
Guidance of Robot Arms using Depth Data from RGB-D Camera

G. J. García1, P. Gil1 , D. Llácer2 and F. Torres1
1Physics, Systems Engineering and Signal Theory Department, University of Alicante, San Vicente del Raspeig, Spain

2Computer Science Research, University of Alicante, San Vicente del Raspeig, Spain
{gjgg, Pablo.Gil, Fernando.Torres}@ua.es

Keywords: Robotic Manipulators, Visual Servoing, RGB-D Camera, Robot Operating System, Kinect.

Abstract: Image Based Visual Servoing (IBVS) is a robotic control scheme based on vision. This scheme uses only
the visual information obtained from a camera to guide a robot from any robot pose to a desired one.
However, IBVS requires the estimation of different parameters that cannot be obtained directly from the
image. These parameters range from the intrinsic camera parameters (which can be obtained from a
previous camera calibration), to the measured distance on the optical axis between the camera and visual
features, it is the depth. This paper presents a comparative study of the performance of D-IBVS estimating
the depth from three different ways using a low cost RGB-D sensor like Kinect. The visual servoing system
has been developed over ROS (Robot Operating System), which is a meta-operating system for robots. The
experiments prove that the computation of the depth value for each visual feature improves the system
performance.

1 INTRODUCTION

Previously, IBVS systems used optical-visual
sensors to guide robots and control their position.
Usually, these sensors have been standard cameras.
These cameras can be used isolated or arranged in a
stereo pair to provide two images from different
viewpoints and then create a perception of depth
(Maru et al., 1993). Generally, these systems use
radial models. Nevertheless, lately, visual servoing
applications have used catadioptric cameras that
provide panoramic images which give 360º of scene
views (Hadj-Abdelkader et al., 2008).

In the last years, new sensors have changed the
way in which the environment is sensorised and it is
perceived by intelligent automatic systems. The
Time of Flight (ToF) (Pomares et al., 2010) and
RGB-D (Red, Green, Blue and Depth) (Teuliere and
Marchand, 2012) cameras are an example. These
visual sensors play an important role in the new
perception context because they usually use a light
source to compute the depth information. The result
is a dense depth map. Therefore, ToF and RGB-D
sensors do not require previous calibration step to
estimate the depth as in IBVS composed of one
camera. The visual servoing systems which use
these sensors are known as D-IBVS. Moreover, the
time computation of depth decreases in relation to

the time taken by a stereo pair. Kinect is a low cost
RGB-D camera which uses a depth sensor combined
with another RGB. It can acquire colour images with
a resolution of 640x480 pixels and a capture frame
rate of 30fps at that resolution. Kinect uses an
infrared projector which emits a fixed pattern of
light and dark speckles. Depth is calculated by
triangulation against a known pattern from the
projector. The pattern is memorized at a known
depth and then for each pixel, a correlation between
known pattern and current pattern is done.

Traditionally, the development of new robotic
applications has required a lot of researcher’s time.
The configuration of the different involved sensors
or their integration with the robot is not a simple
task and consumes a great percentage of the research
time. Robot Operating System (ROS) is a
middleware that provides to the user a set of libraries
to easily develop new robotic applications (Quigley
et al., 2009). The platform proposed in this paper is
developed over ROS, taking advantage of the
different stacks and packages provided by the ROS
community to capture from Kinect (with OpenNI) or
develop visual servoing applications with ViSP
(Marchand et al., 2005) for ROS.

The paper is organized as follows: in Section 2
the classical IBVS system is described, Section 3
presents the platform proposed to perform IBVS

315

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16377359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tests using the depth information from a Kinect,
Section 4 and 5 describe the experiments performed
to validate the platform, and finally, Section 6 shows
the conclusions.

2 IMAGE BASED VISUAL
SERVOING

A visual servoing task can be described by an image
function, ܜ܍ ൌ ܛ െ ,ᇱ, which must be regulated to 0ܛ
where ܛ is a M x 1 vector containing M visual
features corresponding to the current state, while ܛᇱ
denotes the visual features values in the desired
state.

The interaction matrix, ܛۺ, relates variations in
the image with variation in the velocity of the
camera, ܛ ൌ ܛۺ ∙ ሶܚ , where ܚሶ indicates the camera
velocity (Chaumette and Hutchinson, 2006). The
control law of classical image-based visual servoing
is obtained by imposing an exponential decrease of
ሶܜ܍ :as follows ,ܜ܍ ൌ െܜ܍ where:

ୡܞ ൌ െۺመ ܛାሺܛ െ ᇱሻ (1)ܛ

where ۺመ the pseudoinverse of an approximation of	ାܛ
the interaction matrix and λ is the proportional
control gain. When the visual feature is a point in the
image, the interaction matrix can be obtained from:

Lୱ ൌ ሾLୱଵ, Lୱଶሿ

with Lୱଵ ൌ ቎

೑ೠ
೥బ
೎ 0 షሺ೑ೣషೠబሻ

೥బ
೎

0 ೑ೡ
೥బ
೎

షሺ೑೤షೡబሻ

೥బ
೎

቏ and
(2)

Lୱଶ ൌ ൦

ିሺ௙ೣ ି௨బሻሺ௙೤ି௩బሻ

௙ೡ

ሺ௙ೣ ି௨బሻమା௙ೠ
మ

௙ೠ

ି௙ೠሺ௙೤ି௩బሻ

௙ೡ

ି൫௙೤ି௩బ൯
మ
ା௙ೡ

మ

௙ೡ

ሺ௙ೣ ି௨బሻሺ௙೤ି௩బሻ

௙ೠ

௙ೡሺ௙ೣ ି௨బሻ
௙ೠ

൪

where ሺ ௫݂, ௬݂ሻ is the camera focal length in the axis
X and Y respectively, and ሺݑ଴, ଴ሻ is the cameraݒ
principal point. These are the intrinsic parameters of
the camera, and can be obtained with high precision
through a calibration process performed in an off-
line step of the visual servoing task (Zhang, 1996).
The image point, ሺ ௫݂, ௬݂ሻ is directly measured in
pixels from the image acquired by the camera. And
the େܢ଴	value represents the depth between the
camera reference system and the 3D point
represented in the image by ሺ ୶݂, ୷݂ሻ. In the next
section, a test platform to study the significance of
this depth in the interaction matrix calculation is
proposed. The visual features, ܛ, for our IBVS

experiments are the pixel values of the centroid
detected from circle marks. The depth involved in
the interaction matrix computation are the distances
between each feature and the RGB-D camera
(Figure 1).

3 TEST PLATFORM PROPOSED

In order to remark the advantages of a RGB-D
camera as Kinect for the guidance of a robot using a
classical IBVS system, a new testing platform has
been developed (see Figure. 1). The Kinect is placed
in the end-effector of a Mitsubishi PA-10. The PA-
10 is a robot manipulator of 7 degrees of freedom.

The visual servoing scheme described in (1) is
used to guide the camera from any initial position to
the desired position with reference to an object in the
robot’s workspace. This control law provides a
velocity measured in the camera frame. Eye-in-hand
configuration permits to compute the end-effector
velocity from this camera velocity through the
homogeneous matrix transformation between both
reference systems. This matrix transformation is
constant, as the camera is rigidly fixed to the robot’s
end-effector. Thus, the end-effector velocity is
computed as ܞ୉ ൌ ୉େ܂ ∙ ୡ, using the twist matrixܞ
obtained for the configuration proposed:

୉େ܂ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 1 0 െ155 0
െ1 0 0 0 െ15 0
0 െ1 0 15 0 െ155
0 0 0 0 0 1
0 0 0 െ1 0 0
0 0 0 0 െ1 0 ے

ۑ
ۑ
ۑ
ۑ
ې

 (3)

The PA-10 robot controller provides a function to
move the robot with a velocity command for the
end-effector. However, the manufacturer firmware
limits do that the robot can only be programmed
over Microsoft Windows®. Using the proposed
client-server scheme, the user can enter commands
or operating parameters such as start-up, movement
or speed. Thus, the client can be programmed for
any operating system, such as Microsoft Windows®
or Linux. The client-server connection is established
via UDP protocol. In this way, the connection
technology does not depend on the operating system.
In our system, the computer network is safe. Thus,
the sent commands always arrive in order and the
errors control is managed from application-level of
PA-10 controller. The flow and congestion control
of transmission-level is not required so TCP is not
necessary. Moreover, the controller of robot and the
low volume data of the robot commands determine

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

316

Figure 1: Robot end-effector in the Cartesian space and evolution of features in the image space.

that UDP is better than TCP because it does not
introduce any delay to establish a connection.
Further, this robot client-server scheme based on
UDP allows that the test platform can be mounted
over any operating system. Therefore, it is now
possible to work directly over ROS on an Ubuntu
system. ROS provides a set of stacks and packages
that facilitate the robotic software development.
ROS offers hardware abstraction, device drivers,
libraries, visualizers, message-passing, package
management, and more. Thus, between the two
computers (PA-10 controller and perception
system), it is required to send commands to the robot
every time the controller computes a camera velocity
from image features. To address this need, a service
provider and a client are implemented in ROS. The
service provider node contains robot’s client. It
expects orders or commands sent by the client of
ROS, and then it replies them to the server of the
robot. The client of ROS performs the functions of:
image capturing by OpenNI, converting ROS to
ViSP and computing the visual servoing control law
using the ViSP libraries, sending the data to the ROS
server and this in turn to the robot server which
demands the correspondent speed to the robot
controller.

4 TRAJECTORIES ANALYSIS

In order to test the visual servoing system described
in Sections 2 and 3, and to successfully guide a robot
according to an on-line depth estimation of each
considered feature, three different experiments have
been performed. The image processing issues are not
the objective of this work, so, in order to guide the
robot in these experiments, four visual features, ܛ
(representing the centroid points from circle marks)
have been used (see Figure. 1).

The three experiments have the same initial
conditions, because we want to compare the
performance of the system with different depth
information. Kinect acquires a first image and the set
of visual features, ܛ′ ൌ ሾݏଵ′, ,′ଶݏ ,′ଷݏ ସ′ሿ, is computedݏ
from it. This image is acquired with the robot
located in its desired position. Then, the robot is
positioned at its initial pose. The same set of visual
features, ܛ, is acquired from a new image. IBVS
aims to guide the robot comparing the two set of
features. The property and type of these features
determine the most appropriated IBVS to guide a
robot. The first and last image positions (measured
in pixels) are the same for the three experiments as
they are shown in:

୘ܛ ൌ ሾ316,42; 408,41; 325,158; 412,153ሿ

ᇱ୘ܛ ൌ ሾ349,177; 464,183; 457,314; 342,307ሿ
(4)

Guidance�of�Robot�Arms�using�Depth�Data�from�RGB-D�Camera

317

where ܛ୧ ൌ ൫ ୶݂౟, ୷݂౟൯, ୧ܛ
ᇱ ൌ ൫ ୶݂౟

ᇱ, ୷݂౟
ᇱ൯ 	∀i ൌ 1. .4.

4.1 Visual Servoing Task
with the off-Line Depth of each
Feature at the desired Position

The first experiment assumes that the only
information provided by Kinect is the image
provided by the RGB sensor. Thus, in this first
experiment, the depth between the sensor and the
object is not used. The experiment shows the system
behavior when using a standard camera to guide the
robot. The main problem detected with this scheme
is that depth information of each visual feature is
required for the computation of the interaction
matrix, ܛۺ. A solution to achieve the positioning of
the robot when the current depth information is not
known at each iteration consists on computing a
fixed interaction matrix, ܛۺ. In order to compute this
fixed interaction matrix, the value of the depth
component of each visual feature, at the desired
position, ݖ௜

ᇱ	 is estimated and fixed for each iteration
from a previous off-line camera calibration (Zhang,
1996). Then, it is not computed from Kinect. Thus,
the same depth value is used for the four features
and it is given as ܢᇱ ൌେ ଴ܢ

ᇱ
ൌ ሺݖଵᇱ , ଶݖ

ᇱ , ଷݖ
ᇱ , ସᇱݖ ሻ.

Figure 2: Robot end-effector in the 3D-Cartesian space
and evolution of features in the 2D-image space without
depth information.

Afterwards, it is used at each iteration in the

computation of the interaction matrix as described in
(2). It must be remarked that using this interaction
matrix the visual servoing system is still able to
achieve the goal position (see Figure. 2).
Nevertheless, a non-desired behavior can be
observed in the image trajectory of the visual
features. The evolution of the features in the image
is not a straight line between the initial and the final
position. This must be the optimal behavior of an
IBVS. Therefore, any of the visual features can be
lost during the visual servoing task, not allowing the
correct positioning of the robot. Taking this issue
into account, the system is able to converge towards
the desired position; it is last position. Nevertheless,
this experiment has evidenced the need of measuring
the depth between the camera and each of the visual
features during the visual servoing task so a straight
path image can be obtained as much as possible.

4.2 Advantage of using the on-Line
Depth in the Computation of the
Interaction Matrix

In order to improve the visual servoing behavior, in
this experiment, the depth information provided by
Kinect, from the fusion of RGB and IR sensors, is
used to compute the interaction matrix. Kinect
permits to introduce depth information in the
calculation of the interaction matrix in the same
online process. In this case, ܢ ൌ ஼ܢ ௢ ൌ
൫ݖଵ , ଶݖ , ଷݖ , ସݖ ൯ and the interaction matrix changes
the values of ݖ௜	at each iteration of the visual
servoing task. This update solves the problem
detected in the previous experiment. Figure. 3 shows
how the evolution of the features in the image
follows a straight line. Nevertheless, it seems that a
correct behavior in the image does not imply a
correct behavior of the robot in the 3D space. In this
case, the end-effector trajectory is not so straight
than the trajectory performed in the previous
experiment. Notwithstanding, this is the correct
behavior of an IBVS system. The control law of an
IBVS scheme (see equation (1)), is a proportional
controller that minimizes the error in the image
features but not in Cartesian space of the robot. So,
the controller reduces this error exponentially and
the system performs a straight line in the image
space.

In the next section, a study of the exponential
reduction of the error and an analysis of velocity can
be seen for this case (Figure 5).

0.35
0.4

0.45

-0.2

0

0.2

0.7

0.8

0.9

X(m)Y(m)

Z
(m

)

f irst

last

0 200 400 600
0

100

200

300

400

X(px)

Y
(p

x)

last position

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

318

Figure 3: Robot end-effector in the 3D-Cartesian space
and evolution of features in the 2D-image space using the
z௜ of each feature (depth data).

4.3 Visual Servoing Task with a Mean
Interaction Matrix Computation

After testing the performance of the visual servoing
system developed for the Mitsubishi PA10 over
ROS with the use of Kinect in the two previous
experiments, the system is now tested by fusing the
two ways of computing the interaction matrix. In
this last experiment the interaction matrix is
computed as ۺ୫, a mean of the fixed interaction
matrix computed as shown in (5), and the variable
interaction matrix computed as shown in (2):

୫ۺ ൌ 0.5ሺۺୱ ൅ ୱۺ
ᇱሻ (5)

As before, in the previous study case, to perform this
computation, the depth information obtained by
Kinect is required. This visual servoing scheme
cannot be tested by using a standard camera. Indeed,
a stereo system, a ToF camera, or a RGB-D camera
is needed to perform the on-line calculation of the
z௜	for each visual feature.

Figure. 4 shows the evolution of the robot end-
effector and the trajectory tracked by each feature in
the image. The main conclusion is that the evolution
of the features in the image is more straight than the
obtained in the first experiment and it is similar to
second experiment. In addition, the robot behavior
has been improved with reference to the 3D-
cartesian space obtained by the variable interaction

matrix used in the second experiment (computed
using the current z௜	of each visual feature at each
control loop iteration). This is an interesting method
to compute the interaction matrix as it improves the
behavior of the two previously tested methods when
Kinect is used as capture sensor.

Figure 4: Robot end-effector in the 3D-Cartesian space
and evolution of features in the 2D-image space using a
mean value in the interaction matrix.

5 ERROR ANALYSIS

In this section, the other differences in performance
of the studied cases are presented. From the results
shown in Section 4, the position error measured
from visual features (Figure 5a) and the linear
velocity of PA-10 end-effector (Figure 5b)
determine the quality of performance for PA-10
position control in the three experiments. The gain,
involved in the control law is chosen constant and a
small value in order that the camera velocity is not
too big at the beginning of the servoing (λ=0.5).

The output of the visual controller is the velocity
that the camera must perform at each iteration in
order to decrease the error computed among the
current and the desired visual features. Initially, in
the first position, the error of each feature is
maximum because the starting position of the robot
is the farthest. While the robot goes near to the
desired position, the error minimizes to almost zero

0.35
0.4

0.45

-0.2

0

0.2

0.7

0.8

0.9

X(m)Y(m)

Z
(m

)
f irst

last

0 200 400 600
0

100

200

300

400

X(px)

Y
(p

x)

last position

0.35
0.4

0.45

-0.2

0

0.2

0.7

0.8

0.9

X(m)Y(m)

Z
(m

)

f irst

last

0 200 400 600
0

100

200

300

400

X(px)

Y
(p

x)

last position

Guidance�of�Robot�Arms�using�Depth�Data�from�RGB-D�Camera

319

Figure 5: Visual features error measured in meters and end-effector linear velocity during the visual servoing task. a)
Without depth information. b) Using the z௜	of each feature.

(Figure 5a). Velocity can be obtained with reference
to the end-effector by computing the fixed
transformation between both reference systems: the
end-effector and the Kinect one (as explained in
Section 3)

On the one hand, the comparison of the evolution
of the computed error determines that the
computation of the dynamic depth of each feature,
z௜, from Kinect (experiment 2) presents an
exponential decrement of the error with respect to
the other experiments, with a static depth fixed
previously or with mean interaction matrix. Even
though, in the second experiment, more time is
required to complete the task than the first and third
experiments if the same gain, λ=0.5, is used. In
addition, the oscillation peaks are due to the change
of depth between iterations.

The second and third experiments take longer to
converge because they use more input data: both

൫ ୶݂౟ , ୷݂౟൯ in pixels and z୧ in mm are used. But the
results are more accurate and more realistic because
the robot is moved in 3D, it is changed the depth
between effector and pattern-object.

In all experiments, the reader can note that the
convergence of the features coordinates to their
desired value, permit to demonstrate the correct
realization of the guided task. The robustness of the
guided task depends on the method used to estimate
the features depth: off-line camera calibration,
dynamic computation of depths or mean interaction
matrix.

Furthermore, in order to evaluate the capabilities
of the proposed test platform for running in real-
time, the runtimes of the different steps are
calculated from experimental results (Figure 6).
Each step is executed each time a new image is
captured until the desired position is reached, it is at
each iteration. Figure 6 shows the runtime of the D-

0 5 10 15 20

-0.3

-0.2

-0.1

0

t(s)

e
rr

or
(m

)

0 10 20 30

-0.3

-0.2

-0.1

0

t(s)

e
rr

or
(m

)

0 5 10 15 20 25

-0.3

-0.2

-0.1

0

t(s)

e
rr

or
(m

)

0 5 10 15 20
-20

0

20

40

60

t(s)

v(
m

m
/s

)

vx

vy

vz

0 10 20 30
-100

0

100

200

t(s)

v(
m

m
/s

)

vx

vy

vz

0 5 10 15 20 25
-50

0

50

100

t(s)

v(
m

m
/s

)

vx

vy

vz

f1x

f1y

f2y

f3x

f3y

f4x

f2x

f4y

f1x

f1y

f2y

f3x

f3y

f4x

f2x

f4y

f1x

f1y

f2y

f3x

f3y

f4x

f2x

f4y

a) b)

Experiment 1

Experiment 2

Experiment 3

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

320

IBVS task identifying the three steps of algorithm:
time of image processing, visual servoing and
transmission and robot movement.

Figure 6: Runtime comparison of different steps for each
iteration.

The runtimes have been calculated over an Intel
Core i7-263QM 2Ghz of CPU with 4GiB of memory
RAM and GeForce GT 540 with 2GiB of GPU.
Thus, in this hardware, the mean runtime for the
different computing steps, according the iterations
shown in Figure 6, are shown in Table 1.

Table 1: Mean runtimes.

Image

Processing
Visual

Servoing
Network

transmission
Mean

runtime
100.58ms 0.80ms 9.14ms

Standard
deviation

0.0324ms 0.0003ms 0.0022ms

6 CONCLUSIONS

A new platform to perform visual servoing tests
using RGB-D sensors has been proposed. Thus, this
platform implements an IBVS based on low cost
RGB-D sensors (D-IBVS) that permits to
simultaneously control the distance and Cartesian
position of a robot arm with reference to objects that
will be manipulated. D-IBVS does not require the
estimation of the 3D pose as position based visual
servoing techniques. It provides extra-information
such as depth to improve positioning accuracy if it is
compared with classic IBVS. In addition, the
response time was measured through a series of
experiments. Note that a D-IBVS is advantageous in

a variety of applications requiring robot guidance
such as control to grasp and manipulating tasks by
robot arms where the robot tracks trajectories for
moving away and/or moving near of the objects. As
future works, some issues related to extract on-line
3D features for visual servoing without fiducial
markers are being investigated over the same testing
platform proposed.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the Spanish Ministry of Education and
Science and European FEDER funds, the Valencia
Regional Government and the Research and
Innovation Vice-president Office of the University
of Alicante, through the research projects DPI2012-
32390, GV2012/102 and PROMETEO/2013/085,
GRE10-16, respectively.

REFERENCES

Chaumette, F., Hutchinson, S., 2006. Visual Servo
Control, Part I: Basic Approaches. IEEE Robotics and
Automation Magazine 13(4), 82-90.

Hadj-Abdelkader, H., Mezouar, Y., Martinet, P.,
Chaumette, F., 2008. Catadioptric visual ser-voing
from 3-D straight lines. IEEE Transactions on
Robotics, 24, 652-665.

Malis, E., Chaumette, F., Boudet, S., 1999, 2-1/2-D Visual
Servoing. IEEE Transactions on Robotics and
Automation, 15(2), 238-250.

Marchand, E., Spindler, F., Chaumette. F., 2005. ViSP for
visual servoing: a generic software platform with a
wide class of robot control skills. IEEE Robotics and
Automation Magazine, 12(4), 40-52.

Maru, N., Kase, H., Yamada, S., Nishikawa, A., Miyazaki, F.,
1993. Manipulator control by visual servoing with stereo
vision. In Proceedings of IROS’93, IEEE/RSJ
International Conference on Intelligent Robots and
Systems, IEEE-Press.

Pomares, J., Gil, P., Torres, F., 2010. Visual control of
robots using range images. Sensors. 10(8), 7303-7322.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.
B., Leibs, J., Wheeler, R., Ng, A.Y., 2009. ROS: an
open-source robot operating system. In Proceedings of
ICRA’09, IEEE International Conference on Robotics
and Automation-Workshop on Open Source Software.

Teuliere, C., Marchand, E., 2012. Direct 3d servoing using
dense depth maps. In Proceedings of IROS’12,
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1741-1746.

Zhang, Z., 1996. Three-dimensional reconstruction under
varying constraints on camera geometry for robotic
navigation scenarios. PhD. Thesis, University of
Massachussets.

0

0,02

0,04
0,06

0,08

0,1
0,12

0,14
0,16

1 51 101 151 201 251 301 351

t(
s)

iteration

Image Processing
Transmission and Movement

0

0,002
0,004

0,006
0,008

0,01
0,012

0,014

0,016

1 51 101 151 201 251 301 351

t(
s)

iteration

Transmission and Movement

Visual Servoing

Guidance�of�Robot�Arms�using�Depth�Data�from�RGB-D�Camera

321

