
An algorithm to hide information in binary images

JOAN-JOSEP CLIMENT, JAVIER SANTACRUZ, LEANDRO TORTOSA, ANTONIO ZAMORA
Departament de Ciència de la Computació i Intel·ligència Artificial

Universitat d’Alacant
Ap. 99 E-03080 Alacant

SPAIN

Abstract: The objective of this paper is to develop a method to hide information inside a binary image. An
algorithm to embed data in scanned text or figures is proposed, based on the detection of suitable pixels, which
verify some conditions in order to be not detected. In broad terms, the algorithm locates those pixels placed
at the contours of the figures or in those areas where some scattering of the two colors can be found. The
hidden information is independent from the values of the pixels where this information is embedded. Notice that,
depending on the sequence of bits to be hidden, around half of the used pixels to keep bits of data will not be
modified. The other basic characteristic of the proposed scheme is that it is necessary to take into consideration
the bits that are modified, in order to perform the recovering process of the information, which consists on
recovering the sequence of bits placed in the proper positions. An application to banking sector is proposed for
hidding some information in signatures.

Key-words:Data hiding, watermark, steganography, binary images, image processing, banking security.

1 Introduction
Data hiding, a form of steganography, is the process
of encoding extra information in an image by mak-
ing small modifications to its pixels. So, by means of
some algorithm, we are able to embed data into digital
images for the purpose of identification, annotation,
copyright, and others. It is important to note that the
hidden data must be perceptually invisible yet robust
to common signal processing operations.

Depending on what information in which form is
hidden in the image, one can distinguish at least two
types of data hiding schemes: non-robust and robust
image watermarking. In the first one, a digital image
serves as a container for a secret message. For exam-
ple, by replacing the least significant bit of each pixel
(LBS) with an encrypted bit-stream, the changes to a
typical image will be imperceptible and the encrypted
message can be masked by some innocent looking im-
age. In the robust case, a short message (a watermark)
is embedded in the image in such a way that image is
able to survive common image processing operations,
such as loosy compression, filtering, noise adding, ge-
ometrical transformations, and so on.

Data hiding is closely related to cryptography. In
broad terms, the purpose of cryptography is to keep
messages unintelligible to those who not posses the
proper keys to recover them. But, sometimes, it may
be desirable to achieve security and privacy by mask-
ing the presence of communication. This is the main
goal addressed by steganography, as usually is named
the data hiding.

We can say that each particular data hiding
scheme consists mainly of an embedded algorithm
and a detector function. The embedding algorithm is
protected by a key-word with the aim that only those
who knows this secret key can access the information.

Classifications and surveys of information hiding
can be found in [2, 1], while a review to apply theses
techniques in image, audio, and text is in [3]. When
we try to hide information in two-color (black and
white) images, (like facsimiles, xeroxs and bar codes)
we find hard problems because the change of a pixel
in images like those can be easily detectable. Nev-
ertheless, some schemes have been proposed for this
task. We remark the steganography scheme proposed
by Yu-Yuan Chen, Hsiang-Kuang Pan, and Yu-Chee
Tseng [4], which ensures that in eachm × n image
block of the host image, as many asblog2(mn + 1)c
bits can be hidden in the block by changing at most
two bits in the block. Some other examples have been
proposed, based on the idea of manipulating some
pixels according to some rules, playing an important
role the characteristics of the neighborhood pixels,
(see [5, 6]).

2 Some basic digital image defini-
tions

A digital imagea[m,n] described in a 2D discrete
space is derived from an analog imagea(x, y) in
a 2D continuous space through a sampling process
known as digitization, which basically consists on di-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16375325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

viding the original imagea(x, y) in M rows andN
columns. A pixel is termed as the intersection of a
row and a column. The value assigned to the integer
coordinates[m,n], with m = 0, 1, . . . ,M − 1 and
n = 0, 1, . . . , N − 1 is a[m,n].

There are standard values for the parametersM ,
N and L, the gray level. Quite frequently, we see
cases ofM = N = 2k, wherek = 8, 9, 10. The num-
ber of gray levels is usually a power of two, that is,
L = 2B, whereB is the number of bits in the binary
representation of the brightness levels. WhenB 6= 1,
we speak of a gray level image. IfB = 1 we speak
of a binary image. These are the images we are going
to deal with along this paper, images with two gray
levels, black and white, or0 and1.

In this section we are not going into further details
about the theoretical properties of digital images, but
we must point out some fundamental definitions about
operations with digital images. The types of opera-
tions that can be applied to digital images to transform
an input imagea[m,n] into an output imageb[m, n]
can be classified into three categories:

1. Point: the output value for a coordinate is de-
pendent only on the input value at the same co-
ordinate.

2. Local: the output value for a coordinate is de-
pendent on the input values in the neighborhood
of that coordinate.

3. Global: the output value for a coordinate is de-
pendent on all the values in the input image.

Due to the fact that the generic complexity (per
pixel) of the global operations isN2, if the image size
is N ×N , we are interested in performing point or lo-
cal operations, which complexity is much less. When
local operations are performed to process an image,
various neighborhoods can be used. The most com-
mon used neighborhood is the rectangular sampling,
where images are sampled by laying a rectangular grid
over the image. A pixelp at coordinates(x, y) has
four horizontal and vertical neighbors, whose coordi-
nates are given by

(x + 1, y), (x− 1, y), (x, y + 1), (x, y − 1).

This set can be denoted byN4(p). Similarly, the four
diagonal neighbors ofp have coordinates

(x+1, y+1), (x+1, y−1), (x−1, y+1), (x−1, y−1)

and are denoted byNd(p). The setN4(p)∪Nd(p) are
called the 8-neighbors ofp, denoted byN8(p). In a

similar way, we can determine the 16-neighbors ofp,
denoted byN16(p). The setsN8(p) andN16(p) will
play an important role in our algorithm.

The two basic ways to embed data in binary im-
age are by changing the values of individual pixels
and by changing a group of pixels. The first approach
flips a black pixel to white or vice versa. The sec-
ond approach modifies such features as the thickness
of strokes, curvature, relative positions, etc. In this
paper, we focus on using the first approach.

3 An algorithm to embed informa-
tion in digital binary images

3.1 Description of the algorithm
The idea in which our algorithm is based is to locate
certain pixels of the host image, which must fulfill
some special requirements that we will analyze in de-
tail in this section. In broad terms, we are interested in
finding pixels located in the contours of the figures or
in those areas where we can find certain scattering of
pixels with the two colors (black and white). The hid-
den information is independent from the values of the
pixels where this information is going to be embed-
ded. Therefore, we expect that there will be the half
of coincidences between the bit we want to hide and
the value of the pixel in the host image. We must point
out that no information is hidden in the solid areas of
the figure. The reason is simple: we want to have the
control on the quality of the image after modification
and modifying such pixels in solid areas can be easily
detected by an observer.

The host image is represented by a matrix whose
entries are0s and1s, where0 represents a black col-
ored pixel and1 represents a white colored one. The
information or data we want to hide is not but a se-
quence of bits. No kind of separation or assembling is
distinguished, so the chosen alphabet has no influence
on the algorithm. To begin with, the algorithm works
with natural chains of8 bits, that is, an ASCII charac-
ter; nevertheless, a previous function can be executed
to substitute each character of the used alphabet by the
binary representation. Moreover, the algorithm takes
into account a sequence which we are going to iden-
tify with the end of the process of hiding data. That
special sequence is composed by a byte of1s. It is
important to notice that we analyse the image process-
ing it by rows, verifying that each pixel assembles the
proper conditions to keep a bit of information in it.
So, we will perform the computations over each pixel
individually.

Given two pixelsp = (x, y) andq = (s, t), we

define theD8-distance betweenp andq as

D8(p, q) = max (|x− s| , |y − t|) . (1)

From equation (1), we see that pixels withD8-
distance from(x, y) less than or equal to some value
r form a square centered at(x, y). For example, the
pixels withD8-distance≤ 2 from (x, y) form the fol-
lowing contours of constant distance

2 2 2 2 2
2 1 1 1 2
2 1 0 1 2
2 1 1 1 2
2 2 2 2 2

(2)

As we can see in matrix (2), the pixels withD8-
distance equals1 form the setN8(p), while the pixels
with D8-distance equals to2 form the setN16(p). We
call N8(p) andN16(p) the inner boundand theouter
boundof p, respectively.

Now, we describe the whole process leading to
embed information in a host image. The algorithm
analyses, by rows, each pixel of the matrix represent-
ing the host image, to check if it is possible to keep
a bit of the sequence originated by the secret infor-
mation. This process to detect those pixels which are
optimum to keep information, can be resumed in the
following steps:

Step 1. Determine if the pixelp = (x, y) veri-
fies the proper conditions to hide information.

Step 2. Check if pixelp is placed under the in-
fluence of other pixels where information has
been previously hidden.

Step 3. Check if, when keeping information in
pixel p, the conditions of the neighboring pixels
have been modified.

In step 1, we impose two necessary, but not suffi-
cient, conditions to determine if the pixelp is suitable
or not to embed information in it. These conditions
can be expressed as:

Condition 1. Given the pixelp at coordinates
(x, y), pixels in the setN8(p) must have the
same value as the pixel placed at coordinates
(x− 1, y − 1).

Condition 2. Consider the sequence given by
the values of pixels inN16(p). This sequence
must contain the value of the pixel(x−2, y−2)
between5 and12 times.

These are the two conditions that a pixel must ver-
ify as a first step to go on with the process. Remark

that the algorithm begins to analyse the pixels from
the position(4, 5) in the matrix of the host image.

In step 2, given that the pixelp verifies condition 1
and condition 2, we have to check thatp is not above
the influence of pixels where some information was
hidden before. What we mean is that we cannot hide
information in the pixelp, if it is placed in the sets
N8(p′) or N16(p′), for a neighbor pixelp′ where we
have previously embedded a bit of information.

We solve this problem by means of an auxiliary
matrix, with three rows and so many columns as hor-
izontal pixels the image has. In this matrix, we place
a value1 in those positions where a bit of informa-
tion exists, and a value0 in other case. The third row
in this matrix corresponds with the row in the image
where the pixel we are considering is placed. The first
and second rows are the ones where we can find the
pixels that interfere with the one we are dealing with.
So, the pixels that can produce problems are those lo-
cated along the inner and outer border; more exactly,
those located in the upper side and left side. If we
find in some of these positions a value of1, the pixel
we are considering must be rejected, and we go to the
next one. When a row of the image has been com-
pleted, the rows of the auxiliary matrix are shifted one
position upwards, inserting then a null row.

In step 3, we can not affirm that the pixelp is suit-
able to hide information if we do not check that, in
the case to be modified, do not change the conditions
of the previous pixels studied. May be possible that
when a bit is modified to hide a bit of information, this
can originate a deep change in the conditions for the
inner and outer border of other neighbor pixels. This
fact can produce that a pixel which was not suitable to
hide information before the modification of the pixel
p, will became a suitable pixel to embed information.
A situation like this is very dangerous because it pro-
duces confusion in the process of recovering the data.
Consequently, this pixel must be rejected. To avoid
this situation, we have to analyse all the pixels located
at the upper and left borders. More exactly, we refer
to the pixels at coordinates(x−2, y−2), (x−1, y+2)
and(x, y−2), (x, y−1). So, the task we must perform
with these pixels is the study of their behavior when
we place0 and1, respectively, as the value of the pixel
p. If any of the previous pixels transforms to a suit-
able pixel to hide information, we do not take into ac-
count the pixelp, and continue with the following one,
which may be that located at position(x, y + 3).

Once a pixel has overcome the conditions im-
posed through the three steps of the process described
above, we can hide a bit of information in that posi-
tion. Note that the algorithm works with individual

pixels; after the process is completed for a concrete
one, we go to the next position and begin again with
the three steps.

One of the main characteristics in the above
scheme is that, although many pixels are not modi-
fied to hide information, the bits that are modified are
not selected from a random process. We always take
into account the positions where the bits are modified
and it is taken into consideration. As a consequence
of this, the process to recover the hidden information
coincides exactly with the process to embed informa-
tion. The only thing we have to remark is that, in this
algorithm, we only have to recover the sequence of
bits placed in the proper positions. Now, we do not
have to modify any pixel. The process ends when we
find the character who finish the information (a byte
of 1s).

3.2 Ax example with a concrete image and
experimental results

The essential part of the algorithm consists on the
election of those pixels where we can keep bits of in-
formation. With the purpose of understanding the way
in that this process is carried out, we consider an ex-
ample. We use a binary image, calledgarra.bmp, that
represents the claw of a bird and whose dimensions
are57× 88, (see Figure 1).

Figure 1 shows us a13×22 matrix, whose entries
are0s and1s representing a piece of the left image.

We use the matrix shown in Figure 1 to make
some considerations about the hiding information pro-
cess, developing the three steps described in Section
3.1. We can find some pixels verifying the conditions
1 and 2 in step 1. For example, pixelsp1 = (7, 16) and
p2 = (10, 10) verify these conditions. Pixelp1 has the
following characteristics: the value of all the pixels in
the setN8(p1) is equal to0 and the setN16(p1) has
6 pixels whose value is equal to1 (the value of the
pixel (5, 14)). Therefore, this pixel is, by now, a suit-
able one to keep information in it. Similarly, pixel
p2 = (10, 10) is agree with condition 1 and 2. In this
case, the setN16(p2) has8 pixels whose value is equal
to 0 (the value of the pixel(8, 8)). It also verifies the
step 1 of the algorithm.

Observing the matrix we are working with, note
that the coordinates(7, 16) and(10, 10) are not under
the influence of suitable pixels to keep information.
Consequently,p1 andp2 are suitable to keep informa-
tion, according to step 2. Now, we only have to check
that they do not modify the conditions of the pixels in
their influence area.

From matrix in Figure 1 we observe that when the
pixel (7, 16) takes the value0, the conditions of the

step 1 are not given for the pixels in the influence area;
nevertheless, when the value of this pixel changes to
1, we see that a deep change occurs in the conditions
of the pixel placed at position(5, 16), as we reflect
in Figure 2. That is, pixel(5, 16) becomes a suit-
able one to embed information in it. This fact may
produce a problem when the information must be re-
covered. Consequently, pixel(7, 16) must be rejected.
This situation do not happen when we study the pixel
(10, 10). We observe that this one does not modify
the conditions in the pixels located at the neighboring.
In such case, we can keep a bit of information in that
coordinate and this will not be detectable.

We have implemented our scheme and conducted
some tests. The simulation is based on the generation
of random matrices, which represent possible host im-
ages, used to embed some short information. We
define three matrices, denoted byM1, M2 andM3,
whose sizes are200× 200, 300× 300 and450× 436,
respectively. The texts we will try to hide in matrices
M1, M2 andM3, areCustomer Number, Your Serial
NumberandRoyal Festival, respectively. Finally, we
choose to repeat the generation of random matrices
for five times.

The experimental results obtained for this simula-
tion with these parameters are given in Table 1. The
first column represents the type of matrix randomly
generated. The second column shows us the total
number of bits that we can keep in the generated ma-
trix. The third column give us the number of coinci-
dences between the values of the suitable bits to keep
information in the matrix and the bit of information
kept in that pixel. In other words, this column repre-
sents the number of pixels in the matrix that are not
modified by the hiding information scheme. The last
column give us the execution time, in seconds.

We must point out that in all the cases, we achieve
the objective to hide the chosen text in the correspond-
ing matrix. The capacity provides us the limit of the
bits we are able to hide. Some modifications to the
algorithm may be easily introduced to increase the ca-
pacity of hiding information. Finally, we want to re-
mark the velocity of the algorithm to check the char-
acteristics of the pixels representing the host image.

3.3 An application to handwriting signatures
In summary, we have presented a technique for hid-
ding data in binary images. We can apply the algo-
rithm exposed in this paper to the particular case of
handwriting signatures, with the aim of keeping some
information in the image of the digitalized signature.
Nowadays, banks or some other bussiness need to
have a database with the signatures of their customers.

Figure 1: Example image.

Figure 2: Influence area of pixel(7, 16) when it is equal to1.

Table 1: Simulation of hiding information scheme described in this paper.

Matrix Capacity Coincidence Execution Time

M1 210 71 <1
M2 475 77 <1
M3 1050 71 <1
M1 177 60 <1
M2 449 76 <1
M3 1048 60 <1
M1 174 58 <1
M2 443 74 <1
M3 991 56 <1
M1 207 56 <1
M2 509 84 <1
M3 986 61 <1
M1 190 66 <1
M2 461 81 <1
M3 930 60 <1

Figure 3: Digitalized signature.

We can introduce in the image some personal data,
which may be convenient to know for us, but may be
blind for the other part.

We see in Figure 3 an example of a digitalized
signature, where we are going to embed some infor-
mation. More exactly, the inserted text in the im-
age is25487996D , which constitute the identifica-
tion number for a particular person. With this tech-
nique, the total number of bits that we could keep in
the whole image is512. The first character to intro-
duce is2 = (00110010). The eight bits of this byte
are storaged in the coordinates

(20, 179), (22, 174), (24, 182), (25, 179),

(28, 516), (29, 181), (30, 178), (30, 520).

We can hide the rest of bits in the image following
the algorithm described throughout this paper, result-
ing perceptually invisible, as we see when comparing
both images in Figure 3. Image placed up represents
the original digitalized signature, while image placed
down represents the image after embedding the iden-
tification number.

4 Conclusions
In this paper, we have proposed a new data hiding
scheme for 2-color images, based on the idea of locat-
ing some pixels placed at the contours of the figures or
in those areas where some scattering of the two colors
can be found. These suitable pixels are replaced, by
the appropriate bit of information, from the sequence
of bits we generate from the information that must be

hidden. This means that not all the pixels where we
keep data, have to be modified, what produces that
the hiding effect is quite invisible. Experimental re-
sults show us that around half of the pixels need not
be modified. Future research may be directed toward
increasing the data hiding capacity, as well as reduc-
ing at most the visibility of the hiding effect.

References:
[1] Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.: In-

formation Hiding – A Survey. Proceedings of the
IEEE (1999) 1062–78

[2] Anderson, R.J., Petitcolas, F.A.P.: On the Limits
of Steganography. IEEE J. on Selected Areas in
Communications16(4)(1998) 474–481

[3] Bender,W., Gruhl, D., Morimoto, N., Lu, A.:
Techniques for Data Hiding. IBM System35(3-
4) (1996) 313–336

[4] Chen, Yu-Yuan, Pan, Hsiang-Kuang, Tseng, Yu-
Chee: A Secure Data Hiding Scheme for Two-
Color Images. IEEE Symp. on Computers and
Communications (2000)

[5] Wang, Hsi-Chun A.: Data Hiding Techniques
for Printed Binary Images. Proceedings of the
International Conference on Information Tech-
nology: Coding and Computing Las Vegas
(2001) 55–60

[6] Wu, M., Tang, E., Liu, B.: Data Hiding in Dig-
ital Binary Image. IEEE Inter. Conference on
Multimedia and Expo New York City1 (2000)
393–396

