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Abstract

We consider a generalized version of the proximal point algorithm for solving the
perturbed inclusion y ∈ T (x), where y is a perturbation element near 0 and T is
a set-valued mapping acting from a Banach space X to a Banach space Y which is
metrically regular around some point point (x̄, 0) in its graph. We study the behavior
of the convergent iterates generated by the algorithm and we prove that they inherit
the regularity properties of T , and vice versa. We analyze the cases when the mapping
T is metrically regular and strongly regular.
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1 Introduction

The proximal point method finds its origin in the works of Martinet [19] in 1970 for variational
inequalities. A few years later Rockafellar [25, 26] thoroughly studied the algorithm, showing
its tight relation to multiplier methods. The algorithm aims to find an approximate solution
to the equation

0 ∈ T (x), (1.1)
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for a given set-valued mapping T , typically acting from a Hilbert space to itself. Rockafellar
proved, in particular, that the following iterative process

0 ∈ λn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . . (1.2)

known as the exact proximal point method (where λn is a sequence of positive numbers
and x0 ∈ X is a starting point), provides a sequence xn which is weakly convergent to a
solution to (1.1) when T is a maximal monotone operator. The particular case when T is
the subdifferential of a lower semicontinuous convex function is of special relevance; here the
subproblem (1.2) becomes

xn+1 := argmin
z

{
f(z) +

λn
2
‖z − xn‖2

}
, (1.3)

transforming thus the single problem of minimizing a convex function into solving a sequence
of problems where the objective function is strongly convex (which improves the convergence
properties of some minimization algorithms). On the other hand, the term ‖z − xn‖2 forces
the next iteration to remain proximal to the previous one, while the parameter λn provides
control on this effect.

Subsequently, several authors have studied generalizations or modifications of the prox-
imal point method in order to implement or improve the theoretical algorithm initiated by
Rockafellar, together with some inexact versions for the subproblem (1.2); we can cite, for
instance, [13, 15, 16, 17, 18, 22, 28, 29, 30]. Notice that allowing approximate solutions in the
subproblem (1.2) is crucial in practice; otherwise, solving exactly each of the subproblems
might be as difficult as finding a solution to the original inclusion (1.1). Most of the extensive
and rapidly growing literature on the subject assumes some sort of maximal monotonicity of
the mapping T . The reason for this is that it guarantees the uniqueness of solutions to (1.2),
having moreover nonexpansivity of the so-called proximal mapping Pc := (I + cT )−1 for any
c > 0, i.e.,

‖Pc(z)− Pc(z′)‖ ≤ ‖z − z′‖ for all z, z′, (1.4)

which is employed to prove the convergence of the sequence xn of solutions of (1.2) to a
solution of the original problem (1.1). Without monotonicity everything is more complicated,
not only because in some cases we may have multivaluedness or even empty-valuedness
in (1.2), but also because the sequence generated by the method might not even converge.

In the present paper we will not assume any type of monotonicity. Instead, the mapping T
is required to be either metrically regular or strongly regular around some reference solution
(a proper definition of these concepts will be given in the next section). These properties are
local, therefore the convergence results will be local as well. Some results in this direction
can be found in [22], where Pennanen proves that the strong regularity of the mapping T
guarantees the (local) maximal monotonicity of the Yosida regularization Tρ := (T−1 +ρI)−1

of the mapping T for any ρ bigger than the regularity modulus of T , and this property
of Tρ ensures the local existence and uniqueness of a proximal point sequence which is
linearly convergent to the reference solution, for any initial point close enough to the solution.
Other related results can be found in [1, 2], where the authors propose a generalization
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of the proximal point method which basically consists in replacing the constants λn by
some functions gn which are Lipschitz continuous on some neighborhood of 0 with Lipschitz
constants λn. This modification of the method allows the mapping T to act between two
different spaces X and Y , which are assumed to be Banach. More specifically, choose a
sequence of Lipschitz continuous function gn : X → Y and consider the following algorithm:

0 ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . . . (1.5)

If the Lipschitz constants λn are upper bounded by one over twice the regularity modulus of
T around the reference solution, then for any initial point sufficiently close to the solution,
there exists a sequence satisfying (1.5) which is linearly convergent to this solution (see [1,
Theorem 3.1]). Furthermore, the convergence is superlinear when λn converges to 0. When
T happens to be strongly regular, the sequence is unique (within a certain neighborhood).
In [2] the authors prove something more, that for any y close to 0, if one considers the
perturbed problem

y ∈ T (x), (1.6)

then under metric regularity there exists a solution to this equation and a proximal point
sequence satisfying

y ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . . (1.7)

which converges (super)linearly to that solution as long as the sequence λn is sufficiently small
for all n. Similarly, local uniqueness of the sequence is guaranteed under strong regularity.

An interesting mixed approach can be found in [18], where Leventhal assumes both
maximal monotonicity and metric subregularity (a weaker form of metric regularity) of
the mapping T around some solution x̄, and proves the local (super)linear convergence
of the algorithm. For the particular case of minimizing a lower semicontinuous convex
function f mentioned above, since the subdifferential ∂f is a maximal monotone mapping
(see [24, Theorem A]), the linear convergence of the algorithm is then guaranteed under
metric subregularity of the subdifferential. On the other hand, in [3] the authors prove
that metric subregularity of the subdifferential of f at (x̄, 0) is equivalent to the following
quadratic growth condition of the function f : there exist a neighborhood U of x̄ and a positive
constant c such that

f(x) ≥ f(x̄) + cd
(
x, (∂f)−1(0)

)2
whenever x ∈ U ; (1.8)

thus the exact proximal point algorithm (1.3) is linearly convergent when this latter condi-
tion holds, and the convergence is superlinear if λn converges to 0. A characterization for
the (strong) regularity of the subdifferential is also given in [3]. One can find a condition
for the convergence of the proximal point algorithm somehow similar to (1.8) in [12], cf.
Theorem 3.1.

In the present paper we will consider the exact generalized proximal point algorithm (1.7),
as in [1, 2]. We will follow the same idea from [4, 9], where the authors extend the paradigm
of the Lyusternik–Graves theorem (see, e.g., [8]) to the framework of a mapping acting from
the pair initial point-parameter to the set of convergent Newton sequences associated with
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them. Under some surjectivity assumption, known as ample parameterization, the (strong)
metric regularity of the generalized equation is proved to be equivalent to the (strong) metric
regularity of the inverse mapping associated with convergent Newton sequences. These
results can be understood as some sort of Lyusternik–Graves theorem, where instead of
considering a metrically regular mapping which is perturbed by some Lipschitz function,
we iteratively perturb a mapping by several Lipschitz functions whose Lipschitz moduli are
small enough to preserve, no only the metric regularity of their sum, but the Lipschitzian
properties of the mapping that associates to each pair initial iteration-perturbation the set
of converging sequences satisfying the algorithm. This can be seen as a sequential implicit
function theorem, see [9] and [8, Section 6D] for more details.

Notice that the metric regularity condition on T plus the Lipschitz continuity of gn with
appropriately small moduli will somehow substitute the nonexpansivity condition (1.4) which
came for granted from the maximal monotonicity assumption, while the strong regularity
will now guarantee the (local) uniqueness of the proximal point sequence.

The paper is organized as follows. In Section 2 we present some background material,
basically about metric regularity. In Section 3 we give the statement and proof of the
main results, which show the equivalence between the metric regularity of T and the Aubin
property of the set of convergent proximal point sequences generated by the proximal point
method (Theorem 3.3), and the strong regularity of T and the existence of a Lipschitz single-
valued localization of the mapping associated with the convergent sequences (Theorem 3.4).
We also present another result, Theorem 3.2, regarding the existence of a (super)linearly
convergent proximal point sequence under metric regularity of T , which not only improves
both [1, Theorem 3.1] and [2, Theorem 3.2], but is also essential for proving the main
theorems. Finally, in the same way as in [10, 11], it may be interesting to note that such
results show in particular (in a certain perspective), that the proximal method is really well-
posed since actually the whole proximal iterates of the problem depend continuously on the
data of the problem. The results presented are theoretical; we are interested in studying
how the regularity properties (and moduli) carry away from the mapping T to the set of
convergent proximal point sequences, and vice versa. We believe these properties may have
more practical consequences on the implication of different errors in the algortihm, but we
shall not go further into this in here.

2 Background material

Throughout, X and Y are Banach spaces. We denote a set-valued mapping from X into the
subsets of Y by F : X ⇒ Y . The graph of F is the set gphF = {(x, y) ∈ X×Y | y ∈ F (x)},
while F−1 is the inverse mapping of F defined by x ∈ F−1 (y) ⇔ y ∈ F (x). Single-valued
mappings, also called functions, are represented by f : X → Y . The distance from a point
x to a set C is denoted by d(x,C); i.e., d(x,C) = infy∈C ‖x− y‖, with the usual convention
d(x, ∅) := ∞. Recall that Br(x) stands for the closed ball of radius r centered at x. The
excess from a set A to a set B is defined by e(A,B) = supx∈A d(x,B), with the convention
e(∅, D) := 0 when D 6= ∅, and e(∅, ∅) :=∞. We say that a set C ⊂ X is locally closed around
some point z ∈ C if there exists some constant ρ > 0 such that the set C ∩ Bρ(z) is closed.
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Finally, cl∞(X) denotes the linear space of all infinite sequences ξ = {x1, x2, . . . , xn . . .} with
elements xn ∈ X, for n = 1, 2, . . ., that are convergent to some point x ∈ X. We endow this
set with the supremum norm

‖ξ‖∞ = sup
n≥1
‖xn‖,

which makes it a linear normed space.
Our study is focused on two key notions: metric regularity and strong metric regularity.

Definition 2.1. A mapping F : X ⇒ Y is said to be metrically regular around (x̄, ȳ) ∈ gphF
if there exist some positive constants κ, a and b such that

d
(
x, F−1(y)

)
≤ κd

(
y, F (x)

)
for all x ∈ Ba(x̄) and y ∈ Bb(ȳ). (2.1)

The infimum of κ over all the combinations (κ, a, b) for which (2.1) holds is the regu-
larity modulus and is denoted by regF (x̄, ȳ); the absence of this property is signaled by
regF (x̄, ȳ) =∞. Metric regularity of a mapping F around (x̄, ȳ) is known to be equivalent
to the Aubin property of the inverse F−1 around (ȳ, x̄) with the same modulus (see, e.g., [8,
Theorem 5A.3] or [21, Theorem 1.49]). Recall that a set-valued mapping G : Y ⇒ X has
the Aubin property (or, equivalently, is Lipschitz-like) around (ȳ, x̄) ∈ gphG if there exist
positive constants `, a and b such that,

e
(
G(y) ∩ Ba(x̄), G(y′)

)
≤ `‖y − y′‖ for all y, y′ ∈ Bb(ȳ). (2.2)

A mapping H : P × Y ⇒ X is said to have the partial Aubin property with respect to p
uniformly in y around

(
(p̄, ȳ), x̄

)
if x̄ ∈ H(p̄, ȳ) and there are some positive constants `, a, b

and c such that

e
(
H(p, y) ∩ Ba(x̄), H(p′, y)

)
≤ `‖p− p′‖ for all p, p′ ∈ Bb(p̄) and y ∈ Bc(y).

The infimum of ` over all such combinations of (`, a, b, c) is called the partial Lipschitz modu-

lus of H with respect to p uniformly in y around
(
(p̄, ȳ), x̄

)
and is denoted by l̂ippH

(
(p̄, ȳ), x̄

)
.

It is easy to see that the Aubin property of H around
(
(p̄, ȳ), x̄

)
ensures the partial Aubin

properties of H with respect to both p and y.
In order to introduce the second regularity property that we will employ, we recall here

the notion of graphical localization. We say that a mapping F̃ : X ⇒ Y is a graphical
localization of a set-valued mapping F : X ⇒ Y around (x̄, ȳ) ∈ gphF if there exists some
neighborhood U × V of (x̄, ȳ) such that the graph of F restricted to U × V coincides with
the graph of F̃ ; i.e., gph F̃ = (U × V ) ∩ gphF .

Definition 2.2. A mapping F : X ⇒ Y is strongly (metrically) regular around (x̄, ȳ) ∈
gphF if the metric regularity condition (2.1) is satisfied by some (κ, a, b) and, in addition,
the graphical localization Bb(ȳ) 3 y 7→ F−1(y) ∩ Ba(x̄) is nowhere multivalued.

Strong regularity of F around (x̄, ȳ) is equivalent to F−1 having a Lipschitz continuous
single-valued localization around (ȳ, x̄), see [8, Proposition 3G.1] for details. This property
was introduced by Robinson [23] for variational inequalities and it has been widely applied
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afterwards to sensitivity analysis and numerical methods for optimization. For more details
on these and other regularity notions and applications to variational problems one can refer
to [7, 14, 20] and the monographs [5, 8, 21, 27].

The next theorem, originally proved in [6] by an iterative process (see also [8, Theo-
rem 5.E2]), has a crucial role for establishing our main results. It generalizes the classical
fixed point theorem to a set-valued mapping setting, and states as follows.

Theorem 2.3 (contraction mapping principle for set-valued mappings). Let (X, d) be a
complete metric space, and consider a set-valued mapping Φ : X ⇒ X, a point x̄ ∈ X, and
positive scalars α and θ such that θ < 1, the set gph Φ ∩

(
Bα(x̄)× Bα(x̄)

)
is closed, and the

following conditions hold:

(i) d
(
x̄,Φ(x̄)

)
< α(1− θ);

(ii) e
(
Φ(u) ∩ Bα(x̄),Φ(v)

)
≤ θd(u, v) for all u, v ∈ Bα(x̄).

Then Φ has a fixed point in Bα(x̄); that is, there exists x ∈ Bα(x̄) such that x ∈ Φ(x).

3 Lipschitzian behavior of proximal iterates

In this main section we study the Lipschitzian behavior of proximal iterates, i.e., iterates
generated by the proximal point method (1.7). In particular, we show that for any perturba-
tion vectors y and y′ close to 0, any initial point x′0 nearby x̄, and any convergent sequence
ξ = {x1, x2, . . .} with starting point x0 close to x̄ and satisfying (1.7), one can find another
proximal point sequence ξ′ = {x′1, x′2, . . .} starting from x′0 and (linearly/superlinearly) con-
vergent to some solution to y′ ∈ T (x) which stays at a distance from ξ proportional both to
the distance between the perturbations y and y′, and between the initial points x0 and x′0.
Such results may have important implication in the analysis of the effect of various errors,
including the errors of approximations of the problem, and show, in particular, how the
initial data affect the algorithm at each step.

Define the set-valued mapping Γ : X × Y ⇒ cl∞(X) as follows

Γ : (u, y) 7→

{
ξ = {x1, x2, . . .} ∈ cl∞(X)

∣∣∣∣∣ y ∈ ⋂
n≥0

(
T (xn+1) + gn(xn+1 − xn)

)
(3.1)

with x0 = u

}
.

For a given y nearby 0 and an initial point u, the set Γ(u, y) consists of those convergent
sequences satisfying (1.7) for all n. When (x̄, 0) ∈ gphT , we denote by ξ̄ the constant
sequence with all elements equal x̄; then, directly from the definition of Γ, we have ξ̄ =
(x̄, x̄, x̄, . . .) ∈ Γ(x̄, 0).

We will use several times the following technical lemma, which is a direct consequence of
Theorem 2.3.

Lemma 3.1. Let T : X ⇒ Y be a set-valued mapping, let g : X → Y be a function with
g(0)=0, and let x̄ ∈ X be such that 0 ∈ T (x̄). Pick some positive constants a, b, c, α, and η.
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Choose some points u ∈ Bb(x̄), v ∈ Bc(x̄), y ∈ Bη(0), and consider the set-valued mapping
Φu,y : X ⇒ X defined by Φu,y(·) := T−1

(
y−g( ·−u)

)
. Assume that the next conditions hold:

(i) the above constants satisfy

κλ < 1, α + b+ c ≤ a, and η + λ(α + b+ c) ≤ a; (3.2)

(ii) the mapping T is metrically regular around (x̄, 0) with constant κ and neighborhoods
Ba(x̄) and Ba(0);

(iii) the set gphT ∩
(
Ba(x̄)× Ba(0)

)
is closed;

(iv) the function g is Lipschitz continuous with constant λ on Ba(0);

(v) there is some y′ ∈ T (v) such that

α >
κ

1− κλ
‖y − y′ − g(v − u)‖. (3.3)

Then Φu,y has a fixed point on Bα(v).

Proof. We will first prove that the set gph Φu,y ∩
(
Bα(v) × Bα(v)

)
is closed. Let (zn, wn) ∈

gph Φu,y ∩
(
Bα(v) × Bα(v)

)
be such that (zn, wn) converges to some point (z, w) ∈ X ×X.

Then
(
wn, y − g(zn − u)

)
∈ gphT . Since

‖zn − u‖ ≤ ‖zn − v‖+ ‖v − x̄‖+ ‖x̄− u‖ ≤ α + c+ b ≤ a,

using (i) and (iv), we have

‖y − g(zn − u)‖ ≤ η + λ(α + b+ c) ≤ a.

On the other hand,

‖wn − x̄‖ ≤ ‖wn − v‖+ ‖v − x̄‖ ≤ α + c ≤ a.

Therefore
(
wn, y − g(zn − u)

)
∈ gphT ∩

(
Ba(x̄) × Ba(0)), which is closed; whence

(
w, y −

g(z − u)
)
∈ gphT . This implies that (z, w) ∈ gph Φu,y ∩

(
Bα(v) × Bα(v)

)
and proves the

closedness of this set.
Now we will verify the rest of the assumptions of Theorem 2.3. Observe that ‖v − u‖ ≤

c+ b ≤ a, and thus, thanks to (i) and (iv), we obtain

‖y − g(v − u)‖ ≤ η + λ(b+ c) ≤ a.

Hence, using (ii), (iv), and (v), we get

d
(
v,Φu,y(v)

)
≤ κd

(
y − g(v − u), T (v)

)
≤ κ‖y − y′ − g(v − u)‖

< α(1− κλ).

On the other hand, for any z ∈ Bα(v), one has

‖z − x̄‖ ≤ ‖z − v‖+ ‖v − x̄‖ ≤ α + c ≤ a;
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thus, Bα(v) ⊂ Ba(x̄). For all w,w′ ∈ Bα(v), one has

‖w − u‖ ≤ ‖w − v‖+ ‖v − u‖ ≤ α + b+ c ≤ a,

and likewise, ‖w′ − u‖ ≤ a. Therefore, using again (ii) and (iv), we obtain

e
(
Φu,y(w) ∩ Bα(v),Φu,y(w

′)
)

= sup
z∈Φu,y(w)∩Bα(v)

d
(
z,Φu,y(w

′)
)

≤ sup
z∈Φu,y(w)∩Ba(x̄)

d
(
z, T−1

(
y − g(w′ − u)

))
≤ sup

z∈T−1(y−g(w−u))∩Ba(x̄)

κd
(
y − g(w′ − u), T (z)

)
≤ κ‖g(w − u)− g(w′ − u)‖ ≤ κλ‖w − w′‖.

Thus, all the conditions on Theorem 2.3 are satisfied, whence Φu,y has a fixed point on Bα(v),
as claimed.

The following result shows that under metric regularity of the mapping T around (x̄, 0),
for every pair initial point-perturbation (u, y) close to (x̄, 0) and every solution x to the equa-
tion y ∈ T (x) nearby x̄, there exists a sequence satisfying the proximal point method (1.5),
starting from x0 = u, which is linearly convergent to x. Moreover, the convergence of this
sequence is superlinear when the Lipschitz constants of the functions gn converge to 0. This
result generalizes both [1, Theorem 3.1] and [2, Theorem 3.2], and it will be utilized to prove
the main theorem.

Theorem 3.2. Consider a mapping T : X ⇒ Y and any pair (x̄, 0) ∈ gphT such that
the graph of T is locally closed around (x̄, 0). Choose a sequence of functions gn : X → Y
with gn(0) = 0 which are Lipschitz continuous in a neighborhood of 0, the same for all n,
with Lipschitz constants λn. If T is metrically regular around (x̄, 0) with constant κ and
λ > supn λn is such that 2κλ < 1, then there is a positive constant δ such that, for all
(x, y) ∈ gphT ∩

(
Bδ(x̄)×Bδ(0)

)
and all u ∈ Bδ(x̄), there exists a sequence ξ = {x1, x2, . . .} ∈

Γ(u, y) with

‖xn+1 − x‖ ≤
κλn

1− κλ
‖xn − x‖ for all n. (3.4)

Therefore, xn is linearly convergent to x, and the convergence is superlinear when λn ↓ 0.

Proof. There exists some positive constant a such that:

the set gphT ∩
(
Ba(x̄)× Ba(0)

)
is closed; (3.5)

d
(
x, T−1(y)

)
≤ κd

(
y, T (x)

)
for all (x, y) ∈ Ba(x̄)× Ba(0); (3.6)

‖gn(x)− gn(x′)‖ ≤ λn‖x− x′‖ for all x, x′ ∈ Ba(0) and n = 0, 1, 2, . . . . (3.7)

Choose a positive constant δ such that

6δ(1 + λ) ≤ a.
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Pick (x, y) ∈ gphT ∩
(
Bδ(x̄)×Bδ(0)

)
and u ∈ Bδ(x̄). By an induction process, we will build

a sequence ξ = {x1, x2, . . .} ∈ Γ(u, y) such that

‖xn+1 − x‖ ≤ αn :=
κλn

1− κλ
‖xn − x‖. (3.8)

If x = u take ξ := {x, x, . . . , x, . . .} and we are done. Otherwise define

α0 :=
κλ0

1− κλ
‖u− x‖ ≤ ‖u− x̄‖+ ‖x̄− x‖ ≤ 2δ.

By applying Lemma 3.1 to the mapping Φ0(·) := T−1
(
y − g0(· − u)

)
with (u, v, y, y′) equal

to (u, x, y, y) and (a, b, c, α, η) equal to (a, δ, δ, α0, δ), observing that u ∈ Bδ(x̄), x ∈ Bδ(x̄),
y ∈ Bδ(0), and

α0 + δ + δ ≤ 4δ ≤ a,

δ + λ0(α0 + δ + δ) ≤ δ(1 + 4λ) ≤ a,

κ

1− κλ0

‖y − y − g0(x− u)‖ < κλ0

1− κλ
‖x− u‖ = α0,

we obtain a point x1 ∈ Bα0(x) such that

y ∈ g0(x1 − u) + T (x1).

Now assume that, for some n ≥ 1, the elements in {x1, . . . , xn} have been defined as proximal
iterates satisfying (3.8). If xn = x, define xn+1 := x and we are done. Otherwise take
αn = κλn

1−κλ‖xn − x‖ and consider the mapping Φn(·) := T−1
(
y − gn(· − xn)

)
. From (3.8) we

get
‖xn − x̄‖ ≤ ‖xn − x‖+ ‖x− x̄‖ ≤ ‖u− x‖+ δ ≤ 3δ.

Again, we will apply Lemma 3.1, now to the mapping Φn, with (u, v, y, y′) equal to (xn, x, y, y)
and (a, b, c, α, η) equal to (a, 3δ, δ, αn, δ). Conditions (3.2) and (3.3) are satisfied:

αn + 3δ + δ ≤ 6δ ≤ a,

δ + λn(αn + 3δ + δ) ≤ δ(1 + 6λ) ≤ a,

κ

1− κλn
‖y − y − gn(x− xn)‖ < κλn

1− κλ
‖x− xn‖ = αn;

then the mapping Φn has a fixed point on Bαn(x), that is, there is a point xn+1 ∈ Φn(xn+1)∩
Bαn(x). Thus (3.8) holds, and this completes the inductive definition of the proximal point
sequence ξ = {x1, x2, x3, . . .}. Finally, notice that (3.8) implies the linear convergence of the
sequence xn to x (superlinear when λn ↓ 0); whence ξ ∈ Γ(u, y).

We are now ready to present our main result, which can be viewed as some sort of
Lyusternik–Graves-type theorem on the convergent sequences generated by the proximal
point algorithm.
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Theorem 3.3. Consider a mapping T : X ⇒ Y and any pair (x̄, 0) ∈ gphT such that the
graph of T is locally closed around (x̄, 0). Choose a sequence of functions gn : X → Y with
gn(0) = 0 which are Lipschitz continuous in a neighborhood of 0, the same for all n, with
Lipschitz constants λn. The following assertions hold.

(i) If T is metrically regular around (x̄, 0) with reg T (x̄, 0)·supn λn < 1/2, then the mapping
Γ in (3.1) has the Aubin property around

(
(x̄, 0), ξ̄

)
, with

l̂ipuΓ
(
(x̄, 0), ξ̄

)
≤ reg T (x̄, 0) · supn λn

1− reg T (x̄, 0) · supn λn
, (3.9)

l̂ipyΓ
(
(x̄, 0), ξ̄

)
≤

reg T (x̄, 0) ·
(

3− 4 reg T (x̄, 0) · supn λn

)
1− 2 reg T (x̄, 0) · supn λn

. (3.10)

(ii) Conversely, if Γ has the Aubin property with respect to y uniformly in u around(
(x̄, 0), ξ̄

)
, then T is metrically regular around (x̄, 0). Moreover,

reg T (x̄, 0) ≤ l̂ipyΓ
(
(x̄, 0), ξ̄

)
. (3.11)

Proof. We start with the proof of assertion (i). Let κ > reg T (x̄, 0) and λ > supn λn be such
that 2κλ < 1. Let δ > 0 be the constant from Theorem 3.2. There exists some positive
constant a such that (3.5), (3.6) and (3.7) hold. Now choose some positive constants µ and
η such that

2κη

1− 2κλ
+ 3µ ≤ δ < a/6, η + λ

(
6κη

1− 2κλ
+ 6µ

)
< a, and η ≤ δ. (3.12)

Fix x0, x
′
0 ∈ Bµ(x̄), y, y′ ∈ Bη(0) with (x0, y) 6= (x′0, y

′) and ξ = {x1, x2, . . . , xn, . . .} ∈
Γ(x0, y) ∩ Bµ(ξ̄) (if there is no such ξ, we are done). Then the sequence ξ is convergent to
some point x ∈ Bµ(x̄).

First, we will build by induction a sequence {x′1, x′2, . . . , x′k, . . .} satisfying

y′ ∈ T (x′n+1) + gn(x′n+1 − x′n), (3.13)

and such that

‖xn+1 − x′n+1‖ ≤ αn :=
κ

1− κλ
(
‖y − y′‖+ λ‖xn − x′n‖

)
(3.14)

for n = 0, 1, 2, . . .. Consider the mapping Φ0 : X ⇒ X given by Φ0(x) := T−1
(
y′−g0(x−x′0)

)
for x ∈ X. Observe that

‖x1 − x′0‖ ≤ ‖x1 − x̄‖+ ‖x̄− x′0‖ ≤ 2µ ≤ a,

and, similarly, ‖x1 − x0‖ ≤ 2µ ≤ a. We will apply Lemma 3.1 to the mapping Φ0 with
(u, v, y, y′) equal to

(
x′0, x1, y

′, y − g0(x1 − x0)
)

and (a, b, c, α, η) equal to (a, µ, µ, α0, η). As-
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sumptions (3.2) and (3.3) are satisfied:

α0 + µ+ µ ≤ 2κ

1− κλ
(η + λµ) + 2µ ≤ 2κη

1− κλ
+ 4µ ≤ a,

η + λ(α0 + µ+ µ) ≤ η + λ

(
2κη

1− κλ
+ 4µ

)
≤ a,

κ

1− κλ0

∥∥y′ − (y − g0(x1 − x0)
)
− g0(x1 − x′0)

∥∥ < α0.

Hence Lemma 3.1 gives us a point x′1 ∈ Φ0(x′1) ∩ Bα0(x1); that is, x′1 verifies both (3.13)
and (3.14).

Now assume that {x′1, . . . , x′k} is already defined for k ≥ 1 satisfying both (3.13) and (3.14).
If (xk, y) = (x′k, y

′) then x′k+1 := xk+1 trivially verifies both (3.13) and (3.14). Otherwise
consider the mapping Φk : X ⇒ X given by Φk(x) := T−1

(
y′−gk(x−x′k)

)
for x ∈ X. Notice

that

‖xk − x′k‖ ≤ αk−1 =
κ

1− κλ
‖y − y′‖+

κλ

1− κλ
‖xk−1 − x′k−1‖ ≤ · · ·

≤ κ

1− κλ
‖y − y′‖

k−1∑
j=0

(
κλ

1− κλ

)j
+

(
κλ

1− κλ

)k
‖x0 − x′0‖

≤ κ

1− 2κλ
‖y − y′‖+

(
κλ

1− κλ

)k
‖x0 − x′0‖ ≤

2κη

1− 2κλ
+ 2µ. (3.15)

We will apply Lemma 3.1 to the mapping Φk with (u, v, y, y′) equal to
(
x′k, xk+1, y

′, y −
gk(xk+1 − xk)

)
and (a, b, c, α, η) equal to

(
a, 2κη

1−2κλ
+ 3µ, µ, αk, η

)
. Observe that

‖x′k − x̄‖ ≤ ‖x′k − xk‖+ ‖xk − x̄‖ ≤
2κη

1− 2κλ
+ 3µ,

and since

αk ≤
κ

1− κλ

[
2η + λ

(
2κη

1− 2κλ
+ 2µ

)]
≤ 4κη

1− 2κλ
+ 2µ,

we also have that conditions (3.2) and (3.3) hold:

αk +
2κη

1− 2κλ
+ 3µ+ µ ≤ 6κη

1− 2κλ
+ 6µ ≤ a,

η + λ

(
αk +

2κη

1− 2κλ
+ 3µ+ µ

)
≤ η + λ

(
6κη

1− 2κλ
+ 6µ

)
≤ a,

κ

1− κλk
∥∥y′ − (y − gk(xk+1 − xk)

)
− gk(xk+1 − x′k)

∥∥ < αk,

since

‖xk+1 − x′k‖ ≤ ‖xk+1 − x̄‖+ ‖x̄− xk‖+ ‖xk − x′k‖

≤ 2κη

1− 2κλ
+ 4µ ≤ a.
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Then Lemma 3.1 gives us a point x′k+1 ∈ Φ(x′k+1)∩Bαk(xk+1); that is, (3.13) and (3.14) hold.
This completes the inductive definition of the sequence {x′1, x′2, . . . , x′n, . . .}.

Choose ε > 0 arbitrarily small such that

(κ+ ε)2η + µ ≤ δ, (3.16)

which is possible thanks to the first inequality in (3.12). The sequence ξ converges to x,
hence there is some natural number Nε such that

‖xn − x‖ ≤ ε
(
‖y − y′‖+ ‖x0 − x′0‖

)
for all n ≥ Nε, (3.17)

and verifying also (
κλ

1− κλ

)Nε
≤ ε.

From (3.6) one has
d
(
x, T−1(y′)

)
≤ κd

(
y′, T (x)

)
≤ κ‖y − y′‖,

since x ∈ Bµ(x̄) ⊂ Ba(x̄). Then, there exists x̂ε ∈ T−1(y′) such that

‖x− x̂ε‖ ≤ (κ+ ε)‖y − y′‖. (3.18)

We will use Theorem 3.2 to build another proximal point sequence ξ′′ starting on x′Nε and
convergent to x̂ε ∈ T−1(y′). The required assumptions hold:

‖x̂ε − x̄‖ ≤ ‖x̂ε − x‖+ ‖x− x̄‖ ≤ (κ+ ε)2η + µ ≤ δ,

and also

‖x′Nε − x̄‖ ≤ ‖x
′
Nε − xNε‖+ ‖xNε − x̄‖ ≤

2κη

1− 2κλ
+ 3µ ≤ δ;

thus there exists ξ′′ = {x′′1, x′′2, . . .} ∈ Γ(x′Nε , y
′) with

‖x′′n+1 − x̂ε‖ ≤
κλn

1− κλ
‖x′′n − x̂ε‖ for all n = 1, 2, . . . .

Therefore, x′′n converges to x̂ε. Furthermore, for all n = 1, 2, . . ., one has

‖x′′n − xNε+n‖ ≤ ‖x′′n − x̂ε‖+ ‖x̂ε − x‖+ ‖x− xNε+n‖
≤ ‖x′Nε − x̂ε‖+ (κ+ ε)‖y − y′‖+ ε

(
‖y − y′‖+ ‖x0 − x′0‖

)
,

because of (3.17) and (3.18). Using also (3.15), one gets

‖x′Nε − x̂ε‖ ≤ ‖x
′
Nε − xNε‖+ ‖xNε − x‖+ ‖x− x̂ε‖

≤
(
κ+ 2ε+

κ

1− 2κλ

)
‖y − y′‖+

[
ε+

(
κλ

1− κλ

)Nε]
‖x0 − x′0‖

≤
(

2ε+
2κ(1− κλ)

1− 2κλ

)
‖y − y′‖+ 2ε‖x0 − x′0‖,
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and hence

‖x′′n − xNε+n‖ ≤
(

4ε+
κ(3− 4κλ)

1− 2κλ

)
‖y − y′‖+ 3ε‖x0 − x′0‖,

for all n = 1, 2, . . .. Finally, we define a sequence ξ′ε := {x′1, x′2, . . . , x′Nε , x
′′
1, x

′′
2, x

′′
3, . . .} ∈

Γ(x′0, y
′). Moreover,

d
(
ξ,Γ(x′0, y

′)
)
≤ ‖ξ − ξ′ε‖∞ = max

{
max

1≤k≤Nε
‖xk − x′k‖, sup

n≥1
‖xNε+n − x′′n‖

}
≤
(

4ε+
κ(3− 4κλ)

1− 2κλ

)
‖y − y′‖+

(
3ε+

κλ

1− κλ

)
‖x0 − x′0‖.

Making ε ↓ 0, and remembering that ξ was arbitrarily chosen in Γ(x0, y)∩Bµ(ξ̄), this yields

e
(
Γ(x0, y) ∩ Bµ(ξ̄),Γ(x′0, y

′)
)
≤ κ(3− 4κλ)

1− 2κλ
‖y − y′‖+

κλ

1− κλ
‖x0 − x′0‖.

This implies the Aubin property of Γ around
(
(x̄, 0), ξ̄

)
with the bounds (3.9) and (3.10) for

the partial moduli, and concludes the first part of the proof.
Conversely, in order to prove assertion (ii), suppose that Γ has the Aubin property with

respect to y uniformly in u around
(
(x̄, 0), ξ̄

)
with constant κ. Then, there is some positive

constant a such that

e
(
Γ(u, y) ∩ Ba(ξ̄),Γ(u, y′)

)
≤ κ‖y − y′‖ whenever y, y′ ∈ Ba(0) and u ∈ Ba(x̄).

We will show that T−1 has the Aubin property around (0, x̄). Pick y, y′ ∈ Ba(0) and x ∈
T−1(y) ∩ Ba(x̄). Consider ξ := {x, x, . . .}, then clearly ξ ∈ Γ(x, y) ∩ Ba(ξ̄); whence

d
(
ξ,Γ(x, y′)

)
≤ κ‖y − y′‖.

For every ε > 0 there exists ξε ∈ Γ(x, y′) such that ‖ξ − ξε‖∞ ≤ (κ + ε)‖y − y′‖, with
ξε = {xε1, xε2, . . .} and xε := limn→∞ x

ε
n. Keeping in mind the local closedness of gphT

around (x̄, 0) and the Lipschitz continuity of gn around 0, we have y′ ∈ T (xε). Finally,
observe that, for any n, one has

d
(
x, T−1(y′)

)
≤ ‖x− xε‖ ≤ ‖x− xεn‖+ ‖xεn − xε‖
≤ ‖ξ − ξε‖∞ + ‖xεn − xε‖
≤ (κ+ ε)‖y − y′‖+ ‖xεn − xε‖.

Passing to the limit as n→∞ in the previous chain of inequalities we obtain

d
(
x, T−1(y′)

)
≤ (κ+ ε)‖y − y′‖.

This proves the Aubin property of T−1 with constant κ + ε around (0, x̄), since x was
arbitrarily chosen in T−1(y) ∩ Ba(x̄); thus, T is metrically regular around (x̄, 0) with this
same constant. Taking the limit as ε goes to 0, and having in mind that κ can be chosen
arbitrarily close to l̂ipyΓ

(
(x̄, 0), ξ̄

)
, we get (3.11).
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Next we will prove that under strong regularity of T , the proximal point iteration is
uniquely defined within a neighborhood of x̄ for all pair initial point-parameter nearby (x̄, 0);
and not only this, as in [2, Theorem 3.3], but also that this single-valued graphical localization
of the mapping Γ is Lipschitzian. Thus, in this case, it is no longer essential to restrict the
mapping Γ to sequences which are convergent, since locally, there exists only one proximal
sequence which will be convergent to the locally unique solution to (1.6). Furthermore,
thanks to the local uniqueness of the sequence, the bound (3.10) can be improved.

Theorem 3.4. Under the same assumptions of Theorem 3.3 one has:

(i) If the mapping T is strongly regular around (x̄, 0) with reg T (x̄, 0) · supn λn < 1/2, then
the mapping Γ in (3.1) has a Lipschitz single-valued localization γ around

(
(x̄, 0), ξ̄

)
whose partial Lipschitz moduli are bounded by

l̂ipuγ(x̄, 0) ≤ reg T (x̄, 0) · supn λn
1− reg T (x̄, 0) · supn λn

, (3.19)

l̂ipyγ(x̄, 0) ≤ reg T (x̄, 0)

1− reg T (x̄, 0) · supn λn
. (3.20)

Moreover, for every (u, y) close to (x̄, 0), γ(u, y) is a linearly convergent sequence to a
locally unique solution to (1.6), and furthermore, the convergence is superlinear when
λn ↓ 0.

(ii) Conversely, if the mapping Γ has a Lipschitz single-valued localization around
(
(x̄, 0), ξ̄

)
satisfying

l̂ipuΓ
(
(x̄, 0), ξ̄

)
< 1, (3.21)

then T is strongly regular around (x̄, 0) with regularity modulus bounded by (3.11).

Proof. In order to prove assertion (i), assume that T is strongly regular around (x̄, 0) with
constant κ such that κ · supn λn < 1/2. Then there are positive constants α and β such that
the mapping

Bβ(0) 3 y 7→ T−1(y) ∩ Bα(x̄)

is a Lipschitz continuous function with constant κ. Further, let µ be a positive constant such
that gn is Lipschitz continuous with constant λn on Bµ(0) for all n. Next take some positive
constants a and b such that

a ≤ min{α, µ/2} and b+ 2a sup
n
λn ≤ β.

From Theorem 3.3(i), Γ has the Aubin property around
(
(x̄, 0), ξ̄

)
; hence, we need to show

that Γ has a graphical localization around
(
(x̄, 0), ξ̄

)
which is not multivalued. Pick (u, y) ∈

Ba(x̄) × Bb(0), and suppose there exist two different sequences ξ = {x1, x2, . . . , xn, . . .} and
ξ′ = {x′1, x′2, . . . , x′n, . . .}, both of them in Γ(u, y) ∩ Ba(ξ̄). Denote by N the first index such
that xN 6= x′N . Observe that

‖y − gN(xN+1 − xN)‖ ≤ ‖y‖+ λN‖xN+1 − xN‖ ≤ b+ 2aλN ≤ β;
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thus, T−1
(
y−gN−1(xN−xN−1)

)
∩Bα(x̄) = {xN}, and similarly, T−1

(
y−gN−1(x′N−x′N−1)

)
∩

Bα(x̄) = {x′N}. Then

‖xN − x′N‖ ≤ κ
∥∥y − gN−1(xN − xN−1)−

(
y − gN−1(x′N − x′N−1)

)∥∥
≤ κλN−1

(
‖xN − x′N‖+ ‖xN−1 − x′N−1‖

)
< ‖xN − x′N‖,

since κλN−1 < 1, xN−1 = x′N−1, and xN 6= x′N ; that is, we obtain a contradiction. The
bound (3.19) directly follows from (3.9). To prove (3.20) we just need to observe that both
sequences {x′1, x′2, . . . , x′k, . . .} and {x′′1, x′′2, . . . , x′′k, . . .} in the proof of Theorem 3.3(i) can be
made arbitrarily close to x̄, and hence one must have

{x′′1, x′′2, . . . , x′′k, . . .} = {x′Nε+1, x
′
Nε+2, . . . , x

′
Nε+k, . . .};

otherwise we would obtain a contradiction, as shown above. Thus, the bound (3.20) comes
from (3.14). The last assertion follows from Theorem 3.2.

Conversely, to prove (ii), suppose that Γ has a Lipschitz single-valued localization γ
around

(
(x̄, 0), ξ̄

)
. Then, there exist some positive constants a and b such that (u, y) 7→

γ(u, y) := Γ(u, y) ∩ Bb(ξ̄) is a function defined on Ba(x̄) × Ba(0). From Theorem 3.3(ii)
we know that T is metrically regular around (x̄, 0); thus, it remains to show that T−1 is
locally nowhere multivalued. Because of (3.21), we can choose some positive constants c and
` < 1 such that γ is Lipschitz continuous with respect to u uniformly in y on Bc(x̄)× Bc(0)
with Lipschitz constant `. Let α := min{a, b, c} and β := min{a, c}, and pick some points
y ∈ Bβ(0) and x, x′ ∈ T−1(y)∩Bα(x̄). Define two sequences ξ := {x, x . . . , x, . . .} ∈ Γ(x, y)∩
Bb(ξ̄) = γ(x, y) and ξ′ := {x′, x′ . . . , x′, . . .} ∈ Γ(x′, y) ∩ Bb(ξ̄) = γ(x′, y). Then, one has

‖x− x′‖ = ‖ξ − ξ′‖∞ = ‖γ(x, y)− γ(x′, y)‖∞ ≤ `‖x− x′‖,

which implies x = x′, since ` < 1, and we are done.

Remark 3.5. It is interesting to notice that the following condition

l̂ipyΓ
(
(x̄, 0), ξ̄

)
· sup

n
λn < 1/2,

implies in fact (3.21). Indeed, the assumptions on Theorem 3.3(ii) are satisfied; thus,

reg T (x̄, 0) · sup
n
λn ≤ l̂ipyΓ

(
(x̄, 0), ξ̄

)
· sup

n
λn < 1/2.

Hence, Theorem 3.3(i) can be applied, and from (3.9) one gets

l̂ipuΓ
(
(x̄, 0), ξ̄

)
≤ reg T (x̄, 0) · supn λn

1− reg T (x̄, 0) · supn λn
≤

l̂ipyΓ
(
(x̄, 0), ξ̄

)
· supn λn

1− l̂ipyΓ
(
(x̄, 0), ξ̄

)
· supn λn

< 1.
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