
Accepted Manuscript

Title: Copper nanoparticles supported on silica coated
maghemite as versatile, magnetically recoverable and reusable
catalyst for alkyne coupling and cycloadditon reactions

Authors: F. Nador, M.A. Volpe, F. Alonso, A. Feldhoff, A.
Kirschning, G. Radivoy

PII: S0926-860X(13)00050-1
DOI: doi:10.1016/j.apcata.2013.01.023
Reference: APCATA 14073

To appear in: Applied Catalysis A: General

Received date: 29-9-2012
Revised date: 8-1-2013
Accepted date: 19-1-2013

Please cite this article as: F. Nador, M.A. Volpe, F. Alonso, A. Feldhoff, A. Kirschning,
G. Radivoy, Copper nanoparticles supported on silica coated maghemite as versatile,
magnetically recoverable and reusable catalyst for alkyne coupling and cycloadditon
reactions, Applied Catalysis A, General (2010), doi:10.1016/j.apcata.2013.01.023

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16376615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/doi:10.1016/j.apcata.2013.01.023
dx.doi.org/10.1016/j.apcata.2013.01.023


Page 2 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

2

Highlights

Copper nanoparticles supported on silica coated maghemite as versatile, 
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 Copper nanoparticles on nanosized magnetic support as catalyst for alkyne synthetic 
transformations

 Comercially available silica coated maghemite (MagSilica) is used as magnetic support

 The nanocatalyst is easily recovered and reused by means of an external magnet

 High versatility of the catalyst for high atom economy alkyne coupling and 
cycloaddition reactions
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Abstract

A versatile and magnetically recoverable catalyst consisting of copper nanoparticles on silica coated maghemite 

nanoparticles (MagSilica®) is presented. The catalyst has been prepared under mild conditions by fast reduction of 

anhydrous CuCl2 with lithium sand and a catalytic amount of DTBB (4,4'-di-tert-butylbiphenyl) as electron carrier, in the 

presence of the magnetic support. The catalyst has been fully characterized and its performance in different coupling and 

cycloaddition reactions of terminal alkynes has been studied. This new copper-based catalyst has shown to be very 

efficient and easily reusable in the Glaser alkyne dimerization reaction in THF, the multicomponent Huisgen 1,3-dipolar 

cycloaddition reaction in water and the three-component synthesis of propargylamines under solvent free conditions.

Keywords: Copper nanoparticles; Magnetic support; Alkyne; Coupling; Cycloaddition

1.  Introduction

Alkynes are core building blocks for the construction of highly functionalized organic substructures, which 

are essential in the synthesis of many industrial products, molecular materials and bioactive compounds. In 

particular, metal-catalyzed coupling and cycloaddition reactions of terminal alkynes provide a key tool for 

accessing to complex organic structures from simple and readily available starting materials [1]. Prominent 

examples in this regard are the coupling of terminal alkynes for the synthesis of 1,3-diynes (Glaser 
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dimerization) [2], multicomponent reactions (MCR) involving aldehydes, amines and terminal alkynes [3] for 

the synthesis of propargylamines, and the 1,3-dipolar cycloaddition of azides and terminal alkynes to yield

1,2,3-triazoles (Huisgen reaction) [4] which is the paradigm of a click reaction. In all the above mentioned 

transformations, copper catalysts have been by far the most studied ones, however, most of the catalytic 

systems are homogeneous, hampering the recovery and recycling of the catalyst. Regardless of the chemical 

transformation considered, it is broadly accepted that homogeneous catalysts are intrinsically more active and 

selective than heterogeneous ones, while these latter allow an easier and more economical separation and 

reuse of the catalyst. In any case, the use of highly efficient, economic and recoverable catalysts, with low or 

null toxicity is essential from the green chemistry perspective. In this context, the synthesis of transition metal 

nanoparticles and their application in catalysis have received considerable attention in recent years [5]. Due to 

their high surface area, these nanosized metal particles often show a remarkable catalytic performance, and 

are considered to be on the frontier between the homogeneous and heterogeneous catalysis, preserving the 

main advantages of both methodologies. However, in practice, the separation and recovery of these 

nanocatalysts from the reaction medium by using standard techniques (filtration, centrifugation) is not always 

easy due to the nanometric size of the particles. To overcome this drawback, metal nanoparticles are

supported over a variety of organic and inorganic supports. Among them, magnetic nanomaterials have 

emerged lately as a very attractive alternative since their high surface area allows higher catalyst loading than 

many conventional supports, and their magnetic properties enables the simple and efficient recovery of the 

catalyst by means of an external magnet [6]. The magnetic nanoparticles utilized as supports usually consist 

of core-shell structures, being iron oxides (FexOy) the most commonly used ones. The coating of these 

magnetic nanomaterials prevents aggregation/oxidation and serves as platform for the catalyst. For this 

purpose, silica has been widely used because of its stability under different reaction conditions and due to the 

fact that it can be easily functionalized for diverse applications [7].

On the other hand, besides recovery and reuse, the simplicity in catalyst preparation is a very important 

issue from the practical and utility point of view. Examples of heterogeneous copper-catalysts that are easy to 

prepare, versatile and reusable in the three above mentioned alkyne transformations, are scant. The 

heterogeneous copper-catalyzed homocoupling of terminal alkynes has been a subject of recent interest but 

have rarely been studied. For instance, a CuAl hydrotalcite exhibited excellent recyclability at room 
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temperature in acetonitrile, although stoichiometric amounts of N,N,N,N-tetramethylethylenediamine 

(TMEDA) and catalyst (110 mol%) were required [8]. Copper(I) zeolites were tested for the title reaction in 

N,N-dimethylformamide (DMF) at 110 °C and 30 mol% copper loading, with no apparent possibility of 

catalyst recycling [9]. Mizuno and co-workers reported a catalyst consisting of Cu(OH)x/TiO2 (5 mol% Cu) 

that did not require the presence of a base and showed high catalytic activity in toluene at 100 °C under 1 atm 

O2 [10]. Only one recycling experiment was described in this article, which showed a slight decrease in yield 

(from 90 to 82%). A very similar scenario can be found in the literature with regard to the A3 coupling 

reaction for the synthesis of propargylamines. The catalytic activation of the C–H bond of terminal alkynes 

has been achieved with complexes or salts of the late transition metals (e.g., Ir, Zn, Fe, Co, Ni, Ag, Au, Ir, Ru, 

but also In), but copper has been by far the most studied metal [11]. However, most of the catalytic systems 

reported are homogeneous in nature, making the recovery and recycling of the catalyst troublesome. 

Impregnated copper on magnetite has been reported to be a heterogeneous and reusable copper-based catalyst 

for the A3 coupling [12], but some copper and iron leaching has been observed, and the preparation of the 

catalyst requires 24 hours of stirring and several days of drying before its use. With regard to the three-

component 1,3-dipolar cycloaddition reaction, examples about the use of heterogeneous catalysts that can be 

recovery and reuse for this important transformation are also scarce. In this sense, some reports on the copper-

catalyzed multi-component synthesis of triazoles in water, using heterogeneous catalysts, have appeared in the 

literature [13]. For example, copper nanoparticles on alumina catalyzed the multicomponent synthesis of 

1,2,3-triazoles, in modest to good yields, however, only activated organic halides were reported and the 

preparation of the catalyst seems rather tedious, through an aerogel method under supercritical conditions

[13a]. Porphyrinatocopper nanoparticles onto activated multi-walled carbon nanotubes has been also used as 

heterogeneous catalyst in the three-component 1,3-dipolar cycloaddition reaction with epoxides (not with the 

more abundant organic halides) [13b]. Reactions proceed at room temperature although the catalyst 

preparation is rather laborious and time consuming (synthesis of carbon nanotubes followed by oxidation, UV 

and microwave radiation, and anchoring of the complex through ultrasonic, microwave, and dichloromethane 

treatment). 

In the last years, some of us have been actively working on new methodologies for the preparation of 

transition metal nanoparticles (NPs) and their application in important organic transformations, mainly in 
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reduction and coupling reactions. The methodologies that we developed are simple and economic ones, and 

consist in the fast reduction of transition metal chlorides with lithium sand and a catalytic amount of an arene 

as electron carrier, in tetrahydrofuran as solvent and at room temperature. We have found that by using this 

methodology, CuCl2 or CuCl2·2H2O are suitable precursors for the synthesis of very reactive CuNPs, with a 

size distribution in the range of 3.0±1.5 nm [14]. These naked CuNPs, generated in situ, efficiently promoted 

the Glaser dimerization of terminal alkynes [15] and the Huisgen 1,3-dipolar cycloaddition of azides and 

terminal alkynes [16]. More recently, the same methodology was applied for the synthesis of CuNPs 

supported on activated carbon and titania. The CuNPs/C catalyst showed a remarkable versatility in the 

multicomponent Huisgen cycloaddition in water [17], while the CuNPs/titania efficiently catalyzed the 

homocoupling of terminal alkynes [18] and the solvent-free three-component coupling of aldehydes, amines 

and alkynes [19].

Driven by our continuing interest in this family of CuNPs-based catalysts and with the aim to expand and 

improve their catalytic applications, we want to present herein a new magnetically recoverable catalyst 

consisting in the synthesis of CuNPs (3.0 ± 0.8 nm) over commercially available silica coated maghemite 

nanoparticles (MagSilica®, 5-30 nm), and the study of its catalytic performance in three important synthetic 

transformations involving terminal alkynes (Scheme 1).

HR1 + N
H

RR
+

HR2

O

R2

N
R R

R1

CuNPs/MagSilica
solvent free, 100ºC, air

HR1 + NaN3 + XR2

N
N

N
R2

R1

CuNPs/MagSilica
H2O, 70ºC, air

HR12

R1 R1

CuNPs/MagSilica
piperidine, THF, 66ºC, air

= CuNPs

= Silica coated maghemite NPs

Scheme 1



Page 7 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

7

2. Experimental

2.1. Materials

All moisture sensitive reactions were carried out under a nitrogen atmosphere. Anhydrous tetrahydrofuran 

was freshly distilled from sodium/benzophenone ketyl. Other solvents were treated prior to use by standard 

methods [20]. All starting materials were of the best available grade (Aldrich, Fluka, Merck) and were used 

without further purification. Commercially available copper(II) chloride dihydrate was dehydrated upon 

heating in oven (150 ºC, 45 min) prior to use for the preparation of CuNPs. MagSilica® was provided by 

Evonik Industries AG (Essen, Germany). Column chromatography was performed with Merck silica gel 60 

(0.040–0.063 m, 240–400 mesh). Thin layer chromatography (TLC) was performed on precoated silica gel 

plates (Merck 60, F254, 0.25 mm).

2.2. Instrumentation and analysis

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ARX-300 spectrophotometer using 

CDCl3 as the solvent and tetramethylsilane (TMS) as internal reference. Mass spectra (EI) were obtained at 70 

eV on a Hewlett Packard HP-5890 GC/MS instrument equipped with a HP-5972 selective mass detector. 

Infrared (FT-IR) spectra were obtained on a Nicolet-Nexus spectrophotometer. The purity of volatile 

compounds and the chromatographic analyses (GC) were determined with a Shimadzu GC-14B instrument 

equipped with a flame-ionisation detector and a 30 m column (HP-5MS, 0.25mm, 0.25m), using nitrogen as 

carrier gas.

2.3. CuNPs/MagSilica catalyst preparation.

A mixture of lithium sand (21 mg, 3.0 mmol) and 4,4'-di-tert-butylbiphenyl (DTBB, 26 mg, 0.1 mmol) in 

THF (3 mL), was stirred at room temperature under nitrogen atmosphere. When the reaction mixture turned 

dark green (15-30 min), indicating the formation of the corresponding lithium arenide, anhydrous CuCl2 was 

added (134 mg, 1.0 mmol). The resulting suspension was stirred until it turned black (15-30 min), indicating 

the formation of copper(0) nanoparticles. Then, it was diluted with THF (10 mL) and MagSilica (500 mg) was 

added. The resulting suspension was stirred for 1 h, and then bidistilled water (2 mL) was added for 

eliminating the excess of lithium. The resulting solid was filtered under vacuum in a Buchner funnel and 

washed successively with water (10 mL) and acetone (10 mL). Finally, the solid was dried under vacuum (5 

Torr) for 2 hours.
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2.4. CuNPs/MagSilica catalyst characterization.

The freshly prepared catalyst was characterized by Transmission Electron Microscopy (TEM) in a JEOL 

JEM-2100F-UHR instrument, operated at an acceleration voltage of 200 kV. Approximately one hundred 

metal particles were measured to perform the particle size distribution.

Copper content in the supported catalyst was determined by Inductively Coupled Plasma Atomic Emission 

Spectroscopy (ICP-AES), in a Spectro Arcos instrument.

The catalyst specific surface area was measured by BET method, from a N2 isotherm at 77K in NOVA 

1200e apparatus.

The reducibility of the supported catalysts was analyzed by Temperature Programmed Reduction (TPR) in 

a home-made equipment. Before reduction, the samples were treated with flowing Ar at 300 ºC. Then, a 

flowing mixture (20 mL/min) of 10 % H2/Ar was introduced, raising the temperature at 8 ºC/min from room 

temperature up to 550 ºC. The TPR profile was obtained following the H2 consumption with a TCD detector.

X-ray diffraction (XRD) analysis were performed using a Bruker AXS D8 Advance diffractometer,

equipped with a Cu-Kα1,2 radiation source.

Atomic absorption spectroscopy was carried out in a Perkin Elmer AA700 spectrometer. 

2.5. CuNPs/MagSilica catalyzed homocoupling of terminal alkynes. General procedure.

To a vigorously stirred suspension of the CuNPs/MagSilica catalyst (70 mg) in THF (4 mL) the 

corresponding alkyne (1.0 mmol) was added, followed by the dropwise addition of piperidine (85 mg, 99 L, 

1.0 mmol). The reaction flask was introduced in a preheated silicon oil bath at a temperature high enough to 

ensure the reflux of the solvent (66 ºC), and stirred at this temperature until total conversion of the starting 

alkyne (TLC, GC). The above described procedure was followed for the catalyst recovery and reaction 

products isolation.

2.6. CuNPs/MagSilica catalyzed multicomponent Huisgen 1,3-dipolar cycloaddition reaction. General 

procedure.

To a vigorously stirred suspension of the CuNPs/MagSilica catalyst (40 mg) and NaN3 (72 mg, 1.1 mmol) 

in water (2 mL), the corresponding alkyl halide (1.0 mmol) was added dropwise, followed by the addition of 

the terminal alkyne (1.0 mmol). The reaction mixture was stirred at 70 ºC until total conversion of the starting 

alkyne (TLC, GC). The triazole product formation can be easily visualized as a solid floating on the water 
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surface. Then, the catalyst was immobilized by means of a permanent magnet placed on the outer wall of the 

reaction flask, and was successively washed with water (2 mL) and CH2Cl2 (10 mL). Finally, the catalyst was 

dried under vacuum (5 Torr) for its recovery and reuse.

The possibility of catalyst leaching in the reaction media was evaluated by measuring the copper 

concentration in the reaction mixture, by means of atomic absorption spectroscopy.  

2.7. CuNPs/MagSilica catalyzed three-component coupling of aldehyde, amine and terminal alkyne. General 

procedure.

The corresponding aldehyde (1.0 mmol), amine (1.1 mmol) and terminal alkyne (1.0 mmol) were 

successively added to the CuNPs/MagSilica catalyst (10 mg), and then stirred at 100 ºC until total conversion 

of the starting alkyne (TLC, GC). The catalyst was immobilized by means of a permanent magnet placed on 

the outer wall of the reaction flask, and washed twice with Et2O (10 mL each). Finally, the catalyst was dried 

under vacuum (5 Torr) for its recovery and reuse.

3.  Results and discussion

3.1. Preparation and characterization of the catalyst.

As described in the Experimental section, the catalyst was prepared by addition of MagSilica to a 

suspension of CuNPs readily generated from anhydrous copper(II) chloride, lithium sand, and a catalytic 

amount of DTBB (10 mol%) in THF at room temperature. The CuNPs/MagSilica catalyst was characterized 

by means of transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray 

diffraction (XRD), temperature programmed reduction (TPR), and inductively coupled plasma atomic

emission spectroscopy (ICP-AES). 

The copper loading fixed to MagSilica was 6.8wt% as determined by ICP-AES. The TPR profile of the 

catalyst is shown in Figure 1. The consumption peak is assigned to copper oxidized species. The amount of 

hydrogen consumed corresponds to the reduction of the whole CuO present in the catalyst, which is being 

reduced to Cu(0). Since the samples were not previously calcined, the presence of these species indicates that 

CuNPs are being oxidized during handling of the catalyst under air. Besides, no peaks attributable to the 

support reduction were detected. Since maghemite reduction occurs in the temperature range of the TPR 
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experiments [21], the lack of iron species available for reduction strongly suggests that the magnetic core is 

fully coated by the SiO2 shell.

Figure 1. TPR profile for CuNPs/MagSilica catalyst. 

Analysis by TEM showed the presence of well dispersed spherical nanoparticles on the magnetic support, 

with a narrow size distribution and an average particle size of 3.0 ± 0.8 nm (Figure 2), thus demonstrating that 

the nanometric dimension of the CuNPs is not lost upon supporting on the silica coated maghemite 

nanoparticles. This is a remarkable result since previous attempts by some of us for supporting CuNPs on 

SiO2, using this same methodology, led to the formation of CuNPs with an average size of around 20 nm. 

The average particle size of copper in CuNPs/MagSilica was recalculated to metal dispersion (D),  following 

the relationship from Scholten et al. [22]: D = 1021 x 6 x M x site /(d x metal x N ), where D is the copper 

dispersion (Cusup/Cutotal) M, the atomic weight (63.5g/mol ), site the copper surface densitiy (13.5 Cu 

atoms/nm2 [23], d is the particle size (in nm), metal, the metal density (8.96 g/cm3) and N the Avogadro 

number. Thus a copper dispersion of 32% was obtained for the catalysts. 

Figure 2. TEM micrograph and size distribution graphic of CuNPs/MagSilica catalyst. 

Energy dispersive X-ray analysis on various regions confirmed the presence of copper, with energy bands 

of 8.04, 8.90 (K lines) and 0.92 keV (L line). The XRD diffractogram showed the support diffraction pattern, 
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but no diffraction peaks owing to copper species were detected, this could be attributed to the amorphous 

character of the oxidized CuNPs deposited on the support and/or to the existence of crystal domains below 10

nm in size.

The BET surface area of CuNPs/MagSilica was 27 m2/g, which is the same as the corresponding to the bare 

support. It is important to note that the dispersion of copper attained in the CuNPs/MagSilica catalyst is 

relatively high (32%), considering that the surface area of the support is rather low.  

3.2. Evaluation of the catalyst performance in alkyne coupling and cycloaddition reactions.

The CuNPs/MagSilica catalyst was tested in three different terminal-alkyne transformations: the 

homocoupling of terminal alkynes (Glaser dimerization), the multicomponent 1,3-dipolar cycloaddition of 

terminal alkynes, sodium azide and alkyl halides, and the three-component synthesis of propargylamines from 

aldehydes, amines and terminal alkynes (A3 coupling). The catalyst was used as prepared, without any pre-

treatment. The amount of CuNPs/MagSilica catalyst needed and the optimal reaction conditions were 

determined independently for each of the three reactions studied.  

3.2.1. Direct homocoupling of terminal alkynes catalyzed by CuNPs/MagSilica.

As shown in Table 1, the reaction conditions were optimized using phenylacetylene as model compound. 

The addition of piperidine as base (1 equiv. referred to the starting alkyne), in order to promote a base-

assisted deprotonation of the starting alkyne, and heating at 66 ºC (reflux temperature of THF) was essential 

to obtain the maximum yield of the desired 1,3-diyne product in minimum reaction time. Other bases tested,

such as triethylamine, pyridine, sodium carbonate and cesium carbonate, under the same reaction conditions 

gave poorer results in terms of conversion to the alkyne dimerization product. These reaction conditions were 

applied at different catalyst loading, and it was found that 70 mg of CuNPs/MagSilica (7.5 mol% Cu) was the 

optimum amount of catalyst for this reaction.

For the optimized conditions the specific rate, expressed as moles of alkyne converted per g copper was 1.7 

x 10-5 while the TOF number was 3.5 x 10-3 s-1.

Under the optimized conditions phenylacetylene gave the homocoupled diyne product in only 2 hours of 

reaction time and in high yield (Table 2, entry 1). A similar reactivity was observed for 4-

methylphenylacetylene (Table 2, entry 2). In contrast, 4-N,N-dimethylaminophenylacetylene showed to be 

less reactive under the same reaction conditions (Table 2, entry 3), probably due to the presence of a strong 
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electron releasing group at the 4-position of the phenyl group, which could be hampering the formation of the 

corresponding copper acetylide.

CuNPs catalyst

THF, base

Table 1. Optimization of reaction conditions for alkyne homocoupling reaction.a

Entry
Amount of 

catalyst (mg)
Copper content 

(mol%)b Base T (º C) t (h) Yield (%)c

1 100 10.7 piperidine 66 2 94

2 70 7.5 piperidine 66 2 95

3 40 4.3 piperidine 66 10 10

4 20 2.2 piperidine 66 20 traces

5 70 7.5 otherd 66 8 traces

6 70 7.5 piperidine 25 8 5
a Alkyne (1 mmol), base (1 mmol), in THF as solvent and under air.
b Referred to the starting alkyne.
c GC yield based on the starting alkyne.
d Other bases tested: sodium carbonate, triethylamine, pyridine, cesium carbonate.

Aliphatic alkynes such as 1-octyne, 1-dodecyne, 1-ethynylcyclohex-1-ene and 4-phenyl-1-butyne, gave the 

corresponding 1,3-diyne products in good to excellent yields but in higher reaction times (Table 2, entries 4-

7). These results are in agreement with the fact that aliphatic terminal alkynes are sluggish in undergoing 

Glaser dimerization, probably due to the weaker acidity of the acetylenic proton [24].

R1 CuNPs catalyst (7.5 mol%)

piperidine, THF, 66º C, air
R1 R1

Table 2. CuNPs/MagSilica catalyzed homocoupling of terminal alkynes.

Entry R1 t (h) Yield (%)b

1 Ph 2 95

2 4-CH3C6H4 2 83

3 4-(CH3)2NC6H4 14 58

4 n-C6H13 15 90

5 n-C10H21 18 88

6 c-C6H9 24 72

7 Ph(CH2)2 24 75
a Reaction conditions: alkyne (1 mmol), piperidine (1 mmol), 
CuNPs/MagSilica (70 mg), 66º C, in THF as solvent and under air.
b Isolated yield after column chromatography (hexane-EtOAc), based on the 
starting alkyne.
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3.2.2. Multicomponent synthesis of 1,2,3-triazoles in water catalyzed by CuNPs/MagSilica.

The CuNPs/MagSilica catalyst demonstrated to be very efficient in the multicomponent 1,3-dipolar 

cycloaddition of terminal alkynes and organic azides generated in situ from sodium azide and different 

organic halides. As shown in Table 3, phenylactelylene and benzyl bromide were selected as model starting 

compounds for the optimization of the reaction conditions. Interestingly, from the different solvents and 

solvent/co-solvent mixtures tested, water was found to be the most effective for this reaction (Table 3, 

compare entries 1, 4, 5 and 6). Thus, using 40 mg of CuNPs/MagSilica catalyst (4.3 mol% Cu) and heating at 

70 ºC in water, the reaction of phenylacetylene with benzyl bromide and sodium azide, gave 1-benzyl-4-

phenyl-1H-1,2,3-triazole almost quantitatively in only 1 hour of reaction time (Table 3, entry 1).

The specific rate for this reaction at the above described conditions is 6 x 10-5 moles converted per gram of 

copper and per second, while the TOF number is 0.012 s-1. When THF is employed as the solvent, the TOF 

number is notably lower (1 x 10-4 s-1) than that of the reaction performed in water. The depletion in the rate 

would be related to the fact that the in situ generation of the organic azide is hampered in the organic solvent, 

due to the low solubility of the starting sodium azide in the reaction medium. 

Ph Br+ + NaN3

CuNPs catalyst

solvent
Ph

N NN

Ph
Ph

Table 3. Optimization of reaction conditions for the multicomponent synthesis of 1,2,3-
triazoles.a

Entry
Amount of 

catalyst (mg)
Copper content

(mol%)b Solvent T (º C) t (h) Yield (%)c

1 40 4.3 H2O 70 1 98

2 20 2.2 H2O 70 12 10

3 40 4.3 H2O 25 10 25

4 40 4.3 DMF/H2O (9:1) 70 12 15

5 40 4.3 MeOH/H2O (9:1) 70 12 85

6 40 4.3 THF 70 10 8
a Phenylacetylene (1 mmol), benzyl bromide (1 mmol), sodium azide (1.1 mmol), under air.
b Referred to the starting alkyne
c GC yield based on the starting alkyne.

The same methodology was successfully applied to other aryl acetylenes bearing both electron-withdrawing 

or electron-releasing groups attached to the aromatic ring (Table 4, entries 2 and 3). Aliphatic alkynes, such as 

1-hexyne and cyclohexylacetylene also gave the corresponding triazole products in good yield, although in 

longer reaction times compared with their aryl counterparts (Table 4, entries 4 and 5). The propargyl ether 
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tetrahydro-2-(prop-2-ynyloxy)-2H-pyran, gave a doubly heterocyclic triazole product in good yield (Table 4, 

entry 6). Then, the catalyst was tested for the reaction of phenylacetylene and alkyl halides other than benzyl 

bromide. Benzyl chloride, 4-methylbenzyl bromide, 2-nitrobenzyl bromide and 4-vinylbenzyl chloride gave

the corresponding triazole products in good yield (Table 4, entries 7-10), whereas the strongly deactivated 4-

methoxybenzyl chloride, as expected, gave poorer results (Table 4, entry 11). Finally, n-nonyl iodide reacted 

sluggishly and heating to 100 ºC was necessary to enhance the yield and minimize the reaction time (Table 4, 

entry 12).

It is worthy of note that the degree of copper leaching during these experiments was below the atomic 

absorption spectrometry sensitivity threshold, since no presence of copper was detected in the aqueous phase 

of three different samples.

X+ + NaN3R1 N NN
R2

R1

R2
CuNPs catalyst (4.3 mol%)

H2O, 70º C, air

Table 4. CuNPs/MagSilica catalyzed multicomponent synthesis of 1,2,3-triazoles.a

Entry R1 R2-X t (h)
Yield 
(%)b

1 Ph PhCH2Br 1 98

2 4-BrC6H4 PhCH2Br 3 95

3 4-(CH3)2NC6H4 PhCH2Br 2 98

4 n-C4H9 PhCH2Br 8 93

5 c-C6H11 PhCH2Br 6 95

6 (2-tetrahydropyranyloxy)methyl PhCH2Br 5 85

7 Ph PhCH2Cl 2 83

8 Ph 4-CH3C6H4CH2Br 4 75

9 Ph 2-NO2C6H4CH2Br 2 77

10 Ph 4-CH2=CHC6H4Cl 8 70

11 Ph 4-CH3OC6H4CH2Cl 8 50

12 Ph n-C9H19I 9 74c

a Reaction conditions: alkyl halide (1 mmol), alkyne (1 mmol), sodium azide (1.1 mmol),
CuNPs/MagSilica (40 mg), 70º C, in water as solvent and under air, unless otherwise stated.
b Isolated yield after column chromatography (hexane-EtOAc), based on the starting alkyne.
c Reaction performed at 100º C.

3.2.3. Three-component synthesis of propargyl amines from aldehydes, alkynes and amines (A3 coupling) 

catalyzed by CuNPs/MagSilica.

The reaction conditions were optimized using benzaldehyde, phenylacetylene and morpholine (1:1:1.1) in 

the absence of solvent (Table 5). The reaction temperature was varied from 50 to 100 ºC, and the amount of 
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catalyst from 40 to 2.5 mg. As shown in Table 5, the best conditions, in order to obtain the A3 coupling 

product while minimizing the dimerization of the starting alkyne, were found to be the use of 10 mg of 

CuNPs/MagSilica (1.1 mol% Cu) at 100 ºC; under these conditions the reaction proceeded to the formation of 

the corresponding propargylamine in only 1 h of reaction time and in 84% yield (Table 5, entry 5). 

Under the optimized reaction conditions, other alkynes such as 4-methylphenylacetylene, 1-

ethynylcyclohexene and 1-dodecyne were reacted with benzaldehyde and morpholine which also gave the A3

coupling product in good yield and in short reaction times (Table 6, entries 2, 3 and 4, respectively).

Ph
CuNPs catalyst

Ph

N

Ph

solvent free, air
+

Ph H

O

+ N OH

O

Table 5. Optimization of reaction conditions for the three-component 
synthesis of propargylamines.a

Entry
Amount of 

catalyst (mg)
Copper content 

(mol%)b T (º C) t (h) Yield (%)c

1 40 4.3 50 10 20

2 40 4.3 76 8 48

3 20 2.2 76 8 53

4 20 2.2 100 14 68

5 10 1.1 100 1 84

6 5 0.6 100 5 60
a Phenylacetylene (1 mmol), benzaldehyde (1 mmol), morpholine (1.1 mmol), under air.
b Referred to the starting alkyne.
c GC yield based on the starting alkyne.

Then, different aldehydes were reacted with phenylacetylene and morpholine under the same conditions, 

thus 4-methoxybenzaldehyde and the aliphatic aldehyde (S)-(-)-citronellal gave the corresponding 

propargylamine products in good yield (Table 6, entry 5 and 6). In the case of citronellal, the 

diastereoselectivity of the coupling reaction was practically negligible.
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R1 CuNPs catalyst (1.1 mol%)

R2

N

R1

100º C, solvent free, air
+

R2 H

O

+ NR2H
R R

Table 6. CuNPs/MagSilica catalyzed three-component synthesis of propargylamines.a

Entry R1 R2 Amine t (h) Yield (%)b

1 Ph Ph Morpholine 1 84

2 4-CH3C6H4 Ph Morpholine 1 83

3 c-C6H9 Ph Morpholine 1 95

4 n-C10H21 Ph Morpholine 3 89

5 Ph 4-CH3OC6H4 Morpholine 3 76

6 Ph (CH3)2C=CH(CH2)2CH(CH3)CH2 Morpholine 2 82

7 Ph Ph Pyrrolidine 3 77

8 Ph Ph Diethylamine 15 40

9 Ph Ph Diisopropylamine 20 20
a Reaction conditions: alkyne (1 mmol), aldehyde (1 mmol), amine (1.1 mmol), CuNPs/MagSilica (10 mg), 100º C, 
under air, unless otherwise stated.
b Isolated yield after column chromatography (hexane-EtOAc), based on the starting alkyne.

Finally, we examined the reaction with amines other than morpholine. As shown in Table 6 (entries 7-9) 

pyrrolidine, a cyclic secondary amine, gave similar results to those obtained with morpholine when reacted 

with benzaldehyde and phenylacetylene, whereas acyclic amines such as diethylamine and diisopropylamine 

rendered the corresponding A3 coupling products after longer reaction time and in modest yield.

3.3. Recovery and reuse of the catalyst.

We selected the three-component synthesis of propargylamines as model reaction for the study of the 

catalyst performance after various cycles of recovery and reuse. It is worthy of note that, even though the 

small amount of catalyst utilized (10 mg), it could be separated from the reaction medium, washed and reused

very easily, simply with the aid of a permanent magnet placed on the outer wall of the reaction flask, thus 

minimizing the loss of catalyst which usually occurs in filtration processes. Figure 3 shows the catalyst 

performance for the A3 coupling of benzaldehyde, 4-methylphenylacetlyene and morpholine, after three 

consecutive cycles without significant loss of catalytic activity. The low diminution  in the activity from the 

first to the third cycle would be related with small losses of catalyst mass during washing procedure. It is 

important to note that the total mass of catalyst employed is very low (10 mg), thus the loss of only 1 mg of 

catalyst when handling the sample, means loss of 10% of the total mass of catalyst.  
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Figure 3. Recovery and recycling of the catalyst in the synthesis of propargylamines.

4. Conclusions

A new copper-based catalyst composed of copper nanoparticles (ca. 3.0 nm) on silica coated maghemite 

nanoparticles (5-30 nm), was readily prepared under mild conditions and completely characterized. It proved 

to be an efficient heterogeneous catalyst in three important alkyne transformations of wide synthetic utility.

The catalyst could be easily recycled by means of an external magnet and reused without significant loss of 

catalytic activity. The easy recovery of the catalyst, together with the negligible leaching of metal species (no 

detected by AAS) and the high atom economy involved in the transformations studied, make this 

methodology to fulfill the requirements of green catalysis. Although the experimental observations point to a 

heterogeneous catalytic process, it should not be discarded that the copper supported nanocatalyst could be 

acting as a reservoir for metal species that leach into solution and re-adsorb [25].
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