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Abstract: Image Based Visual Servoing (IBVS) is a robotic control scheme based on vision. This scheme uses only 
the visual information obtained from a camera to guide a robot from any robot pose to a desired one. 
However, IBVS requires the estimation of different parameters that cannot be obtained directly from the 
image. These parameters range from the intrinsic camera parameters (which can be obtained from a 
previous camera calibration), to the measured distance on the optical axis between the camera and visual 
features, it is the depth. This paper presents a comparative study of the performance of D-IBVS estimating 
the depth from three different ways using a low cost RGB-D sensor like Kinect. The visual servoing system 
has been developed over ROS (Robot Operating System), which is a meta-operating system for robots. The 
experiments prove that the computation of the depth value for each visual feature improves the system 
performance. 

1 INTRODUCTION 

Previously, IBVS systems used optical-visual 
sensors to guide robots and control their position. 
Usually, these sensors have been standard cameras. 
These cameras can be used isolated or arranged in a 
stereo pair to provide two images from different 
viewpoints and then create a perception of depth 
(Maru et al., 1993). Generally, these systems use 
radial models. Nevertheless, lately, visual servoing 
applications have used catadioptric cameras that 
provide panoramic images which give 360º of scene 
views (Hadj-Abdelkader et al., 2008). 

In the last years, new sensors have changed the 
way in which the environment is sensorised and it is 
perceived by intelligent automatic systems. The 
Time of Flight (ToF) (Pomares et al., 2010) and 
RGB-D (Red, Green, Blue and Depth) (Teuliere and 
Marchand, 2012) cameras are an example. These 
visual sensors play an important role in the new 
perception context because they usually use a light 
source to compute the depth information. The result 
is a dense depth map. Therefore, ToF and RGB-D 
sensors do not require previous calibration step to 
estimate the depth as in IBVS composed of one 
camera. The visual servoing systems which use 
these sensors are known as D-IBVS. Moreover, the 
time computation of depth decreases in relation to 

the time taken by a stereo pair. Kinect is a low cost 
RGB-D camera which uses a depth sensor combined 
with another RGB. It can acquire colour images with 
a resolution of 640x480 pixels and a capture frame 
rate of 30fps at that resolution. Kinect uses an 
infrared projector which emits a fixed pattern of 
light and dark speckles. Depth is calculated by 
triangulation against a known pattern from the 
projector. The pattern is memorized at a known 
depth and then for each pixel, a correlation between 
known pattern and current pattern is done. 

Traditionally, the development of new robotic 
applications has required a lot of researcher’s time. 
The configuration of the different involved sensors 
or their integration with the robot is not a simple 
task and consumes a great percentage of the research 
time. Robot Operating System (ROS) is a 
middleware that provides to the user a set of libraries 
to easily develop new robotic applications (Quigley 
et al., 2009). The platform proposed in this paper is 
developed over ROS, taking advantage of the 
different stacks and packages provided by the ROS 
community to capture from Kinect (with OpenNI) or 
develop visual servoing applications with ViSP 
(Marchand et al., 2005) for ROS. 

The paper is organized as follows: in Section 2 
the classical IBVS system is described, Section 3 
presents the platform proposed to perform IBVS 
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tests using the depth information from a Kinect, 
Section 4 and 5 describe the experiments performed 
to validate the platform, and finally, Section 6 shows 
the conclusions. 

2 IMAGE BASED VISUAL 
SERVOING 

A visual servoing task can be described by an image 
function, ܜ܍ ൌ ܛ െ  ,ᇱ, which must be regulated to 0ܛ
where ܛ is a M x 1 vector containing M visual 
features corresponding to the current state, while ܛᇱ  
denotes the visual features values in the desired 
state. 

The interaction matrix, ܛۺ, relates variations in 
the image with variation in the velocity of the 
camera,   ܛ ൌ ܛۺ ∙ ሶܚ , where ܚሶ indicates the camera 
velocity (Chaumette and Hutchinson, 2006). The 
control law of classical image-based visual servoing 
is obtained by imposing an exponential decrease of 
ሶܜ܍ :as follows ,ܜ܍ ൌ െܜ܍ where: 

ୡܞ ൌ െۺመ ܛାሺܛ െ ᇱሻ (1)ܛ

where ۺመ  the pseudoinverse of an approximation of	ାܛ
the interaction matrix and λ is the proportional 
control gain. When the visual feature is a point in the 
image, the interaction matrix can be obtained from: 

Lୱ ൌ ሾLୱଵ, Lୱଶሿ 
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where ሺ ௫݂, ௬݂ሻ is the camera focal length in the axis 
X and Y respectively, and ሺݑ଴,  ଴ሻ is the cameraݒ
principal point. These are the intrinsic parameters of 
the camera, and can be obtained with high precision 
through a calibration process performed in an off-
line step of the visual servoing task (Zhang, 1996). 
The image point, ሺ ௫݂, ௬݂ሻ is directly measured in 
pixels from the image acquired by the camera. And 
the େܢ଴	value represents the depth between the 
camera reference system and the 3D point 
represented in the image by ሺ ୶݂, ୷݂ሻ. In the next 
section, a test platform to study the significance of 
this depth in the interaction matrix calculation is 
proposed. The visual features, ܛ, for our IBVS 

experiments are the pixel values of the centroid 
detected from circle marks. The depth involved in 
the interaction matrix computation are the distances 
between each feature and the RGB-D camera 
(Figure 1). 

3 TEST PLATFORM PROPOSED 

In order to remark the advantages of a RGB-D 
camera as Kinect for the guidance of a robot using a 
classical IBVS system, a new testing platform has 
been developed (see Figure. 1). The Kinect is placed 
in the end-effector of a Mitsubishi PA-10. The PA-
10 is a robot manipulator of 7 degrees of freedom.  

The visual servoing scheme described in (1) is 
used to guide the camera from any initial position to 
the desired position with reference to an object in the 
robot’s workspace. This control law provides a 
velocity measured in the camera frame. Eye-in-hand 
configuration permits to compute the end-effector 
velocity from this camera velocity through the 
homogeneous matrix transformation between both 
reference systems. This matrix transformation is 
constant, as the camera is rigidly fixed to the robot’s 
end-effector. Thus, the end-effector velocity is 
computed as   ܞ୉ ൌ ୉େ܂ ∙  ୡ, using the twist matrixܞ
obtained for the configuration proposed: 

୉େ܂ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 1 0 െ155 0
െ1 0 0 0 െ15 0
0 െ1 0 15 0 െ155
0 0 0 0 0 1
0 0 0 െ1 0 0
0 0 0 0 െ1 0 ے

ۑ
ۑ
ۑ
ۑ
ې

 (3)

The PA-10 robot controller provides a function to 
move the robot with a velocity command for the 
end-effector. However, the manufacturer firmware 
limits do that the robot can only be programmed 
over Microsoft Windows®. Using the proposed 
client-server scheme, the user can enter commands 
or operating parameters such as start-up, movement 
or speed. Thus, the client can be programmed for 
any operating system, such as Microsoft Windows® 
or Linux. The client-server connection is established 
via UDP protocol. In this way, the connection 
technology does not depend on the operating system. 
In our system, the computer network is safe. Thus, 
the sent commands always arrive in order and the 
errors control is managed from application-level of 
PA-10 controller. The flow and congestion control 
of transmission-level is not required so TCP is not 
necessary. Moreover, the controller of robot and the 
low volume data of the robot commands determine

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

316



 

Figure 1: Robot end-effector in the Cartesian space and evolution of features in the image space. 

that UDP is better than TCP because it does not 
introduce any delay to establish a connection. 
Further, this robot client-server scheme based on 
UDP allows that the test platform can be mounted 
over any operating system. Therefore, it is now 
possible to work directly over ROS on an Ubuntu 
system. ROS provides a set of stacks and packages 
that facilitate the robotic software development. 
ROS offers hardware abstraction, device drivers, 
libraries, visualizers, message-passing, package 
management, and more. Thus, between the two 
computers (PA-10 controller and perception 
system), it is required to send commands to the robot 
every time the controller computes a camera velocity 
from image features. To address this need, a service 
provider and a client are implemented in ROS. The 
service provider node contains robot’s client. It 
expects orders or commands sent by the client of 
ROS, and then it replies them to the server of the 
robot. The client of ROS performs the functions of: 
image capturing by OpenNI, converting ROS to 
ViSP and computing the visual servoing control law 
using the ViSP libraries, sending the data to the ROS 
server and this in turn to the robot server which 
demands the correspondent speed to the robot 
controller. 
 
 

4 TRAJECTORIES ANALYSIS 

In order to test the visual servoing system described 
in Sections 2 and 3, and to successfully guide a robot 
according to an on-line depth estimation of each 
considered feature, three different experiments have 
been performed. The image processing issues are not 
the objective of this work, so, in order to guide the 
robot in these experiments, four visual features, ܛ 
(representing the centroid points from circle marks) 
have been used (see Figure. 1). 

The three experiments have the same initial 
conditions, because we want to compare the 
performance of the system with different depth 
information. Kinect acquires a first image and the set 
of visual features, ܛ′ ൌ ሾݏଵ′, ,′ଶݏ ,′ଷݏ  ସ′ሿ, is computedݏ
from it. This image is acquired with the robot 
located in its desired position. Then, the robot is 
positioned at its initial pose. The same set of visual 
features, ܛ, is acquired from a new image. IBVS 
aims to guide the robot comparing the two set of 
features. The property and type of these features 
determine the most appropriated IBVS to guide a 
robot. The first and last image positions (measured 
in pixels) are the same for the three experiments as 
they are shown in: 

୘ܛ ൌ ሾ316,42; 408,41; 325,158; 412,153ሿ 

ᇱ୘ܛ ൌ ሾ349,177; 464,183; 457,314; 342,307ሿ 
(4)

Guidance�of�Robot�Arms�using�Depth�Data�from�RGB-D�Camera

317



where ܛ୧ ൌ ൫ ୶݂౟, ୷݂౟൯, ୧ܛ
ᇱ ൌ ൫ ୶݂౟

ᇱ, ୷݂౟
ᇱ൯ 	∀i ൌ 1. .4. 

4.1 Visual Servoing Task 
with the off-Line Depth of each 
Feature at the desired Position 

The first experiment assumes that the only 
information provided by Kinect is the image 
provided by the RGB sensor. Thus, in this first 
experiment, the depth between the sensor and the 
object is not used. The experiment shows the system 
behavior when using a standard camera to guide the 
robot. The main problem detected with this scheme 
is that depth information of each visual feature is 
required for the computation of the interaction 
matrix, ܛۺ. A solution to achieve the positioning of 
the robot when the current depth information is not 
known at each iteration consists on computing a 
fixed interaction matrix, ܛۺ. In order to compute this 
fixed interaction matrix, the value of the depth 
component of each visual feature, at the desired 
position, ݖ௜

ᇱ	 is estimated and fixed for each iteration 
from a previous off-line camera calibration (Zhang, 
1996). Then, it is not computed from Kinect. Thus, 
the same depth value is used for the four features 
and it is given as ܢᇱ ൌେ ଴ܢ

ᇱ
ൌ ሺݖଵᇱ , ଶݖ

ᇱ , ଷݖ
ᇱ , ସᇱݖ ሻ.  

 

  

Figure 2: Robot end-effector in the 3D-Cartesian space 
and evolution of features in the 2D-image space without 
depth information. 

Afterwards, it is used at each iteration in the 

computation of the interaction matrix as described in 
(2). It must be remarked that using this interaction 
matrix the visual servoing system is still able to 
achieve the goal position (see Figure. 2). 
Nevertheless, a non-desired behavior can be 
observed in the image trajectory of the visual 
features. The evolution of the features in the image 
is not a straight line between the initial and the final 
position. This must be the optimal behavior of an 
IBVS. Therefore, any of the visual features can be 
lost during the visual servoing task, not allowing the 
correct positioning of the robot. Taking this issue 
into account, the system is able to converge towards 
the desired position; it is last position. Nevertheless, 
this experiment has evidenced the need of measuring 
the depth between the camera and each of the visual 
features during the visual servoing task so a straight 
path image can be obtained as much as possible. 

 

4.2 Advantage of using the on-Line 
Depth in the Computation of the 
Interaction Matrix 

In order to improve the visual servoing behavior, in 
this experiment, the depth information provided by 
Kinect, from the fusion of RGB and IR sensors, is 
used to compute the interaction matrix. Kinect 
permits to introduce depth information in the 
calculation of the interaction matrix in the same 
online process. In this case, ܢ ൌ ஼ܢ ௢ ൌ
൫ݖଵ , ଶݖ , ଷݖ , ସݖ ൯ and the interaction matrix changes 
the values of ݖ௜	at each iteration of the visual 
servoing task. This update solves the problem 
detected in the previous experiment. Figure. 3 shows 
how the evolution of the features in the image 
follows a straight line. Nevertheless, it seems that a 
correct behavior in the image does not imply a 
correct behavior of the robot in the 3D space. In this 
case, the end-effector trajectory is not so straight 
than the trajectory performed in the previous 
experiment. Notwithstanding, this is the correct 
behavior of an IBVS system. The control law of an 
IBVS scheme (see equation (1)), is a proportional 
controller that minimizes the error in the image 
features but not in Cartesian space of the robot. So, 
the controller reduces this error exponentially and 
the system performs a straight line in the image 
space. 

In the next section, a study of the exponential 
reduction of the error and an analysis of velocity can 
be seen for this case (Figure 5). 
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Figure 3: Robot end-effector in the 3D-Cartesian space 
and evolution of features in the 2D-image space using the 
z௜ of each feature (depth data).  

4.3 Visual Servoing Task with a Mean 
Interaction Matrix Computation 

After testing the performance of the visual servoing 
system developed for the Mitsubishi PA10 over 
ROS with the use of Kinect in the two previous 
experiments, the system is now tested by fusing the 
two ways of computing the interaction matrix. In 
this last experiment the interaction matrix is 
computed as ۺ୫, a mean of the fixed interaction 
matrix computed as shown in (5), and the variable 
interaction matrix computed as shown in (2):  

୫ۺ ൌ 0.5ሺۺୱ ൅ ୱۺ
ᇱሻ (5)

As before, in the previous study case, to perform this 
computation, the depth information obtained by 
Kinect is required. This visual servoing scheme 
cannot be tested by using a standard camera. Indeed, 
a stereo system, a ToF camera, or a RGB-D camera 
is needed to perform the on-line calculation of the 
z௜	for each visual feature.  

Figure. 4 shows the evolution of the robot end-
effector and the trajectory tracked by each feature in 
the image. The main conclusion is that the evolution 
of the features in the image is more straight than the 
obtained in the first experiment and it is similar to 
second experiment. In addition, the robot behavior 
has been improved with reference to the 3D-
cartesian space obtained by the variable interaction 

matrix used in the second experiment (computed 
using the current z௜	of each visual feature at each 
control loop iteration). This is an interesting method 
to compute the interaction matrix as it improves the 
behavior of the two previously tested methods when 
Kinect is used as capture sensor. 

 

 

Figure 4: Robot end-effector in the 3D-Cartesian space 
and evolution of features in the 2D-image space using a 
mean value in the interaction matrix.  

5 ERROR ANALYSIS 

In this section, the other differences in performance 
of the studied cases are presented. From the results 
shown in Section 4, the position error measured 
from visual features (Figure 5a) and the linear 
velocity of PA-10 end-effector (Figure 5b) 
determine the quality of performance for PA-10 
position control in the three experiments. The gain, 
involved in the control law is chosen constant and a 
small value in order that the camera velocity is not 
too big at the beginning of the servoing (λ=0.5). 

The output of the visual controller is the velocity 
that the camera must perform at each iteration in 
order to decrease the error computed among the 
current and the desired visual features. Initially, in 
the first position, the error of each feature is 
maximum because the starting position of the robot 
is the farthest. While the robot goes near to the 
desired position, the error minimizes to almost zero 
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Figure 5: Visual features error measured in meters and end-effector linear velocity during the visual servoing task. a) 
Without depth information. b) Using the z௜	of each feature.  

(Figure 5a). Velocity can be obtained with reference 
to the end-effector by computing the fixed 
transformation between both reference systems: the 
end-effector and the Kinect one (as explained in 
Section 3) 

On the one hand, the comparison of the evolution 
of the computed error determines that the 
computation of the dynamic depth of each feature, 
z௜, from Kinect (experiment 2) presents an 
exponential decrement of the error with respect to 
the other experiments, with a static depth fixed 
previously or with mean interaction matrix. Even 
though, in the second experiment, more time is 
required to complete the task than the first and third 
experiments if the same gain, λ=0.5, is used. In 
addition, the oscillation peaks are due to the change 
of depth between iterations. 

The second and third experiments take longer to 
converge because they use more input data: both 

൫ ୶݂౟ , ୷݂౟൯ in pixels and z୧ in mm are used. But the 
results are more accurate and more realistic because 
the robot is moved in 3D, it is changed the depth 
between effector and pattern-object. 

In all experiments, the reader can note that the 
convergence of the features coordinates to their 
desired value, permit to demonstrate the correct 
realization of the guided task. The robustness of the 
guided task depends on the method used to estimate 
the features depth: off-line camera calibration, 
dynamic computation of depths or mean interaction 
matrix. 

Furthermore, in order to evaluate the capabilities 
of the proposed test platform for running in real-
time, the runtimes of the different steps are 
calculated from experimental results (Figure 6). 
Each step is executed each time a new image is 
captured until the desired position is reached, it is at 
each iteration.  Figure 6 shows the runtime of the D-
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IBVS task identifying the three steps of algorithm: 
time of image processing, visual servoing and 
transmission and robot movement. 

 

 

Figure 6: Runtime comparison of different steps for each 
iteration. 

The runtimes have been calculated over an Intel 
Core i7-263QM 2Ghz of CPU with 4GiB of memory 
RAM and GeForce GT 540 with 2GiB of GPU.  
Thus, in this hardware, the mean runtime for the 
different computing steps, according the iterations 
shown in Figure 6, are shown in Table 1. 

Table 1: Mean runtimes. 

 
Image 

Processing 
Visual 

Servoing 
Network 

transmission 
Mean 

runtime 
100.58ms 0.80ms 9.14ms 

Standard 
deviation 

0.0324ms 0.0003ms 0.0022ms 

6 CONCLUSIONS 

A new platform to perform visual servoing tests 
using RGB-D sensors has been proposed. Thus, this 
platform implements an IBVS based on low cost 
RGB-D sensors (D-IBVS) that permits to 
simultaneously control the distance and Cartesian 
position of a robot arm with reference to objects that 
will be manipulated. D-IBVS does not require the 
estimation of the 3D pose as position based visual 
servoing techniques. It provides extra-information 
such as depth to improve positioning accuracy if it is 
compared with classic IBVS. In addition, the 
response time was measured through a series of 
experiments. Note that a D-IBVS is advantageous in 

a variety of applications requiring robot guidance 
such as control to grasp and manipulating tasks by 
robot arms where the robot tracks trajectories for 
moving away and/or moving near of the objects. As 
future works, some issues related to extract on-line 
3D features for visual servoing without fiducial 
markers are being investigated over the same testing 
platform proposed. 
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