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Abstract
This paper presents a method for reducing the
set of different tags to be considered by a part-
of-speech tagger. The method is based on a
clustering algorithm performed over the states
of a hidden Markov model, which is initially
trained by considering information not only
from the source language, but also from the tar-
get language, using a new unsupervised tech-
nique which has been recently proposed to ob-
tain taggers involved in machine translation sys-
tems. Then, a bottom-up agglomerative clus-
tering algorithm groups the states of the hid-
den Markov model according to a similarity
measure based on their transition probabilities;
this reduces the complexity by grouping the ini-
tial finer tags into coarser ones. The experi-
ments show that part-of-speech taggers using
the coarser tags have smaller error rates than
those using the initial finest tags; moreover, con-
sidering unsupervised information from the tar-
get language results in better clusters compared
to those unsupervisedly built from source lan-
guage information only.

1 Introduction

This paper explores the automatic induction of
hidden Markov model (HMM) topologies used
for part-of-speech tagging in a machine transla-
tion (MT) system. Hidden Markov models (Ra-
biner 89) have been widely used for part-of-speech
(PoS) tagging (Cutting et al. 92). In this case,
the HMM topology is usually fixed (that is, man-
ually defined following linguistics guidelines) and
the training phase is restricted to the estimation
of probabilities.

There have been some attempts to define the
HMM topology automatically. (Stolcke & Omo-
hundro 94) describe a technique for inducing the
HMM structure from data, which is based in the
general model merging strategy (Omohundro 92),
but their work focuses on HMMs for speech recog-
nition, not on HMMs used for PoS tagging where
some additional restrictions have to be taken into
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account. On the other hand, the model merging
method starts with a maximum likelihood HMM
that directly encodes the training data, that is,
where there is exactly one path for each element
in the training corpus, and each path is used by
one element only. This approximation is not a fea-
sible approach when the resulting HMM will be
used in a real environment such as a MT system,
in which previously unseen events might occur.

A later work (Brants 95) focuses on the problem
of finding the structure of a HMM used for PoS
tagging. In that work the author also follows the
model merging technique to find the tagset (set
of PoS tags) to be used, but this time taking into
account some restrictions in order to preserve the
information provided by the fine states the initial
HMM has. Furthermore, in this work the initial
model has one state per part-of-speech, not per
word occurrence, but it is trained following a su-
pervised method.

In this paper we explore the use of a bottom-
up agglomerative clustering algorithm to obtain
the tagset to be used in a HMM-based PoS tag-
ger within a MT system. The initial model is the
one obtained using the fine tags delivered by the
morphological analyzer of the MT system, trained
following an unsupervised method that takes into
account information from the target language
(TL) (Sánchez-Mart́ınez et al. 04a; Sánchez-
Mart́ınez et al. 04b) to estimate the HMM pa-
rameters. We apply the agglomerative clustering
procedure both to taggers trained using the TL-
driven procedure above and to taggers unsuper-
visedly trained using the Baum-Welch (Baum 72)
algorithm.

The paper is organized as follows: Section 2
overviews the use of HMM for part-of-speech
(PoS) tagging. In section 3 the principles of
the TL-driven HMM training method are ex-
plained; then, in section 4 the clustering strategy
is described, and section 5 explains the shallow-
transfer MT system used for the TL-driven train-
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ing method and the experiments conducted. Fi-
nally, in sections 6 and 7 the results are discussed
and future work is outlined.

2 Hidden Markov models for
part-of-speech tagging

In this section we overview the application of
HMMs in the natural language processing field
as PoS taggers.

A HMM (Rabiner 89) is defined as λ =
(Γ, Σ, A, B, π), where Γ is the set of states, Σ is
the set of observable outputs, A is the |Γ|×|Γ|
matrix of state to state transition probabilities,
B is the |Γ|×|Σ| matrix with the probability of
each observable output σ being emitted from each
state γ, and the vector π, with dimensionality |Γ|,
defines the initial probability of each state. The
system produces an output each time a state is
reached after a transition.

When a HMM is used to perform PoS tagging,
each HMM state γ is made to correspond to a
different PoS tag,1 and the set of observable out-
puts Σ are made to correspond to word classes.
Typically a word class is an ambiguity class (Cut-
ting et al. 92), that is, the set of all possible PoS
tags that a word could receive. Moreover, when
a HMM is used to perform PoS tagging, the esti-
mation of the initial probability of each state can
be avoided by assuming that each sentence begins
with the end-of-sentence mark. In this case, π(γ)
is 1 when γ is the end-of-sentence mark, and 0
otherwise. A deeper description of the use of this
kind of statistical models for PoS tagging may
be found in (Cutting et al. 92) and (Manning &
Schütze 99, ch. 9).

3 Target-language training overview

Typically the training of HMM-based PoS tag-
gers is done using the maximum-likelihood es-
timate (MLE) (Gale & Church 90) method
when tagged corpora2 are available (supervised
method) or using the Baum-Welch algorithm with
untagged corpora3 (unsupervised method). But,
when the resulting PoS tagger is to be em-
bedded as a module of a working MT system,

1This is only true when a first-order HMM is considered.
In an n-th order HMM each state corresponds to a sequence
of n PoS tags.

2In a tagged corpus each occurrence of each word (am-
biguous or not) has been assigned the correct PoS tag.

3In an untagged corpus all words are assigned (using
a morphological analyzer) the set of all possible PoS tags
independently of context.

the HMM training can be done in an unsuper-
vised way using information not only from the
source-language (SL), but also from the TL. This
new training method has been previously de-
scribed in (Sánchez-Mart́ınez et al. 04a; Sánchez-
Mart́ınez et al. 04b), and is the method used
to obtain the initial model that uses the largest
possible tagset (that is, the one using the finest
possible tags).

The main idea behind the use of TL informa-
tion is that the correct disambiguation (tag as-
signment) of a given SL segment will produce a
more likely TL translation than any of the remain-
ing wrong disambiguations. In order to apply this
method these steps are followed: first the SL text
is segmented; then, the set of all possible disam-
biguations for each text segment are generated
and translated into the TL; next, a TL statisti-
cal model is used to compute the likelihood of the
translation of each disambiguation; and, finally,
these likelihoods are used to adjust the parame-
ters of the SL HMM: the higher the likelihood,
the higher the probability of the original SL tag
sequence in the model being trained.

Let us illustrate how this training method
works with the following example. Consider the
following segment in English, s =“He books the
room”, and that an indirect MT system trans-
lating between English and Spanish is available.
The first step is to use a morphological analyzer
to obtain the set of all possible PoS tags for each
word. Suppose that the morphological analysis
of the previous segment according to the lexicon
is: He (pronoun), books (verb or noun), the (arti-
cle) and room (verb or noun). As there are two
ambiguous words (books and room) we have, for
the given segment, four disambiguation choices or
PoS combinations, that is to say:

• g1 = (pronoun, verb, article, noun),

• g2 = (pronoun, verb, article, verb),

• g3 = (pronoun, noun, article, noun), and

• g4 = (pronoun, noun, article, verb).

The next step is to translate the SL segment into
the TL according to each disambiguation gi:

• τ(g1, s) = “Él reserva la habitación”,

• τ(g2, s) =“Él reserva la aloja”,

• τ(g3, s) =“Él libros la habitación”, and



• τ(g4, s) =“Él libros la aloja”.

It is expected that a Spanish language model will
assign a higher likelihood to translation τ(g1, s)
than to the other ones, which make little sense
in Spanish. So the tag sequence g1 will have a
higher probability than the other ones. Finally,
the calculated probabilities for each disambigua-
tion gi are used to estimate the HMM param-
eters through the MLE method as if they were
fractional counts.

4 Tagset clustering strategy

The reason for reducing the number of tags used
by PoS taggers is due to the fact that the less tags
the tagset has the better the HMM parameters
are estimated, through the reduction of the data
sparseness problem. Furthermore, as the num-
ber of transition probabilities to estimate is, for
a first order HMM, quadratic with the number of
tags, the number of parameters to store may be
drastically reduced.

In order to obtain a coarser tagset we have
not followed the model merging strategy already
used by Brants (Brants 95) because it is a very
time consuming method. Instead, we perform a
bottom-up agglomerative clustering on an initial
HMM that has as many states as different fine
PoS tags the morphological analyzer delivers (see
section 5 for details about the different PoS tags
delivered by the morphological analyzer).

Bottom-up agglomerative clustering has been
used for HMM state clustering (Rivlin et al. 97)
in speech recognition tasks. One advantage of this
clustering algorithm is that the number of clusters
(coarse tags) to discover is automatically deter-
mined by providing the algorithm with a distance
threshold. The algorithm begins with as many
clusters as fine tags there are, and in each step
those clusters that are closer are merged into a
single one only if an additional constraint (see be-
low) is met. The clustering stops when there are
no clusters to be merged because their distance
is larger than the specified threshold, or the con-
straint does not hold.

4.1 Constraint on the clustering

A very important property of the resulting tagset
is that it must be possible to restore the origi-
nal information (all grammatical features) repre-
sented by the fine tag from the coarser one; note
that this is the information we are interested in,

as it is used by the subsequent MT modules to
carry out the translation. To ensure this prop-
erty a constraint must hold; this constraint, al-
ready used in (Brants 95), establishes that two
tags (states) cannot be merged in the same clus-
ter if they share the emission of one or more word
class (observables) outputs. This is because in
this case, the PoS tagger would not be able to
decide on a PoS tag for the observable output.

The previous constraint can be formally de-
scribed as follows. Let f be a fine tag, c a coarse
tag (cluster), σ an observable output, and F , C
and Σ the fine tagset, the coarse one and the set
of observable outputs, respectively. The original
information of the fine tag f can be retrieved from
the coarse one c by means of the injective function
h defined as:

h : Σ× C → F (1)

To ensure that this function is injective, that is,
that for a given observable σ and a given coarse
tag c there is only one fine tag f , the next con-
straint must be met:

∀c ∈ C, σ ∈ Σ, f1, f2 ∈ c, f1 6= f2 : f1 ∈ σ ⇒ f2 /∈ σ,
(2)

where with f ∈ c we mean that the fine tag f is in
the cluster denoted by c, and with f ∈ σ we mean
that the observable output σ can be emitted from
the fine tag f .

If the constraint expressed in (2) holds, function
h is injective, and no information is lost when
grouping fine tags into coarser ones.

4.2 Distance between clusters

As an agglomerative clustering will be applied, a
distance measure between two clusters is needed
in order to measure how similar they are.

Before defining how the distance between two
clusters is calculated, let us define how the
distance between two fine tags is calculated.
The distance between two fine tags is based on
the Kullback-Leibler directed logarithmic diver-
gence (Kullback & Leibler 51) applied to the
probabilistic distributions defined by the transi-
tion probabilities A between each fine tag and the
rest. The directed logarithmic divergence mea-
sures the relative entropy between two probabilis-
tic distributions p(x) and q(x):

d(p, q) =
∑
x

p(x) log2

p(x)
q(x)

(3)



Since d(p, q) 6= d(q, p), the relative entropy is
not a true metric, but it satisfies some important
mathematical properties: it is always nonnegative
and equals zero only if ∀x p(x) = q(x).

As for the clustering algorithm a symmetric dis-
tance measure is needed, we use the intrinsic dis-
crepancy (Bernardo & Rueda 02) defined as:

δ(p, q) = min(d(p, q), d(q, p)) (4)

Another possibility to make the distance mea-
sure symmetric would be to use the diver-
gence (Brants 96) defined as

Div(p, q) = d(p, q) + d(q, p) (5)

but the intrinsic discrepancy is preferred, among
other reasons, because if one probabilistic distri-
bution has null values for some range of X and
the other has not, the intrinsic discrepancy is still
finite while the divergence is not.

Now that we know how to calculate the dis-
tance between two fine tags, we define the way in
which the distance between two clusters is calcu-
lated. As the intrinsic discrepancy used does not
hold the triangle inequality, the search space is
not a metric one, and calculating a representative
for each cluster is not a trivial task. Because of
this, the distance between two clusters will be the
unweighted pair-group average:

δ(c1, c2) =
∑

t1∈ci

∑
t2∈c2 δ(t1, t2)

card(c1)card(c2)
, (6)

although other distances such as the weighted
pair-group average or the minimum/maximum
pair-group distance could also be suitable.

5 Experiments

As has been already mentioned, before applying
the clustering algorithm a HMM-based PoS tag-
ger for Spanish is trained using the fine tags de-
livered by the morphological analyzer. These fine
tags have all the morphological information used
by the rest of the modules of the MT system. For
example, the Spanish word señal has the next
morphological analysis (fine tag): “noun, femi-
nine, singular”, which is different from the fine
tag “noun, feminine, plural” given for the word
señales.

As the previous example illustrates, fine tags
discriminate gender, number or, in a verb case,
the person who performs the action, among other

grammatical features. This causes the number of
fine tags to be very large: 1 328 fine tags grouped
into 1 594 ambiguity classes in our Spanish lexi-
con. Notice that the number of HMM transition
probabilities to be estimated is quadratic with
the number of tags, and the larger the tagset the
worse the data sparseness problem.

We have conducted two different experiments
for Spanish, one with the initial model trained
using information from the TL,4 as already ex-
plained above, and another one in which the ini-
tial model is trained using the classical Baum-
Welch algorithm; in both cases the training is
fully unsupervised.

As has been mentioned, in order to train a
HMM-based PoS tagger using information from
the TL a working MT system is required. In the
next section we overview the MT system used
in our experiments. Then we report the results
achieved by the TL-driven training method and
the Baum-Welch algorithm with the fine tagset,
and the results achieved with the tagsets auto-
matically obtained through the bottom-up ag-
glomerative clustering already discussed.

5.1 Machine translation engine

Now we briefly introduce the MT system used
in the experiments, although almost any other
MT architecture (using a HMM-based PoS tag-
ger) may also be suitable for the TL-driven train-
ing algorithm.

We used the Spanish–Catalan (two related lan-
guages) MT system interNOSTRUM5 (Canals et
al. 00) which basically follows a shallow transfer
architecture consisting of the following sequence
of stages:6

• A morphological analyzer tokenizes the text
in surface forms (SF) and delivers, for each
SF, one or more lexical forms (LF) consisting
of lemma, lexical category and morphological
inflection information. The lexical category
and the morphological inflection information
constitute the fine tag for each LF.

• A PoS tagger chooses, using a hidden Markov
4For the experiments we use as a TL model a classi-

cal trigram language model like the one used in (Sánchez-
Mart́ınez et al. 04b)

5The MT system and the morphological analyzer may
be accessed at http://www.internostrum.com.

6A complete rewriting of this MT engine (Corb́ı-Bellot
et al. 05) has been recently released under an open source
license (http://apertium.sourceforge.net).



Training method Avg. PoS error
Baum-Welch 28.7± 2.0%

TL based 25.5± 0.3%

Table 1: Average PoS tagging error rate (over ambigu-
ous words only, and without considering unknown words)
for the initial HMM that uses the large fine tagset. The
error rate reported when the Baum-Welch training algo-
rithm is used is the result of the best of 100 iterations. As
can be seen, the standard deviation for the Baum-Welch
algorithm is much larger than for the TL-driven algorithm,
this is because the Baum-Welch algorithm can fall in a lo-
cal maxima for some corpora.

model (HMM), one of the LFs correspond-
ing to an ambiguous SF. This is the module
whose training is considered in this paper.

• A lexical transfer module reads each SL LF
and delivers the corresponding TL LF.

• A structural transfer module (parallel to the
lexical transfer) uses a finite-state chunker to
detect patterns of LFs which need to be pro-
cessed for word reorderings, agreement, etc.
and performs these operations.

• A morphological generator delivers a TL SF
for each TL LF, by suitably inflecting it,
and performs other orthographical transfor-
mations such as contractions.

5.2 Results

We have applied the presented bottom-up ag-
glomerative clustering on a HMM previously
trained using the large (indeed largest possible)
initial tagset. Once the initial HMM has been
trained the transition probabilities A are used to
obtain the coarser tagset. Note that the final
number of coarse tags is indirectly determined be-
cause the clustering algorithm is provided with a
distance threshold.

The experiments have been done with three dif-
ferent corpora in order to know how the cluster-
ing algorithm behaves. When using the Baum-
Welch algorithm to train the initial model we
use three disjoint corpora with around 1 000 000
words each. For the TL-driven training method
the corpora used were smaller, around 300 000
words each, because the training algorithm takes
much more time, and convergence was reached
before processing the whole 300 000 words.

Table 1 shows the average PoS tagging error
rate for the two training methods used to obtain
the initial HMM used to perform the bottom-up

agglomerative clustering. As may be seen, the re-
sults achieved by the TL-driven training method
are (expectedly) better as was already reported
in previous works (Sánchez-Mart́ınez et al. 04b).
The error rates reported in Table 1 are over am-
biguous words only, not over all words, and do not
take into account unknown words. The PoS tag-
ging error rate is evaluated using an independent
8 031-word hand-tagged Spanish corpus. The per-
centage of ambiguous words in that corpus is
26.7% and the percentage of unknown words is
2.0%.

In order to find the threshold that produces the
best tagset we have performed the bottom-up ag-
glomerative clustering for thresholds varying from
0 to 2.5 in increments of 0.05. Figure 1 shows the
evolution of the PoS tagging error rate with the
threshold for one of the corpora used (the remain-
ing two corpora behave in a similar way, the error
rate improvement being slightly lower) when us-
ing the TL-driven training method to obtain the
initial HMM. The PoS tagging error correspond-
ing to the negative threshold is the error rate of
the initial HMM using the largest tagset. In that
figure the number of coarse tags obtained auto-
matically with each threshold is also shown. It
has to be noted that after applying the cluster-
ing algorithm the HMM parameters are recalcu-
lated using the fractional counts collected during
the TL-driven training (this would be equivalent
to retraining with the new tagset). Thus, there
is no need to retrain the model for each tagset;
one simply recalculates the transition and emis-
sion probabilities.

As can be seen in Figure 1, with a null thresh-
old value the number of clusters is 327, that is,
there are around 1 000 fine tags that have ex-
actly the same transition probabilities. This is
because these fine tags are mostly for verbs re-
ceiving one (dame = “give+me”) or two (dámelo
= “give+me+it”) enclitic pronouns, which rarely
appear in the training corpus; therefore, the clus-
tering algorithm puts all these fine tags in the
same cluster. Furthermore, it can be seen that
the best PoS tagger is obtained with a thresh-
old of 1.25, which produces a tagset with only
241 coarse tags. The 241-tag tagset groups in
the same cluster, for example, the third per-
son singular tonic pronouns (consigo = “with
himself/herself/itself”, usted = “you”), the third
person masculine plural tonic pronoun (ellos =
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Figure 1: Evolution of the PoS tagging error (solid line
with values on the left vertical axe) according to the differ-
ent threshold values for d(c1, c2) used in the experiments,
when using as an initial model the one obtained with the
TL-driven training method. The number of tags of the ob-
tained tagset for each threshold is also given (dotted line
with values on the right vertical axe).

“they”), the third person neutral tonic pronoun
(ello = “it”), the third singular tonic pronouns
(nadie = “no one”, alguien = “someone”, etc.),
the third person reflexive tonic pronoun (śı =
“himself/herself/itself”), and the relative quien
(= “who/whom”). Furthermore, contrary to
what it may be expected some specializations of
the same category (for example, feminine adjec-
tive and masculine adjective) are assigned to dif-
ferent coarse tags (clusters).

Figure 2 shows the evolution of the PoS tag-
ging error rate and the number of tags for each of
the inferred tagset when the initial model is the
one obtained using the Baum-Welch algorithm on
one of the corpora used (the other two corpora be-
have in the same way). In this case, after running
the clustering algorithm, the HMM was retrained
with the new tagset for 100 Baum-Welch itera-
tions.7 The PoS tagging error rate given in that
figure for each threshold is the one provided by
the best Baum-Welch iteration. Notice that be-
cause of the presence of local maxima in which the
Baum-Welch algorithm can fall, the PoS tagging
error rate may behave erratically.

As can be seen in Figure 2 clustering does not
improve the PoS tagging error rate, and the num-
ber of tags of the obtained tagsets for the same
threshold values is similar to the number of tags
obtained from the TL-trained initial model.

7In principle, one could also recalculate the probabili-
ties from the forward-backward auxiliary variables, but we
found it easier to simply retrain.
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Figure 2: Evolution of the PoS tagging error (solid line
with values on the left vertical axe) according to the differ-
ent threshold values for d(c1, c2) used in the experiments,
when using as an initial model the one obtain with the
Baum-Welch algorithm. The number of tags of the in-
ferred tagset for each threshold is also given (dotted line
with values on the right vertical axe).

6 Discussion

We have explored the automatic tagset reduction,
starting from a large fine tagset, by means of
a bottom-up agglomerative clustering algorithm.
We have conducted two different experiments:
one that uses the Baum-Welch algorithm to ob-
tain the initial HMM with all the fine tags, and
another one that uses information from the TL to
obtain that initial model.

The results reported show that using the TL-
driven training method slightly improves the tag-
ging accuracy, proving that the TL-driven train-
ing method is a good unsupervised approach that
gives better results than the classical Baum-Welch
algorithm.

In the experiments reported in this paper we
have not used any smoothing technique to avoid
null transition and emission probabilities for those
unseen events in the training corpus.

Preliminary experiments using the expected-
likelihood estimate (ELE) method (Gale &
Church 90), which use a very rudimentary
smoothing technique, show that the resulting
coarse tagset is smaller for equal threshold values.
We plan to test whether this still happens when
applying a smoothing technique in the maximiza-
tion step of the Baum-Welch algorithm.

7 Future work

The bottom-up agglomerative clustering uses a
distance between clusters. In this paper we have



used the unweighted pair-group average of the in-
trinsic discrepancy, but other distance measures
could also be suitable. We plan to test the min-
imum pair-group distance which is reported to
produce clusters with more disperse elements and
the maximum pair-group distance which usually
gives more compacted clusters.

In this paper the intrinsic discrepancy was used
to measure the distance between two fine tags.
This measure is finite if one distribution has null
values in some range of X and the other not. But,
when one probabilistic distribution has null val-
ues where the other does this measure becomes
infinity. In order to avoid this problem we plan
to use the Jensen-Shannon divergence (Grosse et
al. 02) which is finite for all pairs of distributions.

In one of the papers presenting the TL-driven
training method (Sánchez-Mart́ınez et al. 04b)
the coarse tagset used was manually defined fol-
lowing linguistic guidelines and the method be-
haved unstably because of the free-ride phe-
nomenon (different disambiguations leading to
the same translation). We plan to test whether
this problem persists with the best automatically
inferred tagset.
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