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Abstract 
The electronic energy loss of swift proton and helium beams in liquid water is theoretically 

evaluated. Our model is based in the dielectric formalism, taking into account the charge 

exchange of the projectile during its travel through the target. The electronic properties of 

liquid water are described by the MELF-GOS model, where the outer electron excitations are 

represented by a sum of Mermin functions fitted to the experimental data in the optical limit, 

whereas the inner-shell electron excitations are modelled by the corresponding atomic 

generalized oscillator strength. The inverse mean free path, the stopping power and the 

energy loss straggling are calculated, showing a reasonably good agreement with the 

available experimental data. 

 

I.  Introduction 

By using the dielectric formalism we theoretically calculate the energy loss of swift proton 

and helium beams impinging in liquid water. This formalism reasonably accounts for the 

electronic excitations produced in the bombarded materials by the passage of fast particles. 

We have used an improved description of the energy loss function corresponding to liquid 

water by means of an empirical fitting to available optical data for the outer electrons and by 

generalized oscillator strengths to take into account electron excitations from the inner-shells. 

This model also fulfils physical constraints such as the f-sum rule, and provides the mean 

ionization energy I of liquid water. It is worth to mention the suitability of this model in the 

description of the target energy loss function in the whole energy-momentum plane. A more 

detailed analysis and discussion of the different dielectric descriptions of the liquid water is 

provided in [Emfietzoglou 2008]. Finally, we present our calculated results for the inverse 

mean free path (IMFP), the stopping power and energy loss straggling of proton and helium 

beams in liquid water, which are compared to experimental data when available. 

 

II. Theoretical model 
When energetic particles impinge on a material, most of their energy is lost exciting the 

electrons of the solid (i.e., inelastic energy loss). These energy loss processes can be 

characterize by the following magnitudes: the inverse mean free path (IMFP), 1−Λ , the 

stopping power, pS , and the energy loss straggling 2Ω . The IMFP represents the probability 

per unit path length that an incident particle will suffer a process of inelastic interaction with 

the stopping medium, the stopping power is the mean energy lost by the projectile per unit 
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path length, while the energy loss straggling is the variance in the energy-loss distribution 

per unit path length. 

At low and intermediate projectile energies it is necessary to consider the processes of 

electron capture from and loss to the target that give a continuous charge exchange of the 

projectile in their path through the solid, since it means a change in their energy loss. 

Therefore for a projectile with atomic number Z1 and velocity v that bombards a target, the 

average IMFP, the stopping power and the energy loss straggling can be obtained from a 

weighted sum of the partials IMFP, 
1−Λ q ,  stopping power, p,qS , and energy loss straggling 

2

qΩ  for each charge q of the projectile, 
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where qφ  is the probability to find the projectile in a given charge state q. Since the charge 

equilibrium is reached in a few femtoseconds after the projectile penetrates into the target, 

we assume that qφ  are the charge-state fractions at equilibrium, which depend on the target, 

the projectile and their velocity; we obtain qφ  from the CasP 3.1 code [Grande 2005]. For 

compound targets, such as water, this code applies Bragg rule to their constituents to find the 

final charge fractions. 

The dielectric formalism, which based in the first Born approximation, provides the 

following expressions for the inverse mean free path, 1−Λ q ,  the stopping power, p,qS , and the 

energy loss straggling 
2

qΩ  for a projectile with charge state q moving through a material 
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where e is the absolute value of the electron charge, )(kqρ  is the Fourier transform of the 

projectile charge density for the charge state q, kh  and ωh  are, respectively, the momentum 

and energy transferred in an inelastic process to the target, ),( ωε k  is the dielectric function 

and [ ]),(/1Im ωε k−  is the energy loss function (ELF) of the stopping material, which 

contains all the information about the electronic properties of the target. To the ELF of water 

we will devote the next section.  

 

III. Energy loss function of liquid water 

It is necessary a good description of the liquid water ELF for the entire k − ω  plane, in order 

to obtain good results for the IMFP, the stopping power and the energy loss straggling. 

Only recently experimental data of the energy loss function (ELF) of liquid water at 

momentum transfer different from zero have become available. These data are from  
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[Watanabe 1997, Hayashi 1998, 2000], where the authors studied the Compton scattering in 

liquid water of high energy photons, resulting from synchrotron radiation. By the use of 

inelastic X-ray scattering (IXS) spectroscopy, the GOS can be obtained in an absolute scale 

as a function of the transferred energy and momentum. This quantity is uniquely related to 

the dielectric response function, which determines the interaction of the material with a 

charged particle. 

Old experimental data of ELF of liquid water in the optical limit are from Heller [Heller 

1974], and in this limit new and old data from both research groups are very different. 

Therefore, it is very important to calculate again the stopping magnitudes of charged 

particles in liquid water, using reliable ELF as input data. 

We present an improved description of the ELF corresponding to liquid water, obtained by 

an empirical fitting to available optical data and fulfilling physical constraints such as the f-

sum rule. We use the MELF-GOS approach [Abril 1998] to describe the energy loss function 

of the liquid water. The electrons of the medium are divided into two groups: the inner-

electrons, whose states retain an atomic character even in condensed medium and the outer-

electrons, responsible of the phase state and chemical properties of the aggregate. Using this 

approach, the ELF is separated into two contributions: 
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The excitations of the outer electrons of the solid, including both collective and single-

particle (electron-hole) excitations, are described by fitting the experimental optical ELF 

(k=0) to a sum of Mermin-type ELFs, 

Mouter exp
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where Mε  is the Mermin dielectric function [Mermin 1970]. 

The fitting parameters iω  and iγ  are related to the position and width, respectively, of 

the i-th Mermin-type ELF, while the coefficients iA  are the corresponding weights. th,iωh  is 

a threshold energy in this fitting procedure. For liquid water we fit to the experimental data 

from [Hayashi 2000] in the optical limit and obtain the parameters shown in the table. 

In the other hand, inner-shell electrons retain their atomic character since they have large 

binding energies, therefore it is suitable to model their excitation spectrum in terms of 

generalized oscillator strengths (GOS) [Egerton 1989]. The connection between the ELF and 

the GOS model is given by 
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where N is the density of atoms in the target (for liquid water  .a.u10949.4 3−⋅=N ) and 

ωω d/),(d kf nl  is the GOS of the ),( ln  subshell. We use the hydrogenic approach to obtain 

the GOS because it is analytical and describes reasonably well the contribution of the K, L 

and M inner-shell ionization to the stopping magnitudes [Abril 2007]. For liquid water, we 

use the GOS of the oxygen K-shell. 

In figure 1 we show the ELF of liquid water in the optical limit (k=0). The round symbols 

correspond to experimental data [Hayashi 2000] for liquid water measured by inelastic x-ray 

scattering spectroscopy. Dashed curves correspond to the experimental data obtained from x-

ray scattering factors [Henke 1993], which permits to obtain the ELF at larger transferred 

energies. The solid curves correspond to our fitting according to the MELF-GOS method, 

including the contribution of the outer and the inner electrons. The outer electrons from 
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liquid water were fitted by a sum of 3 Mermin-type ELFs, while the oxygen K-inner shell is 

calculated by the GOS method. In table I we list the fitting parameters for the outer electrons 

of liquid water. 

 

 

Target i th,iωh  (eV) (eV)iωh  (eV)iγh  Ai 

Liquid water 1 7 22.0 14.0 0.352 

N = 4.949·10
-3

 a.u. 2 7 34.0 19.0 0.08366 

 3 7 47.0 32.0 0.05 

 

Table I.  Parameters used to fit the outer-electron excitations of the ELF of liquid water. N is 

the mass density of the target. 

 

One of the advantage of the MELF-GOS method is that the fit of the ELF in the optical 

limit, that is, when the momentum transfer is zero (k=0) can be analytically and 

automatically extended to 0≠k  through the properties of the Mermin dielectric function and 

the GOS model [Planes 1996]. In figure 2 we show the energy loss function of liquid water 

for different values of the momentum transferred, k. Comparison our results with 

experimental data for liquid water obtaining by x-ray scattering spectroscopy [Watanabe 

1997, Hayashi 2000] shows a good agreement. 

The MELF-GOS method also demands that the f-sum rule must be satisfied for all wave 

number k. So, the number of electrons per atom that can be excited for a given transferred 

energy ωh , eff ( )N ω , which is given by 
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should tend to the target atomic number as the transferred energy goes to infinity. Here em  is 

the mass electron. 

Another verification of the method consists in evaluating the mean excitation energy I, 

which must compare satisfactorily with experimental data (when available) 
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We obtain I = 79.4 eV for liquid water. The contribution of the outer electrons (all the 

electrons except those of oxygen K-shell, give 46.7 eV as the mean excitation energy. 

Experimental data from Bischel [1992] gives 5.079 ±  eV. The recommended values of 

ICRU [1984] are: I = 75.0 eV  for liquid water, I = 75.0 eV for ice, I = 71.6 eV and for 

vapour. Theoretical calculations based in the old ELF of liquid water obtain I = 81.8  eV 

[Dingfelder 2000]. 

In summary, the energy loss functions for liquid water have been modellized from 

experimental data in the optical limit, satisfying physical constraints such as the f-sum rule, 

and providing a reasonable value for the mean ionization energy. Besides, the ELF have  a 

momentum dependence that agrees with experiments and are suitable, accurate and of easy 

use for energy loss calculations. 

 

IV. Results and discussion 
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The following figures show the results of our calculations as well as the input data we have 

used. They are supposed to be self-explained through the figure caption.  
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Fig. 1: ELF of liquid water in the optical limit (k=0) as a function of the transferred energy. 

Solid curves correspond to MELF-GOS model, while symbols represent experimental data 

[Hayashi 2000] for liquid water. Dashed lines are the results obtained from x-ray scattering 

factors [Henke1993]. 
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Fig. 2: ELF of liquid water as a function of the transferred energy, for different values of the 

wave number k. 
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Fig 3: Effective number of electrons for liquid water as a function of the maximum 

transferred energy.  
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Fig. 4: Mean excitation energy of liquid water as function of the maximum transferred 

energy. 
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FIG. 5: Equilibrium charge state proton beams in liquid water as a function of the incident 

energy from the CasP code [Grande 2005].  
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Fig. 6: Equilibrium charge state He ion beams in liquid water as a function of the incident 

energy from the CasP code [Grande 2005].  
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Fig. 7: IMFP of H ion beams in liquid water as a function of the incident energy. We 

compare with other theoretical results [Dingfelder 2000, Emfietzoglou 2006]. 
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Fig. 8: IMFP of H ion beams in liquid water as a function of the incident energy.  
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Fig. 9: Stopping power of proton beams in liquid water as a function of the incident 

projectile energy. The solid curve corresponds to our model, which is compared to 

experimental and theoretical calculations (see inset).  
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Fig. 10: Stopping power of He beams in liquid water as a function of the incident energy. The solid 

curve corresponds to our model, which is compared to experimental data (see inset).  
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Fig. 11: Energy loss straggling of H beams in liquid water as a function of the incident 

energy. No experimental data is available for comparison. 
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Fig. 12: Energy loss straggling of He beams in liquid water as a function of the incident 

energy. 
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