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Abstract The present paper describes an optimized C++ library for the study of Elec-
tromagnetics. The implementation is based on the Finite-Difference Time-Domain
method for transient analysis, and the Finite Element Method for electrostatics. Both
methods share the same core and are optimized for CPU and GPU computing. To il-
lustrate its running, FEM method is applied for solving Laplace’s equation analyzing
the relation between surface curvature and electrostatic potential of a long cylindri-
cal conductor, whereas FDTD is applied for analyzing Thin Film Filters at optical
wavelengths. Furthermore, a comparison of the performance of both CPU and GPU
versions is analyzed as a function of the grid size simulation. This approach allows
the study of a wide range of electromagnetic problems taking advantage of the be-
nefits of each numerical method and the computing power of the modern CPUs and
GPUs.
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1 Introduction

The increasing processing power of the modern CPUs has allowed to deal with inac-
cessible problems from different areas such as Electromagnetics, Optics and Acous-
tics. More recently, Graphics Processing Units (GPUs) have become an appealing
alternative since they provide even more processing power than CPUs. Thus, the
manufacturers of GPUs have redesigned them thinking also in numerical computing,
like NVidia has done with the new Fermi family [1]. Unfortunately, many numerical
methods are not suitable to be directly implemented in a GPU and their adaptation is
still in progress.

For the present paper we have implemented two different numerical methods for
Electromagnetics: Finite Element Method (FEM) and the Finite-Difference Time-
Domain (FDTD) method. For each method we have developed two different versions,
one for the CPU and another for the GPU. Each version required a thorough analysis
of the algorithm operations, a rearrangement of the instructions and a correct memory
alignment of the data structures.

The CPU versions have been designed taking into account the programming skills
of the average scientific programmer, using all the automatic optimization facilities
provided by modern compilers, which are mainly focused on parallelize the main
loops of the algorithms [2]. Then, the GPU improvement is computed comparing with
the sequential implementation. This analysis can be interesting to those researchers
that work with these or similar numerical methods and are considering GPU com-
puting instead of learning optimization techniques based on low level programming
such as SSE with parallel schemes (OpenMP or MPI).

Since CPU and GPU programming are quite different, it is not always trivial to
port a numerical method to the GPU and it will be useful to determine if it worths
the effort. Thus, we have focused our study on analyzing the performance achieved
as a function of the simulation size between the CPU and GPU approaches. The li-
brary allows to use both FEM and FDTD for solving a wide range of electromagnetic
problems. Specifically, to check it, we have chosen two different experiences, one
suitable for each numerical method since FEM is used for static problems and FDTD
for transient analysis [3,4].

2 Theory

This section gives a brief summary of the two experiments used to check the im-
plementation of both numerical methods. In the first place, FEM is used for solving
the Laplace’s equation in Electrostatics, comparing the analytical expressions devel-
oped in [5] for analyzing the relation between the surface curvature of an isolated
charged conductor with uniform cross section and the resultant electrostatic poten-
tial (see Fig. 1a). In the second place, FDTD is used for analyzing optical diffractive
elements such as Thin Film Filters (TFF). Specifically, it is applied for analyzing
the reflectance of High-Reflecting Coatings (HRCs’) [6] at optical wavelengths (see
Fig. 1b). HRC’s have many applications such as photovoltaic cells and Micro-Electro-
Mechanical Systems (MEMS) [7].
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Fig. 1 (a) Long conductor with uniform cross section. (b) Scheme of a high-reflectance coating.

2.1 FEM analysis of Laplace’s equation

An infinite cylinder perturbed by a small cosine function can be described as

r(θ) = a(1+β cos(qθ)) , (1)

where a is the radius of the cylinder, q is an integer parameter and β is a small number.
The analytical expression that relates the curvature of an infinite conductor and the
electrostatic potential is

φ(r,θ) = φ0 +b0 ln
r
a
−βb0

(a
r

)q
cos(qθ), (2)

where r and θ are the cylindrical coordinates, φ0 is the potential at the surface of the
conductor and b0 is a constant coefficient defined in [5]. Considering the Laplace’s
equation ∇2φ = 0, the region in which the potential distribution φ(x,y) is defined,
must be divided into a number of finite elements. Specifically, in this work, the so-
lution region is subdivided into triangles (quadrilateral elements divided across the
shorter diagonal) [8,9]. With this grid, the approximate solution can be computed as
a combination of each mesh element solution. After some mathematical manipula-
tion [10,11], the solution can be represented as a sparse system of equations, solved
using the Biconjugate Gradient Method (BGM) [12,13]. This algorithm is an iterative
approach that mainly uses matrix-vector multiplications and inner products. These
operators are critical and, therefore, the objective of our optimization.

2.2 FDTD analysis at optical wavelengths

Light propagation is described by means of Maxwell’s time-dependent curl equa-
tions [14]. To solve these equations, the FDTD algorithm uses the Yee lattice [15].
The electrical field components E and the magnetic field component H are defined in
a bidimensional cell [3,4,15]. As a result, the Maxwell’s curl equations can be dis-
cretized and solved using the central-difference expressions, for both time and space
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derivatives. So, considering T E polarization and a 2D analysis, the flux density en z
direction can be expressed as follows:

D̃z|n+1/2
i, j = D̃z|n−1/2

i, j +
∆ t√ε0µ0

[
Hy|ni+1/2, j−Hy|ni−1/2, j

∆x
−

Hx|ni, j+1/2−Hx|ni, j−1/2

∆y

]

(3)
where ∆x, ∆y and ∆ t are the spatial resolution in x and y directions and the time re-
solution respectively. Regarding the add-ons needed, a simplified version of the Per-
fectly Matched Layers (PML) developed by Berenger [16–18] has been implemented
to simulate unbounded free space. Moreover, related with the illumination method,
the incidence is assumed to be from air to medium. In connection with the propa-
gation in the FDTD region, the source is introduced along the connecting boundary
by using a Total Field/Scattered Field (TF/SF) technique [3], where the linearity of
Maxwells’s equations and their decomposition on incident and scattered fields are
assumed. This method avoids the computation of the incident wave in the whole bidi-
mensional grid and only two one-dimensional arrays are needed.

3 Computational optimization

In this section the approach followed to implement both numerical methods as a
unified C++ library is shown. The implementation and the application for GPU com-
puting is also detailed. The library is implemented in C++, from which only classes
and overloading were considered, since advanced inheritance directives are not al-
ready allowed in CUDA [19,20] and in some cases can reduce the performance. The
library contains an Array class that is common to both methods. This class imple-
ments a one-dimensional array that can store a matrix of size n×m× p in column
major order with the advisable padding, providing an easier physical memory align-
ment. This class also implements several arithmetic operations such as matrix vector
product, inner product, dot product, etc. These operations are implemented taking
into account the spatial proximity of the data in order to avoid cache misses and im-
prove both, sequential and parallel versions. Therefore, all these methods can be used
in both FEM and FDTD. However, a Sparse Array class is used in FEM in order to
store efficiently the sparse matrices obtained in this method. The structure for storing
sparse matrices is detailed in Section 3.1. Taking into account that the way of stor-
ing a matrix for FEM is quite different than for FDTD, it is necessary a new class
which is focused on solving the system of equations. This class is known as Sparse
Solver and implements the sequential and CUDA versions of the BGM algorithm.

Regarding FDTD, the FDTD TE class is in charge of updating the field compo-
nents. These operations are conditioned by the add-ons included in the current imple-
mentation (PML and TF/SF formulations). The computation in parallel architectures
instead of CPU is chosen by the user in class invocation by means of the constructor
of both classes: SIM FEM Poisson 2d and FDTD TE.

All the results presented here use single precision data, more than enough accu-
racy for the proposed problems. However, the library use templates allowing double
precision if needed. The GPU architecture under study is the NVidia Fermi, it is used
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with single precision only but it allows double precision also. Specifically, the GPU
is a GTX-470 GPU with a theoretical upper limit of 1088.64 GFLOPS. All the test
are done under a Unix based platform with an Intel i7-950 Processor with 8MB of
cache, a clock speed of 3.06 GHz and 6 GB of global DDRAM3.

3.1 Instruction rearrangement for auto-vectorization in CPU

The auto-vectorization provided by modern compilers (flag -O3 in gcc) is based on
predicting which loops can be automatically vectorized, or converted into SSE in-
structions [2]. Although a theoretical 4x performance gain is expected (single preci-
sion), usually only 2x is achieved due to I/O latency and other issues [21].

The auto-vectorization is sensitive to the layout of the loop, the data structures
in use, and the dependencies among the data accesses in each iteration and across
iterations. Once the compiler has made such a determination, it can generate vector-
ized code for the loop. Therefore, the following strategies have been used in order
to take advantage of this capability: memory alignment, use of arrays to make data
contiguous and padding for avoiding misalignment.

One of the most common operators in FEM is the matrix vector multiplication
A · b = c, so it must be optimized to improve the performance. For that purpose
the matrix A can be redefined as A =

[
a1 . . .an

]
, where ai is the i-th column of the

matrix A. Therefore, the matrix vector multiplication can be rearranged as c = b1a1 +
· · ·+ bnan. This rearrangement improves the access to contiguous data, reducing the
cache misses. The nonzero values of A are accessed sequentially in column order and
multiplied by a single value of b indexed by the column of A. With this configuration,
the values of both A and b are accessed sequentially and only once in each iteration
of the BGM, instead of the classical way of performing the operation of A ·b.

Due to the mesh used in the discretization, the maximum number of nonzero
elements per rows is 7, so the global coefficient matrix is sparse (usually more than
95% sparse). Therefore, the Compressed Sparse Column (CSC) format was used for
storing the values of the nonzero matrix by columns [13]. This scheme stores all
nonzero values in a single column vector and uses a couple of pointers for indexing
the values. The number of nonzero elements per column is padded to a multiple of 4,
reducing the misalignment in memory accesses.

The same optimization techniques used for FEM can also be used for FDTD.
Although, in this case to solve the FDTD equations the leapfrog algorithm is used [4].
To minimize cache misses Eq. (3) must be evaluated by columns, assuring the spatial
proximity of the data. Also, the width of the simulation must be a multiple of four,
since we are using single precision data. This can be accomplished by padding in the
matrix or by making the PML boundaries wider. The same procedure must be done
with the rest of field updates.

Fig. 2 shows the two main loops used by FEM and FDTD that allow the auto-
vectorization provided by the compiler. Fig. 2a implements the inner product needed
in FEM whereas Fig. 2b shows the implementation of Eq. (3)1. To force the GCC

1 Note that the expressions here detailed do not consider the PML and the TF/SF formulations in order
to simplify the notation. The specific equations related with this add-ons are detailed in [22]
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Fig. 2 (a) Sequential code for the inner product method used in FEM. (b) Sequential code for the Dz
update in FDTD.

compiler to optimize the code, the flags -O3 -ffast-math must be used, this way
the compiler replaces automatically scalar operations by SSE instructions whenever
possible [23]. Using the flag -ftree-vectorizer-verbose = 2, the compiler will
show information about which loops are being vectorized, in our case both loops.

3.2 GPU implementation

The computation in a GPU is based on the division of the task in a myriad of small
computations which ideally are all performed at the same time, each one on its own
thread. The basic computing unit (a warp) consists of 32 threads, and the GPU has
the advantage of swap warps into and out of context without any performance over-
head. To achieve a good performance, it is mandatory to hide the high latency of the
memory ensuring coalesced accesses.

The knowledge of the GPU architecture is mandatory to be successful in GPU
computing. In our case, for FEM the instruction rearrangement already mentioned
in Section 3.1 is used, and the operator matrix vector multiplication has been imple-
mented by means the CUSPARSE Library [24]. The inner product needed for the
product of two vectors is completed by means of the reduction technique developed
in [19]. The general idea is that each thread will add two of the values obtained from
the dot-multiplication of two vectors. Since each thread combines two entries into
one, this step is completed with half of the entries. In the next step, the same pro-
cess is repeated on the remaining half. Regarding the FDTD implementation in the

Fig. 3 Cuda Kernel implementation for updating the Ez field component.

GPU it must be said that, electromagnetic field update is performed by several ker-
nels focused on solving one field component at a time. An example of the instructions
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performed by the kernel in charge of updating the electric flux density in z direction
is shown in Fig. 3. These instructions are directly related with Eq. (3), where Ga is
a matrix related with the physical properties of the media as a function of the space.
A number of blocks related with the number of columns is invoked by means of the
kernel functions and an array of 256×2 threads are launched per block. Each column
of threads works along one column of the simulation grid as many times as necessary
to update the electromagnetic field. This scheme is known as the optimization tilling
technique detailed in [19].

Besides the potential of the CUDA kernel, it is necessary to divide the whole
computation process in several kernels focused on compute each component of the
electromagnetic field. This segmentation improves the efficient use of the shared me-
mory in the device and also the correct usage of the cache. Due to the nature of the
task, the coalesced accesses are assured and, moreover, there is no need to explicitly
use shared memory since the GPU is able to use it automatically as a cache. We tried
a shared memory scheme avoiding the auto-caching but the throughput achieved was
almost identical.

4 Results

Our first group of results shown in Fig. 4a are the comparison of the electrostatic
potential φ obtained by Eq. (2) and FEM. In Fig. 4b the charge density σ is shown
and it has been obtained taking into account that σ ≈ |∇φ |. As can be seen a good
agreement between numerical an theoretical values is achieved in both cases, thus
validating our approach. It must be said that, the discretization of the problem, i.e.
the mesh used, is not uniform, the area of the elements in the neighborhood of the
conductor surface is reduced ensuring an accurate approach of the shape as well as a
high precision in the region of interest. Regarding FDTD, the results of the analysis

(b)

Fig. 4 (a) Analytical and numerical charge density for β = 0.02 and q = 2. (b) Analytical and numerical
potential for β = 0.02 and q = 4.

of the reflectance (∝ |E|2) for normal incidence of a set of low-pass stacks of thin
film layers are given. Fig. 5 shows the results for two low-pass stacks defined by four
repetitions of a fundamental period consisting of three layers: Air[0.5HL0.5L]4Ga. L
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Fig. 5 Comparison between analytical and numerical values obtained by means of the CMM and FDTD
respectively. Reflectances of two low-pass stacks Air[0.5HL0.5H]4Ga with L and H being thin films of
stibnite and chiolite one quarter-wave thick at reference wavelength λ0 = 4µm or λ0 = 6.59µm. FDTD
parameters: λmin = 2µm, ∆ = 0.02µm, ∆ t = 33.3 ·10−9 ns.

and H are thin films of stibnite (nH = 2.7) and chiolite (nL = 1.35) one quarter-wave
optical thick at reference wavelength λ0 = 4.36µm or λ0 = 6.66µm [6,25]. The sub-
strate composed of Germanium has a refractive index of ns = 1.52. The numerical
reflectance obtained by means of FDTD is compared with the analytical reflectance
defined by the Characteristic Matrix Method [6] that has been implemented in double
precision. As can be seen in Fig. 5 the numerical values are close to the theoretical
values given by the CMM and similar to those given in [6] and [25]. There are slight
differences between numerical and analytical values produced by the spatial finite
resolution of the FDTD method. Due to the fact that FDTD requires an spatial dis-
cretization of the media, the thickness of each stack is truncated as a function of the
spatial resolution given by the method. Regarding the computational efficiency, sev-
eral analysis are summarized in Fig. 6. In the case of GPU computing, the time needed
to communicate host and GPU are included in the graphs. The relative speed up
shown is defined as the ratio between the simulation times of the sequential (without
auto-vectorization) and parallel versions (sequential version with auto-vectorization
-O3 and the GPU parallel version) and gives an idea of how faster is a parallel version
compared with the sequential program in terms of time simulation.

Fig. 6a shows the computational performance of FEM by means of the relative
speed up and the FLOPS as a function of the number of mesh elements. As can be
seen, there is a region in which a single CPU with an auto-vectorized code is a better
option. Nevertheless, the time reductions achieved with the GPU version are quite
impressive and the trend of the relative speed up allows to affirm that GPU comput-
ing is mandatory for massive computations in FEM. Fig. 6b shows similar results
regarding FDTD. In this case, the benefits obtained with GPU computing are greater
and also more homogeneous as a function of the grid size. This is because FDTD
is more suitable to be implemented in parallel architectures. FEM implies the use of
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Fig. 6 Relative SpeedUp (thin lines) and GFLOPS (thick lines) as a function of the number of cells. (a)
FEM: Sequential vs CPU auto-vectorized and GPU codes. Relative SpeedUp and GFLOPS as a function
of the number of mesh elements. (b) FDTD: Sequential vs CPU auto-vectorized and GPU codes (square
grids).

sparse matrices which inner structure depends on the problem. This aspect in some
cases makes difficult to translate this process to highly parallel architectures [26,27].
Whereas, in FDTD the update of the electromagnetic field mainly depends on the pre-
vious values and not in the geometry of the problem, thus making the implementation
of each CUDA kernel easier. However, in FDTD the upper limit in terms of FLOPS
is not achieved since it requires a high rate transfer between global memory and GPU
processor. For example, to update Dz in Eq. (3) five memory accesses are needed.
In this situation the performance is limited by the memory bandwidth instead of the
computing power of the GPU. In [28] a deeper analysis of the operational intensity
of FDTD is provided. However, the bandwidth achieved in the implementation was
near the 90% of the maximum provided by the manufacturer.

5 Conclusions

We have implemented an unified library for electromagnetic analysis based on FEM
and FDTD. FEM was used for comparing the analytical expressions obtained for
the analysis of the surface curvature of an infinite cylinder in Electrostatics, whereas
FDTD has been applied at optical wavelengths for analyzing the reflectance of high-
reflecting coatings. In both cases, the analytical and numerical results are quite simi-
lar, thus validating our implementation.

For each numerical method we have implemented two different versions, one for
the CPU and one for the GPU. The CPU versions have been designed to exploit all
the automatic optimization facilities provided by modern compilers. This way, the
optimized version achieves a speedup of near four in both FEM and FDTD cases.
The GPU versions achieved quite different results depending on the method imple-
mented. For FEM, the speed up increases with the number of elements, while for
FDTD, the speed up remains more constant and in all cases is higher than the CPU
auto-vectorized version. The authors are currently working on using implicit com-
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piler intrinsics on the code for directly controlling the vectorization process in both
FEM and FDTD. Moreover, shared memory schemes are being considered in order to
achieve the best performance of multi-cores available in modern CPU. For FEM, the
next step is to try alternative sparse matrix storage strategies, like the ones proposed
in [26,27].
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