicating that 

these elements are also estimated with good precision.  

The finite sample standard errors and the asymptotic standard errors obtained are very close, 

with the relative efficiency (RE) value between 0.89-1.10 for all parameters. The average RE value 

is 1.01, indicating that the asymptotic formula is performing well in estimating the finite sample 

standard error. Further, as for the FSEE values, the ASE estimate, on average across all parameters, 

is also only 10% of the mean estimate, indicating very good efficiency even using the ASE estimate 

for the FSEE. Finally, the last column of Table 1 presents the approximation error (APERR) for each 

of the parameters, because of the use of different permutations. These entries indicate that the 

APERR is, on average, only 0.009 and the maximum is only 0.040. More importantly, the 

approximation error (as a percentage of the FSEE or the ASE), averaged across all the parameters, is 

of the order of 13% of the sampling error. This is clear evidence that even a single permutation (per 

observation) of the approximation approach used to evaluate the MVNCD function provides 

adequate precision, in the sense that the convergent values are about the same for a given data set 

regardless of the permutation used for the decomposition of the multivariate probability expression. 

 

3.3.1 Effects of Ignoring the Joint Distribution of the Error Structures 

This section presents the results of the estimation when the endogeneity of the treatment variable on 

the count outcome is ignored.  That is, we examine the effect of constraining 3Ωl  to zero when the 

data actually reflects that the value is 0.6. We expect that the net result would be that all the count 

model-related parameters would become biased (since the 3Ωl  parameter controls the amount of 

endogeneity in the MNP treatment effect on the count model). On the other hand, we do not expect 

additional bias in the MNP model, since it serves as the treatment in the simulation experiment, and 

so its parameters are consistently estimated even if the covariance in the treatment and the count 

outcome is ignored.  

The simulation results for the restricted model (which we label as the “independent model”) 

is presented in Table 2. For comparison purposes, we also present the results of the joint model 

proposed in the current paper. For the purpose of Table 2, we run only 50 estimations for each of the 

independent and joint models, corresponding to each of the 50 data sets generated as per the 
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experimental design of Section 3.1. That is, we use only one set of permutations per data set to 

evaluate the MVNCD functions and do not run ten estimation replications per data set with different 

sets of permutations. We do so because, as we presented in the earlier section, the approximation 

error in the parameters is negligible for any given data set. However, for each data set, we use the 

same set of permutations for the joint model and the independent model, so that we are able to 

appropriately compare the ability to recover parameters from the two models. In addition to an APB 

comparison between the joint model and the independent model, we also compare the performance 

of the two models using the adjusted composite log-likelihood ratio test (ADCLRT) value (see Pace 

et al., 2011 and Bhat, 2011 for more details on the ADCLRT statistic, which is the equivalent of the 

log-likelihood ratio test statistic when a composite marginal likelihood inference approach is used; 

this statistic has an approximate chi-squared asymptotic distribution). This statistic needs to be 

compared against the table chi-squared value with one degree of freedom, which is equal to 3.84 at 

the 5% level of significance. In this paper, we identify the number of times (corresponding to the 50 

data sets) that the ADCLRT value rejects the independent model in favor of the joint model.  

As can be observed from Table 2, the APB values are very substantially higher for all the 

count model-related parameters in the independent model. The overall APB across all parameters is 

31.9% in the independent model relative to only 0.7% in the joint model (as discussed earlier, the 

joint model results in Table 2 are slightly different from those in Table 1, because we use only one 

set of permutations for the estimates in Table 2). The APB for the 2μ  parameter is close to 200%. 

Importantly, both the 2μ  and 3μ  parameters are substantially overestimated in the independent 

model, which is to be expected. Specifically, the true covariance matrix Ω  shows a positive 

covariance of 0.6 between the utility differential of the second alternative (relative to the first) and 

the count outcome error, and a positive covariance of 0.36 between the utility differential of the third 

alternative (relative to the first) and the count outcome error. That is, unobserved factors that 

increase the utility of alternatives 2 and 3 (relative to alternative 1) also lead to an increase in the 

latent propensity driving the count outcome. When these covariances are forcibly suppressed, the 

model transfers the strong positive covariances to much higher positive (and biased) structural 

effects of the alternative 2 and alternative 3 dummy variables (with the first alternative being the 

base) in the count latent propensity, as is observed in the results. This exercise shows that accounting 
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for endogeneity effects is not simply an esoteric econometric issue, but can have substantial 

implications for variable effects and subsequent policy analysis.  

As expected, the β  parameter, and the 21 ΩΩ landl  parameters, which correspond solely to 

the MNP model, continue to be estimated accurately. Also, the ADCLRT test toward the bottom of 

Table 2 clearly indicates that the joint model rejects the independent model in all the 50 data sets, 

further reinforcing the need to consider jointness in the MNP and count components when present. 

 

4. AN APPLICATION 

In this paper, we demonstrate the application of the proposed joint model by analyzing household-

level decisions on residential location, motorized vehicle ownership, and activity-travel patterns.  

 

4.1. The Data 

The data source for this study is the 2009 National Household Travel Survey (NHTS) that collected 

complete out-of-home travel and activity information (as reported by respondents) for a sample of 

US households for a 24 hour survey period. In the current study, the survey subsample from the San 

Francisco–Oakland–San Jose, CA CMSA, encompassing 12 different counties including Alameda, 

Contra Costa, Marin, San Francisco, San Mateo, Santa Clara, San Benito, San Joaquin, Sonoma, 

Solano, Santa Cruz, and Napa, was extracted.  This was done to limit the scope of the geographic 

region of analysis as well because the resulting region is diverse in terms of density. Each 

household’s residential location was then assigned to one of the following density categories 

(housing units per square mile in the Census tract of the household’s residence): (a) 0-99 households 

per square mile, (b) 100-499 households per square mile, (c) 500-1,999 households per square mile, 

and (d) ≥ 2,000 households per square mile. These density categories were then used as the four 

discrete choice alternatives of a multinomial probit choice model. The number of motorized 

vehicles, one of the count dependent variables, is reported by households in the survey. All the rest 

of the dependent variables (number of tours made by motorized vehicles, number of tours made by 

non-motorized vehicles, and the natural logarithm of the average tour distance across motorized 

tours) are generated based on the travel diary filled in by the individuals of the household. In the rest 

of this paper, we will refer to the average tour distance across motorized tours more compactly as 

average motorized tour distance.  
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 The sample formation consisted of several steps. First, only households who responded to the 

survey on a weekday (Monday to Friday) were selected. Second, we eliminated households with 

individuals whose trip diary did not start or end at home. Third, records that contained incomplete 

information on individual, household, socioeconomic, and activity and travel characteristics of 

relevance to the current analysis were removed from the sample. Fourth, consistency checks were 

performed and records with missing or inconsistent data were eliminated. The final data sample used 

in the estimation included 2037 households that provided information on a host of demographic and 

travel variables of importance to this study. 

 

4.2. Dependent Variable Characteristics 

A tour is defined as a closed chain, with the beginning and ending of the tour being a specific base 

location. Only home-based tours and work-based tours are considered in this paper. If an individual 

travels from home to work in the morning, then stays at work until noon when she travels to a 

restaurant for lunch, next comes back to work for the entire afternoon and finally returns home in the 

evening, this is counted as two tours in the day; a home-based tour and a work-based tour. If in at 

least one leg of the tour, the individual uses a motorized mode of travel (car, bus, truck, van, SUV, 

motorcycle, taxicab, shuttle, ferry or train), the entire tour is considered to be made by a motorized 

vehicle (this is because tours can include short walk legs to get to the car or to get to the public 

transit station). The non-motorized modes are walk and bicycle, and a non-motorized tour 

corresponds to a tour in which all legs are pursued by walk and/or using a bicycle. For the 

continuous variable, we construct the natural logarithm of average motorized tour distance to avoid 

negative distance forecasts.6 

Table 3 provides descriptive statistics for the three types of dependent variables used in the 

model. The top panel, associated with the nominal variable corresponding to household residential 

location, indicates that a small fraction of households (slightly more than 5%) are located in the 

lowest density category, while nearly 50% of the households are located in the highest density 

category. The frequency distributions of the three count variables are presented in the bottom panel 

of the table. As expected, there are few households that have no cars or that make no motorized tours 

                                                 
6 For completeness, we could have also constructed the average tour distance across non-motorized tours and used 
this as another continuous variable, but constructing (from the reported respondent data) the distances associated 
with non-motorized tours proved to be difficult because of the poor quality of data related to non-motorized tours.  
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during the day, though there are quite a few households with zero non-motorized tours in the day. 

After introducing exogenous variables, flexibility terms (
ljl ,ϕ ) can be introduced as needed to 

accommodate the distribution of the counts (see Section 2.2). The average household values for the 

three count variables are 2.04 for motorized vehicle ownership, 2.79 for the number of daily 

motorized tours, and 0.55 for the number of non-motorized tours. The final dependent variable is the 

natural logarithm of the average motorized tour distance, which has an average value of 2.68. The 

corresponding mean value for the motorized tour distance is 25.45 miles.  

There are clear variations in the mean values for the count variables and the average 

motorized tour distance by residential density. For instance, the mean values of household motorized 

vehicle ownership are as follows for the last two density categories that capture about 82% of all 

households in the sample: 2.215 for the 500-1,999 households per square mile category and 1.845 

for the highest density (greater than or equal to 2000 households per square mile category). The 

corresponding values for the number of motorized vehicle tours are 3.094 and 2.612, for the number 

of non-motorized tours are 0.511 and 0.629, for average motorized tour distance are 27.92 and 

21.66, and for implied VMT (product of the number of motorized tours and average motorized tour 

distance) are 85.52 and 58.46. Of course, these do not reflect the causal effects of residential density, 

because the differences may be attributable to the demographics and/or the attitudes/lifestyles of 

households residing in different locations. The purpose of the analytic model proposed in the paper 

is to account for these household characteristics, so that we may be able to isolate the “true” effects 

of residential density on activity-travel choices.  

 

4.3. Variable Specification and Model Formulation 

Five sets of independent variables were considered in the analysis: (1)  family structure variables, 

including single person household,  single parent household (one adult and at least one child 16 

years old or younger), couple household (one male adult and one female adult), nuclear family 

household (one male adult, one female adult, and one or two children 16 years old or younger), and 

other households (primarily roommate and joint families; for ease, we will refer to these “other 

households” as “joint families”), (2)  logarithm of household annual income, (3) household race and 

ethnicity, categorized as non-Hispanic Caucasian, African-American, Hispanic, and other (primarily 

Asian, but also including mixed race, pacific islander, and unidentified race; for ease, we will refer 
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to these “other” households as “Asian” households”), (4) highest education attainment across 

individuals in the household (lower than Bachelor’s degree, and Bachelor’s degree or higher),  and 

(5) Immigration status, including immigrant household (all members born outside the United States), 

non-immigrant household (all members born in the United States), and combination household 

(some members born in the United States, and others born outside the United States). The base 

alternatives for the categorical variables were as follows: Single person household (for family 

structure), “non-Hispanic Caucasian” race (for the household race and ethnicity variables), “lower 

than Bachelor’s degree” (for education attainment), and “non-immigrant household” (for household 

immigration status).  

In the analysis, we did not consider other variables such as housing type (i.e., whether the 

household lives in a duplex or townhouse or an apartment or a single family unit), housing tenure 

(owning or renting a home), number of drivers in a household, and household residence location in 

an urban or non-urban area, because of concerns that many of these variables themselves may be co-

determined with the endogenous variables considered in the current analysis (this also suggests that 

the methodological framework proposed in this paper can be extended to include a few other 

endogenous variables in a larger integrated model, but which we leave for further research).  

The exogenous variables were considered in the MNP utility specification, in the three count 

model threshold specifications, and in the log-linear mileage equation specification. The final 

variable specification was based on a systematic process of statistical significance testing, and 

combining variable effects if their impacts were not statistically different and if intuitive to do so. 

This search process was also informed by previous research and parsimony considerations. 

Simultaneously, a number of model structures with alternative structural relationships among the 

endogenous variables were compared against each other in terms of statistical measures of fit. In the 

end, after extensive testing, plausibility checks, and goodness-of-fit assessment, our results indicated 

that residential location structurally affects the number of vehicles and the (log) average motorized 

tour distance, and the number of vehicles affects the number of motorized tours, number of non-

motorized tours, and the (log) average motorized tour distance.  However, our results also indicated 

statistically significant covariance terms among the error terms in the latent propensities underlying 

the observed outcome variables, indicating the presence of unobserved self-selection effects. That is, 

the recursive structural system does not mean that one can use a sequential modeling system; rather, 



27 

the joint model system proposed in the paper is needed to capture the “bundling” of choices (see 

Section 1.3).  

The MNP residential choice model is estimated with the highest density category (≥2,000 

households per square mile) as the base alternative. For each of the three count dependent variables 

(l=1,2,3), there are two parameter vectors ( lϕ and lμ ) and one scalar ( lθ ) embedded in the threshold 

functions. Among these, the elements of the vector lϕ  provide flexibility to accommodate high or 

low probability masses for specific count outcomes that cannot be explained by the underlying 

parameterized Negative Binomial probabilities. In our estimations, we needed one flexibility term 

corresponding to 1,1ϕ for the number of motorized vehicles count model (a value of 0.58 with a t-

statistic of 10.68) and one flexibility term corresponding to 1,2ϕ for the number of motorized tours 

model (a value of 0.72 with a t-statistic of 11.13). Also, the model specifications for these two count 

variables (the number of motorized vehicles and the number of motorized tours) collapsed to a 

Poisson generating process. In particular, the lθ  parameters for these two count variables (l=1,2) 

became quite large in the estimations, and the resulting specifications could not be distinguished 

from corresponding Poisson-based latent variable specifications. However, the lθ  parameter clearly 

revealed the need for the more general negative binomial specification for the number of non-

motorized tours (l=3). This parameter had a value of 0.908, with a standard error of 0.105.  

 

4.4. Model Estimation Results 

Table 4 provides the estimation results. We do not present the standard errors or t-statistics to reduce 

clutter. But unless otherwise noted, all the parameters in Table 4 are statistically different from zero 

at the 5% level of significance.  

In the multinomial probit (MNP) model in the left panel of the table, if a ‘-’ appears for a row 

variable in Table 4 corresponding to a column alternative (under the broad MNP residential choice 

model column), it implies that the corresponding row variable has no differential effect on the 

utilities of the lowest density category and the column alternative. Also, there is no intuitive 

interpretation of the constants in the MNP model because of the presence of continuous variables in 

the model. In the count models, the focus will be on the elements of the lμ vector (l=1,2,3) 

embedded in the threshold functions, because the other parameters vectors ( lϕ and lθ ) have already 
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been discussed in the previous section. The constant coefficient in the lμ  vector does not have any 

substantive interpretation. For the other variables, a positive coefficient in the lμ  vector shifts all the 

thresholds toward the left of the count propensity scale, which has the effect of reducing the 

probability of zero count (see CPB). On the other hand, a negative coefficient shifts all the 

thresholds toward the right of the count propensity scale, which has the effect of increasing the 

probability of zero count.   

 

4.4.1. Exogenous Variable Effects 

The effects of the many family structure variables in Table 4, in totality, indicate that single person 

households, single parent households, and nuclear family households are more likely than couple 

family households and joint family households to locate in higher density areas.  Equivalently, 

couple family households and joint family households have a preference to locate in lower density 

areas than single individual households, single parent households, and nuclear family households. 

Earlier research (see Kim, 2011) does suggest that single adult and single parent households tend to 

locate themselves in denser neighborhoods, so that they are able to partake easily in social and 

related activity opportunities. The effects of the family structure variables on the other dependent 

variables (see the columns titled “Counts” and “Linear Regression”) are rather intuitive (the 

parameters in the columns for the count variables are coefficients corresponding to the lμ  vector). In 

general, as the number of adults in a household increases (as reflected in the family structure 

variables), so do the number of motorized vehicles in the household and the number of motorized 

tours made by the household. These indications are consistent with expectations and with the now 

vast literature on auto ownership modeling (see, for example, Potoglou and Susilo, 2008 and Ma and 

Srinivasan, 2010). Also, couple households make more non-motorized tours than do single person 

households, while non-single and non-couple households have a higher propensity to make non-

motorized tours than do single person and couple households. These results most likely reflect joint 

activity participation in recreation activities (such as walking around the neighborhood or walking to 

a park), which tend to increase in the presence of multiple adults and children in the household (see 

Lee et al., 2007). Overall, among all households, single person households are the least likely to own 

vehicles, and make motorized and non-motorized tours. According to the 2009-2011 American 

Community Survey three-year estimates, as in our sample, a third of the single person households in 
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the SFO area are elderly (age 65 or more), which is consistent with the result just mentioned.  

Finally, in the category of family structure variables, the higher average tour distance in couple 

households and other relative to other types of households perhaps reflect joint travel episodes that 

also serve as time alone together for the couple.  

Households with high income tend to stay away from highly dense areas, perhaps a reflection 

of being able to afford large single-family homes in suburban locations. This residential location 

pattern based on income has been observed in large cities (see Cao and Fan, 2012). Income also has 

the expected positive impacts on the number of motorized vehicles owned, the number of motorized 

vehicle tours, and the average distance per tour. 

Interestingly, we did not find much differences in residential location based on race, except 

for a higher tendency among those of Asian race to locate in the highest density (>=2000 households 

per square mile) neighborhoods. This finding is quite different from some other studies that show 

substantial differences in residential location preferences (in terms of neighborhood density) 

between Caucasian and non-Caucasian households (for example, in Giuliano, 2003 and Cao and Fan, 

2012). The relative absence of race impacts in our study is perhaps in part because we have 

controlled separately for immigrant status effects, while many earlier studies have not. Indeed, when 

the immigrant status effects were removed in our model, the race effects on residential location 

became statistically significant. In terms of race effects on other dependent variables, households of 

Hispanic race make fewer motorized tours, while households of Asian race make fewer non-

motorized tours. A few earlier studies (see Allen et al., 2007 and Dogra et al., 2010) in the public 

health field also have observed that Asian households tend to be less physically active in terms of 

non-motorized recreation pursuits (such as walking and bicycling around the neighborhood).  

Households with high education levels, and households with one or more immigrants, favor 

residential locations in non-low density neighborhoods. The former result may reflect a desire 

among households with highly educated individuals to locate in denser neighborhoods with “high 

culture” arts/recreation activity opportunities, while the clustering of immigrant households in 

relatively high density neighborhoods is consistent with the large body of literature on the subject 

(see, for example, Wilson and Singer, 2011 and Bhat et al., 2013 for two recent studies). 
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4.4.2. Structural Dependence Effects 

The household location density categories are considered to be endogenous in the proposed joint 

model of this paper. Thus, the effects of the density on Table 4 are “cleansed” of the unobserved 

factors that generate a correlation between the propensity of locating to a specific residential density 

category and the three count propensities (see next section). The results indicate, as expected, that 

households are less likely to own zero motorized vehicles (more likely to own motorized vehicles) if 

they are located in low density areas (relative to being located in the highest density area). 

Interestingly though, there is no direct structural effect of residential location on the number of 

motorized and non-motorized tours. However, there is a direct structural effect of residential location 

on the natural logarithm of average motorized tour distance. The results indicate that households 

residing in progressively less dense neighborhoods make, in general, longer distance motorized 

tours, a finding also observed by Maat and Timmermans (2006). In addition, Table 4 reveals the 

positive structural effects of the number of vehicles on the number of motorized tours and motorized 

tour length, and the negative structural effect of the number of vehicles on the number of non-

motorized tours. These findings are consistent with the results from earlier studies such as Cao et al. 

(2009b).  

 

4.4.3 Covariance Matrix 

Many different specifications were considered for the covariance matrix. In the MNP model, a 

general specification was considered for the covariance matrix 1Λ of the error differences. But, in 

our empirical context, we could not reject the null hypothesis that this matrix has ones in its 

diagonals and 0.5 entries in its off-diagonals. This, of course, is equivalent to an independent and 

identical distribution specification for the original error terms (that is, the Λ covariance matrix of the 

original error terms turns out to be an identity matrix multiplied by 0.5). However, this result is 

specific to the current empirical context. In general, one needs to specify the more general model 

proposed in this paper before testing for more restrictive variants. 

 Table 5 presents the covariance matrix estimates, which indicate that the elements 

corresponding to the covariance between the utility differential of the third density category (with 

respect to the highest density category) and the number of vehicles is positive and statistically 

significant (see the entry ‘0.073’ in the row entitled “number of vehicles and the column entitled 
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“500-1999”). The one corresponding to the second density category (with respect to the highest 

density segment) is also statistically significant, although smaller in magnitude (this is the entry 

‘0.052’). The implication is that unobserved factors that increase the preference for locating in lower 

density neighborhoods (specifically, neighborhoods with a density of 100-499 or 500-1999 

households per square mile) relative to very high density neighborhoods (2000 or more households 

per square mile) also increase the propensity to own motorized vehicles. This may represent the 

effects of such factors as auto inclination and not being very environmentally conscious. 

Alternatively, those who choose to reside in high density, neo-urbanist type neighborhoods appear to 

do so because of lifestyle choices that intrinsically are non-auto oriented. Of course, alternative 

explanations are also possible (precisely because the dependence is due to intrinsically unobserved 

factors). But the important point is that, if not controlled for, the positive covariance gets comingled 

with the true structural effect of high density on motorized vehicle ownership, inappropriately 

increasing the positive effect of relatively low density residence on motorized vehicle ownership. 

That is, the attribution to neo-urbanist neighborhoods (toward lower motorized vehicle ownership 

levels) gets exaggerated when residential self-selection effects are not considered. Indeed, we found 

this to be the case when we estimated a model that ignores the covariance across the dependent 

variables. The coefficient of the density category dummy variables increased in magnitude from 

0.127 to 0.158 for the second density category (100-499 households per square mile) and from 0.088 

to 0.131 for the third density category (500-1999 households per square mile).  

 Table 5 does not indicate statistically significant covariance elements between the MNP 

utility differences and the propensities underlying the counts of motorized tours and non-motorized 

tours. However, there are statistically significant covariance elements between the error terms of the 

different counts. The covariance between the number of vehicles and the number of motorized tours 

is positive and the covariance between the number of vehicles and the number of non-motorized 

tours is negative (see the 0.176 and -0.079 entries in the column labeled “number of motorized 

vehicles” in Table 5). That is, there are common unobserved household factors (such as say being 

auto-inclined) that simultaneously increase the propensity to own motorized vehicles and make 

motorized tours, while these same factors appear to have opposite effects on the propensity to own 

motorized vehicles and make non-motorized tours. Again, if we estimate a new model ignoring the 

covariance between the dependent variables, we obtain larger coefficients (in terms of magnitude) 

for the effect of number of vehicles on the number of motorized tours (coefficient changes from 
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0.053 to 0.072) and on the number of non-motorized tours (coefficient changes from -0.163 to -

0.199). This shows that there are self-selection effects based on motorized vehicle ownership levels 

too on the number of motorized and non-motorized tours, reinforcing the point made in the 

introductory section that self-selection may not be confined to residential location decisions but may 

permeate through other decisions too in the structural chain of effects.   

 Finally, there are no significant covariance effects between the MNP /count propensity error 

terms and the error term in the log-linear model for the average motorized tour distance.  

 

4.4.4. Composite Log-Likelihood at Convergence 

The composite log-likelihood value for the joint model (with 49 parameters) is -35035.4, while the 

corresponding value for the independent model (with 44 parameters) is -35,074.3. The two models 

may be compared using the adjusted composite likelihood ratio test (ADCLRT) statistic that is 

approximately chi-squared distributed (the ADCLRT statistic is similar to the likelihood ratio test 

statistic used in ordinary maximum likelihood estimation, though its construction is not as simple as 

the likelihood ratio statistic; see Bhat (2011) for a detailed discussion). The ADCLRT statistic value 

is 82.3, which is larger than the chi-squared table value with 5 degrees of freedom at any reasonable 

level of significance. This result clearly illustrates the superior data fit offered by the joint model. 

 

4.5. Procedure for Treatment Effects Based on Residential Choice 

The estimation results can be used to assess the impact of residential location choice (the 

“treatment”) on all the other dependent variables (the “outcomes”). This is helpful to obtain insights 

regarding whether, and how much, neo-urbanist design measures impact travel-related behaviors. An 

important measure to do so is the Average Treatment Effect (ATE) (see Heckman and Vytlacil, 2000 

and Heckman et al., 2001).  

In the context of motorized vehicle ownership, the ATE measure provides the expected 

difference in motorized vehicle ownership for a random household if it were located in a specific 

density configuration i as opposed to another density configuration ik ≠ . The measure is estimated 

as follows: 
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where qia is the dummy variable for the density category i f or the household q, and 1qy  stands for 

motorized vehicle ownership with an index ),....2,1,0( 11 ∞=jj  (the subscript ‘1’ indicates that 

motorized vehicle ownership is the first count variable in the model system). Although the 

summation in the equation above extends until infinity, we consider counts only up to 1j = 11, which 

is the maximum motorized vehicle ownership level observed in the dataset. This should not affect 

the computations because the probabilities associated with higher motorized vehicle ownership 

levels are very close to zero.  

The analyst can compute the ATE measures for all the pairwise combinations of residential 

density category relocations. Here, we focus on the case when a household in the penultimate high 

density neighborhood (500-1999 households per square mile) is transplanted to the highest density 

neighborhood (>=2000 households per square mile). For ease in discussion, in the rest of this 

section, we will refer to the former neighborhood type as a low density neighborhood, and the latter 

neighborhood type as a high density neighborhood. 

The analyst can also compute the ATE for the number of motorized and non-motorized tours 

based on residential location. Since the numbers of motorized and non-motorized tours are not 

structurally dependent, the computation becomes a little easier. So, the ATE expression 

corresponding to the number of motorized tours is: 
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The summation is being taken up to a count of 15 for the number of motorized tours because this 

was the maximum count in the estimation data. A similar approach may be taken for the ATE of the 

number of non-motorized tours. Next, for the ATE for the average motorized tour distance variable, 

we compute the expected values of the number of vehicles and tours and then substitute these in the 

linear regression expression for each household, obtain the expected value of the logarithm of 

motorized tour distance, and translate this to the expected value of motorized tour distance (doing so 

entails taking the exponential of the sum of the expected logarithm value and half the variance of the 

error term in the log-linear regression model). Finally, using the same approach as just discussed, 

one can also compute an ATE for vehicle miles of travel (VMT), since VMT is the product of the 

number of motorized tours and the average tour distance. The standard errors of the ATE measures 

for the many variables are obtained using bootstraps from the sampling distributions of the estimated 
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parameters, but are suppressed here to focus the presentation and reduce clutter. Suffice it to say that 

all the ATE measures (from both the joint and the independent models) were statistically significant 

at the 5% level of significance.  

 Table 6 provides the ATE values for each of the five attributes for the joint model proposed 

here and the independent model that ignores all forms of self-selection. The first row in the first 

column under the “Joint Model” heading indicates that a random household that is shifted from the 

low density category location to the high density category location is, on an average, likely to reduce 

its motorized vehicle ownership level by 0.189 vehicles. Equivalently, if 100 random households are 

relocated from the low density neighborhood to the high density neighborhood, the results indicate a 

reduction in motorized vehicle ownership by about 19 vehicles. On the other hand, the independent 

model predicts a reduction of 0.261 vehicles. That is, if 100 random households are relocated from 

the low density neighborhood to the high density neighborhood, the independent model projects a 

reduction in motorized vehicle ownership by about 26 vehicles. The exaggeration in the reduction in 

motorized vehicle ownership based on the independent model (because of the change in residence 

from the low density to the high density neighborhood) is readily apparent, and is a reflection of 

unobserved residential self-selection effects not being controlled for. One can quantity the 

magnitude of the “true” effect and the spurious residential self-selection effect, because the 

independent model comingles both of these effects, while the joint model estimates the “true” effect. 

The last two columns of Table 6 indicate that unobserved self-selection effects are estimated to 

constitute about 28% of the difference in the number of motorized vehicles between low density and 

high density households, while “true” built environment effects constitute the remaining 72% of the 

difference. 

The other columns of the table may be similarly interpreted. The results are consistent with 

the discussion in Section 4.4.3. Overall, the results show that, if self-selection effects are ignored, 

the result is an overestimation in the reduction in motorized vehicle ownership because of residing in 

high density neighborhoods. There is also an overestimation in the reduction in the number of 

motorized vehicle tours, and an overestimate in the increase in the number of non-motorized tours. 

In terms of VMT, the joint model predicts a reduction by 11.43 miles if a random household is 

moved from a low density neighborhood to a high density neighborhood, while the independent 

model predicts a much more optimistic (and inappropriate) reduction by almost 16 miles. In terms of 

order of magnitude effects relative to the average VMT (=72.2 miles) across all households, the joint 
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model predicts a VMT reduction of 15.8% due to moving a random household from a low density 

neighborhood to a high density neighborhood, while the independent model predicts a VMT 

reduction of 22.0% for the same move. To summarize, the results do show that density has important 

“true” effects on activity-travel behavior, but that these effects are exaggerated when self-selection is 

ignored. 

 

5. CONCLUSIONS 

This paper formulates a multidimensional choice model system that is capable of handling multiple 

nominal variables, multiple count dependent variables, and multiple continuous dependent variables. 

The system takes the form of a treatment-outcome selection system with multiple treatments and 

multiple outcome variables. The Maximum Approximate Composite Marginal Likelihood 

(MACML) approach proposed by Bhat (2011) is proposed in estimation, which, in a relatively 

simple and practical manner, provides a way out to estimate large multi-dimensional choice model 

systems. To our knowledge this is the first such sample selection formulation and application in the 

econometrics literature. A simulation experiment is undertaken to evaluate the ability of the 

MACML method to recover the model parameters in such integrated systems, as well as to assess 

the ability of the asymptotic standard errors from the analytic procedure to provide an estimate of the 

finite sample errors for the typical sample sizes employed in estimation. These experiments show 

that our estimation approach recovers the underlying parameters very well and is efficient from an 

econometric perspective.  

The parametric model system proposed in the paper is applied to an analysis of household-

level decisions on residential location, motorized vehicle ownership, the number of daily motorized 

tours, the number of daily non-motorized tours, and the average distance for the motorized tours. 

The empirical analysis uses the NHTS 2009 data from the San Francisco Bay area. Model estimation 

results show that the choice dimensions considered in this paper are inter-related, both through direct 

observed structural relationships and through correlations across unobserved factors (error terms) 

affecting multiple choice dimensions. The significant presence of self-selection effects (endogeneity) 

suggests that modeling the various choice processes in an independent sequence of models is not 

reflective of the true relationships that exist across these choice dimensions, as also reinforced 

through the computation of treatment effects in the paper. These treatment effects also emphasize 

that accounting for residential and other self-selection effects are not simply esoteric econometric 
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pursuits, but can have important implications for land-use policy measures that focus on neo-

urbanist design. Importantly, our results indicate that not accommodating self-selection effects may 

lead to an overestimation in the projected reduction in motorized travel attributed to land-use 

densification measures.  

 To summarize, this paper proposes and demonstrates the use of an integrated framework to 

model multiple variables of multiple types. The proposed model can be applied to a wide variety of 

contexts in different disciplines. Future efforts need to continue to undertake simulation experiments 

to evaluate the performance of the MACML approach for estimating large-scale integrated model 

systems. From an empirical perspective, the model in this paper can be extended to include 

additional count variables related to the number of out-of-home episodes by purpose.  
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Table 1. Simulation Results for 50 Datasets of 2000 Observations Each 
 

Parameter Component 
of 

Parameter Estimates Standard Error Estimates 

True Mean 
Estimate APB FSSE ASE RE APERR

β MNP -1.000 -1.002 0.2% 0.050 0.046 0.933 0.005 

μ1 Count 0.500  0.500 0.1% 0.027 0.029 1.069 0.003 

μ2 Count 0.250  0.257 2.9% 0.067 0.066 0.986 0.011 

μ3 Count 0.500  0.501 0.3% 0.065 0.066 1.016 0.009 

θ Count 2.000  2.047 2.4% 0.258 0.272 1.054 0.040 

φ1 Count 0.300  0.301 0.4% 0.044 0.041 0.933 0.005 

φ2 Count 0.600  0.600 0.0% 0.070 0.070 0.999 0.010 

γ Continuous 2.000  2.005 0.3% 0.029 0.028 0.971 0.001 

1Ωl  Covariance 0.600  0.604 0.7% 0.062 0.066 1.058 0.009 

2Ωl  Covariance 1.000  1.003 0.3% 0.074 0.066 0.895 0.008 

3Ωl  Covariance 0.600  0.585 2.5% 0.038 0.039 1.027 0.013 

4Ωl  Covariance 0.250  0.249 0.4% 0.035 0.037 1.045 0.004 

5Ωl  Covariance 1.250  1.250 0.0% 0.019 0.020 1.096 0.001 

Across all Parameters     0.8% 0.065 0.065 1.006 0.009 
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Table 2. Effect of Ignoring Endogenous Effects 

Parameter Component of True 
Joint Independent 

Mean 
Estimate APB Mean 

Estimate APB 

β MNP -1.000 -1.002 0.2% -0.999   0.1% 

μ1 Count  0.500  0.500 0.1%  0.527   5.4% 

μ2 Count  0.250  0.258 3.2%  0.744 197.6% 

μ3 Count  0.500  0.501 0.2%  0.727  45.3% 

θ Count  2.000  2.041 2.1%  1.518  24.1% 

φ1 Count  0.300  0.301 0.2%  0.447  49.0% 

φ2 Count  0.600  0.600 0.1%  0.858  42.9% 

γ Continuous  2.000  2.005 0.3%  2.006   0.3% 

1Ωl  Covariance  0.600  0.608 1.3%  0.600   0.1% 

2Ωl  Covariance  1.000  1.004 0.4%  0.999   0.1% 

4Ωl  Covariance  0.250  0.249 0.3%  0.208 16.8% 

5Ωl  Covariance  1.250  1.250 0.0%  1.258  0.6% 

Overall mean value across parameters   0.7%   31.9% 

Mean log composite marginal likelihood 
at convergence -7145.78 -7211.02 

Number of times the adjusted composite 
likelihood ratio test (ADCLRT) statistic 

favors the Joint model 

All fifty times when compared with  the value of 
84.32

95.0,1 =χ  (mean ADCLRT statistic is 65.2) 
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Table 3. Sample Characteristics 

Descriptive statistics 

Dependent variables: MNP Variables 

Location density [HHs per sq. mile] Number of observations (%) 

0-99 108 (5.30) 

100-499 262 (12.86) 

500-1,999 619 (30.39) 

≥ 2,000 1048 (51.42) 

Dependent variables: Count Variables

Frequency 
Motorized Vehicle 

Count 
Number of 

motorized tours
Number of non-
motorized tours 

Number % Number % Number % 

0   84  4.12  78  3.83 1359 66.72 

1 516 25.33 539 26.46  415 20.37 

2 917 45.02 532 26.12  154  7.56 

3 357 17.53 346 16.99   59  2.90 

4 108  5.30 208 10.21   35  1.72 

5  38  1.87 116  5.69   9  0.44 

6   9  0.44  87  4.27   4   0.20 

7   4  0.20  48  2.36   1  0.05 

8   2  0.10  32  1.57   1  0.05 

9   1  0.05  22  1.08   0  0.00 

10 or more   1  0.05  29  1.42   0  0.00 

Dependent variables: Continuous Variable

Variable Mean Std. Dev. Min. Max. 
Natural logarithm of 
average tour distance 2.68 1.36 -2.30 5.60 
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Table 4. Model Estimation Result (variables significant at 5% level of significance unless otherwise mentioned) 

  
 Variables 

MNP Counts LR 
Density Categories [households per sq. mile] 

Number of 
vehicles 

Number of 
motorized 

tours 

Number of 
non-

motorized 
tours 

Natural Log. of 
average tour 

distance  0-99 100-499 500-
1,999 ≥2,000 

Constant -1.341 -1.142 -0.756 -  0.251  0.470 -0.908  1.502 
Family structure variables         
Single parent -0.961 - - -  0.167  0.587  0.703   
Couple  0.202  0.202 - -  0.341  0.514  0.301  0.232 
Nuclear family - - - -  0.363  1.065  1.116   
Joint family -  0.260 - -  0.585  0.910  1.053    0.078†† 

Natural Log. of income [US$/year]  0.177  0.168  0.256 -  0.266  0.123   0.239 
Household race and ethnicity variables         
Respondent race is Hispanic - - - -  -0.094    -0.152†† 
Respondent race is Asian -0.193 -0.193 -0.193 -   -0.254  

Highest education status variable         
Highest education level is Bachelor’s 
degree or higher  -0.142† - - - -0.104  0.220  

Immigrant variables         
All immigrants household -0.350 - - -     0.237†  
Combination of immigrant and non-
immigrant household  -0.238† - - -    0.059†      

Residential location (Density in housing 
units per square mile)         

0-99       0.146    0.441 
100-499       0.127    0.419 
500-1,999      0.088    0.269 

Number of vehicles       0.053 -0.163  0.235 
Threshold parameters         
φ (flexibility parameter)      0.576  0.723    0.000*  
θ (dispersion parameter)        150.000*    150.000*   0.908  

     †Not significant at 5% level of significance but significant at 15% level of significance 
     ††Not significant at 15% level of significance             
    * Not Estimated 
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Table 5. Model Estimation Result – Covariance Matrix – Motorized Modes Priority  
(variables significant at 5% level of significance unless otherwise mentioned) 

 
Covariance Matrix 

MNP Counts LR 

Density Categories  
[households per sq. mile] Number of 

vehicles 

Number of 
motorized 

tours 

Number of 
non-

motorized 
tours 

Natural Log. 
of average 

tour distance 
[miles] 0-99 100-499 500-1,999 

0-99 households per sq. mile 1.000*       

100-499 households per sq. mile 0.500* 1.000*      

500-1,999 households per sq. mile 0.500* 0.500* 1.000*     

Number of vehicles 0.000* 0.052 0.073 1.000*    

Number of motorized tours 0.000* 0.000* 0.000* 0.176 1.000*   

Number of non-motorized tours 0.000* 0.000* 0.000* -0.079 -0.237 1.000*  

Natural Log. of average tour distance 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 1.636 
     †Not significant at 5% level of significance but significant at 15% level of significance 
     ††Not significant at 15% level of significance    
   * Not Estimated 
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Table 6. Treatment Effects Corresponding to Transplanting a Random Household from a  
500-1999 HHs per Sq. Mile Density Neighborhood to the Highest Density Neighborhood  

Variable ATE from Joint 
Model 

ATE from 
Independent 

Model 

% Difference Attributable to 

“True” Effect Self-Selection 
Effect 

Motorized vehicle ownership -0.189 -0.261 72 28 

Number of motorized tours -0.038 -0.068 56 44 

Number of non-motorized tours 0.016 0.027 59 41 

Average tour distance -2.250 -3.083 73 27 

Vehicle miles of travel -11.437 -15.960 72 28 

 
 

 


